| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2011 the V8 project authors. All rights reserved. |
| |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| #include "mips/assembler-mips-inl.h" |
| #include "serialize.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #ifdef DEBUG |
| bool CpuFeatures::initialized_ = false; |
| #endif |
| unsigned CpuFeatures::supported_ = 0; |
| unsigned CpuFeatures::found_by_runtime_probing_ = 0; |
| |
| |
| // Get the CPU features enabled by the build. For cross compilation the |
| // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS |
| // can be defined to enable FPU instructions when building the |
| // snapshot. |
| static uint64_t CpuFeaturesImpliedByCompiler() { |
| uint64_t answer = 0; |
| #ifdef CAN_USE_FPU_INSTRUCTIONS |
| answer |= 1u << FPU; |
| #endif // def CAN_USE_FPU_INSTRUCTIONS |
| |
| #ifdef __mips__ |
| // If the compiler is allowed to use FPU then we can use FPU too in our code |
| // generation even when generating snapshots. This won't work for cross |
| // compilation. |
| #if(defined(__mips_hard_float) && __mips_hard_float != 0) |
| answer |= 1u << FPU; |
| #endif // defined(__mips_hard_float) && __mips_hard_float != 0 |
| #endif // def __mips__ |
| |
| return answer; |
| } |
| |
| |
| void CpuFeatures::Probe() { |
| ASSERT(!initialized_); |
| #ifdef DEBUG |
| initialized_ = true; |
| #endif |
| |
| // Get the features implied by the OS and the compiler settings. This is the |
| // minimal set of features which is also allowed for generated code in the |
| // snapshot. |
| supported_ |= OS::CpuFeaturesImpliedByPlatform(); |
| supported_ |= CpuFeaturesImpliedByCompiler(); |
| |
| if (Serializer::enabled()) { |
| // No probing for features if we might serialize (generate snapshot). |
| return; |
| } |
| |
| // If the compiler is allowed to use fpu then we can use fpu too in our |
| // code generation. |
| #if !defined(__mips__) |
| // For the simulator=mips build, use FPU when FLAG_enable_fpu is enabled. |
| if (FLAG_enable_fpu) { |
| supported_ |= 1u << FPU; |
| } |
| #else |
| // Probe for additional features not already known to be available. |
| if (OS::MipsCpuHasFeature(FPU)) { |
| // This implementation also sets the FPU flags if |
| // runtime detection of FPU returns true. |
| supported_ |= 1u << FPU; |
| found_by_runtime_probing_ |= 1u << FPU; |
| } |
| #endif |
| } |
| |
| |
| int ToNumber(Register reg) { |
| ASSERT(reg.is_valid()); |
| const int kNumbers[] = { |
| 0, // zero_reg |
| 1, // at |
| 2, // v0 |
| 3, // v1 |
| 4, // a0 |
| 5, // a1 |
| 6, // a2 |
| 7, // a3 |
| 8, // t0 |
| 9, // t1 |
| 10, // t2 |
| 11, // t3 |
| 12, // t4 |
| 13, // t5 |
| 14, // t6 |
| 15, // t7 |
| 16, // s0 |
| 17, // s1 |
| 18, // s2 |
| 19, // s3 |
| 20, // s4 |
| 21, // s5 |
| 22, // s6 |
| 23, // s7 |
| 24, // t8 |
| 25, // t9 |
| 26, // k0 |
| 27, // k1 |
| 28, // gp |
| 29, // sp |
| 30, // s8_fp |
| 31, // ra |
| }; |
| return kNumbers[reg.code()]; |
| } |
| |
| |
| Register ToRegister(int num) { |
| ASSERT(num >= 0 && num < kNumRegisters); |
| const Register kRegisters[] = { |
| zero_reg, |
| at, |
| v0, v1, |
| a0, a1, a2, a3, |
| t0, t1, t2, t3, t4, t5, t6, t7, |
| s0, s1, s2, s3, s4, s5, s6, s7, |
| t8, t9, |
| k0, k1, |
| gp, |
| sp, |
| s8_fp, |
| ra |
| }; |
| return kRegisters[num]; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo. |
| |
| const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask | |
| 1 << RelocInfo::INTERNAL_REFERENCE; |
| |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Being |
| // specially coded on MIPS means that it is a lui/ori instruction, and that is |
| // always the case inside code objects. |
| return true; |
| } |
| |
| |
| // Patch the code at the current address with the supplied instructions. |
| void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| Instr* pc = reinterpret_cast<Instr*>(pc_); |
| Instr* instr = reinterpret_cast<Instr*>(instructions); |
| for (int i = 0; i < instruction_count; i++) { |
| *(pc + i) = *(instr + i); |
| } |
| |
| // Indicate that code has changed. |
| CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); |
| } |
| |
| |
| // Patch the code at the current PC with a call to the target address. |
| // Additional guard instructions can be added if required. |
| void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| // Patch the code at the current address with a call to the target. |
| UNIMPLEMENTED_MIPS(); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand and MemOperand. |
| // See assembler-mips-inl.h for inlined constructors. |
| |
| Operand::Operand(Handle<Object> handle) { |
| rm_ = no_reg; |
| // Verify all Objects referred by code are NOT in new space. |
| Object* obj = *handle; |
| ASSERT(!HEAP->InNewSpace(obj)); |
| if (obj->IsHeapObject()) { |
| imm32_ = reinterpret_cast<intptr_t>(handle.location()); |
| rmode_ = RelocInfo::EMBEDDED_OBJECT; |
| } else { |
| // No relocation needed. |
| imm32_ = reinterpret_cast<intptr_t>(obj); |
| rmode_ = RelocInfo::NONE; |
| } |
| } |
| |
| |
| MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { |
| offset_ = offset; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Specific instructions, constants, and masks. |
| |
| static const int kNegOffset = 0x00008000; |
| // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) |
| // operations as post-increment of sp. |
| const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) |
| | (sp.code() << kRtShift) | (kPointerSize & kImm16Mask); |
| // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. |
| const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) |
| | (sp.code() << kRtShift) | (-kPointerSize & kImm16Mask); |
| // sw(r, MemOperand(sp, 0)) |
| const Instr kPushRegPattern = SW | (sp.code() << kRsShift) |
| | (0 & kImm16Mask); |
| // lw(r, MemOperand(sp, 0)) |
| const Instr kPopRegPattern = LW | (sp.code() << kRsShift) |
| | (0 & kImm16Mask); |
| |
| const Instr kLwRegFpOffsetPattern = LW | (s8_fp.code() << kRsShift) |
| | (0 & kImm16Mask); |
| |
| const Instr kSwRegFpOffsetPattern = SW | (s8_fp.code() << kRsShift) |
| | (0 & kImm16Mask); |
| |
| const Instr kLwRegFpNegOffsetPattern = LW | (s8_fp.code() << kRsShift) |
| | (kNegOffset & kImm16Mask); |
| |
| const Instr kSwRegFpNegOffsetPattern = SW | (s8_fp.code() << kRsShift) |
| | (kNegOffset & kImm16Mask); |
| // A mask for the Rt register for push, pop, lw, sw instructions. |
| const Instr kRtMask = kRtFieldMask; |
| const Instr kLwSwInstrTypeMask = 0xffe00000; |
| const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; |
| const Instr kLwSwOffsetMask = kImm16Mask; |
| |
| |
| // Spare buffer. |
| static const int kMinimalBufferSize = 4 * KB; |
| |
| |
| Assembler::Assembler(Isolate* arg_isolate, void* buffer, int buffer_size) |
| : AssemblerBase(arg_isolate), |
| positions_recorder_(this), |
| emit_debug_code_(FLAG_debug_code) { |
| if (buffer == NULL) { |
| // Do our own buffer management. |
| if (buffer_size <= kMinimalBufferSize) { |
| buffer_size = kMinimalBufferSize; |
| |
| if (isolate()->assembler_spare_buffer() != NULL) { |
