blob: 30ccd05beecb39c979a4dbe91ee301d381390d7d [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "lithium-allocator-inl.h"
#include "arm/lithium-arm.h"
#include "arm/lithium-codegen-arm.h"
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
void L##type::CompileToNative(LCodeGen* generator) { \
generator->Do##type(this); \
}
LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
LOsrEntry::LOsrEntry() {
for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) {
register_spills_[i] = NULL;
}
for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) {
double_register_spills_[i] = NULL;
}
}
void LOsrEntry::MarkSpilledRegister(int allocation_index,
LOperand* spill_operand) {
ASSERT(spill_operand->IsStackSlot());
ASSERT(register_spills_[allocation_index] == NULL);
register_spills_[allocation_index] = spill_operand;
}
#ifdef DEBUG
void LInstruction::VerifyCall() {
// Call instructions can use only fixed registers as temporaries and
// outputs because all registers are blocked by the calling convention.
// Inputs operands must use a fixed register or use-at-start policy or
// a non-register policy.
ASSERT(Output() == NULL ||
LUnallocated::cast(Output())->HasFixedPolicy() ||
!LUnallocated::cast(Output())->HasRegisterPolicy());
for (UseIterator it(this); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
ASSERT(operand->HasFixedPolicy() ||
operand->IsUsedAtStart());
}
for (TempIterator it(this); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
ASSERT(operand->HasFixedPolicy() ||!operand->HasRegisterPolicy());
}
}
#endif
void LOsrEntry::MarkSpilledDoubleRegister(int allocation_index,
LOperand* spill_operand) {
ASSERT(spill_operand->IsDoubleStackSlot());
ASSERT(double_register_spills_[allocation_index] == NULL);
double_register_spills_[allocation_index] = spill_operand;
}
void LInstruction::PrintTo(StringStream* stream) {
stream->Add("%s ", this->Mnemonic());
PrintOutputOperandTo(stream);
PrintDataTo(stream);
if (HasEnvironment()) {
stream->Add(" ");
environment()->PrintTo(stream);
}
if (HasPointerMap()) {
stream->Add(" ");
pointer_map()->PrintTo(stream);
}
}
template<int R, int I, int T>
void LTemplateInstruction<R, I, T>::PrintDataTo(StringStream* stream) {
stream->Add("= ");
for (int i = 0; i < inputs_.length(); i++) {
if (i > 0) stream->Add(" ");
inputs_[i]->PrintTo(stream);
}
}
template<int R, int I, int T>
void LTemplateInstruction<R, I, T>::PrintOutputOperandTo(StringStream* stream) {
for (int i = 0; i < results_.length(); i++) {
if (i > 0) stream->Add(" ");
results_[i]->PrintTo(stream);
}
}
void LLabel::PrintDataTo(StringStream* stream) {
LGap::PrintDataTo(stream);
LLabel* rep = replacement();
if (rep != NULL) {
stream->Add(" Dead block replaced with B%d", rep->block_id());
}
}
bool LGap::IsRedundant() const {
for (int i = 0; i < 4; i++) {
if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) {
return false;
}
}
return true;
}
void LGap::PrintDataTo(StringStream* stream) {
for (int i = 0; i < 4; i++) {
stream->Add("(");
if (parallel_moves_[i] != NULL) {
parallel_moves_[i]->PrintDataTo(stream);
}
stream->Add(") ");
}
}
const char* LArithmeticD::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-d";
case Token::SUB: return "sub-d";
case Token::MUL: return "mul-d";
case Token::DIV: return "div-d";
case Token::MOD: return "mod-d";
default:
UNREACHABLE();
return NULL;
}
}
const char* LArithmeticT::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-t";
case Token::SUB: return "sub-t";
case Token::MUL: return "mul-t";
case Token::MOD: return "mod-t";
case Token::DIV: return "div-t";
case Token::BIT_AND: return "bit-and-t";
case Token::BIT_OR: return "bit-or-t";
case Token::BIT_XOR: return "bit-xor-t";
case Token::SHL: return "shl-t";
case Token::SAR: return "sar-t";
case Token::SHR: return "shr-t";
default:
UNREACHABLE();
return NULL;
}
}
void LGoto::PrintDataTo(StringStream* stream) {
stream->Add("B%d", block_id());
}
void LBranch::PrintDataTo(StringStream* stream) {
stream->Add("B%d | B%d on ", true_block_id(), false_block_id());
InputAt(0)->PrintTo(stream);
}
void LCmpIDAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if ");
InputAt(0)->PrintTo(stream);
stream->Add(" %s ", Token::String(op()));
InputAt(1)->PrintTo(stream);
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsNullAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if ");
InputAt(0)->PrintTo(stream);
stream->Add(is_strict() ? " === null" : " == null");
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsObjectAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_object(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsSmiAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_smi(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsUndetectableAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_undetectable(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_instance_type(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_cached_array_index(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if class_of_test(");
InputAt(0)->PrintTo(stream);
stream->Add(", \"%o\") then B%d else B%d",
*hydrogen()->class_name(),
true_block_id(),
false_block_id());
}
void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if typeof ");
InputAt(0)->PrintTo(stream);
stream->Add(" == \"%s\" then B%d else B%d",
*hydrogen()->type_literal()->ToCString(),
true_block_id(), false_block_id());
}
void LCallConstantFunction::PrintDataTo(StringStream* stream) {
stream->Add("#%d / ", arity());
}
void LUnaryMathOperation::PrintDataTo(StringStream* stream) {
stream->Add("/%s ", hydrogen()->OpName());
InputAt(0)->PrintTo(stream);
}
void LLoadContextSlot::PrintDataTo(StringStream* stream) {
InputAt(0)->PrintTo(stream);
stream->Add("[%d]", slot_index());
}
void LStoreContextSlot::PrintDataTo(StringStream* stream) {
InputAt(0)->PrintTo(stream);
stream->Add("[%d] <- ", slot_index());
InputAt(1)->PrintTo(stream);
}
void LInvokeFunction::PrintDataTo(StringStream* stream) {
stream->Add("= ");
InputAt(0)->PrintTo(stream);
stream->Add(" #%d / ", arity());
}
void LCallKeyed::PrintDataTo(StringStream* stream) {
stream->Add("[r2] #%d / ", arity());
}
void LCallNamed::PrintDataTo(StringStream* stream) {
SmartArrayPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallGlobal::PrintDataTo(StringStream* stream) {
SmartArrayPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallKnownGlobal::PrintDataTo(StringStream* stream) {
stream->Add("#%d / ", arity());
}
void LCallNew::PrintDataTo(StringStream* stream) {
stream->Add("= ");
InputAt(0)->PrintTo(stream);
stream->Add(" #%d / ", arity());
}
void LAccessArgumentsAt::PrintDataTo(StringStream* stream) {
arguments()->PrintTo(stream);
stream->Add(" length ");
length()->PrintTo(stream);
stream->Add(" index ");
index()->PrintTo(stream);
}
void LStoreNamedField::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LStoreNamedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LStoreKeyedFastElement::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
stream->Add("] <- ");
value()->PrintTo(stream);
}
void LStoreKeyedFastDoubleElement::PrintDataTo(StringStream* stream) {
elements()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
stream->Add("] <- ");
value()->PrintTo(stream);
}
void LStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
stream->Add("] <- ");
value()->PrintTo(stream);
}
LChunk::LChunk(CompilationInfo* info, HGraph* graph)
: spill_slot_count_(0),
info_(info),
graph_(graph),
instructions_(32),
pointer_maps_(8),
inlined_closures_(1) {
}
int LChunk::GetNextSpillIndex(bool is_double) {
// Skip a slot if for a double-width slot.
