blob: 1906644c351c6c85f74e6b45ca20d2581b542571 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
#define V8_IA32_MACRO_ASSEMBLER_IA32_H_
#include "assembler.h"
#include "v8globals.h"
namespace v8 {
namespace internal {
// Flags used for the AllocateInNewSpace functions.
enum AllocationFlags {
// No special flags.
NO_ALLOCATION_FLAGS = 0,
// Return the pointer to the allocated already tagged as a heap object.
TAG_OBJECT = 1 << 0,
// The content of the result register already contains the allocation top in
// new space.
RESULT_CONTAINS_TOP = 1 << 1
};
// Convenience for platform-independent signatures. We do not normally
// distinguish memory operands from other operands on ia32.
typedef Operand MemOperand;
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
// The isolate parameter can be NULL if the macro assembler should
// not use isolate-dependent functionality. In this case, it's the
// responsibility of the caller to never invoke such function on the
// macro assembler.
MacroAssembler(Isolate* isolate, void* buffer, int size);
// ---------------------------------------------------------------------------
// GC Support
// For page containing |object| mark region covering |addr| dirty.
// RecordWriteHelper only works if the object is not in new
// space.
void RecordWriteHelper(Register object,
Register addr,
Register scratch);
// Check if object is in new space.
// scratch can be object itself, but it will be clobbered.
void InNewSpace(Register object,
Register scratch,
Condition cc, // equal for new space, not_equal otherwise.
Label* branch,
Label::Distance branch_near = Label::kFar);
// For page containing |object| mark region covering [object+offset]
// dirty. |object| is the object being stored into, |value| is the
// object being stored. If offset is zero, then the scratch register
// contains the array index into the elements array represented as a
// Smi. All registers are clobbered by the operation. RecordWrite
// filters out smis so it does not update the write barrier if the
// value is a smi.
void RecordWrite(Register object,
int offset,
Register value,
Register scratch);
// For page containing |object| mark region covering |address|
// dirty. |object| is the object being stored into, |value| is the
// object being stored. All registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update the
// write barrier if the value is a smi.
void RecordWrite(Register object,
Register address,
Register value);
#ifdef ENABLE_DEBUGGER_SUPPORT
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
#endif
// ---------------------------------------------------------------------------
// Activation frames
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
// Enter specific kind of exit frame. Expects the number of
// arguments in register eax and sets up the number of arguments in
// register edi and the pointer to the first argument in register
// esi.
void EnterExitFrame(bool save_doubles);
void EnterApiExitFrame(int argc);
// Leave the current exit frame. Expects the return value in
// register eax:edx (untouched) and the pointer to the first
// argument in register esi.
void LeaveExitFrame(bool save_doubles);
// Leave the current exit frame. Expects the return value in
// register eax (untouched).
void LeaveApiExitFrame();
// Find the function context up the context chain.
void LoadContext(Register dst, int context_chain_length);
// Load the global function with the given index.
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers
// function and map can be the same.
void LoadGlobalFunctionInitialMap(Register function, Register map);
// Push and pop the registers that can hold pointers.
void PushSafepointRegisters() { pushad(); }
void PopSafepointRegisters() { popad(); }
// Store the value in register/immediate src in the safepoint
// register stack slot for register dst.
void StoreToSafepointRegisterSlot(Register dst, Register src);
void StoreToSafepointRegisterSlot(Register dst, Immediate src);
void LoadFromSafepointRegisterSlot(Register dst, Register src);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Setup call kind marking in ecx. The method takes ecx as an
// explicit first parameter to make the code more readable at the
// call sites.
void SetCallKind(Register dst, CallKind kind);
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(const Operand& code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind);
void InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind);
void InvokeFunction(JSFunction* function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper = NullCallWrapper());
// Store the function for the given builtin in the target register.
void GetBuiltinFunction(Register target, Builtins::JavaScript id);
// Store the code object for the given builtin in the target register.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
// Expression support
void Set(Register dst, const Immediate& x);
void Set(const Operand& dst, const Immediate& x);
// Support for constant splitting.
bool IsUnsafeImmediate(const Immediate& x);
void SafeSet(Register dst, const Immediate& x);
void SafePush(const Immediate& x);
// Compare a register against a known root, e.g. undefined, null, true, ...
void CompareRoot(Register with, Heap::RootListIndex index);
// Compare object type for heap object.