| buffer = isolate()->assembler_spare_buffer(); |
| isolate()->set_assembler_spare_buffer(NULL); |
| } |
| } |
| if (buffer == NULL) { |
| buffer_ = NewArray<byte>(buffer_size); |
| } else { |
| buffer_ = static_cast<byte*>(buffer); |
| } |
| buffer_size_ = buffer_size; |
| own_buffer_ = true; |
| |
| } else { |
| // Use externally provided buffer instead. |
| ASSERT(buffer_size > 0); |
| buffer_ = static_cast<byte*>(buffer); |
| buffer_size_ = buffer_size; |
| own_buffer_ = false; |
| } |
| |
| // Setup buffer pointers. |
| ASSERT(buffer_ != NULL); |
| pc_ = buffer_; |
| reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| |
| last_trampoline_pool_end_ = 0; |
| no_trampoline_pool_before_ = 0; |
| trampoline_pool_blocked_nesting_ = 0; |
| // We leave space (16 * kTrampolineSlotsSize) |
| // for BlockTrampolinePoolScope buffer. |
| next_buffer_check_ = kMaxBranchOffset - kTrampolineSlotsSize * 16; |
| internal_trampoline_exception_ = false; |
| last_bound_pos_ = 0; |
| |
| trampoline_emitted_ = false; |
| unbound_labels_count_ = 0; |
| block_buffer_growth_ = false; |
| |
| ClearRecordedAstId(); |
| } |
| |
| |
| Assembler::~Assembler() { |
| if (own_buffer_) { |
| if (isolate()->assembler_spare_buffer() == NULL && |
| buffer_size_ == kMinimalBufferSize) { |
| isolate()->set_assembler_spare_buffer(buffer_); |
| } else { |
| DeleteArray(buffer_); |
| } |
| } |
| } |
| |
| |
| void Assembler::GetCode(CodeDesc* desc) { |
| ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. |
| // Setup code descriptor. |
| desc->buffer = buffer_; |
| desc->buffer_size = buffer_size_; |
| desc->instr_size = pc_offset(); |
| desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| } |
| |
| |
| void Assembler::Align(int m) { |
| ASSERT(m >= 4 && IsPowerOf2(m)); |
| while ((pc_offset() & (m - 1)) != 0) { |
| nop(); |
| } |
| } |
| |
| |
| void Assembler::CodeTargetAlign() { |
| // No advantage to aligning branch/call targets to more than |
| // single instruction, that I am aware of. |
| Align(4); |
| } |
| |
| |
| Register Assembler::GetRtReg(Instr instr) { |
| Register rt; |
| rt.code_ = (instr & kRtFieldMask) >> kRtShift; |
| return rt; |
| } |
| |
| |
| Register Assembler::GetRsReg(Instr instr) { |
| Register rs; |
| rs.code_ = (instr & kRsFieldMask) >> kRsShift; |
| return rs; |
| } |
| |
| |
| Register Assembler::GetRdReg(Instr instr) { |
| Register rd; |
| rd.code_ = (instr & kRdFieldMask) >> kRdShift; |
| return rd; |
| } |
| |
| |
| uint32_t Assembler::GetRt(Instr instr) { |
| return (instr & kRtFieldMask) >> kRtShift; |
| } |
| |
| |
| uint32_t Assembler::GetRtField(Instr instr) { |
| return instr & kRtFieldMask; |
| } |
| |
| |
| uint32_t Assembler::GetRs(Instr instr) { |
| return (instr & kRsFieldMask) >> kRsShift; |
| } |
| |
| |
| uint32_t Assembler::GetRsField(Instr instr) { |
| return instr & kRsFieldMask; |
| } |
| |
| |
| uint32_t Assembler::GetRd(Instr instr) { |
| return (instr & kRdFieldMask) >> kRdShift; |
| } |
| |
| |
| uint32_t Assembler::GetRdField(Instr instr) { |
| return instr & kRdFieldMask; |
| } |
| |
| |
| uint32_t Assembler::GetSa(Instr instr) { |
| return (instr & kSaFieldMask) >> kSaShift; |
| } |
| |
| |
| uint32_t Assembler::GetSaField(Instr instr) { |
| return instr & kSaFieldMask; |
| } |
| |
| |
| uint32_t Assembler::GetOpcodeField(Instr instr) { |
| return instr & kOpcodeMask; |
| } |
| |
| |
| uint32_t Assembler::GetFunction(Instr instr) { |
| return (instr & kFunctionFieldMask) >> kFunctionShift; |
| } |
| |
| |
| uint32_t Assembler::GetFunctionField(Instr instr) { |
| return instr & kFunctionFieldMask; |
| } |
| |
| |
| uint32_t Assembler::GetImmediate16(Instr instr) { |
| return instr & kImm16Mask; |
| } |
| |
| |
| uint32_t Assembler::GetLabelConst(Instr instr) { |
| return instr & ~kImm16Mask; |
| } |
| |
| |
| bool Assembler::IsPop(Instr instr) { |
| return (instr & ~kRtMask) == kPopRegPattern; |
| } |
| |
| |
| bool Assembler::IsPush(Instr instr) { |
| return (instr & ~kRtMask) == kPushRegPattern; |
| } |
| |
| |
| bool Assembler::IsSwRegFpOffset(Instr instr) { |
| return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsLwRegFpOffset(Instr instr) { |
| return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsSwRegFpNegOffset(Instr instr) { |
| return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == |
| kSwRegFpNegOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsLwRegFpNegOffset(Instr instr) { |
| return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == |
| kLwRegFpNegOffsetPattern); |
| } |
| |
| |
| // Labels refer to positions in the (to be) generated code. |
| // There are bound, linked, and unused labels. |
| // |
| // Bound labels refer to known positions in the already |
| // generated code. pos() is the position the label refers to. |
| // |
| // Linked labels refer to unknown positions in the code |
| // to be generated; pos() is the position of the last |
| // instruction using the label. |
| |
| // The link chain is terminated by a value in the instruction of -1, |
| // which is an otherwise illegal value (branch -1 is inf loop). |
| // The instruction 16-bit offset field addresses 32-bit words, but in |
| // code is conv to an 18-bit value addressing bytes, hence the -4 value. |
| |
| const int kEndOfChain = -4; |
| // Determines the end of the Jump chain (a subset of the label link chain). |
| const int kEndOfJumpChain = 0; |
| |
| |
| bool Assembler::IsBranch(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rt_field = GetRtField(instr); |
| uint32_t rs_field = GetRsField(instr); |
| uint32_t label_constant = GetLabelConst(instr); |
| // Checks if the instruction is a branch. |
| return opcode == BEQ || |
| opcode == BNE || |
| opcode == BLEZ || |
| opcode == BGTZ || |
| opcode == BEQL || |
| opcode == BNEL || |
| opcode == BLEZL || |
| opcode == BGTZL || |
| (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || |
| rt_field == BLTZAL || rt_field == BGEZAL)) || |
| (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. |
| label_constant == 0; // Emitted label const in reg-exp engine. |
| } |
| |
| |
| bool Assembler::IsBeq(Instr instr) { |
| return GetOpcodeField(instr) == BEQ; |
| } |
| |
| |
| bool Assembler::IsBne(Instr instr) { |
| return GetOpcodeField(instr) == BNE; |
| } |
| |
| |
| bool Assembler::IsJump(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rt_field = GetRtField(instr); |
| uint32_t rd_field = GetRdField(instr); |
| uint32_t function_field = GetFunctionField(instr); |
| // Checks if the instruction is a jump. |
| return opcode == J || opcode == JAL || |
| (opcode == SPECIAL && rt_field == 0 && |
| ((function_field == JALR) || (rd_field == 0 && (function_field == JR)))); |
| } |
| |
| |
| bool Assembler::IsJ(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| // Checks if the instruction is a jump. |
| return opcode == J; |
| } |
| |
| |
| bool Assembler::IsJal(Instr instr) { |
| return GetOpcodeField(instr) == JAL; |
| } |
| |
| bool Assembler::IsJr(Instr instr) { |
| return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR; |
| } |
| |
| bool Assembler::IsJalr(Instr instr) { |