if (is_double) spill_slot_count_++;
return spill_slot_count_++;
}
LOperand* LChunk::GetNextSpillSlot(bool is_double) {
int index = GetNextSpillIndex(is_double);
if (is_double) {
return LDoubleStackSlot::Create(index);
} else {
return LStackSlot::Create(index);
}
}
void LChunk::MarkEmptyBlocks() {
HPhase phase("Mark empty blocks", this);
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
int first = block->first_instruction_index();
int last = block->last_instruction_index();
LInstruction* first_instr = instructions()->at(first);
LInstruction* last_instr = instructions()->at(last);
LLabel* label = LLabel::cast(first_instr);
if (last_instr->IsGoto()) {
LGoto* goto_instr = LGoto::cast(last_instr);
if (label->IsRedundant() &&
!label->is_loop_header()) {
bool can_eliminate = true;
for (int i = first + 1; i < last && can_eliminate; ++i) {
LInstruction* cur = instructions()->at(i);
if (cur->IsGap()) {
LGap* gap = LGap::cast(cur);
if (!gap->IsRedundant()) {
can_eliminate = false;
}
} else {
can_eliminate = false;
}
}
if (can_eliminate) {
label->set_replacement(GetLabel(goto_instr->block_id()));
}
}
}
}
}
void LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) {
LInstructionGap* gap = new LInstructionGap(block);
int index = -1;
if (instr->IsControl()) {
instructions_.Add(gap);
index = instructions_.length();
instructions_.Add(instr);
} else {
index = instructions_.length();
instructions_.Add(instr);
instructions_.Add(gap);
}
if (instr->HasPointerMap()) {
pointer_maps_.Add(instr->pointer_map());
instr->pointer_map()->set_lithium_position(index);
}
}
LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) {
return LConstantOperand::Create(constant->id());
}
int LChunk::GetParameterStackSlot(int index) const {
// The receiver is at index 0, the first parameter at index 1, so we
// shift all parameter indexes down by the number of parameters, and
// make sure they end up negative so they are distinguishable from
// spill slots.
int result = index - info()->scope()->num_parameters() - 1;
ASSERT(result < 0);
return result;
}
// A parameter relative to ebp in the arguments stub.
int LChunk::ParameterAt(int index) {
ASSERT(-1 <= index); // -1 is the receiver.
return (1 + info()->scope()->num_parameters() - index) *
kPointerSize;
}
LGap* LChunk::GetGapAt(int index) const {
return LGap::cast(instructions_[index]);
}
bool LChunk::IsGapAt(int index) const {
return instructions_[index]->IsGap();
}
int LChunk::NearestGapPos(int index) const {
while (!IsGapAt(index)) index--;
return index;
}
void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) {
GetGapAt(index)->GetOrCreateParallelMove(LGap::START)->AddMove(from, to);
}
Handle<Object> LChunk::LookupLiteral(LConstantOperand* operand) const {
return HConstant::cast(graph_->LookupValue(operand->index()))->handle();
}
Representation LChunk::LookupLiteralRepresentation(
LConstantOperand* operand) const {
return graph_->LookupValue(operand->index())->representation();
}
LChunk* LChunkBuilder::Build() {
ASSERT(is_unused());
chunk_ = new LChunk(info(), graph());
HPhase phase("Building chunk", chunk_);
status_ = BUILDING;
const ZoneList<HBasicBlock*>* blocks = graph()->blocks();
for (int i = 0; i < blocks->length(); i++) {
HBasicBlock* next = NULL;
if (i < blocks->length() - 1) next = blocks->at(i + 1);
DoBasicBlock(blocks->at(i), next);
if (is_aborted()) return NULL;
}
status_ = DONE;
return chunk_;
}
void LChunkBuilder::Abort(const char* format, ...) {
if (FLAG_trace_bailout) {
SmartArrayPointer<char> name(
info()->shared_info()->DebugName()->ToCString());
PrintF("Aborting LChunk building in @\"%s\": ", *name);
va_list arguments;
va_start(arguments, format);
OS::VPrint(format, arguments);
va_end(arguments);
PrintF("\n");
}
status_ = ABORTED;
}
LRegister* LChunkBuilder::ToOperand(Register reg) {
return LRegister::Create(Register::ToAllocationIndex(reg));
}
LUnallocated* LChunkBuilder::ToUnallocated(Register reg) {
return new LUnallocated(LUnallocated::FIXED_REGISTER,
Register::ToAllocationIndex(reg));
}
LUnallocated* LChunkBuilder::ToUnallocated(DoubleRegister reg) {
return new LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER,
DoubleRegister::ToAllocationIndex(reg));
}
LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) {
return Use(value, ToUnallocated(fixed_register));
}
LOperand* LChunkBuilder::UseFixedDouble(HValue* value, DoubleRegister reg) {
return Use(value, ToUnallocated(reg));
}
LOperand* LChunkBuilder::UseRegister(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) {
return Use(value,
new LUnallocated(LUnallocated::MUST_HAVE_REGISTER,
LUnallocated::USED_AT_START));
}
LOperand* LChunkBuilder::UseTempRegister(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::WRITABLE_REGISTER));
}
LOperand* LChunkBuilder::Use(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::NONE));
}
LOperand* LChunkBuilder::UseAtStart(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::NONE,
LUnallocated::USED_AT_START));
}
LOperand* LChunkBuilder::UseOrConstant(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: Use(value);
}
LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseAtStart(value);
}
LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseRegister(value);
}
LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseRegisterAtStart(value);
}
LOperand* LChunkBuilder::UseAny(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: Use(value, new LUnallocated(LUnallocated::ANY));
}
LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) {
if (value->EmitAtUses()) {
HInstruction* instr = HInstruction::cast(value);
VisitInstruction(instr);
}
allocator_->RecordUse(value, operand);
return operand;
}
template<int I, int T>
LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr,
LUnallocated* result) {
allocator_->RecordDefinition(current_instruction_, result);
instr->set_result(result);
return instr;
}
template<int I, int T>
LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::NONE));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineAsRegister(
LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineAsSpilled(
LTemplateInstruction<1, I, T>* instr, int index) {
return Define(instr, new LUnallocated(LUnallocated::FIXED_SLOT, index));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineSameAsFirst(
LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineFixed(
LTemplateInstruction<1, I, T>* instr, Register reg) {
return Define(instr, ToUnallocated(reg));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineFixedDouble(
LTemplateInstruction<1, I, T>* instr, DoubleRegister reg) {
return Define(instr, ToUnallocated(reg));
}
LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) {
HEnvironment* hydrogen_env = current_block_->last_environment();
instr->set_environment(CreateEnvironment(hydrogen_env));
return instr;
}
LInstruction* LChunkBuilder::SetInstructionPendingDeoptimizationEnvironment(
LInstruction* instr, int ast_id) {
ASSERT(instruction_pending_deoptimization_environment_ == NULL);
ASSERT(pending_deoptimization_ast_id_ == AstNode::kNoNumber);
instruction_pending_deoptimization_environment_ = instr;
pending_deoptimization_ast_id_ = ast_id;
return instr;
}
void LChunkBuilder::ClearInstructionPendingDeoptimizationEnvironment() {
instruction_pending_deoptimization_environment_ = NULL;
pending_deoptimization_ast_id_ = AstNode::kNoNumber;
}
LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize) {
#ifdef DEBUG
instr->VerifyCall();
#endif
instr->MarkAsCall();
instr = AssignPointerMap(instr);
if (hinstr->HasSideEffects()) {
ASSERT(hinstr->next()->IsSimulate());
HSimulate* sim = HSimulate::cast(hinstr->next());
instr = SetInstructionPendingDeoptimizationEnvironment(
instr, sim->ast_id());
}
// If instruction does not have side-effects lazy deoptimization
// after the call will try to deoptimize to the point before the call.