// Incoming register is heap_object and outgoing register is map.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
void CmpInstanceType(Register map, InstanceType type);
// Check if a map for a JSObject indicates that the object has fast elements.
// Jump to the specified label if it does not.
void CheckFastElements(Register map,
Label* fail,
Label::Distance distance = Label::kFar);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object)
void CheckMap(Register obj,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type);
// Check if the map of an object is equal to a specified map and branch to a
// specified target if equal. Skip the smi check if not required (object is
// known to be a heap object)
void DispatchMap(Register obj,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type);
// Check if the object in register heap_object is a string. Afterwards the
// register map contains the object map and the register instance_type
// contains the instance_type. The registers map and instance_type can be the
// same in which case it contains the instance type afterwards. Either of the
// registers map and instance_type can be the same as heap_object.
Condition IsObjectStringType(Register heap_object,
Register map,
Register instance_type);
// Check if a heap object's type is in the JSObject range, not including
// JSFunction. The object's map will be loaded in the map register.
// Any or all of the three registers may be the same.
// The contents of the scratch register will always be overwritten.
void IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail);
// The contents of the scratch register will be overwritten.
void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
// FCmp is similar to integer cmp, but requires unsigned
// jcc instructions (je, ja, jae, jb, jbe, je, and jz).
void FCmp();
void ClampUint8(Register reg);
void ClampDoubleToUint8(XMMRegister input_reg,
XMMRegister scratch_reg,
Register result_reg);
// Smi tagging support.
void SmiTag(Register reg) {
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
add(reg, Operand(reg));
}
void SmiUntag(Register reg) {
sar(reg, kSmiTagSize);
}
// Modifies the register even if it does not contain a Smi!
void SmiUntag(Register reg, Label* is_smi) {
STATIC_ASSERT(kSmiTagSize == 1);
sar(reg, kSmiTagSize);
STATIC_ASSERT(kSmiTag == 0);
j(not_carry, is_smi);
}
// Jump the register contains a smi.
inline void JumpIfSmi(Register value,
Label* smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(zero, smi_label, distance);
}
// Jump if the operand is a smi.
inline void JumpIfSmi(Operand value,
Label* smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(zero, smi_label, distance);
}
// Jump if register contain a non-smi.
inline void JumpIfNotSmi(Register value,
Label* not_smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(not_zero, not_smi_label, distance);
}
void LoadInstanceDescriptors(Register map, Register descriptors);
void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
// Abort execution if argument is not a number. Used in debug code.
void AbortIfNotNumber(Register object);
// Abort execution if argument is not a smi. Used in debug code.
void AbortIfNotSmi(Register object);
// Abort execution if argument is a smi. Used in debug code.
void AbortIfSmi(Register object);
// Abort execution if argument is a string. Used in debug code.
void AbortIfNotString(Register object);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain. The return
// address must be pushed before calling this helper.
void PushTryHandler(CodeLocation try_location, HandlerType type);
// Unlink the stack handler on top of the stack from the try handler chain.
void PopTryHandler();
// Activate the top handler in the try hander chain.
void Throw(Register value);
void ThrowUncatchable(UncatchableExceptionType type, Register value);
// ---------------------------------------------------------------------------
// Inline caching support
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, but the scratch register is clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss);
void LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register r0,
Register r1,
Register r2,
Register result);
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space. If the new space is exhausted control
// continues at the gc_required label. The allocated object is returned in
// result and end of the new object is returned in result_end. The register
// scratch can be passed as no_reg in which case an additional object
// reference will be added to the reloc info. The returned pointers in result
// and result_end have not yet been tagged as heap objects. If
// result_contains_top_on_entry is true the content of result is known to be
// the allocation top on entry (could be result_end from a previous call to
// AllocateInNewSpace). If result_contains_top_on_entry is true scratch
// should be no_reg as it is never used.