| return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR; |
| } |
| |
| |
| bool Assembler::IsLui(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| // Checks if the instruction is a load upper immediate. |
| return opcode == LUI; |
| } |
| |
| |
| bool Assembler::IsOri(Instr instr) { |
| uint32_t opcode = GetOpcodeField(instr); |
| // Checks if the instruction is a load upper immediate. |
| return opcode == ORI; |
| } |
| |
| |
| bool Assembler::IsNop(Instr instr, unsigned int type) { |
| // See Assembler::nop(type). |
| ASSERT(type < 32); |
| uint32_t opcode = GetOpcodeField(instr); |
| uint32_t rt = GetRt(instr); |
| uint32_t rs = GetRs(instr); |
| uint32_t sa = GetSa(instr); |
| |
| // nop(type) == sll(zero_reg, zero_reg, type); |
| // Technically all these values will be 0 but |
| // this makes more sense to the reader. |
| |
| bool ret = (opcode == SLL && |
| rt == static_cast<uint32_t>(ToNumber(zero_reg)) && |
| rs == static_cast<uint32_t>(ToNumber(zero_reg)) && |
| sa == type); |
| |
| return ret; |
| } |
| |
| |
| int32_t Assembler::GetBranchOffset(Instr instr) { |
| ASSERT(IsBranch(instr)); |
| return ((int16_t)(instr & kImm16Mask)) << 2; |
| } |
| |
| |
| bool Assembler::IsLw(Instr instr) { |
| return ((instr & kOpcodeMask) == LW); |
| } |
| |
| |
| int16_t Assembler::GetLwOffset(Instr instr) { |
| ASSERT(IsLw(instr)); |
| return ((instr & kImm16Mask)); |
| } |
| |
| |
| Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { |
| ASSERT(IsLw(instr)); |
| |
| // We actually create a new lw instruction based on the original one. |
| Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
| | (offset & kImm16Mask); |
| |
| return temp_instr; |
| } |
| |
| |
| bool Assembler::IsSw(Instr instr) { |
| return ((instr & kOpcodeMask) == SW); |
| } |
| |
| |
| Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { |
| ASSERT(IsSw(instr)); |
| return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); |
| } |
| |
| |
| bool Assembler::IsAddImmediate(Instr instr) { |
| return ((instr & kOpcodeMask) == ADDIU); |
| } |
| |
| |
| Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { |
| ASSERT(IsAddImmediate(instr)); |
| return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); |
| } |
| |
| |
| bool Assembler::IsAndImmediate(Instr instr) { |
| return GetOpcodeField(instr) == ANDI; |
| } |
| |
| |
| int Assembler::target_at(int32_t pos) { |
| Instr instr = instr_at(pos); |
| if ((instr & ~kImm16Mask) == 0) { |
| // Emitted label constant, not part of a branch. |
| if (instr == 0) { |
| return kEndOfChain; |
| } else { |
| int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
| return (imm18 + pos); |
| } |
| } |
| // Check we have a branch or jump instruction. |
| ASSERT(IsBranch(instr) || IsJ(instr) || IsLui(instr)); |
| // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming |
| // the compiler uses arithmectic shifts for signed integers. |
| if (IsBranch(instr)) { |
| int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
| |
| if (imm18 == kEndOfChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| return pos + kBranchPCOffset + imm18; |
| } |
| } else if (IsLui(instr)) { |
| Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize); |
| Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize); |
| ASSERT(IsOri(instr_ori)); |
| int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift; |
| imm |= (instr_ori & static_cast<int32_t>(kImm16Mask)); |
| |
| if (imm == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos); |
| int32_t delta = instr_address - imm; |
| ASSERT(pos > delta); |
| return pos - delta; |
| } |
| } else { |
| int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2; |
| if (imm28 == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos); |
| instr_address &= kImm28Mask; |
| int32_t delta = instr_address - imm28; |
| ASSERT(pos > delta); |
| return pos - delta; |
| } |
| } |
| } |
| |
| |
| void Assembler::target_at_put(int32_t pos, int32_t target_pos) { |
| Instr instr = instr_at(pos); |
| if ((instr & ~kImm16Mask) == 0) { |
| ASSERT(target_pos == kEndOfChain || target_pos >= 0); |
| // Emitted label constant, not part of a branch. |
| // Make label relative to Code* of generated Code object. |
| instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| return; |
| } |
| |
| ASSERT(IsBranch(instr) || IsJ(instr) || IsLui(instr)); |
| if (IsBranch(instr)) { |
| int32_t imm18 = target_pos - (pos + kBranchPCOffset); |
| ASSERT((imm18 & 3) == 0); |
| |
| instr &= ~kImm16Mask; |
| int32_t imm16 = imm18 >> 2; |
| ASSERT(is_int16(imm16)); |
| |
| instr_at_put(pos, instr | (imm16 & kImm16Mask)); |
| } else if (IsLui(instr)) { |
| Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize); |
| Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize); |
| ASSERT(IsOri(instr_ori)); |
| uint32_t imm = (uint32_t)buffer_ + target_pos; |
| ASSERT((imm & 3) == 0); |
| |
| instr_lui &= ~kImm16Mask; |
| instr_ori &= ~kImm16Mask; |
| |
| instr_at_put(pos + 0 * Assembler::kInstrSize, |
| instr_lui | ((imm & kHiMask) >> kLuiShift)); |
| instr_at_put(pos + 1 * Assembler::kInstrSize, |
| instr_ori | (imm & kImm16Mask)); |
| } else { |
| uint32_t imm28 = (uint32_t)buffer_ + target_pos; |
| imm28 &= kImm28Mask; |
| ASSERT((imm28 & 3) == 0); |
| |
| instr &= ~kImm26Mask; |
| uint32_t imm26 = imm28 >> 2; |
| ASSERT(is_uint26(imm26)); |
| |
| instr_at_put(pos, instr | (imm26 & kImm26Mask)); |
| } |
| } |
| |
| |
| void Assembler::print(Label* L) { |
| if (L->is_unused()) { |
| PrintF("unused label\n"); |
| } else if (L->is_bound()) { |
| PrintF("bound label to %d\n", L->pos()); |
| } else if (L->is_linked()) { |
| Label l = *L; |
| PrintF("unbound label"); |
| while (l.is_linked()) { |
| PrintF("@ %d ", l.pos()); |
| Instr instr = instr_at(l.pos()); |
| if ((instr & ~kImm16Mask) == 0) { |
| PrintF("value\n"); |
| } else { |
| PrintF("%d\n", instr); |
| } |
| next(&l); |
| } |
| } else { |
| PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| } |
| } |
| |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| ASSERT(0 <= pos && pos <= pc_offset()); // Must have valid binding position. |
| int32_t trampoline_pos = kInvalidSlotPos; |
| if (L->is_linked() && !trampoline_emitted_) { |
| unbound_labels_count_--; |
| next_buffer_check_ += kTrampolineSlotsSize; |
| } |
| |
| while (L->is_linked()) { |
| int32_t fixup_pos = L->pos(); |
| int32_t dist = pos - fixup_pos; |
| next(L); // Call next before overwriting link with target at fixup_pos. |
| Instr instr = instr_at(fixup_pos); |
| if (IsBranch(instr)) { |
| if (dist > kMaxBranchOffset) { |
| if (trampoline_pos == kInvalidSlotPos) { |
| trampoline_pos = get_trampoline_entry(fixup_pos); |
| CHECK(trampoline_pos != kInvalidSlotPos); |
| } |
| ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset); |
| target_at_put(fixup_pos, trampoline_pos); |
| fixup_pos = trampoline_pos; |
| dist = pos - fixup_pos; |
| } |
| target_at_put(fixup_pos, pos); |
| } else { |
| ASSERT(IsJ(instr) || IsLui(instr)); |
| target_at_put(fixup_pos, pos); |
| } |
| } |
| L->bind_to(pos); |
| |
| // Keep track of the last bound label so we don't eliminate any instructions |