// Thus we still need to attach environment to this call even if
// call sequence can not deoptimize eagerly.
bool needs_environment =
(can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) || !hinstr->HasSideEffects();
if (needs_environment && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
return instr;
}
LInstruction* LChunkBuilder::MarkAsSaveDoubles(LInstruction* instr) {
instr->MarkAsSaveDoubles();
return instr;
}
LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) {
ASSERT(!instr->HasPointerMap());
instr->set_pointer_map(new LPointerMap(position_));
return instr;
}
LUnallocated* LChunkBuilder::TempRegister() {
LUnallocated* operand = new LUnallocated(LUnallocated::MUST_HAVE_REGISTER);
allocator_->RecordTemporary(operand);
return operand;
}
LOperand* LChunkBuilder::FixedTemp(Register reg) {
LUnallocated* operand = ToUnallocated(reg);
allocator_->RecordTemporary(operand);
return operand;
}
LOperand* LChunkBuilder::FixedTemp(DoubleRegister reg) {
LUnallocated* operand = ToUnallocated(reg);
allocator_->RecordTemporary(operand);
return operand;
}
LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) {
return new LLabel(instr->block());
}
LInstruction* LChunkBuilder::DoSoftDeoptimize(HSoftDeoptimize* instr) {
return AssignEnvironment(new LDeoptimize);
}
LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
return AssignEnvironment(new LDeoptimize);
}
LInstruction* LChunkBuilder::DoBit(Token::Value op,
HBitwiseBinaryOperation* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand());
LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand());
return DefineAsRegister(new LBitI(op, left, right));
} else {
ASSERT(instr->representation().IsTagged());
ASSERT(instr->left()->representation().IsTagged());
ASSERT(instr->right()->representation().IsTagged());
LOperand* left = UseFixed(instr->left(), r1);
LOperand* right = UseFixed(instr->right(), r0);
LArithmeticT* result = new LArithmeticT(op, left, right);
return MarkAsCall(DefineFixed(result, r0), instr);
}
}
LInstruction* LChunkBuilder::DoShift(Token::Value op,
HBitwiseBinaryOperation* instr) {
if (instr->representation().IsTagged()) {
ASSERT(instr->left()->representation().IsTagged());
ASSERT(instr->right()->representation().IsTagged());
LOperand* left = UseFixed(instr->left(), r1);
LOperand* right = UseFixed(instr->right(), r0);
LArithmeticT* result = new LArithmeticT(op, left, right);
return MarkAsCall(DefineFixed(result, r0), instr);
}
ASSERT(instr->representation().IsInteger32());
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->left());
HValue* right_value = instr->right();
LOperand* right = NULL;
int constant_value = 0;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
} else {
right = UseRegisterAtStart(right_value);
}
// Shift operations can only deoptimize if we do a logical shift
// by 0 and the result cannot be truncated to int32.
bool may_deopt = (op == Token::SHR && constant_value == 0);
bool does_deopt = false;
if (may_deopt) {
for (HUseIterator it(instr->uses()); !it.Done(); it.Advance()) {
if (!it.value()->CheckFlag(HValue::kTruncatingToInt32)) {
does_deopt = true;
break;
}
}
}
LInstruction* result =
DefineAsRegister(new LShiftI(op, left, right, does_deopt));
return does_deopt ? AssignEnvironment(result) : result;
}
LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(instr->representation().IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
ASSERT(op != Token::MOD);
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
LArithmeticD* result = new LArithmeticD(op, left, right);
return DefineAsRegister(result);
}
LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(op == Token::ADD ||
op == Token::DIV ||
op == Token::MOD ||
op == Token::MUL ||
op == Token::SUB);
HValue* left = instr->left();
HValue* right = instr->right();
ASSERT(left->representation().IsTagged());
ASSERT(right->representation().IsTagged());
LOperand* left_operand = UseFixed(left, r1);
LOperand* right_operand = UseFixed(right, r0);
LArithmeticT* result = new LArithmeticT(op, left_operand, right_operand);
return MarkAsCall(DefineFixed(result, r0), instr);
}
void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) {
ASSERT(is_building());
current_block_ = block;
next_block_ = next_block;
if (block->IsStartBlock()) {
block->UpdateEnvironment(graph_->start_environment());
argument_count_ = 0;
} else if (block->predecessors()->length() == 1) {
// We have a single predecessor => copy environment and outgoing
// argument count from the predecessor.
ASSERT(block->phis()->length() == 0);
HBasicBlock* pred = block->predecessors()->at(0);
HEnvironment* last_environment = pred->last_environment();
ASSERT(last_environment != NULL);
// Only copy the environment, if it is later used again.
if (pred->end()->SecondSuccessor() == NULL) {
ASSERT(pred->end()->FirstSuccessor() == block);
} else {
if (pred->end()->FirstSuccessor()->block_id() > block->block_id() ||
pred->end()->SecondSuccessor()->block_id() > block->block_id()) {
last_environment = last_environment->Copy();
}
}
block->UpdateEnvironment(last_environment);
ASSERT(pred->argument_count() >= 0);
argument_count_ = pred->argument_count();
} else {
// We are at a state join => process phis.
HBasicBlock* pred = block->predecessors()->at(0);
// No need to copy the environment, it cannot be used later.