void AllocateInNewSpace(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(int header_size,
ScaleFactor element_size,
Register element_count,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. Make sure that no pointers are left to the
// object(s) no longer allocated as they would be invalid when allocation is
// un-done.
void UndoAllocationInNewSpace(Register object);
// Allocate a heap number in new space with undefined value. The
// register scratch2 can be passed as no_reg; the others must be
// valid registers. Returns tagged pointer in result register, or
// jumps to gc_required if new space is full.
void AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
// Allocate a sequential string. All the header fields of the string object
// are initialized.
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateAsciiString(Register result,
int length,
Register scratch1,
Register scratch2,
Label* gc_required);
// Allocate a raw cons string object. Only the map field of the result is
// initialized.
void AllocateTwoByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
// Allocate a raw sliced string object. Only the map field of the result is
// initialized.
void AllocateTwoByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
// Copy memory, byte-by-byte, from source to destination. Not optimized for
// long or aligned copies.
// The contents of index and scratch are destroyed.
void CopyBytes(Register source,
Register destination,
Register length,
Register scratch);
// ---------------------------------------------------------------------------
// Support functions.
// Check if result is zero and op is negative.
void NegativeZeroTest(Register result, Register op, Label* then_label);
// Check if result is zero and any of op1 and op2 are negative.
// Register scratch is destroyed, and it must be different from op2.
void NegativeZeroTest(Register result, Register op1, Register op2,
Register scratch, Label* then_label);
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other registers may be
// clobbered.
void TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss);
// Generates code for reporting that an illegal operation has
// occurred.
void IllegalOperation(int num_arguments);
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub. Generate the code if necessary.
void CallStub(CodeStub* stub, unsigned ast_id = kNoASTId);
// Call a code stub and return the code object called. Try to generate
// the code if necessary. Do not perform a GC but instead return a retry
// after GC failure.
MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub);
// Tail call a code stub (jump). Generate the code if necessary.
void TailCallStub(CodeStub* stub);
// Tail call a code stub (jump) and return the code object called. Try to
// generate the code if necessary. Do not perform a GC but instead return
// a retry after GC failure.
MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub);
// Return from a code stub after popping its arguments.
void StubReturn(int argc);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments);
void CallRuntimeSaveDoubles(Runtime::FunctionId id);
// Call a runtime function, returning the CodeStub object called.
// Try to generate the stub code if necessary. Do not perform a GC
// but instead return a retry after GC failure.
MUST_USE_RESULT MaybeObject* TryCallRuntime(const Runtime::Function* f,
int num_arguments);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId id, int num_arguments);
// Convenience function: Same as above, but takes the fid instead.
MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id,
int num_arguments);
// Convenience function: call an external reference.
void CallExternalReference(ExternalReference ref, int num_arguments);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
// Tail call of a runtime routine (jump). Try to generate the code if
// necessary. Do not perform a GC but instead return a retry after GC failure.
MUST_USE_RESULT MaybeObject* TryTailCallExternalReference(
const ExternalReference& ext, int num_arguments, int result_size);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
// Convenience function: tail call a runtime routine (jump). Try to generate
// the code if necessary. Do not perform a GC but instead return a retry after
// GC failure.
MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in esp[0], esp[4],
// etc., not pushed. The argument count assumes all arguments are word sized.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_arguments, Register scratch);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
// Prepares stack to put arguments (aligns and so on). Reserves
// space for return value if needed (assumes the return value is a handle).
// Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
// etc. Saves context (esi). If space was reserved for return value then
// stores the pointer to the reserved slot into esi.
void PrepareCallApiFunction(int argc);
// Calls an API function. Allocates HandleScope, extracts
// returned value from handle and propagates exceptions.
// Clobbers ebx, edi and caller-save registers. Restores context.
// On return removes stack_space * kPointerSize (GCed).
MaybeObject* TryCallApiFunctionAndReturn(ApiFunction* function,
int stack_space);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& ext);
MaybeObject* TryJumpToExternalReference(const ExternalReference& ext);
// ---------------------------------------------------------------------------
// Utilities
void Ret();
// Return and drop arguments from stack, where the number of arguments
// may be bigger than 2^16 - 1. Requires a scratch register.
void Ret(int bytes_dropped, Register scratch);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the esp register.
void Drop(int element_count);
void Call(Label* target) { call(target); }
// Emit call to the code we are currently generating.
void CallSelf() {
Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
call(self, RelocInfo::CODE_TARGET);
}
// Move if the registers are not identical.
void Move(Register target, Register source);
void Move(Register target, Handle<Object> value);
// Push a handle value.
void Push(Handle<Object> handle) { push(handle); }
Handle<Object> CodeObject() {
ASSERT(!code_object_.is_null());
return code_object_;
}
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value);
void IncrementCounter(Condition cc, StatsCounter* counter, int value);
void DecrementCounter(Condition cc, StatsCounter* counter, int value);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, const char* msg);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cc, const char* msg);
// Print a message to stdout and abort execution.
void Abort(const char* msg);
// Check that the stack is aligned.
void CheckStackAlignment();
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
bool allow_stub_calls() { return allow_stub_calls_; }
// ---------------------------------------------------------------------------
// String utilities.
// Check whether the instance type represents a flat ascii string. Jump to the
// label if not. If the instance type can be scratched specify same register
// for both instance type and scratch.
void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
Register scratch,
Label* on_not_flat_ascii_string);
// Checks if both objects are sequential ASCII strings, and jumps to label
// if either is not.
void JumpIfNotBothSequentialAsciiStrings(Register object1,
Register object2,
Register scratch1,
Register scratch2,
Label* on_not_flat_ascii_strings);
static int SafepointRegisterStackIndex(Register reg) {
return SafepointRegisterStackIndex(reg.code());
}
private:
bool generating_stub_;
bool allow_stub_calls_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
const Operand& code_operand,
Label* done,
InvokeFlag flag,
Label::Distance done_near = Label::kFar,
const CallWrapper& call_wrapper = NullCallWrapper(),
CallKind call_kind = CALL_AS_METHOD);
// Activation support.
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
void EnterExitFramePrologue();
void EnterExitFrameEpilogue(int argc, bool save_doubles);
void LeaveExitFrameEpilogue();
// Allocation support helpers.
void LoadAllocationTopHelper(Register result,
Register scratch,
AllocationFlags flags);
void UpdateAllocationTopHelper(Register result_end, Register scratch);
// Helper for PopHandleScope. Allowed to perform a GC and returns
// NULL if gc_allowed. Does not perform a GC if !gc_allowed, and
// possibly returns a failure object indicating an allocation failure.
MUST_USE_RESULT MaybeObject* PopHandleScopeHelper(Register saved,
Register scratch,
bool gc_allowed);
// Compute memory operands for safepoint stack slots.
Operand SafepointRegisterSlot(Register reg);
static int SafepointRegisterStackIndex(int reg_code);
// Needs access to SafepointRegisterStackIndex for optimized frame
// traversal.
friend class OptimizedFrame;
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
public:
CodePatcher(byte* address, int size);
virtual ~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
static inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
static inline Operand FieldOperand(Register object,
Register index,
ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
static inline Operand ContextOperand(Register context, int index) {
return Operand(context, Context::SlotOffset(index));
}
static inline Operand GlobalObjectOperand() {
return ContextOperand(esi, Context::GLOBAL_INDEX);
}
// Generates an Operand for saving parameters after PrepareCallApiFunction.
Operand ApiParameterOperand(int index);
#ifdef GENERATED_CODE_COVERAGE
extern void LogGeneratedCodeCoverage(const char* file_line);
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) { \
byte* ia32_coverage_function = \
reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
masm->pushfd(); \
masm->pushad(); \
masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
masm->pop(eax); \
masm->popad(); \
masm->popfd(); \
} \
masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} } // namespace v8::internal
#endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_