| // before a bound label. |
| if (pos > last_bound_pos_) |
| last_bound_pos_ = pos; |
| } |
| |
| |
| void Assembler::bind(Label* L) { |
| ASSERT(!L->is_bound()); // Label can only be bound once. |
| bind_to(L, pc_offset()); |
| } |
| |
| |
| void Assembler::next(Label* L) { |
| ASSERT(L->is_linked()); |
| int link = target_at(L->pos()); |
| if (link == kEndOfChain) { |
| L->Unuse(); |
| } else { |
| ASSERT(link >= 0); |
| L->link_to(link); |
| } |
| } |
| |
| bool Assembler::is_near(Label* L) { |
| if (L->is_bound()) { |
| return ((pc_offset() - L->pos()) < kMaxBranchOffset - 4 * kInstrSize); |
| } |
| return false; |
| } |
| |
| // We have to use a temporary register for things that can be relocated even |
| // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction |
| // space. There is no guarantee that the relocated location can be similarly |
| // encoded. |
| bool Assembler::MustUseReg(RelocInfo::Mode rmode) { |
| return rmode != RelocInfo::NONE; |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| Register rd, |
| uint16_t sa, |
| SecondaryField func) { |
| ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (rd.code() << kRdShift) | (sa << kSaShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| uint16_t msb, |
| uint16_t lsb, |
| SecondaryField func) { |
| ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (msb << kRdShift) | (lsb << kSaShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| FPURegister ft, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func) { |
| ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift) |
| | (fd.code() << kFdShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| Register rt, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func) { |
| ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| Instr instr = opcode | fmt | (rt.code() << kRtShift) |
| | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| Register rt, |
| FPUControlRegister fs, |
| SecondaryField func) { |
| ASSERT(fs.is_valid() && rt.is_valid()); |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| Instr instr = |
| opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; |
| emit(instr); |
| } |
| |
| |
| // Instructions with immediate value. |
| // Registers are in the order of the instruction encoding, from left to right. |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| Register rt, |
| int32_t j) { |
| ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| SecondaryField SF, |
| int32_t j) { |
| ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| FPURegister ft, |
| int32_t j) { |
| ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
| | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrJump(Opcode opcode, |
| uint32_t address) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| ASSERT(is_uint26(address)); |
| Instr instr = opcode | address; |
| emit(instr); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| // Returns the next free trampoline entry. |
| int32_t Assembler::get_trampoline_entry(int32_t pos) { |
| int32_t trampoline_entry = kInvalidSlotPos; |
| |
| if (!internal_trampoline_exception_) { |
| if (trampoline_.start() > pos) { |
| trampoline_entry = trampoline_.take_slot(); |
| } |
| |
| if (kInvalidSlotPos == trampoline_entry) { |
| internal_trampoline_exception_ = true; |
| } |
| } |
| return trampoline_entry; |
| } |
| |
| |
| uint32_t Assembler::jump_address(Label* L) { |
| int32_t target_pos; |
| |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| L->link_to(pc_offset()); |
| } else { |
| L->link_to(pc_offset()); |
| return kEndOfJumpChain; |
| } |
| } |
| |
| uint32_t imm = (uint32_t)buffer_ + target_pos; |
| ASSERT((imm & 3) == 0); |
| |
| return imm; |
| } |
| |
| |
| int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
| int32_t target_pos; |
| |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); |
| L->link_to(pc_offset()); |
| } else { |
| L->link_to(pc_offset()); |
| if (!trampoline_emitted_) { |
| unbound_labels_count_++; |
| next_buffer_check_ -= kTrampolineSlotsSize; |
| } |
| return kEndOfChain; |
| } |
| } |
| |
| int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); |
| ASSERT((offset & 3) == 0); |
| ASSERT(is_int16(offset >> 2)); |
| |
| return offset; |
| } |
| |
| |
| void Assembler::label_at_put(Label* L, int at_offset) { |
| int target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| int32_t imm18 = target_pos - at_offset; |
| ASSERT((imm18 & 3) == 0); |
| int32_t imm16 = imm18 >> 2; |
| ASSERT(is_int16(imm16)); |
| instr_at_put(at_offset, (imm16 & kImm16Mask)); |
| } else { |
| target_pos = kEndOfChain; |
| instr_at_put(at_offset, 0); |
| if (!trampoline_emitted_) { |
| unbound_labels_count_++; |
| next_buffer_check_ -= kTrampolineSlotsSize; |
| } |
| } |
| L->link_to(at_offset); |
| } |
| } |
| |
| |
| //------- Branch and jump instructions -------- |
| |
| void Assembler::b(int16_t offset) { |
| beq(zero_reg, zero_reg, offset); |
| } |
| |
| |
| void Assembler::bal(int16_t offset) { |
| positions_recorder()->WriteRecordedPositions(); |
| bgezal(zero_reg, offset); |
| } |
| |
| |
| void Assembler::beq(Register rs, Register rt, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BEQ, rs, rt, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bgez(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BGEZ, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bgezal(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| positions_recorder()->WriteRecordedPositions(); |
| GenInstrImmediate(REGIMM, rs, BGEZAL, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bgtz(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BGTZ, rs, zero_reg, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::blez(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BLEZ, rs, zero_reg, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bltz(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BLTZ, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bltzal(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| positions_recorder()->WriteRecordedPositions(); |
| GenInstrImmediate(REGIMM, rs, BLTZAL, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bne(Register rs, Register rt, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BNE, rs, rt, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::j(int32_t target) { |
| #if DEBUG |
| // Get pc of delay slot. |
| uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize); |
| bool in_range = ((uint32_t)(ipc^target) >> (kImm26Bits+kImmFieldShift)) == 0; |
| ASSERT(in_range && ((target & 3) == 0)); |
| #endif |
| GenInstrJump(J, target >> 2); |
| } |
| |
| |
| void Assembler::jr(Register rs) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| if (rs.is(ra)) { |
| positions_recorder()->WriteRecordedPositions(); |
| } |
| GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::jal(int32_t target) { |
| #ifdef DEBUG |
| // Get pc of delay slot. |
| uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize); |
| bool in_range = ((uint32_t)(ipc^target) >> (kImm26Bits+kImmFieldShift)) == 0; |