HEnvironment* last_environment = pred->last_environment();
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
last_environment->SetValueAt(phi->merged_index(), phi);
}
for (int i = 0; i < block->deleted_phis()->length(); ++i) {
last_environment->SetValueAt(block->deleted_phis()->at(i),
graph_->GetConstantUndefined());
}
block->UpdateEnvironment(last_environment);
// Pick up the outgoing argument count of one of the predecessors.
argument_count_ = pred->argument_count();
}
HInstruction* current = block->first();
int start = chunk_->instructions()->length();
while (current != NULL && !is_aborted()) {
// Code for constants in registers is generated lazily.
if (!current->EmitAtUses()) {
VisitInstruction(current);
}
current = current->next();
}
int end = chunk_->instructions()->length() - 1;
if (end >= start) {
block->set_first_instruction_index(start);
block->set_last_instruction_index(end);
}
block->set_argument_count(argument_count_);
next_block_ = NULL;
current_block_ = NULL;
}
void LChunkBuilder::VisitInstruction(HInstruction* current) {
HInstruction* old_current = current_instruction_;
current_instruction_ = current;
if (current->has_position()) position_ = current->position();
LInstruction* instr = current->CompileToLithium(this);
if (instr != NULL) {
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
instr->set_hydrogen_value(current);
chunk_->AddInstruction(instr, current_block_);
}
current_instruction_ = old_current;
}
LEnvironment* LChunkBuilder::CreateEnvironment(HEnvironment* hydrogen_env) {
if (hydrogen_env == NULL) return NULL;
LEnvironment* outer = CreateEnvironment(hydrogen_env->outer());
int ast_id = hydrogen_env->ast_id();
ASSERT(ast_id != AstNode::kNoNumber);
int value_count = hydrogen_env->length();
LEnvironment* result = new LEnvironment(hydrogen_env->closure(),
ast_id,
hydrogen_env->parameter_count(),
argument_count_,
value_count,
outer);
int argument_index = 0;
for (int i = 0; i < value_count; ++i) {
if (hydrogen_env->is_special_index(i)) continue;
HValue* value = hydrogen_env->values()->at(i);
LOperand* op = NULL;
if (value->IsArgumentsObject()) {
op = NULL;
} else if (value->IsPushArgument()) {
op = new LArgument(argument_index++);
} else {
op = UseAny(value);
}
result->AddValue(op, value->representation());
}
return result;
}
LInstruction* LChunkBuilder::DoGoto(HGoto* instr) {
return new LGoto(instr->FirstSuccessor()->block_id());
}
LInstruction* LChunkBuilder::DoBranch(HBranch* instr) {
HValue* v = instr->value();
if (v->EmitAtUses()) {
HBasicBlock* successor = HConstant::cast(v)->ToBoolean()
? instr->FirstSuccessor()
: instr->SecondSuccessor();
return new LGoto(successor->block_id());
}
return AssignEnvironment(new LBranch(UseRegister(v)));
}
LInstruction* LChunkBuilder::DoCompareMap(HCompareMap* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* temp = TempRegister();
return new LCmpMapAndBranch(value, temp);
}
LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) {
return DefineAsRegister(new LArgumentsLength(UseRegister(length->value())));
}
LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) {
return DefineAsRegister(new LArgumentsElements);
}
LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) {
LInstanceOf* result =
new LInstanceOf(UseFixed(instr->left(), r0),
UseFixed(instr->right(), r1));
return MarkAsCall(DefineFixed(result, r0), instr);
}
LInstruction* LChunkBuilder::DoInstanceOfKnownGlobal(
HInstanceOfKnownGlobal* instr) {
LInstanceOfKnownGlobal* result =
new LInstanceOfKnownGlobal(UseFixed(instr->left(), r0), FixedTemp(r4));
return MarkAsCall(DefineFixed(result, r0), instr);
}
LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) {
LOperand* function = UseFixed(instr->function(), r1);
LOperand* receiver = UseFixed(instr->receiver(), r0);
LOperand* length = UseFixed(instr->length(), r2);
LOperand* elements = UseFixed(instr->elements(), r3);
LApplyArguments* result = new LApplyArguments(function,
receiver,
length,
elements);
return MarkAsCall(DefineFixed(result, r0), instr, CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoPushArgument(HPushArgument* instr) {
++argument_count_;
LOperand* argument = Use(instr->argument());
return new LPushArgument(argument);
}
LInstruction* LChunkBuilder::DoThisFunction(HThisFunction* instr) {
return instr->HasNoUses() ? NULL : DefineAsRegister(new LThisFunction);
}
LInstruction* LChunkBuilder::DoContext(HContext* instr) {
return instr->HasNoUses() ? NULL : DefineAsRegister(new LContext);
}
LInstruction* LChunkBuilder::DoOuterContext(HOuterContext* instr) {
LOperand* context = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LOuterContext(context));
}
LInstruction* LChunkBuilder::DoGlobalObject(HGlobalObject* instr) {
LOperand* context = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LGlobalObject(context));
}
LInstruction* LChunkBuilder::DoGlobalReceiver(HGlobalReceiver* instr) {
LOperand* global_object = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LGlobalReceiver(global_object));
}
LInstruction* LChunkBuilder::DoCallConstantFunction(
HCallConstantFunction* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallConstantFunction, r0), instr);
}
LInstruction* LChunkBuilder::DoInvokeFunction(HInvokeFunction* instr) {
LOperand* function = UseFixed(instr->function(), r1);
argument_count_ -= instr->argument_count();
LInvokeFunction* result = new LInvokeFunction(function);
return MarkAsCall(DefineFixed(result, r0), instr, CANNOT_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
BuiltinFunctionId op = instr->op();
if (op == kMathLog || op == kMathSin || op == kMathCos) {
LOperand* input = UseFixedDouble(instr->value(), d2);
LUnaryMathOperation* result = new LUnaryMathOperation(input, NULL);
return MarkAsCall(DefineFixedDouble(result, d2), instr);
} else {
LOperand* input = UseRegisterAtStart(instr->value());
LOperand* temp = (op == kMathFloor) ? TempRegister() : NULL;
LUnaryMathOperation* result = new LUnaryMathOperation(input, temp);
switch (op) {
case kMathAbs:
return AssignEnvironment(AssignPointerMap(DefineAsRegister(result)));
case kMathFloor:
return AssignEnvironment(AssignPointerMap(DefineAsRegister(result)));
case kMathSqrt:
return DefineAsRegister(result);
case kMathRound:
return AssignEnvironment(DefineAsRegister(result));
case kMathPowHalf:
return DefineAsRegister(result);
default:
UNREACHABLE();
return NULL;
}
}
}
LInstruction* LChunkBuilder::DoCallKeyed(HCallKeyed* instr) {
ASSERT(instr->key()->representation().IsTagged());
argument_count_ -= instr->argument_count();
LOperand* key = UseFixed(instr->key(), r2);
return MarkAsCall(DefineFixed(new LCallKeyed(key), r0), instr);
}
LInstruction* LChunkBuilder::DoCallNamed(HCallNamed* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallNamed, r0), instr);
}
LInstruction* LChunkBuilder::DoCallGlobal(HCallGlobal* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallGlobal, r0), instr);
}
LInstruction* LChunkBuilder::DoCallKnownGlobal(HCallKnownGlobal* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallKnownGlobal, r0), instr);
}
LInstruction* LChunkBuilder::DoCallNew(HCallNew* instr) {
LOperand* constructor = UseFixed(instr->constructor(), r1);
argument_count_ -= instr->argument_count();
LCallNew* result = new LCallNew(constructor);
return MarkAsCall(DefineFixed(result, r0), instr);
}
LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallFunction, r0), instr);
}
LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallRuntime, r0), instr);
}
LInstruction* LChunkBuilder::DoShr(HShr* instr) {
return DoShift(Token::SHR, instr);
}
LInstruction* LChunkBuilder::DoSar(HSar* instr) {
return DoShift(Token::SAR, instr);
}
LInstruction* LChunkBuilder::DoShl(HShl* instr) {
return DoShift(Token::SHL, instr);
}
LInstruction* LChunkBuilder::DoBitAnd(HBitAnd* instr) {
return DoBit(Token::BIT_AND, instr);
}
LInstruction* LChunkBuilder::DoBitNot(HBitNot* instr) {
ASSERT(instr->value()->representation().IsInteger32());
ASSERT(instr->representation().IsInteger32());
return DefineAsRegister(new LBitNotI(UseRegisterAtStart(instr->value())));
}
LInstruction* LChunkBuilder::DoBitOr(HBitOr* instr) {
return DoBit(Token::BIT_OR, instr);
}
LInstruction* LChunkBuilder::DoBitXor(HBitXor* instr) {
return DoBit(Token::BIT_XOR, instr);
}
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else if (instr->representation().IsInteger32()) {
// TODO(1042) The fixed register allocation
// is needed because we call TypeRecordingBinaryOpStub from
// the generated code, which requires registers r0
// and r1 to be used. We should remove that
// when we provide a native implementation.