| ASSERT(in_range && ((target & 3) == 0)); |
| #endif |
| positions_recorder()->WriteRecordedPositions(); |
| GenInstrJump(JAL, target >> 2); |
| } |
| |
| |
| void Assembler::jalr(Register rs, Register rd) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| positions_recorder()->WriteRecordedPositions(); |
| GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::j_or_jr(int32_t target, Register rs) { |
| // Get pc of delay slot. |
| uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize); |
| bool in_range = ((uint32_t)(ipc^target) >> (kImm26Bits+kImmFieldShift)) == 0; |
| |
| if (in_range) { |
| j(target); |
| } else { |
| jr(t9); |
| } |
| } |
| |
| |
| void Assembler::jal_or_jalr(int32_t target, Register rs) { |
| // Get pc of delay slot. |
| uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize); |
| bool in_range = ((uint32_t)(ipc^target) >> (kImm26Bits+kImmFieldShift)) == 0; |
| |
| if (in_range) { |
| jal(target); |
| } else { |
| jalr(t9); |
| } |
| } |
| |
| |
| //-------Data-processing-instructions--------- |
| |
| // Arithmetic. |
| |
| void Assembler::addu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); |
| } |
| |
| |
| void Assembler::addiu(Register rd, Register rs, int32_t j) { |
| GenInstrImmediate(ADDIU, rs, rd, j); |
| } |
| |
| |
| void Assembler::subu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); |
| } |
| |
| |
| void Assembler::mul(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); |
| } |
| |
| |
| void Assembler::mult(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); |
| } |
| |
| |
| void Assembler::multu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); |
| } |
| |
| |
| void Assembler::div(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); |
| } |
| |
| |
| void Assembler::divu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); |
| } |
| |
| |
| // Logical. |
| |
| void Assembler::and_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); |
| } |
| |
| |
| void Assembler::andi(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(ANDI, rs, rt, j); |
| } |
| |
| |
| void Assembler::or_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); |
| } |
| |
| |
| void Assembler::ori(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(ORI, rs, rt, j); |
| } |
| |
| |
| void Assembler::xor_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); |
| } |
| |
| |
| void Assembler::xori(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(XORI, rs, rt, j); |
| } |
| |
| |
| void Assembler::nor(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); |
| } |
| |
| |
| // Shifts. |
| void Assembler::sll(Register rd, |
| Register rt, |
| uint16_t sa, |
| bool coming_from_nop) { |
| // Don't allow nop instructions in the form sll zero_reg, zero_reg to be |
| // generated using the sll instruction. They must be generated using |
| // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo |
| // instructions. |
| ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg))); |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); |
| } |
| |
| |
| void Assembler::sllv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); |
| } |
| |
| |
| void Assembler::srl(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL); |
| } |
| |
| |
| void Assembler::srlv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); |
| } |
| |
| |
| void Assembler::sra(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA); |
| } |
| |
| |
| void Assembler::srav(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); |
| } |
| |
| |
| void Assembler::rotr(Register rd, Register rt, uint16_t sa) { |
| // Should be called via MacroAssembler::Ror. |
| ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa)); |
| ASSERT(mips32r2); |
| Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
| | (rd.code() << kRdShift) | (sa << kSaShift) | SRL; |
| emit(instr); |
| } |
| |
| |
| void Assembler::rotrv(Register rd, Register rt, Register rs) { |
| // Should be called via MacroAssembler::Ror. |
| ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() ); |
| ASSERT(mips32r2); |
| Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; |
| emit(instr); |
| } |
| |
| |
| //------------Memory-instructions------------- |
| |
| // Helper for base-reg + offset, when offset is larger than int16. |
| void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) { |
| ASSERT(!src.rm().is(at)); |
| lui(at, src.offset_ >> kLuiShift); |
| ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset. |
| addu(at, at, src.rm()); // Add base register. |
| } |
| |
| |
| void Assembler::lb(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lbu(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lh(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lhu(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lw(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lwl(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::lwr(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::sb(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to store. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::sh(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to store. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::sw(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to store. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::swl(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::swr(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::lui(Register rd, int32_t j) { |
| GenInstrImmediate(LUI, zero_reg, rd, j); |
| } |
| |
| |
| //-------------Misc-instructions-------------- |
| |
| // Break / Trap instructions. |
| void Assembler::break_(uint32_t code, bool break_as_stop) { |
| ASSERT((code & ~0xfffff) == 0); |
| // We need to invalidate breaks that could be stops as well because the |
| // simulator expects a char pointer after the stop instruction. |
| // See constants-mips.h for explanation. |
| ASSERT((break_as_stop && |
| code <= kMaxStopCode && |
| code > kMaxWatchpointCode) || |
| (!break_as_stop && |
| (code > kMaxStopCode || |
| code <= kMaxWatchpointCode))); |
| Instr break_instr = SPECIAL | BREAK | (code << 6); |
| emit(break_instr); |
| } |
| |
| |
| void Assembler::stop(const char* msg, uint32_t code) { |
| ASSERT(code > kMaxWatchpointCode); |
| ASSERT(code <= kMaxStopCode); |
| #if defined(V8_HOST_ARCH_MIPS) |
| break_(0x54321); |
| #else // V8_HOST_ARCH_MIPS |
| BlockTrampolinePoolFor(2); |
| // The Simulator will handle the stop instruction and get the message address. |
| // On MIPS stop() is just a special kind of break_(). |
| break_(code, true); |
| emit(reinterpret_cast<Instr>(msg)); |
| #endif |
| } |
| |
| |
| void Assembler::tge(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = SPECIAL | TGE | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tgeu(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = SPECIAL | TGEU | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tlt(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tltu(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TLTU | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::teq(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tne(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| // Move from HI/LO register. |
| |
| void Assembler::mfhi(Register rd) { |
| GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); |
| } |
| |
| |
| void Assembler::mflo(Register rd) { |
| GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); |
| } |
| |
| |
| // Set on less than instructions. |
| void Assembler::slt(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); |
| } |
| |
| |
| void Assembler::sltu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); |
| } |
| |
| |
| void Assembler::slti(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(SLTI, rs, rt, j); |
| } |
| |
| |
| void Assembler::sltiu(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(SLTIU, rs, rt, j); |
| } |
| |
| |
| // Conditional move. |
| void Assembler::movz(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); |
| } |
| |
| |
| void Assembler::movn(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); |
| } |
| |
| |
| void Assembler::movt(Register rd, Register rs, uint16_t cc) { |
| Register rt; |
| rt.code_ = (cc & 0x0007) << 2 | 1; |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); |
| } |
| |
| |
| void Assembler::movf(Register rd, Register rs, uint16_t cc) { |
| Register rt; |
| rt.code_ = (cc & 0x0007) << 2 | 0; |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); |
| } |
| |
| |
| // Bit twiddling. |
| void Assembler::clz(Register rd, Register rs) { |
| // Clz instr requires same GPR number in 'rd' and 'rt' fields. |
| GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); |
| } |
| |
| |
| void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Ins. |
| // Ins instr has 'rt' field as dest, and two uint5: msb, lsb. |
| ASSERT(mips32r2); |
| GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); |
| } |
| |
| |
| void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Ext. |
| // Ext instr has 'rt' field as dest, and two uint5: msb, lsb. |
| ASSERT(mips32r2); |
| GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); |
| } |
| |
| |
| //--------Coprocessor-instructions---------------- |
| |
| // Load, store, move. |
| void Assembler::lwc1(FPURegister fd, const MemOperand& src) { |
| GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); |
| } |
| |
| |
| void Assembler::ldc1(FPURegister fd, const MemOperand& src) { |
| // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit |
| // load to two 32-bit loads. |
| GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); |
| FPURegister nextfpreg; |
| nextfpreg.setcode(fd.code() + 1); |
| GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4); |
| } |
| |
| |
| void Assembler::swc1(FPURegister fd, const MemOperand& src) { |
| GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); |
| } |
| |
| |
| void Assembler::sdc1(FPURegister fd, const MemOperand& src) { |
| // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit |
| // store to two 32-bit stores. |
| GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); |
| FPURegister nextfpreg; |
| nextfpreg.setcode(fd.code() + 1); |
| GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4); |
| } |
| |
| |
| void Assembler::mtc1(Register rt, FPURegister fs) { |
| GenInstrRegister(COP1, MTC1, rt, fs, f0); |
| } |
| |
| |
| void Assembler::mfc1(Register rt, FPURegister fs) { |
| GenInstrRegister(COP1, MFC1, rt, fs, f0); |
| } |
| |
| |
| void Assembler::ctc1(Register rt, FPUControlRegister fs) { |
| GenInstrRegister(COP1, CTC1, rt, fs); |
| } |
| |
| |
| void Assembler::cfc1(Register rt, FPUControlRegister fs) { |
| GenInstrRegister(COP1, CFC1, rt, fs); |
| } |
| |
| void Assembler::DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) { |
| uint64_t i; |
| memcpy(&i, &d, 8); |
| |
| *lo = i & 0xffffffff; |
| *hi = i >> 32; |
| } |
| |
| // Arithmetic. |
| |
| void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| GenInstrRegister(COP1, D, ft, fs, fd, ADD_D); |
| } |
| |
| |
| void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| GenInstrRegister(COP1, D, ft, fs, fd, SUB_D); |
| } |
| |
| |
| void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| GenInstrRegister(COP1, D, ft, fs, fd, MUL_D); |
| } |
| |
| |
| void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| GenInstrRegister(COP1, D, ft, fs, fd, DIV_D); |
| } |
| |
| |
| void Assembler::abs_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, ABS_D); |
| } |
| |
| |
| void Assembler::mov_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, MOV_D); |
| } |
| |
| |
| void Assembler::neg_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, NEG_D); |
| } |
| |
| |
| void Assembler::sqrt_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D); |
| } |
| |
| |
| // Conversions. |
| |
| void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); |
| } |
| |
| |
| void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); |
| } |
| |
| |
| void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S); |
| } |
| |
| |
| void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D); |
| } |
| |
| |
| void Assembler::round_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S); |
| } |
| |
| |
| void Assembler::round_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D); |
| } |
| |
| |
| void Assembler::floor_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S); |
| } |
| |
| |
| void Assembler::floor_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D); |
| } |
| |
| |
| void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S); |
| } |
| |
| |
| void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D); |
| } |
| |
| |
| void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); |
| } |
| |
| |
| void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); |
| } |
| |
| |
| void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S); |
| } |
| |
| |
| void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D); |
| } |
| |
| |
| void Assembler::round_l_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S); |
| } |
| |
| |
| void Assembler::round_l_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D); |
| } |
| |
| |
| void Assembler::floor_l_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S); |
| } |
| |
| |
| void Assembler::floor_l_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D); |
| } |
| |
| |
| void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S); |
| } |
| |
| |
| void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D); |
| } |
| |
| |
| void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); |
| } |
| |
| |
| void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); |
| } |
| |
| |
| void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); |
| } |
| |
| |
| void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); |
| } |
| |
| |
| void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); |
| } |
| |
| |
| void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); |
| } |
| |
| |
| // Conditions. |
| void Assembler::c(FPUCondition cond, SecondaryField fmt, |
| FPURegister fs, FPURegister ft, uint16_t cc) { |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| ASSERT(is_uint3(cc)); |