LOperand* dividend = UseFixed(instr->left(), r0);
LOperand* divisor = UseFixed(instr->right(), r1);
return AssignEnvironment(AssignPointerMap(
DefineFixed(new LDivI(dividend, divisor), r0)));
} else {
return DoArithmeticT(Token::DIV, instr);
}
}
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LModI* mod;
if (instr->HasPowerOf2Divisor()) {
ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
LOperand* value = UseRegisterAtStart(instr->left());
mod = new LModI(value, UseOrConstant(instr->right()));
} else {
LOperand* dividend = UseRegister(instr->left());
LOperand* divisor = UseRegister(instr->right());
mod = new LModI(dividend,
divisor,
TempRegister(),
FixedTemp(d10),
FixedTemp(d11));
}
if (instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
instr->CheckFlag(HValue::kCanBeDivByZero)) {
return AssignEnvironment(DefineAsRegister(mod));
} else {
return DefineAsRegister(mod);
}
} else if (instr->representation().IsTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
// We call a C function for double modulo. It can't trigger a GC.
// We need to use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
LOperand* left = UseFixedDouble(instr->left(), d1);
LOperand* right = UseFixedDouble(instr->right(), d2);
LArithmeticD* result = new LArithmeticD(Token::MOD, left, right);
return MarkAsCall(DefineFixedDouble(result, d1), instr);
}
}
LInstruction* LChunkBuilder::DoMul(HMul* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left;
LOperand* right = UseOrConstant(instr->MostConstantOperand());
LOperand* temp = NULL;
if (instr->CheckFlag(HValue::kBailoutOnMinusZero) &&
(instr->CheckFlag(HValue::kCanOverflow) ||
!right->IsConstantOperand())) {
left = UseRegister(instr->LeastConstantOperand());
temp = TempRegister();
} else {
left = UseRegisterAtStart(instr->LeastConstantOperand());
}
return AssignEnvironment(DefineAsRegister(new LMulI(left, right, temp)));
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MUL, instr);
} else {
return DoArithmeticT(Token::MUL, instr);
}
}
LInstruction* LChunkBuilder::DoSub(HSub* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseOrConstantAtStart(instr->right());
LSubI* sub = new LSubI(left, right);
LInstruction* result = DefineAsRegister(sub);
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::SUB, instr);
} else {
return DoArithmeticT(Token::SUB, instr);
}
}
LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand());
LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand());
LAddI* add = new LAddI(left, right);
LInstruction* result = DefineAsRegister(add);
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::ADD, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::ADD, instr);
}
}
LInstruction* LChunkBuilder::DoPower(HPower* instr) {
ASSERT(instr->representation().IsDouble());
// We call a C function for double power. It can't trigger a GC.
// We need to use fixed result register for the call.
Representation exponent_type = instr->right()->representation();
ASSERT(instr->left()->representation().IsDouble());
LOperand* left = UseFixedDouble(instr->left(), d1);
LOperand* right = exponent_type.IsDouble() ?
UseFixedDouble(instr->right(), d2) :
UseFixed(instr->right(), r0);
LPower* result = new LPower(left, right);
return MarkAsCall(DefineFixedDouble(result, d3),
instr,
CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoCompareGeneric(HCompareGeneric* instr) {
Token::Value op = instr->token();
ASSERT(instr->left()->representation().IsTagged());
ASSERT(instr->right()->representation().IsTagged());
bool reversed = (op == Token::GT || op == Token::LTE);
LOperand* left = UseFixed(instr->left(), reversed ? r0 : r1);
LOperand* right = UseFixed(instr->right(), reversed ? r1 : r0);
LCmpT* result = new LCmpT(left, right);
return MarkAsCall(DefineFixed(result, r0), instr);
}
LInstruction* LChunkBuilder::DoCompareIDAndBranch(
HCompareIDAndBranch* instr) {
Representation r = instr->GetInputRepresentation();
if (r.IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
return new LCmpIDAndBranch(left, right);
} else {
ASSERT(r.IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
return new LCmpIDAndBranch(left, right);
}
}
LInstruction* LChunkBuilder::DoCompareObjectEqAndBranch(
HCompareObjectEqAndBranch* instr) {
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
return new LCmpObjectEqAndBranch(left, right);
}
LInstruction* LChunkBuilder::DoCompareConstantEqAndBranch(
HCompareConstantEqAndBranch* instr) {
return new LCmpConstantEqAndBranch(UseRegisterAtStart(instr->value()));
}
LInstruction* LChunkBuilder::DoIsNullAndBranch(HIsNullAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new LIsNullAndBranch(UseRegisterAtStart(instr->value()));
}
LInstruction* LChunkBuilder::DoIsObjectAndBranch(HIsObjectAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* temp = TempRegister();
return new LIsObjectAndBranch(UseRegisterAtStart(instr->value()), temp);
}
LInstruction* LChunkBuilder::DoIsSmiAndBranch(HIsSmiAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new LIsSmiAndBranch(Use(instr->value()));
}
LInstruction* LChunkBuilder::DoIsUndetectableAndBranch(
HIsUndetectableAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new LIsUndetectableAndBranch(UseRegisterAtStart(instr->value()),
TempRegister());
}
LInstruction* LChunkBuilder::DoHasInstanceTypeAndBranch(
HHasInstanceTypeAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new LHasInstanceTypeAndBranch(UseRegisterAtStart(instr->value()));
}
LInstruction* LChunkBuilder::DoGetCachedArrayIndex(
HGetCachedArrayIndex* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LGetCachedArrayIndex(value));
}
LInstruction* LChunkBuilder::DoHasCachedArrayIndexAndBranch(
HHasCachedArrayIndexAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new LHasCachedArrayIndexAndBranch(
UseRegisterAtStart(instr->value()));
}
LInstruction* LChunkBuilder::DoClassOfTestAndBranch(
HClassOfTestAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new LClassOfTestAndBranch(UseTempRegister(instr->value()),
TempRegister());
}
LInstruction* LChunkBuilder::DoJSArrayLength(HJSArrayLength* instr) {
LOperand* array = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LJSArrayLength(array));
}
LInstruction* LChunkBuilder::DoFixedArrayBaseLength(
HFixedArrayBaseLength* instr) {
LOperand* array = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LFixedArrayBaseLength(array));
}
LInstruction* LChunkBuilder::DoElementsKind(HElementsKind* instr) {
LOperand* object = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LElementsKind(object));
}
LInstruction* LChunkBuilder::DoValueOf(HValueOf* instr) {
LOperand* object = UseRegister(instr->value());
LValueOf* result = new LValueOf(object, TempRegister());
return AssignEnvironment(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) {
return AssignEnvironment(new LBoundsCheck(UseRegisterAtStart(instr->index()),
UseRegister(instr->length())));
}
LInstruction* LChunkBuilder::DoAbnormalExit(HAbnormalExit* instr) {
// The control instruction marking the end of a block that completed
// abruptly (e.g., threw an exception). There is nothing specific to do.
return NULL;
}
LInstruction* LChunkBuilder::DoThrow(HThrow* instr) {
LOperand* value = UseFixed(instr->value(), r0);
return MarkAsCall(new LThrow(value), instr);
}
LInstruction* LChunkBuilder::DoUseConst(HUseConst* instr) {
return NULL;
}
LInstruction* LChunkBuilder::DoForceRepresentation(HForceRepresentation* bad) {
// All HForceRepresentation instructions should be eliminated in the
// representation change phase of Hydrogen.
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoChange(HChange* instr) {
Representation from = instr->from();
Representation to = instr->to();
if (from.IsTagged()) {
if (to.IsDouble()) {
LOperand* value = UseRegister(instr->value());
LNumberUntagD* res = new LNumberUntagD(value);
return AssignEnvironment(DefineAsRegister(res));
} else {
ASSERT(to.IsInteger32());
LOperand* value = UseRegister(instr->value());
bool needs_check = !instr->value()->type().IsSmi();
LInstruction* res = NULL;
if (!needs_check) {
res = DefineSameAsFirst(new LSmiUntag(value, needs_check));
} else {
LOperand* temp1 = TempRegister();
LOperand* temp2 = instr->CanTruncateToInt32() ? TempRegister()
: NULL;
LOperand* temp3 = instr->CanTruncateToInt32() ? FixedTemp(d11)
: NULL;
res = DefineSameAsFirst(new LTaggedToI(value, temp1, temp2, temp3));
res = AssignEnvironment(res);
}
return res;
}
} else if (from.IsDouble()) {
if (to.IsTagged()) {
LOperand* value = UseRegister(instr->value());
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
// Make sure that the temp and result_temp registers are
// different.
LUnallocated* result_temp = TempRegister();
LNumberTagD* result = new LNumberTagD(value, temp1, temp2);
Define(result, result_temp);
return AssignPointerMap(result);
} else {
ASSERT(to.IsInteger32());
LOperand* value = UseRegister(instr->value());
LDoubleToI* res =
new LDoubleToI(value,
TempRegister(),
instr->CanTruncateToInt32() ? TempRegister() : NULL);
return AssignEnvironment(DefineAsRegister(res));
}
} else if (from.IsInteger32()) {
if (to.IsTagged()) {
HValue* val = instr->value();
LOperand* value = UseRegister(val);
if (val->HasRange() && val->range()->IsInSmiRange()) {
return DefineSameAsFirst(new LSmiTag(value));
} else {
LNumberTagI* result = new LNumberTagI(value);
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
}
} else {
ASSERT(to.IsDouble());
LOperand* value = Use(instr->value());
return DefineAsRegister(new LInteger32ToDouble(value));
}
}
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoCheckNonSmi(HCheckNonSmi* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new LCheckNonSmi(value));
}
LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
LInstruction* result = new LCheckInstanceType(value);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoCheckPrototypeMaps(HCheckPrototypeMaps* instr) {
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
LInstruction* result = new LCheckPrototypeMaps(temp1, temp2);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new LCheckSmi(value));
}
LInstruction* LChunkBuilder::DoCheckFunction(HCheckFunction* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new LCheckFunction(value));
}
LInstruction* LChunkBuilder::DoCheckMap(HCheckMap* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
LInstruction* result = new LCheckMap(value);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoClampToUint8(HClampToUint8* instr) {
HValue* value = instr->value();
Representation input_rep = value->representation();
LOperand* reg = UseRegister(value);
if (input_rep.IsDouble()) {
return DefineAsRegister(new LClampDToUint8(reg, FixedTemp(d11)));
} else if (input_rep.IsInteger32()) {
return DefineAsRegister(new LClampIToUint8(reg));
} else {
ASSERT(input_rep.IsTagged());
// Register allocator doesn't (yet) support allocation of double
// temps. Reserve d1 explicitly.
LClampTToUint8* result = new LClampTToUint8(reg, FixedTemp(d11));
return AssignEnvironment(DefineAsRegister(result));
}
}
LInstruction* LChunkBuilder::DoToInt32(HToInt32* instr) {
HValue* value = instr->value();
Representation input_rep = value->representation();
LOperand* reg = UseRegister(value);
if (input_rep.IsDouble()) {
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
LDoubleToI* res = new LDoubleToI(reg, temp1, temp2);
return AssignEnvironment(DefineAsRegister(res));
} else if (input_rep.IsInteger32()) {
// Canonicalization should already have removed the hydrogen instruction in
// this case, since it is a noop.
UNREACHABLE();
return NULL;
} else {
ASSERT(input_rep.IsTagged());
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
LOperand* temp3 = FixedTemp(d11);
LTaggedToI* res = new LTaggedToI(reg, temp1, temp2, temp3);
return AssignEnvironment(DefineSameAsFirst(res));
}
}
LInstruction* LChunkBuilder::DoReturn(HReturn* instr) {
return new LReturn(UseFixed(instr->value(), r0));
}
LInstruction* LChunkBuilder::DoConstant(HConstant* instr) {
Representation r = instr->representation();
if (r.IsInteger32()) {
return DefineAsRegister(new LConstantI);
} else if (r.IsDouble()) {
return DefineAsRegister(new LConstantD);
} else if (r.IsTagged()) {
return DefineAsRegister(new LConstantT);
} else {
UNREACHABLE();
return NULL;
}
}
LInstruction* LChunkBuilder::DoLoadGlobalCell(HLoadGlobalCell* instr) {
LLoadGlobalCell* result = new LLoadGlobalCell;
return instr->check_hole_value()
? AssignEnvironment(DefineAsRegister(result))
: DefineAsRegister(result);
}
LInstruction* LChunkBuilder::DoLoadGlobalGeneric(HLoadGlobalGeneric* instr) {
LOperand* global_object = UseFixed(instr->global_object(), r0);
LLoadGlobalGeneric* result = new LLoadGlobalGeneric(global_object);
return MarkAsCall(DefineFixed(result, r0), instr);
}
LInstruction* LChunkBuilder::DoStoreGlobalCell(HStoreGlobalCell* instr) {
if (instr->check_hole_value()) {
LOperand* temp = TempRegister();
LOperand* value = UseRegister(instr->value());
return AssignEnvironment(new LStoreGlobalCell(value, temp));
} else {
LOperand* value = UseRegisterAtStart(instr->value());
return new LStoreGlobalCell(value, NULL);
}
}
LInstruction* LChunkBuilder::DoStoreGlobalGeneric(HStoreGlobalGeneric* instr) {
LOperand* global_object = UseFixed(instr->global_object(), r1);
LOperand* value = UseFixed(instr->value(), r0);
LStoreGlobalGeneric* result =
new LStoreGlobalGeneric(global_object, value);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) {
LOperand* context = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LLoadContextSlot(context));
}
LInstruction* LChunkBuilder::DoStoreContextSlot(HStoreContextSlot* instr) {
LOperand* context;
LOperand* value;
if (instr->NeedsWriteBarrier()) {
context = UseTempRegister(instr->context());
value = UseTempRegister(instr->value());
} else {
context = UseRegister(instr->context());
value = UseRegister(instr->value());
}
return new LStoreContextSlot(context, value);
}
LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) {
return DefineAsRegister(
new LLoadNamedField(UseRegisterAtStart(instr->object())));
}
LInstruction* LChunkBuilder::DoLoadNamedFieldPolymorphic(
HLoadNamedFieldPolymorphic* instr) {
ASSERT(instr->representation().IsTagged());
if (instr->need_generic()) {
LOperand* obj = UseFixed(instr->object(), r0);
LLoadNamedFieldPolymorphic* result = new LLoadNamedFieldPolymorphic(obj);
return MarkAsCall(DefineFixed(result, r0), instr);
} else {
LOperand* obj = UseRegisterAtStart(instr->object());
LLoadNamedFieldPolymorphic* result = new LLoadNamedFieldPolymorphic(obj);
return AssignEnvironment(DefineAsRegister(result));
}
}
LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) {
LOperand* object = UseFixed(instr->object(), r0);
LInstruction* result = DefineFixed(new LLoadNamedGeneric(object), r0);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoLoadFunctionPrototype(
HLoadFunctionPrototype* instr) {
return AssignEnvironment(DefineAsRegister(
new LLoadFunctionPrototype(UseRegister(instr->function()))));
}
LInstruction* LChunkBuilder::DoLoadElements(HLoadElements* instr) {
LOperand* input = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LLoadElements(input));
}
LInstruction* LChunkBuilder::DoLoadExternalArrayPointer(
HLoadExternalArrayPointer* instr) {
LOperand* input = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LLoadExternalArrayPointer(input));
}
LInstruction* LChunkBuilder::DoLoadKeyedFastElement(
HLoadKeyedFastElement* instr) {
ASSERT(instr->representation().IsTagged());
ASSERT(instr->key()->representation().IsInteger32());
LOperand* obj = UseRegisterAtStart(instr->object());
LOperand* key = UseRegisterAtStart(instr->key());
LLoadKeyedFastElement* result = new LLoadKeyedFastElement(obj, key);
return AssignEnvironment(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoLoadKeyedFastDoubleElement(
HLoadKeyedFastDoubleElement* instr) {
ASSERT(instr->representation().IsDouble());
ASSERT(instr->key()->representation().IsInteger32());
LOperand* elements = UseTempRegister(instr->elements());
LOperand* key = UseRegisterOrConstantAtStart(instr->key());
LLoadKeyedFastDoubleElement* result =
new LLoadKeyedFastDoubleElement(elements, key);
return AssignEnvironment(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoLoadKeyedSpecializedArrayElement(
HLoadKeyedSpecializedArrayElement* instr) {
ElementsKind elements_kind = instr->elements_kind();
Representation representation(instr->representation());
ASSERT(
(representation.IsInteger32() &&
(elements_kind != EXTERNAL_FLOAT_ELEMENTS) &&
(elements_kind != EXTERNAL_DOUBLE_ELEMENTS)) ||
(representation.IsDouble() &&
((elements_kind == EXTERNAL_FLOAT_ELEMENTS) ||
(elements_kind == EXTERNAL_DOUBLE_ELEMENTS))));
ASSERT(instr->key()->representation().IsInteger32());
LOperand* external_pointer = UseRegister(instr->external_pointer());
LOperand* key = UseRegisterOrConstant(instr->key());
LLoadKeyedSpecializedArrayElement* result =
new LLoadKeyedSpecializedArrayElement(external_pointer, key);
LInstruction* load_instr = DefineAsRegister(result);
// An unsigned int array load might overflow and cause a deopt, make sure it
// has an environment.
return (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) ?
AssignEnvironment(load_instr) : load_instr;
}
LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) {
LOperand* object = UseFixed(instr->object(), r1);
LOperand* key = UseFixed(instr->key(), r0);
LInstruction* result =
DefineFixed(new LLoadKeyedGeneric(object, key), r0);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoStoreKeyedFastElement(
HStoreKeyedFastElement* instr) {
bool needs_write_barrier = instr->NeedsWriteBarrier();
ASSERT(instr->value()->representation().IsTagged());
ASSERT(instr->object()->representation().IsTagged());
ASSERT(instr->key()->representation().IsInteger32());
LOperand* obj = UseTempRegister(instr->object());
LOperand* val = needs_write_barrier
? UseTempRegister(instr->value())
: UseRegisterAtStart(instr->value());
LOperand* key = needs_write_barrier
? UseTempRegister(instr->key())
: UseRegisterOrConstantAtStart(instr->key());
return AssignEnvironment(new LStoreKeyedFastElement(obj, key, val));
}
LInstruction* LChunkBuilder::DoStoreKeyedFastDoubleElement(
HStoreKeyedFastDoubleElement* instr) {
ASSERT(instr->value()->representation().IsDouble());
ASSERT(instr->elements()->representation().IsTagged());
ASSERT(instr->key()->representation().IsInteger32());
LOperand* elements = UseRegisterAtStart(instr->elements());
LOperand* val = UseTempRegister(instr->value());
LOperand* key = UseRegisterOrConstantAtStart(instr->key());
return new LStoreKeyedFastDoubleElement(elements, key, val);
}
LInstruction* LChunkBuilder::DoStoreKeyedSpecializedArrayElement(
HStoreKeyedSpecializedArrayElement* instr) {
Representation representation(instr->value()->representation());
ElementsKind elements_kind = instr->elements_kind();
ASSERT(
(representation.IsInteger32() &&
(elements_kind != EXTERNAL_FLOAT_ELEMENTS) &&
(elements_kind != EXTERNAL_DOUBLE_ELEMENTS)) ||
(representation.IsDouble() &&
((elements_kind == EXTERNAL_FLOAT_ELEMENTS) ||
(elements_kind == EXTERNAL_DOUBLE_ELEMENTS))));
ASSERT(instr->external_pointer()->representation().IsExternal());
ASSERT(instr->key()->representation().IsInteger32());
LOperand* external_pointer = UseRegister(instr->external_pointer());
bool val_is_temp_register =
elements_kind == EXTERNAL_PIXEL_ELEMENTS ||
elements_kind == EXTERNAL_FLOAT_ELEMENTS;
LOperand* val = val_is_temp_register
? UseTempRegister(instr->value())
: UseRegister(instr->value());
LOperand* key = UseRegisterOrConstant(instr->key());
return new LStoreKeyedSpecializedArrayElement(external_pointer,
key,
val);
}
LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) {
LOperand* obj = UseFixed(instr->object(), r2);
LOperand* key = UseFixed(instr->key(), r1);
LOperand* val = UseFixed(instr->value(), r0);
ASSERT(instr->object()->representation().IsTagged());
ASSERT(instr->key()->representation().IsTagged());
ASSERT(instr->value()->representation().IsTagged());
return MarkAsCall(new LStoreKeyedGeneric(obj, key, val), instr);
}
LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) {
bool needs_write_barrier = instr->NeedsWriteBarrier();
LOperand* obj = needs_write_barrier
? UseTempRegister(instr->object())
: UseRegisterAtStart(instr->object());
LOperand* val = needs_write_barrier
? UseTempRegister(instr->value())
: UseRegister(instr->value());
return new LStoreNamedField(obj, val);
}
LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) {
LOperand* obj = UseFixed(instr->object(), r1);
LOperand* val = UseFixed(instr->value(), r0);
LInstruction* result = new LStoreNamedGeneric(obj, val);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoStringAdd(HStringAdd* instr) {
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
return MarkAsCall(DefineFixed(new LStringAdd(left, right), r0), instr);
}
LInstruction* LChunkBuilder::DoStringCharCodeAt(HStringCharCodeAt* instr) {
LOperand* string = UseTempRegister(instr->string());
LOperand* index = UseTempRegister(instr->index());
LStringCharCodeAt* result = new LStringCharCodeAt(string, index);
return AssignEnvironment(AssignPointerMap(DefineAsRegister(result)));
}
LInstruction* LChunkBuilder::DoStringCharFromCode(HStringCharFromCode* instr) {
LOperand* char_code = UseRegister(instr->value());
LStringCharFromCode* result = new LStringCharFromCode(char_code);
return AssignPointerMap(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoStringLength(HStringLength* instr) {
LOperand* string = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LStringLength(string));
}
LInstruction* LChunkBuilder::DoArrayLiteral(HArrayLiteral* instr) {
return MarkAsCall(DefineFixed(new LArrayLiteral, r0), instr);
}
LInstruction* LChunkBuilder::DoObjectLiteral(HObjectLiteral* instr) {
return MarkAsCall(DefineFixed(new LObjectLiteral, r0), instr);
}
LInstruction* LChunkBuilder::DoRegExpLiteral(HRegExpLiteral* instr) {
return MarkAsCall(DefineFixed(new LRegExpLiteral, r0), instr);
}
LInstruction* LChunkBuilder::DoFunctionLiteral(HFunctionLiteral* instr) {
return MarkAsCall(DefineFixed(new LFunctionLiteral, r0), instr);
}
LInstruction* LChunkBuilder::DoDeleteProperty(HDeleteProperty* instr) {
LOperand* object = UseFixed(instr->object(), r0);
LOperand* key = UseFixed(instr->key(), r1);
LDeleteProperty* result = new LDeleteProperty(object, key);
return MarkAsCall(DefineFixed(result, r0), instr);
}
LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) {
allocator_->MarkAsOsrEntry();
current_block_->last_environment()->set_ast_id(instr->ast_id());
return AssignEnvironment(new LOsrEntry);
}
LInstruction* LChunkBuilder::DoParameter(HParameter* instr) {
int spill_index = chunk()->GetParameterStackSlot(instr->index());
return DefineAsSpilled(new LParameter, spill_index);
}
LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) {
int spill_index = chunk()->GetNextSpillIndex(false); // Not double-width.
if (spill_index > LUnallocated::kMaxFixedIndex) {
Abort("Too many spill slots needed for OSR");
spill_index = 0;
}
return DefineAsSpilled(new LUnknownOSRValue, spill_index);
}
LInstruction* LChunkBuilder::DoCallStub(HCallStub* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallStub, r0), instr);
}
LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) {
// There are no real uses of the arguments object.
// arguments.length and element access are supported directly on
// stack arguments, and any real arguments object use causes a bailout.
// So this value is never used.
return NULL;
}
LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) {
LOperand* arguments = UseRegister(instr->arguments());
LOperand* length = UseTempRegister(instr->length());
LOperand* index = UseRegister(instr->index());
LAccessArgumentsAt* result = new LAccessArgumentsAt(arguments, length, index);
return AssignEnvironment(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoToFastProperties(HToFastProperties* instr) {
LOperand* object = UseFixed(instr->value(), r0);
LToFastProperties* result = new LToFastProperties(object);
return MarkAsCall(DefineFixed(result, r0), instr);
}
LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) {
LTypeof* result = new LTypeof(UseFixed(instr->value(), r0));
return MarkAsCall(DefineFixed(result, r0), instr);
}
LInstruction* LChunkBuilder::DoTypeofIsAndBranch(HTypeofIsAndBranch* instr) {
return new LTypeofIsAndBranch(UseTempRegister(instr->value()));
}
LInstruction* LChunkBuilder::DoIsConstructCallAndBranch(
HIsConstructCallAndBranch* instr) {
return new LIsConstructCallAndBranch(TempRegister());
}
LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) {
HEnvironment* env = current_block_->last_environment();
ASSERT(env != NULL);
env->set_ast_id(instr->ast_id());
env->Drop(instr->pop_count());
for (int i = 0; i < instr->values()->length(); ++i) {
HValue* value = instr->values()->at(i);
if (instr->HasAssignedIndexAt(i)) {
env->Bind(instr->GetAssignedIndexAt(i), value);
} else {
env->Push(value);
}
}
// If there is an instruction pending deoptimization environment create a
// lazy bailout instruction to capture the environment.
if (pending_deoptimization_ast_id_ == instr->ast_id()) {
LInstruction* result = new LLazyBailout;
result = AssignEnvironment(result);
instruction_pending_deoptimization_environment_->
set_deoptimization_environment(result->environment());
ClearInstructionPendingDeoptimizationEnvironment();
return result;
}
return NULL;
}
LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) {
if (instr->is_function_entry()) {
return MarkAsCall(new LStackCheck, instr);
} else {
ASSERT(instr->is_backwards_branch());
return AssignEnvironment(AssignPointerMap(new LStackCheck));
}
}
LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) {
HEnvironment* outer = current_block_->last_environment();
HConstant* undefined = graph()->GetConstantUndefined();
HEnvironment* inner = outer->CopyForInlining(instr->closure(),
instr->function(),
undefined,
instr->call_kind());
current_block_->UpdateEnvironment(inner);
chunk_->AddInlinedClosure(instr->closure());
return NULL;
}
LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) {
HEnvironment* outer = current_block_->last_environment()->outer();
current_block_->UpdateEnvironment(outer);
return NULL;
}
LInstruction* LChunkBuilder::DoIn(HIn* instr) {
LOperand* key = UseRegisterAtStart(instr->key());
LOperand* object = UseRegisterAtStart(instr->object());
LIn* result = new LIn(key, object);
return MarkAsCall(DefineFixed(result, r0), instr);
}
} } // namespace v8::internal