| ASSERT((fmt & ~(31 << kRsShift)) == 0); |
| Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift |
| | cc << 8 | 3 << 4 | cond; |
| emit(instr); |
| } |
| |
| |
| void Assembler::fcmp(FPURegister src1, const double src2, |
| FPUCondition cond) { |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| ASSERT(src2 == 0.0); |
| mtc1(zero_reg, f14); |
| cvt_d_w(f14, f14); |
| c(cond, D, src1, f14, 0); |
| } |
| |
| |
| void Assembler::bc1f(int16_t offset, uint16_t cc) { |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| ASSERT(is_uint3(cc)); |
| Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::bc1t(int16_t offset, uint16_t cc) { |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| ASSERT(is_uint3(cc)); |
| Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| // Debugging. |
| void Assembler::RecordJSReturn() { |
| positions_recorder()->WriteRecordedPositions(); |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::JS_RETURN); |
| } |
| |
| |
| void Assembler::RecordDebugBreakSlot() { |
| positions_recorder()->WriteRecordedPositions(); |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); |
| } |
| |
| |
| void Assembler::RecordComment(const char* msg) { |
| if (FLAG_code_comments) { |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| } |
| } |
| |
| |
| int Assembler::RelocateInternalReference(byte* pc, intptr_t pc_delta) { |
| Instr instr = instr_at(pc); |
| ASSERT(IsJ(instr) || IsLui(instr)); |
| if (IsLui(instr)) { |
| Instr instr_lui = instr_at(pc + 0 * Assembler::kInstrSize); |
| Instr instr_ori = instr_at(pc + 1 * Assembler::kInstrSize); |
| ASSERT(IsOri(instr_ori)); |
| int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift; |
| imm |= (instr_ori & static_cast<int32_t>(kImm16Mask)); |
| if (imm == kEndOfJumpChain) { |
| return 0; // Number of instructions patched. |
| } |
| imm += pc_delta; |
| ASSERT((imm & 3) == 0); |
| |
| instr_lui &= ~kImm16Mask; |
| instr_ori &= ~kImm16Mask; |
| |
| instr_at_put(pc + 0 * Assembler::kInstrSize, |
| instr_lui | ((imm >> kLuiShift) & kImm16Mask)); |
| instr_at_put(pc + 1 * Assembler::kInstrSize, |
| instr_ori | (imm & kImm16Mask)); |
| return 2; // Number of instructions patched. |
| } else { |
| uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2; |
| if ((int32_t)imm28 == kEndOfJumpChain) { |
| return 0; // Number of instructions patched. |
| } |
| imm28 += pc_delta; |
| imm28 &= kImm28Mask; |
| ASSERT((imm28 & 3) == 0); |
| |
| instr &= ~kImm26Mask; |
| uint32_t imm26 = imm28 >> 2; |
| ASSERT(is_uint26(imm26)); |
| |
| instr_at_put(pc, instr | (imm26 & kImm26Mask)); |
| return 1; // Number of instructions patched. |
| } |
| } |
| |
| |
| void Assembler::GrowBuffer() { |
| if (!own_buffer_) FATAL("external code buffer is too small"); |
| |
| // Compute new buffer size. |
| CodeDesc desc; // The new buffer. |
| if (buffer_size_ < 4*KB) { |
| desc.buffer_size = 4*KB; |
| } else if (buffer_size_ < 1*MB) { |
| desc.buffer_size = 2*buffer_size_; |
| } else { |
| desc.buffer_size = buffer_size_ + 1*MB; |
| } |
| CHECK_GT(desc.buffer_size, 0); // No overflow. |
| |
| // Setup new buffer. |
| desc.buffer = NewArray<byte>(desc.buffer_size); |
| |
| desc.instr_size = pc_offset(); |
| desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| |
| // Copy the data. |
| int pc_delta = desc.buffer - buffer_; |
| int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
| memmove(desc.buffer, buffer_, desc.instr_size); |
| memmove(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.pos(), desc.reloc_size); |
| |
| // Switch buffers. |
| DeleteArray(buffer_); |
| buffer_ = desc.buffer; |
| buffer_size_ = desc.buffer_size; |
| pc_ += pc_delta; |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| // Relocate runtime entries. |
| for (RelocIterator it(desc); !it.done(); it.next()) { |
| RelocInfo::Mode rmode = it.rinfo()->rmode(); |
| if (rmode == RelocInfo::INTERNAL_REFERENCE) { |
| byte* p = reinterpret_cast<byte*>(it.rinfo()->pc()); |
| RelocateInternalReference(p, pc_delta); |
| } |
| } |
| |
| ASSERT(!overflow()); |
| } |
| |
| |
| void Assembler::db(uint8_t data) { |
| CheckBuffer(); |
| *reinterpret_cast<uint8_t*>(pc_) = data; |
| pc_ += sizeof(uint8_t); |
| } |
| |
| |
| void Assembler::dd(uint32_t data) { |
| CheckBuffer(); |
| *reinterpret_cast<uint32_t*>(pc_) = data; |
| pc_ += sizeof(uint32_t); |
| } |
| |
| |
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| RelocInfo rinfo(pc_, rmode, data); // We do not try to reuse pool constants. |
| if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) { |
| // Adjust code for new modes. |
| ASSERT(RelocInfo::IsDebugBreakSlot(rmode) |
| || RelocInfo::IsJSReturn(rmode) |
| || RelocInfo::IsComment(rmode) |
| || RelocInfo::IsPosition(rmode)); |
| // These modes do not need an entry in the constant pool. |
| } |
| if (rinfo.rmode() != RelocInfo::NONE) { |
| // Don't record external references unless the heap will be serialized. |
| if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| #ifdef DEBUG |
| if (!Serializer::enabled()) { |
| Serializer::TooLateToEnableNow(); |
| } |
| #endif |
| if (!Serializer::enabled() && !emit_debug_code()) { |
| return; |
| } |
| } |
| ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here. |
| if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { |
| RelocInfo reloc_info_with_ast_id(pc_, rmode, RecordedAstId()); |
| ClearRecordedAstId(); |
| reloc_info_writer.Write(&reloc_info_with_ast_id); |
| } else { |
| reloc_info_writer.Write(&rinfo); |
| } |
| } |
| } |
| |
| |
| void Assembler::BlockTrampolinePoolFor(int instructions) { |
| BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); |
| } |
| |
| |
| void Assembler::CheckTrampolinePool() { |
| // Some small sequences of instructions must not be broken up by the |
| // insertion of a trampoline pool; such sequences are protected by setting |
| // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, |
| // which are both checked here. Also, recursive calls to CheckTrampolinePool |
| // are blocked by trampoline_pool_blocked_nesting_. |
| if ((trampoline_pool_blocked_nesting_ > 0) || |
| (pc_offset() < no_trampoline_pool_before_)) { |
| // Emission is currently blocked; make sure we try again as soon as |
| // possible. |
| if (trampoline_pool_blocked_nesting_ > 0) { |
| next_buffer_check_ = pc_offset() + kInstrSize; |
| } else { |
| next_buffer_check_ = no_trampoline_pool_before_; |
| } |
| return; |
| } |
| |
| ASSERT(!trampoline_emitted_); |
| ASSERT(unbound_labels_count_ >= 0); |
| if (unbound_labels_count_ > 0) { |
| // First we emit jump (2 instructions), then we emit trampoline pool. |
| { BlockTrampolinePoolScope block_trampoline_pool(this); |
| Label after_pool; |
| b(&after_pool); |
| nop(); |
| |
| int pool_start = pc_offset(); |
| for (int i = 0; i < unbound_labels_count_; i++) { |
| uint32_t imm32; |
| imm32 = jump_address(&after_pool); |
| { BlockGrowBufferScope block_buf_growth(this); |
| // Buffer growth (and relocation) must be blocked for internal |
| // references until associated instructions are emitted and available |
| // to be patched. |
| RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); |
| lui(at, (imm32 & kHiMask) >> kLuiShift); |
| ori(at, at, (imm32 & kImm16Mask)); |
| } |
| jr(at); |
| nop(); |
| } |
| bind(&after_pool); |
| trampoline_ = Trampoline(pool_start, unbound_labels_count_); |
| |
| trampoline_emitted_ = true; |
| // As we are only going to emit trampoline once, we need to prevent any |
| // further emission. |
| next_buffer_check_ = kMaxInt; |
| } |
| } else { |
| // Number of branches to unbound label at this point is zero, so we can |
| // move next buffer check to maximum. |
| next_buffer_check_ = pc_offset() + |
| kMaxBranchOffset - kTrampolineSlotsSize * 16; |
| } |
| return; |
| } |
| |
| |
| Address Assembler::target_address_at(Address pc) { |
| Instr instr1 = instr_at(pc); |
| Instr instr2 = instr_at(pc + kInstrSize); |
| // Interpret 2 instructions generated by li: lui/ori |
| if ((GetOpcodeField(instr1) == LUI) && (GetOpcodeField(instr2) == ORI)) { |
| // Assemble the 32 bit value. |
| return reinterpret_cast<Address>( |
| (GetImmediate16(instr1) << 16) | GetImmediate16(instr2)); |
| } |
| |
| // We should never get here, force a bad address if we do. |
| UNREACHABLE(); |
| return (Address)0x0; |
| } |
| |
| |
| // On Mips, a target address is stored in a lui/ori instruction pair, each |
| // of which load 16 bits of the 32-bit address to a register. |
| // Patching the address must replace both instr, and flush the i-cache. |
| // |
| // There is an optimization below, which emits a nop when the address |
| // fits in just 16 bits. This is unlikely to help, and should be benchmarked, |
| // and possibly removed. |
| void Assembler::set_target_address_at(Address pc, Address target) { |
| Instr instr2 = instr_at(pc + kInstrSize); |
| uint32_t rt_code = GetRtField(instr2); |
| uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| uint32_t itarget = reinterpret_cast<uint32_t>(target); |
| |
| #ifdef DEBUG |
| // Check we have the result from a li macro-instruction, using instr pair. |
| Instr instr1 = instr_at(pc); |
| CHECK((GetOpcodeField(instr1) == LUI && GetOpcodeField(instr2) == ORI)); |
| #endif |
| |
| // Must use 2 instructions to insure patchable code => just use lui and ori. |
| // lui rt, upper-16. |
| // ori rt rt, lower-16. |
| *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); |
| *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask); |
| |
| // The following code is an optimization for the common case of Call() |
| // or Jump() which is load to register, and jump through register: |
| // li(t9, address); jalr(t9) (or jr(t9)). |
| // If the destination address is in the same 256 MB page as the call, it |
| // is faster to do a direct jal, or j, rather than jump thru register, since |
| // that lets the cpu pipeline prefetch the target address. However each |
| // time the address above is patched, we have to patch the direct jal/j |
| // instruction, as well as possibly revert to jalr/jr if we now cross a |
| // 256 MB page. Note that with the jal/j instructions, we do not need to |
| // load the register, but that code is left, since it makes it easy to |
| // revert this process. A further optimization could try replacing the |
| // li sequence with nops. |
| // This optimization can only be applied if the rt-code from instr2 is the |
| // register used for the jalr/jr. Finally, we have to skip 'jr ra', which is |
| // mips return. Occasionally this lands after an li(). |
| |
| Instr instr3 = instr_at(pc + 2 * kInstrSize); |
| uint32_t ipc = reinterpret_cast<uint32_t>(pc + 3 * kInstrSize); |
| bool in_range = |
| ((uint32_t)(ipc ^ itarget) >> (kImm26Bits + kImmFieldShift)) == 0; |
| uint32_t target_field = (uint32_t)(itarget & kJumpAddrMask) >> kImmFieldShift; |
| bool patched_jump = false; |
| |
| #ifndef ALLOW_JAL_IN_BOUNDARY_REGION |
| // This is a workaround to the 24k core E156 bug (affect some 34k cores also). |
| // Since the excluded space is only 64KB out of 256MB (0.02 %), we will just |
| // apply this workaround for all cores so we don't have to identify the core. |
| if (in_range) { |
| // The 24k core E156 bug has some very specific requirements, we only check |
| // the most simple one: if the address of the delay slot instruction is in |
| // the first or last 32 KB of the 256 MB segment. |
| uint32_t segment_mask = ((256 * MB) - 1) ^ ((32 * KB) - 1); |
| uint32_t ipc_segment_addr = ipc & segment_mask; |
| if (ipc_segment_addr == 0 || ipc_segment_addr == segment_mask) |
| in_range = false; |
| } |
| #endif |
| |
| if (IsJalr(instr3)) { |
| // Try to convert JALR to JAL. |
| if (in_range && GetRt(instr2) == GetRs(instr3)) { |
| *(p+2) = JAL | target_field; |
| patched_jump = true; |
| } |
| } else if (IsJr(instr3)) { |
| // Try to convert JR to J, skip returns (jr ra). |
| bool is_ret = static_cast<int>(GetRs(instr3)) == ra.code(); |
| if (in_range && !is_ret && GetRt(instr2) == GetRs(instr3)) { |
| *(p+2) = J | target_field; |
| patched_jump = true; |
| } |
| } else if (IsJal(instr3)) { |
| if (in_range) { |
| // We are patching an already converted JAL. |
| *(p+2) = JAL | target_field; |
| } else { |
| // Patch JAL, but out of range, revert to JALR. |
| // JALR rs reg is the rt reg specified in the ORI instruction. |
| uint32_t rs_field = GetRt(instr2) << kRsShift; |
| uint32_t rd_field = ra.code() << kRdShift; // Return-address (ra) reg. |
| *(p+2) = SPECIAL | rs_field | rd_field | JALR; |
| } |
| patched_jump = true; |
| } else if (IsJ(instr3)) { |
| if (in_range) { |
| // We are patching an already converted J (jump). |
| *(p+2) = J | target_field; |
| } else { |
| // Trying patch J, but out of range, just go back to JR. |
| // JR 'rs' reg is the 'rt' reg specified in the ORI instruction (instr2). |
| uint32_t rs_field = GetRt(instr2) << kRsShift; |
| *(p+2) = SPECIAL | rs_field | JR; |
| } |
| patched_jump = true; |
| } |
| |
| CPU::FlushICache(pc, (patched_jump ? 3 : 2) * sizeof(int32_t)); |
| } |
| |
| void Assembler::JumpLabelToJumpRegister(Address pc) { |
| // Address pc points to lui/ori instructions. |
| // Jump to label may follow at pc + 2 * kInstrSize. |
| uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| #ifdef DEBUG |
| Instr instr1 = instr_at(pc); |
| #endif |
| Instr instr2 = instr_at(pc + 1 * kInstrSize); |
| Instr instr3 = instr_at(pc + 2 * kInstrSize); |
| bool patched = false; |
| |
| if (IsJal(instr3)) { |
| ASSERT(GetOpcodeField(instr1) == LUI); |
| ASSERT(GetOpcodeField(instr2) == ORI); |
| |
| uint32_t rs_field = GetRt(instr2) << kRsShift; |
| uint32_t rd_field = ra.code() << kRdShift; // Return-address (ra) reg. |
| *(p+2) = SPECIAL | rs_field | rd_field | JALR; |
| patched = true; |
| } else if (IsJ(instr3)) { |
| ASSERT(GetOpcodeField(instr1) == LUI); |
| ASSERT(GetOpcodeField(instr2) == ORI); |
| |
| uint32_t rs_field = GetRt(instr2) << kRsShift; |
| *(p+2) = SPECIAL | rs_field | JR; |
| patched = true; |
| } |
| |
| if (patched) { |
| CPU::FlushICache(pc+2, sizeof(Address)); |
| } |
| } |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS |