| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| #include "codegen.h" |
| #include "debug.h" |
| #include "deoptimizer.h" |
| #include "full-codegen.h" |
| #include "runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define __ ACCESS_MASM(masm) |
| |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, |
| CFunctionId id, |
| BuiltinExtraArguments extra_args) { |
| // ----------- S t a t e ------------- |
| // -- a0 : number of arguments excluding receiver |
| // -- a1 : called function (only guaranteed when |
| // -- extra_args requires it) |
| // -- cp : context |
| // -- sp[0] : last argument |
| // -- ... |
| // -- sp[4 * (argc - 1)] : first argument |
| // -- sp[4 * agrc] : receiver |
| // ----------------------------------- |
| |
| // Insert extra arguments. |
| int num_extra_args = 0; |
| if (extra_args == NEEDS_CALLED_FUNCTION) { |
| num_extra_args = 1; |
| __ push(a1); |
| } else { |
| ASSERT(extra_args == NO_EXTRA_ARGUMENTS); |
| } |
| |
| // JumpToExternalReference expects a0 to contain the number of arguments |
| // including the receiver and the extra arguments. |
| __ Addu(a0, a0, Operand(num_extra_args + 1)); |
| __ JumpToExternalReference(ExternalReference(id, masm->isolate())); |
| } |
| |
| |
| // Load the built-in Array function from the current context. |
| static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { |
| // Load the global context. |
| |
| __ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ lw(result, |
| FieldMemOperand(result, GlobalObject::kGlobalContextOffset)); |
| // Load the Array function from the global context. |
| __ lw(result, |
| MemOperand(result, |
| Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); |
| } |
| |
| |
| // This constant has the same value as JSArray::kPreallocatedArrayElements and |
| // if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding |
| // below should be reconsidered. |
| static const int kLoopUnfoldLimit = 4; |
| |
| |
| // Allocate an empty JSArray. The allocated array is put into the result |
| // register. An elements backing store is allocated with size initial_capacity |
| // and filled with the hole values. |
| static void AllocateEmptyJSArray(MacroAssembler* masm, |
| Register array_function, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| int initial_capacity, |
| Label* gc_required) { |
| ASSERT(initial_capacity > 0); |
| // Load the initial map from the array function. |
| __ lw(scratch1, FieldMemOperand(array_function, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Allocate the JSArray object together with space for a fixed array with the |
| // requested elements. |
| int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity); |
| __ AllocateInNewSpace(size, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| // Allocated the JSArray. Now initialize the fields except for the elements |
| // array. |
| // result: JSObject |
| // scratch1: initial map |
| // scratch2: start of next object |
| __ sw(scratch1, FieldMemOperand(result, JSObject::kMapOffset)); |
| __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex); |
| __ sw(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset)); |
| // Field JSArray::kElementsOffset is initialized later. |
| __ mov(scratch3, zero_reg); |
| __ sw(scratch3, FieldMemOperand(result, JSArray::kLengthOffset)); |
| |
| // Calculate the location of the elements array and set elements array member |
| // of the JSArray. |
| // result: JSObject |
| // scratch2: start of next object |
| __ Addu(scratch1, result, Operand(JSArray::kSize)); |
| __ sw(scratch1, FieldMemOperand(result, JSArray::kElementsOffset)); |
| |
| // Clear the heap tag on the elements array. |
| __ And(scratch1, scratch1, Operand(~kHeapObjectTagMask)); |
| |
| // Initialize the FixedArray and fill it with holes. FixedArray length is |
| // stored as a smi. |
| // result: JSObject |
| // scratch1: elements array (untagged) |
| // scratch2: start of next object |
| __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex); |
| ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset); |
| __ sw(scratch3, MemOperand(scratch1)); |
| __ Addu(scratch1, scratch1, kPointerSize); |
| __ li(scratch3, Operand(Smi::FromInt(initial_capacity))); |
| ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); |
| __ sw(scratch3, MemOperand(scratch1)); |
| __ Addu(scratch1, scratch1, kPointerSize); |
| |
| // Fill the FixedArray with the hole value. |
| ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); |
| ASSERT(initial_capacity <= kLoopUnfoldLimit); |
| __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex); |
| for (int i = 0; i < initial_capacity; i++) { |
| __ sw(scratch3, MemOperand(scratch1)); |
| __ Addu(scratch1, scratch1, kPointerSize); |
| } |
| } |
| |
| |
| // Allocate a JSArray with the number of elements stored in a register. The |
| // register array_function holds the built-in Array function and the register |
| // array_size holds the size of the array as a smi. The allocated array is put |
| // into the result register and beginning and end of the FixedArray elements |
| // storage is put into registers elements_array_storage and elements_array_end |
| // (see below for when that is not the case). If the parameter fill_with_holes |
| // is true the allocated elements backing store is filled with the hole values |
| // otherwise it is left uninitialized. When the backing store is filled the |
| // register elements_array_storage is scratched. |
| static void AllocateJSArray(MacroAssembler* masm, |
| Register array_function, // Array function. |
| Register array_size, // As a smi. |
| Register result, |
| Register elements_array_storage, |
| Register elements_array_end, |
| Register scratch1, |
| Register scratch2, |
| bool fill_with_hole, |
| Label* gc_required) { |
| Label not_empty, allocated; |
| |
| // Load the initial map from the array function. |
| __ lw(elements_array_storage, |
| FieldMemOperand(array_function, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Check whether an empty sized array is requested. |
| __ Branch(¬_empty, ne, array_size, Operand(zero_reg)); |
| |
| // If an empty array is requested allocate a small elements array anyway. This |
| // keeps the code below free of special casing for the empty array. |
| int size = JSArray::kSize + |
| FixedArray::SizeFor(JSArray::kPreallocatedArrayElements); |
| __ AllocateInNewSpace(size, |
| result, |
| elements_array_end, |
| scratch1, |
| gc_required, |
| TAG_OBJECT); |
| __ Branch(&allocated); |
| |
| // Allocate the JSArray object together with space for a FixedArray with the |
| // requested number of elements. |
| __ bind(¬_empty); |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ li(elements_array_end, |
| (JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize); |
| __ sra(scratch1, array_size, kSmiTagSize); |
| __ Addu(elements_array_end, elements_array_end, scratch1); |
| __ AllocateInNewSpace( |
| elements_array_end, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| |
| // Allocated the JSArray. Now initialize the fields except for the elements |
| // array. |
| // result: JSObject |
| // elements_array_storage: initial map |
| // array_size: size of array (smi) |
| __ bind(&allocated); |
| __ sw(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset)); |
| __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex); |
| __ sw(elements_array_storage, |
| FieldMemOperand(result, JSArray::kPropertiesOffset)); |
| // Field JSArray::kElementsOffset is initialized later. |
| __ sw(array_size, FieldMemOperand(result, JSArray::kLengthOffset)); |
| |
| // Calculate the location of the elements array and set elements array member |
| // of the JSArray. |
| // result: JSObject |
| // array_size: size of array (smi) |
| __ Addu(elements_array_storage, result, Operand(JSArray::kSize)); |
| __ sw(elements_array_storage, |
| FieldMemOperand(result, JSArray::kElementsOffset)); |
| |
| // Clear the heap tag on the elements array. |
| __ And(elements_array_storage, |
| elements_array_storage, |
| Operand(~kHeapObjectTagMask)); |
| // Initialize the fixed array and fill it with holes. FixedArray length is |
| // stored as a smi. |
| // result: JSObject |
| // elements_array_storage: elements array (untagged) |
| // array_size: size of array (smi) |
| __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex); |
| ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset); |
| __ sw(scratch1, MemOperand(elements_array_storage)); |
| __ Addu(elements_array_storage, elements_array_storage, kPointerSize); |
| |
| // Length of the FixedArray is the number of pre-allocated elements if |
| // the actual JSArray has length 0 and the size of the JSArray for non-empty |
| // JSArrays. The length of a FixedArray is stored as a smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ li(at, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements))); |
| __ movz(array_size, at, array_size); |
| |
| ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); |
| __ sw(array_size, MemOperand(elements_array_storage)); |
| __ Addu(elements_array_storage, elements_array_storage, kPointerSize); |
| |
| // Calculate elements array and elements array end. |
| // result: JSObject |
| // elements_array_storage: elements array element storage |
| // array_size: smi-tagged size of elements array |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); |
| __ sll(elements_array_end, array_size, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(elements_array_end, elements_array_storage, elements_array_end); |
| |
| // Fill the allocated FixedArray with the hole value if requested. |
| // result: JSObject |
| // elements_array_storage: elements array element storage |
| // elements_array_end: start of next object |
| if (fill_with_hole) { |
| Label loop, entry; |
| __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex); |
| __ Branch(&entry); |
| __ bind(&loop); |
| __ sw(scratch1, MemOperand(elements_array_storage)); |
| __ Addu(elements_array_storage, elements_array_storage, kPointerSize); |
| |
| __ bind(&entry); |
| __ Branch(&loop, lt, elements_array_storage, Operand(elements_array_end)); |
| } |
| } |
| |
| |
| // Create a new array for the built-in Array function. This function allocates |
| // the JSArray object and the FixedArray elements array and initializes these. |
| // If the Array cannot be constructed in native code the runtime is called. This |
| // function assumes the following state: |
| // a0: argc |
| // a1: constructor (built-in Array function) |
| // ra: return address |
| // sp[0]: last argument |
| // This function is used for both construct and normal calls of Array. The only |
| // difference between handling a construct call and a normal call is that for a |
| // construct call the constructor function in a1 needs to be preserved for |
| // entering the generic code. In both cases argc in a0 needs to be preserved. |
| // Both registers are preserved by this code so no need to differentiate between |
| // construct call and normal call. |
| static void ArrayNativeCode(MacroAssembler* masm, |
| Label* call_generic_code) { |
| Counters* counters = masm->isolate()->counters(); |
| Label argc_one_or_more, argc_two_or_more; |
| |
| // Check for array construction with zero arguments or one. |
| __ Branch(&argc_one_or_more, ne, a0, Operand(zero_reg)); |
| // Handle construction of an empty array. |
| AllocateEmptyJSArray(masm, |
| a1, |
| a2, |
| a3, |
| t0, |
| t1, |
| JSArray::kPreallocatedArrayElements, |
| call_generic_code); |
| __ IncrementCounter(counters->array_function_native(), 1, a3, t0); |
| // Setup return value, remove receiver from stack and return. |
| __ mov(v0, a2); |
| __ Addu(sp, sp, Operand(kPointerSize)); |
| __ Ret(); |
| |
| // Check for one argument. Bail out if argument is not smi or if it is |
| // negative. |
| __ bind(&argc_one_or_more); |
| __ Branch(&argc_two_or_more, ne, a0, Operand(1)); |
| |
| STATIC_ASSERT(kSmiTag == 0); |
| __ lw(a2, MemOperand(sp)); // Get the argument from the stack. |
| __ And(a3, a2, Operand(kIntptrSignBit | kSmiTagMask)); |
| __ Branch(call_generic_code, eq, a3, Operand(zero_reg)); |
| |
| // Handle construction of an empty array of a certain size. Bail out if size |
| // is too large to actually allocate an elements array. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Branch(call_generic_code, Ugreater_equal, a2, |
| Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize)); |
| |
| // a0: argc |
| // a1: constructor |
| // a2: array_size (smi) |
| // sp[0]: argument |
| AllocateJSArray(masm, |
| a1, |
| a2, |
| a3, |
| t0, |
| t1, |
| t2, |
| t3, |
| true, |
| call_generic_code); |
| __ IncrementCounter(counters->array_function_native(), 1, a2, t0); |
| |
| // Setup return value, remove receiver and argument from stack and return. |
| __ mov(v0, a3); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| // Handle construction of an array from a list of arguments. |
| __ bind(&argc_two_or_more); |
| __ sll(a2, a0, kSmiTagSize); // Convert argc to a smi. |
| |
| // a0: argc |
| // a1: constructor |
| // a2: array_size (smi) |
| // sp[0]: last argument |
| AllocateJSArray(masm, |
| a1, |
| a2, |
| a3, |
| t0, |
| t1, |
| t2, |
| t3, |
| false, |
| call_generic_code); |
| __ IncrementCounter(counters->array_function_native(), 1, a2, t2); |
| |
| // Fill arguments as array elements. Copy from the top of the stack (last |
| // element) to the array backing store filling it backwards. Note: |
| // elements_array_end points after the backing store. |
| // a0: argc |
| // a3: JSArray |
| // t0: elements_array storage start (untagged) |
| // t1: elements_array_end (untagged) |
| // sp[0]: last argument |
| |
| Label loop, entry; |
| __ Branch(&entry); |
| __ bind(&loop); |
| __ pop(a2); |
| __ Addu(t1, t1, -kPointerSize); |
| __ sw(a2, MemOperand(t1)); |
| __ bind(&entry); |
| __ Branch(&loop, lt, t0, Operand(t1)); |
| |
| // Remove caller arguments and receiver from the stack, setup return value and |
| // return. |
| // a0: argc |
| // a3: JSArray |
| // sp[0]: receiver |
| __ Addu(sp, sp, Operand(kPointerSize)); |
| __ mov(v0, a3); |
| __ Ret(); |
| } |
| |
| |
| void Builtins::Generate_ArrayCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : number of arguments |
| // -- ra : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| Label generic_array_code; |
| |
| // Get the Array function. |
| GenerateLoadArrayFunction(masm, a1); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin Array functions should be maps. |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ And(t0, a2, Operand(kSmiTagMask)); |
| __ Assert(ne, "Unexpected initial map for Array function (1)", |
| t0, Operand(zero_reg)); |
| __ GetObjectType(a2, a3, t0); |
| __ Assert(eq, "Unexpected initial map for Array function (2)", |
| t0, Operand(MAP_TYPE)); |
| } |
| |
| // Run the native code for the Array function called as a normal function. |
| ArrayNativeCode(masm, &generic_array_code); |
| |
| // Jump to the generic array code if the specialized code cannot handle |
| // the construction. |
| __ bind(&generic_array_code); |
| |
| Handle<Code> array_code = |
| masm->isolate()->builtins()->ArrayCodeGeneric(); |
| __ Jump(array_code, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : number of arguments |
| // -- a1 : constructor function |
| // -- ra : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| Label generic_constructor; |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the builtin and internal |
| // Array functions which always have a map. |
| // Initial map for the builtin Array function should be a map. |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ And(t0, a2, Operand(kSmiTagMask)); |
| __ Assert(ne, "Unexpected initial map for Array function (3)", |
| t0, Operand(zero_reg)); |
| __ GetObjectType(a2, a3, t0); |
| __ Assert(eq, "Unexpected initial map for Array function (4)", |
| t0, Operand(MAP_TYPE)); |
| } |
| |
| // Run the native code for the Array function called as a constructor. |
| ArrayNativeCode(masm, &generic_constructor); |
| |
| // Jump to the generic construct code in case the specialized code cannot |
| // handle the construction. |
| __ bind(&generic_constructor); |
| |
| Handle<Code> generic_construct_stub = |
| masm->isolate()->builtins()->JSConstructStubGeneric(); |
| __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : number of arguments |
| // -- a1 : constructor function |
| // -- ra : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3); |
| |
| Register function = a1; |
| if (FLAG_debug_code) { |
| __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2); |
| __ Assert(eq, "Unexpected String function", function, Operand(a2)); |
| } |
| |
| // Load the first arguments in a0 and get rid of the rest. |
| Label no_arguments; |
| __ Branch(&no_arguments, eq, a0, Operand(zero_reg)); |
| // First args = sp[(argc - 1) * 4]. |
| __ Subu(a0, a0, Operand(1)); |
| __ sll(a0, a0, kPointerSizeLog2); |
| __ Addu(sp, a0, sp); |
| __ lw(a0, MemOperand(sp)); |
| // sp now point to args[0], drop args[0] + receiver. |
| __ Drop(2); |
| |
| Register argument = a2; |
| Label not_cached, argument_is_string; |
| NumberToStringStub::GenerateLookupNumberStringCache( |
| masm, |
| a0, // Input. |
| argument, // Result. |
| a3, // Scratch. |
| t0, // Scratch. |
| t1, // Scratch. |
| false, // Is it a Smi? |
| ¬_cached); |
| __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0); |
| __ bind(&argument_is_string); |
| |
| // ----------- S t a t e ------------- |
| // -- a2 : argument converted to string |
| // -- a1 : constructor function |
| // -- ra : return address |
| // ----------------------------------- |
| |
| Label gc_required; |
| __ AllocateInNewSpace(JSValue::kSize, |
| v0, // Result. |
| a3, // Scratch. |
| t0, // Scratch. |
| &gc_required, |
| TAG_OBJECT); |
| |
| // Initialising the String Object. |
| Register map = a3; |
| __ LoadGlobalFunctionInitialMap(function, map, t0); |
| if (FLAG_debug_code) { |
| __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset)); |
| __ Assert(eq, "Unexpected string wrapper instance size", |
| t0, Operand(JSValue::kSize >> kPointerSizeLog2)); |
| __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset)); |
| __ Assert(eq, "Unexpected unused properties of string wrapper", |
| t0, Operand(zero_reg)); |
| } |
| __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| |
| __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex); |
| __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset)); |
| __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset)); |
| |
| __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset)); |
| |
| // Ensure the object is fully initialized. |
| STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); |
| |
| __ Ret(); |
| |
| // The argument was not found in the number to string cache. Check |
| // if it's a string already before calling the conversion builtin. |
| Label convert_argument; |
| __ bind(¬_cached); |
| __ JumpIfSmi(a0, &convert_argument); |
| |
| // Is it a String? |
| __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); |
| __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kNotStringTag != 0); |
| __ And(t0, a3, Operand(kIsNotStringMask)); |
| __ Branch(&convert_argument, ne, t0, Operand(zero_reg)); |
| __ mov(argument, a0); |
| __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0); |
| __ Branch(&argument_is_string); |
| |
| // Invoke the conversion builtin and put the result into a2. |
| __ bind(&convert_argument); |
| __ push(function); // Preserve the function. |
| __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0); |
| __ EnterInternalFrame(); |
| __ push(v0); |
| __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); |
| __ LeaveInternalFrame(); |
| __ pop(function); |
| __ mov(argument, v0); |
| __ Branch(&argument_is_string); |
| |
| // Load the empty string into a2, remove the receiver from the |
| // stack, and jump back to the case where the argument is a string. |
| __ bind(&no_arguments); |
| __ LoadRoot(argument, Heap::kEmptyStringRootIndex); |
| __ Drop(1); |
| __ Branch(&argument_is_string); |
| |
| // At this point the argument is already a string. Call runtime to |
| // create a string wrapper. |
| __ bind(&gc_required); |
| __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0); |
| __ EnterInternalFrame(); |
| __ push(argument); |
| __ CallRuntime(Runtime::kNewStringWrapper, 1); |
| __ LeaveInternalFrame(); |
| __ Ret(); |
| } |
| |
| |
| void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : number of arguments |
| // -- a1 : constructor function |
| // -- ra : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| Label non_function_call; |
| // Check that the function is not a smi. |
| __ And(t0, a1, Operand(kSmiTagMask)); |
| __ Branch(&non_function_call, eq, t0, Operand(zero_reg)); |
| // Check that the function is a JSFunction. |
| __ GetObjectType(a1, a2, a2); |
| __ Branch(&non_function_call, ne, a2, Operand(JS_FUNCTION_TYPE)); |
| |
| // Jump to the function-specific construct stub. |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kConstructStubOffset)); |
| __ Addu(t9, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(t9); |
| |
| // a0: number of arguments |
| // a1: called object |
| __ bind(&non_function_call); |
| // CALL_NON_FUNCTION expects the non-function constructor as receiver |
| // (instead of the original receiver from the call site). The receiver is |
| // stack element argc. |
| // Set expected number of arguments to zero (not changing a0). |
| __ mov(a2, zero_reg); |
| __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
| __ SetCallKind(t1, CALL_AS_METHOD); |
| __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| |
| static void Generate_JSConstructStubHelper(MacroAssembler* masm, |
| bool is_api_function, |
| bool count_constructions) { |
| // Should never count constructions for api objects. |
| ASSERT(!is_api_function || !count_constructions); |
| |
| Isolate* isolate = masm->isolate(); |
| |
| // ----------- S t a t e ------------- |
| // -- a0 : number of arguments |
| // -- a1 : constructor function |
| // -- ra : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| __ EnterConstructFrame(); |
| |
| // Preserve the two incoming parameters on the stack. |
| __ sll(a0, a0, kSmiTagSize); // Tag arguments count. |
| __ MultiPushReversed(a0.bit() | a1.bit()); |
| |
| // Use t7 to hold undefined, which is used in several places below. |
| __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); |
| |
| Label rt_call, allocated; |
| // Try to allocate the object without transitioning into C code. If any of the |
| // preconditions is not met, the code bails out to the runtime call. |
| if (FLAG_inline_new) { |
| Label undo_allocation; |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ExternalReference debug_step_in_fp = |
| ExternalReference::debug_step_in_fp_address(isolate); |
| __ li(a2, Operand(debug_step_in_fp)); |
| __ lw(a2, MemOperand(a2)); |
| __ Branch(&rt_call, ne, a2, Operand(zero_reg)); |
| #endif |
| |
| // Load the initial map and verify that it is in fact a map. |
| // a1: constructor function |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ And(t0, a2, Operand(kSmiTagMask)); |
| __ Branch(&rt_call, eq, t0, Operand(zero_reg)); |
| __ GetObjectType(a2, a3, t4); |
| __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE)); |
| |
| // Check that the constructor is not constructing a JSFunction (see comments |
| // in Runtime_NewObject in runtime.cc). In which case the initial map's |
| // instance type would be JS_FUNCTION_TYPE. |
| // a1: constructor function |
| // a2: initial map |
| __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); |
| __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE)); |
| |
| if (count_constructions) { |
| Label allocate; |
| // Decrease generous allocation count. |
| __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| MemOperand constructor_count = |
| FieldMemOperand(a3, SharedFunctionInfo::kConstructionCountOffset); |
| __ lbu(t0, constructor_count); |
| __ Subu(t0, t0, Operand(1)); |
| __ sb(t0, constructor_count); |
| __ Branch(&allocate, ne, t0, Operand(zero_reg)); |
| |
| __ Push(a1, a2); |
| |
| __ push(a1); // Constructor. |
| // The call will replace the stub, so the countdown is only done once. |
| __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); |
| |
| __ pop(a2); |
| __ pop(a1); |
| |
| __ bind(&allocate); |
| } |
| |
| // Now allocate the JSObject on the heap. |
| // a1: constructor function |
| // a2: initial map |
| __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset)); |
| __ AllocateInNewSpace(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS); |
| |
| // Allocated the JSObject, now initialize the fields. Map is set to initial |
| // map and properties and elements are set to empty fixed array. |
| // a1: constructor function |
| // a2: initial map |
| // a3: object size |
| // t4: JSObject (not tagged) |
| __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex); |
| __ mov(t5, t4); |
| __ sw(a2, MemOperand(t5, JSObject::kMapOffset)); |
| __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset)); |
| __ sw(t6, MemOperand(t5, JSObject::kElementsOffset)); |
| __ Addu(t5, t5, Operand(3*kPointerSize)); |
| ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); |
| ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); |
| ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); |
| |
| // Fill all the in-object properties with appropriate filler. |
| // a1: constructor function |
| // a2: initial map |
| // a3: object size (in words) |
| // t4: JSObject (not tagged) |
| // t5: First in-object property of JSObject (not tagged) |
| __ sll(t0, a3, kPointerSizeLog2); |
| __ addu(t6, t4, t0); // End of object. |
| ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize); |
| { Label loop, entry; |
| if (count_constructions) { |
| // To allow for truncation. |
| __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex); |
| } else { |
| __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); |
| } |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ sw(t7, MemOperand(t5, 0)); |
| __ addiu(t5, t5, kPointerSize); |
| __ bind(&entry); |
| __ Branch(&loop, Uless, t5, Operand(t6)); |
| } |
| |
| // Add the object tag to make the JSObject real, so that we can continue and |
| // jump into the continuation code at any time from now on. Any failures |
| // need to undo the allocation, so that the heap is in a consistent state |
| // and verifiable. |
| __ Addu(t4, t4, Operand(kHeapObjectTag)); |
| |
| // Check if a non-empty properties array is needed. Continue with allocated |
| // object if not fall through to runtime call if it is. |
| // a1: constructor function |
| // t4: JSObject |
| // t5: start of next object (not tagged) |
| __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset)); |
| // The field instance sizes contains both pre-allocated property fields and |
| // in-object properties. |
| __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset)); |
| __ And(t6, |
| a0, |
| Operand(0x000000FF << Map::kPreAllocatedPropertyFieldsByte * 8)); |
| __ srl(t0, t6, Map::kPreAllocatedPropertyFieldsByte * 8); |
| __ Addu(a3, a3, Operand(t0)); |
| __ And(t6, a0, Operand(0x000000FF << Map::kInObjectPropertiesByte * 8)); |
| __ srl(t0, t6, Map::kInObjectPropertiesByte * 8); |
| __ subu(a3, a3, t0); |
| |
| // Done if no extra properties are to be allocated. |
| __ Branch(&allocated, eq, a3, Operand(zero_reg)); |
| __ Assert(greater_equal, "Property allocation count failed.", |
| a3, Operand(zero_reg)); |
| |
| // Scale the number of elements by pointer size and add the header for |
| // FixedArrays to the start of the next object calculation from above. |
| // a1: constructor |
| // a3: number of elements in properties array |
| // t4: JSObject |
| // t5: start of next object |
| __ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize)); |
| __ AllocateInNewSpace( |
| a0, |
| t5, |
| t6, |
| a2, |
| &undo_allocation, |
| static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); |
| |
| // Initialize the FixedArray. |
| // a1: constructor |
| // a3: number of elements in properties array (un-tagged) |
| // t4: JSObject |
| // t5: start of next object |
| __ LoadRoot(t6, Heap::kFixedArrayMapRootIndex); |
| __ mov(a2, t5); |
| __ sw(t6, MemOperand(a2, JSObject::kMapOffset)); |
| __ sll(a0, a3, kSmiTagSize); |
| __ sw(a0, MemOperand(a2, FixedArray::kLengthOffset)); |
| __ Addu(a2, a2, Operand(2 * kPointerSize)); |
| |
| ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); |
| ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); |
| |
| // Initialize the fields to undefined. |
| // a1: constructor |
| // a2: First element of FixedArray (not tagged) |
| // a3: number of elements in properties array |
| // t4: JSObject |
| // t5: FixedArray (not tagged) |
| __ sll(t3, a3, kPointerSizeLog2); |
| __ addu(t6, a2, t3); // End of object. |
| ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); |
| { Label loop, entry; |
| if (count_constructions) { |
| __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); |
| } else if (FLAG_debug_code) { |
| __ LoadRoot(t8, Heap::kUndefinedValueRootIndex); |
| __ Assert(eq, "Undefined value not loaded.", t7, Operand(t8)); |
| } |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ sw(t7, MemOperand(a2)); |
| __ addiu(a2, a2, kPointerSize); |
| __ bind(&entry); |
| __ Branch(&loop, less, a2, Operand(t6)); |
| } |
| |
| // Store the initialized FixedArray into the properties field of |
| // the JSObject. |
| // a1: constructor function |
| // t4: JSObject |
| // t5: FixedArray (not tagged) |
| __ Addu(t5, t5, Operand(kHeapObjectTag)); // Add the heap tag. |
| __ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset)); |
| |
| // Continue with JSObject being successfully allocated. |
| // a1: constructor function |
| // a4: JSObject |
| __ jmp(&allocated); |
| |
| // Undo the setting of the new top so that the heap is verifiable. For |
| // example, the map's unused properties potentially do not match the |
| // allocated objects unused properties. |
| // t4: JSObject (previous new top) |
| __ bind(&undo_allocation); |
| __ UndoAllocationInNewSpace(t4, t5); |
| } |
| |
| __ bind(&rt_call); |
| // Allocate the new receiver object using the runtime call. |
| // a1: constructor function |
| __ push(a1); // Argument for Runtime_NewObject. |
| __ CallRuntime(Runtime::kNewObject, 1); |
| __ mov(t4, v0); |
| |
| // Receiver for constructor call allocated. |
| // t4: JSObject |
| __ bind(&allocated); |
| __ push(t4); |
| |
| // Push the function and the allocated receiver from the stack. |
| // sp[0]: receiver (newly allocated object) |
| // sp[1]: constructor function |
| // sp[2]: number of arguments (smi-tagged) |
| __ lw(a1, MemOperand(sp, kPointerSize)); |
| __ MultiPushReversed(a1.bit() | t4.bit()); |
| |
| // Reload the number of arguments from the stack. |
| // a1: constructor function |
| // sp[0]: receiver |
| // sp[1]: constructor function |
| // sp[2]: receiver |
| // sp[3]: constructor function |
| // sp[4]: number of arguments (smi-tagged) |
| __ lw(a3, MemOperand(sp, 4 * kPointerSize)); |
| |
| // Setup pointer to last argument. |
| __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); |
| |
| // Setup number of arguments for function call below. |
| __ srl(a0, a3, kSmiTagSize); |
| |
| // Copy arguments and receiver to the expression stack. |
| // a0: number of arguments |
| // a1: constructor function |
| // a2: address of last argument (caller sp) |
| // a3: number of arguments (smi-tagged) |
| // sp[0]: receiver |
| // sp[1]: constructor function |
| // sp[2]: receiver |
| // sp[3]: constructor function |
| // sp[4]: number of arguments (smi-tagged) |
| Label loop, entry; |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(t0, a2, Operand(t0)); |
| __ lw(t1, MemOperand(t0)); |
| __ push(t1); |
| __ bind(&entry); |
| __ Addu(a3, a3, Operand(-2)); |
| __ Branch(&loop, greater_equal, a3, Operand(zero_reg)); |
| |
| // Call the function. |
| // a0: number of arguments |
| // a1: constructor function |
| if (is_api_function) { |
| __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| Handle<Code> code = |
| masm->isolate()->builtins()->HandleApiCallConstruct(); |
| ParameterCount expected(0); |
| __ InvokeCode(code, expected, expected, |
| RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD); |
| } else { |
| ParameterCount actual(a0); |
| __ InvokeFunction(a1, actual, CALL_FUNCTION, |
| NullCallWrapper(), CALL_AS_METHOD); |
| } |
| |
| // Pop the function from the stack. |
| // v0: result |
| // sp[0]: constructor function |
| // sp[2]: receiver |
| // sp[3]: constructor function |
| // sp[4]: number of arguments (smi-tagged) |
| __ Pop(); |
| |
| // Restore context from the frame. |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, exit; |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| // v0: result |
| // sp[0]: receiver (newly allocated object) |
| // sp[1]: constructor function |
| // sp[2]: number of arguments (smi-tagged) |
| __ And(t0, v0, Operand(kSmiTagMask)); |
| __ Branch(&use_receiver, eq, t0, Operand(zero_reg)); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. |
| __ GetObjectType(v0, a3, a3); |
| __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ lw(v0, MemOperand(sp)); |
| |
| // Remove receiver from the stack, remove caller arguments, and |
| // return. |
| __ bind(&exit); |
| // v0: result |
| // sp[0]: receiver (newly allocated object) |
| // sp[1]: constructor function |
| // sp[2]: number of arguments (smi-tagged) |
| __ lw(a1, MemOperand(sp, 2 * kPointerSize)); |
| __ LeaveConstructFrame(); |
| __ sll(t0, a1, kPointerSizeLog2 - 1); |
| __ Addu(sp, sp, t0); |
| __ Addu(sp, sp, kPointerSize); |
| __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2); |
| __ Ret(); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false, true); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false, false); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, true, false); |
| } |
| |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Called from JSEntryStub::GenerateBody |
| |
| // ----------- S t a t e ------------- |
| // -- a0: code entry |
| // -- a1: function |
| // -- a2: reveiver_pointer |
| // -- a3: argc |
| // -- s0: argv |
| // ----------------------------------- |
| |
| // Clear the context before we push it when entering the JS frame. |
| __ mov(cp, zero_reg); |
| |
| // Enter an internal frame. |
| __ EnterInternalFrame(); |
| |
| // Set up the context from the function argument. |
| __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| |
| // Set up the roots register. |
| ExternalReference roots_address = |
| ExternalReference::roots_address(masm->isolate()); |
| __ li(s6, Operand(roots_address)); |
| |
| // Push the function and the receiver onto the stack. |
| __ Push(a1, a2); |
| |
| // Copy arguments to the stack in a loop. |
| // a3: argc |
| // s0: argv, ie points to first arg |
| Label loop, entry; |
| __ sll(t0, a3, kPointerSizeLog2); |
| __ addu(t2, s0, t0); |
| __ b(&entry); |
| __ nop(); // Branch delay slot nop. |
| // t2 points past last arg. |
| __ bind(&loop); |
| __ lw(t0, MemOperand(s0)); // Read next parameter. |
| __ addiu(s0, s0, kPointerSize); |
| __ lw(t0, MemOperand(t0)); // Dereference handle. |
| __ push(t0); // Push parameter. |
| __ bind(&entry); |
| __ Branch(&loop, ne, s0, Operand(t2)); |
| |
| // Initialize all JavaScript callee-saved registers, since they will be seen |
| // by the garbage collector as part of handlers. |
| __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
| __ mov(s1, t0); |
| __ mov(s2, t0); |
| __ mov(s3, t0); |
| __ mov(s4, t0); |
| __ mov(s5, t0); |
| // s6 holds the root address. Do not clobber. |
| // s7 is cp. Do not init. |
| |
| // Invoke the code and pass argc as a0. |
| __ mov(a0, a3); |
| if (is_construct) { |
| __ Call(masm->isolate()->builtins()->JSConstructCall()); |
| } else { |
| ParameterCount actual(a0); |
| __ InvokeFunction(a1, actual, CALL_FUNCTION, |
| NullCallWrapper(), CALL_AS_METHOD); |
| } |
| |
| __ LeaveInternalFrame(); |
| |
| __ Jump(ra); |
| } |
| |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| |
| void Builtins::Generate_LazyCompile(MacroAssembler* masm) { |
| // Enter an internal frame. |
| __ EnterInternalFrame(); |
| |
| // Preserve the function. |
| __ push(a1); |
| // Push call kind information. |
| __ push(t1); |
| |
| // Push the function on the stack as the argument to the runtime function. |
| __ push(a1); |
| // Call the runtime function. |
| __ CallRuntime(Runtime::kLazyCompile, 1); |
| // Calculate the entry point. |
| __ addiu(t9, v0, Code::kHeaderSize - kHeapObjectTag); |
| |
| // Restore call kind information. |
| __ pop(t1); |
| // Restore saved function. |
| __ pop(a1); |
| |
| // Tear down temporary frame. |
| __ LeaveInternalFrame(); |
| |
| // Do a tail-call of the compiled function. |
| __ Jump(t9); |
| } |
| |
| |
| void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { |
| // Enter an internal frame. |
| __ EnterInternalFrame(); |
| |
| // Preserve the function. |
| __ push(a1); |
| // Push call kind information. |
| __ push(t1); |
| |
| // Push the function on the stack as the argument to the runtime function. |
| __ push(a1); |
| __ CallRuntime(Runtime::kLazyRecompile, 1); |
| // Calculate the entry point. |
| __ Addu(t9, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Restore call kind information. |
| __ pop(t1); |
| // Restore saved function. |
| __ pop(a1); |
| |
| // Tear down temporary frame. |
| __ LeaveInternalFrame(); |
| |
| // Do a tail-call of the compiled function. |
| __ Jump(t9); |
| } |
| |
| |
| // These functions are called from C++ but cannot be used in live code. |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| __ Abort("Call to unimplemented function in builtins-mips.cc"); |
| } |
| |
| |
| void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { |
| __ Abort("Call to unimplemented function in builtins-mips.cc"); |
| } |
| |
| |
| void Builtins::Generate_NotifyOSR(MacroAssembler* masm) { |
| __ Abort("Call to unimplemented function in builtins-mips.cc"); |
| } |
| |
| |
| void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { |
| __ Abort("Call to unimplemented function in builtins-mips.cc"); |
| } |
| |
| |
| void Builtins::Generate_FunctionCall(MacroAssembler* masm) { |
| // 1. Make sure we have at least one argument. |
| // a0: actual number of arguments |
| { Label done; |
| __ Branch(&done, ne, a0, Operand(zero_reg)); |
| __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); |
| __ push(t2); |
| __ Addu(a0, a0, Operand(1)); |
| __ bind(&done); |
| } |
| |
| // 2. Get the function to call (passed as receiver) from the stack, check |
| // if it is a function. |
| // a0: actual number of arguments |
| Label non_function; |
| __ sll(at, a0, kPointerSizeLog2); |
| __ addu(at, sp, at); |
| __ lw(a1, MemOperand(at)); |
| __ And(at, a1, Operand(kSmiTagMask)); |
| __ Branch(&non_function, eq, at, Operand(zero_reg)); |
| __ GetObjectType(a1, a2, a2); |
| __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_TYPE)); |
| |
| // 3a. Patch the first argument if necessary when calling a function. |
| // a0: actual number of arguments |
| // a1: function |
| Label shift_arguments; |
| { Label convert_to_object, use_global_receiver, patch_receiver; |
| // Change context eagerly in case we need the global receiver. |
| __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| |
| // Do not transform the receiver for strict mode functions. |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset)); |
| __ And(t0, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + |
| kSmiTagSize))); |
| __ Branch(&shift_arguments, ne, t0, Operand(zero_reg)); |
| |
| // Do not transform the receiver for native (Compilerhints already in a3). |
| __ And(t0, a3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); |
| __ Branch(&shift_arguments, ne, t0, Operand(zero_reg)); |
| |
| // Compute the receiver in non-strict mode. |
| // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2). |
| __ sll(at, a0, kPointerSizeLog2); |
| __ addu(a2, sp, at); |
| __ lw(a2, MemOperand(a2, -kPointerSize)); |
| // a0: actual number of arguments |
| // a1: function |
| // a2: first argument |
| __ JumpIfSmi(a2, &convert_to_object, t2); |
| |
| __ LoadRoot(a3, Heap::kUndefinedValueRootIndex); |
| __ Branch(&use_global_receiver, eq, a2, Operand(a3)); |
| __ LoadRoot(a3, Heap::kNullValueRootIndex); |
| __ Branch(&use_global_receiver, eq, a2, Operand(a3)); |
| |
| STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
| __ GetObjectType(a2, a3, a3); |
| __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| __ bind(&convert_to_object); |
| __ EnterInternalFrame(); // In order to preserve argument count. |
| __ sll(a0, a0, kSmiTagSize); // Smi tagged. |
| __ push(a0); |
| |
| __ push(a2); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ mov(a2, v0); |
| |
| __ pop(a0); |
| __ sra(a0, a0, kSmiTagSize); // Un-tag. |
| __ LeaveInternalFrame(); |
| // Restore the function to a1. |
| __ sll(at, a0, kPointerSizeLog2); |
| __ addu(at, sp, at); |
| __ lw(a1, MemOperand(at)); |
| __ Branch(&patch_receiver); |
| |
| // Use the global receiver object from the called function as the |
| // receiver. |
| __ bind(&use_global_receiver); |
| const int kGlobalIndex = |
| Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| __ lw(a2, FieldMemOperand(cp, kGlobalIndex)); |
| __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); |
| __ lw(a2, FieldMemOperand(a2, kGlobalIndex)); |
| __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset)); |
| |
| __ bind(&patch_receiver); |
| __ sll(at, a0, kPointerSizeLog2); |
| __ addu(a3, sp, at); |
| __ sw(a2, MemOperand(a3, -kPointerSize)); |
| |
| __ Branch(&shift_arguments); |
| } |
| |
| // 3b. Patch the first argument when calling a non-function. The |
| // CALL_NON_FUNCTION builtin expects the non-function callee as |
| // receiver, so overwrite the first argument which will ultimately |
| // become the receiver. |
| // a0: actual number of arguments |
| // a1: function |
| __ bind(&non_function); |
| // Restore the function in case it has been modified. |
| __ sll(at, a0, kPointerSizeLog2); |
| __ addu(a2, sp, at); |
| __ sw(a1, MemOperand(a2, -kPointerSize)); |
| // Clear a1 to indicate a non-function being called. |
| __ mov(a1, zero_reg); |
| |
| // 4. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| // a0: actual number of arguments |
| // a1: function |
| __ bind(&shift_arguments); |
| { Label loop; |
| // Calculate the copy start address (destination). Copy end address is sp. |
| __ sll(at, a0, kPointerSizeLog2); |
| __ addu(a2, sp, at); |
| |
| __ bind(&loop); |
| __ lw(at, MemOperand(a2, -kPointerSize)); |
| __ sw(at, MemOperand(a2)); |
| __ Subu(a2, a2, Operand(kPointerSize)); |
| __ Branch(&loop, ne, a2, Operand(sp)); |
| // Adjust the actual number of arguments and remove the top element |
| // (which is a copy of the last argument). |
| __ Subu(a0, a0, Operand(1)); |
| __ Pop(); |
| } |
| |
| // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin. |
| // a0: actual number of arguments |
| // a1: function |
| { Label function; |
| __ Branch(&function, ne, a1, Operand(zero_reg)); |
| __ mov(a2, zero_reg); // expected arguments is 0 for CALL_NON_FUNCTION |
| __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION); |
| __ SetCallKind(t1, CALL_AS_METHOD); |
| __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| RelocInfo::CODE_TARGET); |
| __ bind(&function); |
| } |
| |
| // 5b. Get the code to call from the function and check that the number of |
| // expected arguments matches what we're providing. If so, jump |
| // (tail-call) to the code in register edx without checking arguments. |
| // a0: actual number of arguments |
| // a1: function |
| __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(a2, |
| FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ sra(a2, a2, kSmiTagSize); |
| __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); |
| __ SetCallKind(t1, CALL_AS_METHOD); |
| // Check formal and actual parameter counts. |
| __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| RelocInfo::CODE_TARGET, ne, a2, Operand(a0)); |
| |
| ParameterCount expected(0); |
| __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, |
| NullCallWrapper(), CALL_AS_METHOD); |
| } |
| |
| |
| void Builtins::Generate_FunctionApply(MacroAssembler* masm) { |
| const int kIndexOffset = -5 * kPointerSize; |
| const int kLimitOffset = -4 * kPointerSize; |
| const int kArgsOffset = 2 * kPointerSize; |
| const int kRecvOffset = 3 * kPointerSize; |
| const int kFunctionOffset = 4 * kPointerSize; |
| |
| __ EnterInternalFrame(); |
| |
| __ lw(a0, MemOperand(fp, kFunctionOffset)); // Get the function. |
| __ push(a0); |
| __ lw(a0, MemOperand(fp, kArgsOffset)); // Get the args array. |
| __ push(a0); |
| // Returns (in v0) number of arguments to copy to stack as Smi. |
| __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); |
| |
| // Check the stack for overflow. We are not trying need to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| Label okay; |
| __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); |
| // Make a2 the space we have left. The stack might already be overflowed |
| // here which will cause a2 to become negative. |
| __ subu(a2, sp, a2); |
| // Check if the arguments will overflow the stack. |
| __ sll(t0, v0, kPointerSizeLog2 - kSmiTagSize); |
| __ Branch(&okay, gt, a2, Operand(t0)); // Signed comparison. |
| |
| // Out of stack space. |
| __ lw(a1, MemOperand(fp, kFunctionOffset)); |
| __ push(a1); |
| __ push(v0); |
| __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); |
| // End of stack check. |
| |
| // Push current limit and index. |
| __ bind(&okay); |
| __ push(v0); // Limit. |
| __ mov(a1, zero_reg); // Initial index. |
| __ push(a1); |
| |
| // Change context eagerly to get the right global object if necessary. |
| __ lw(a0, MemOperand(fp, kFunctionOffset)); |
| __ lw(cp, FieldMemOperand(a0, JSFunction::kContextOffset)); |
| // Load the shared function info while the function is still in a0. |
| __ lw(a1, FieldMemOperand(a0, JSFunction::kSharedFunctionInfoOffset)); |
| |
| // Compute the receiver. |
| Label call_to_object, use_global_receiver, push_receiver; |
| __ lw(a0, MemOperand(fp, kRecvOffset)); |
| |
| // Do not transform the receiver for strict mode functions. |
| __ lw(a2, FieldMemOperand(a1, SharedFunctionInfo::kCompilerHintsOffset)); |
| __ And(t0, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + |
| kSmiTagSize))); |
| __ Branch(&push_receiver, ne, t0, Operand(zero_reg)); |
| |
| // Do not transform the receiver for native (Compilerhints already in a2). |
| __ And(t0, a2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); |
| __ Branch(&push_receiver, ne, t0, Operand(zero_reg)); |
| |
| // Compute the receiver in non-strict mode. |
| __ And(t0, a0, Operand(kSmiTagMask)); |
| __ Branch(&call_to_object, eq, t0, Operand(zero_reg)); |
| __ LoadRoot(a1, Heap::kNullValueRootIndex); |
| __ Branch(&use_global_receiver, eq, a0, Operand(a1)); |
| __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); |
| __ Branch(&use_global_receiver, eq, a0, Operand(a2)); |
| |
| // Check if the receiver is already a JavaScript object. |
| // a0: receiver |
| STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
| __ GetObjectType(a0, a1, a1); |
| __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| // Convert the receiver to a regular object. |
| // a0: receiver |
| __ bind(&call_to_object); |
| __ push(a0); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ mov(a0, v0); // Put object in a0 to match other paths to push_receiver. |
| __ Branch(&push_receiver); |
| |
| // Use the current global receiver object as the receiver. |
| __ bind(&use_global_receiver); |
| const int kGlobalOffset = |
| Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| __ lw(a0, FieldMemOperand(cp, kGlobalOffset)); |
| __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset)); |
| __ lw(a0, FieldMemOperand(a0, kGlobalOffset)); |
| __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset)); |
| |
| // Push the receiver. |
| // a0: receiver |
| __ bind(&push_receiver); |
| __ push(a0); |
| |
| // Copy all arguments from the array to the stack. |
| Label entry, loop; |
| __ lw(a0, MemOperand(fp, kIndexOffset)); |
| __ Branch(&entry); |
| |
| // Load the current argument from the arguments array and push it to the |
| // stack. |
| // a0: current argument index |
| __ bind(&loop); |
| __ lw(a1, MemOperand(fp, kArgsOffset)); |
| __ push(a1); |
| __ push(a0); |
| |
| // Call the runtime to access the property in the arguments array. |
| __ CallRuntime(Runtime::kGetProperty, 2); |
| __ push(v0); |
| |
| // Use inline caching to access the arguments. |
| __ lw(a0, MemOperand(fp, kIndexOffset)); |
| __ Addu(a0, a0, Operand(1 << kSmiTagSize)); |
| __ sw(a0, MemOperand(fp, kIndexOffset)); |
| |
| // Test if the copy loop has finished copying all the elements from the |
| // arguments object. |
| __ bind(&entry); |
| __ lw(a1, MemOperand(fp, kLimitOffset)); |
| __ Branch(&loop, ne, a0, Operand(a1)); |
| // Invoke the function. |
| ParameterCount actual(a0); |
| __ sra(a0, a0, kSmiTagSize); |
| __ lw(a1, MemOperand(fp, kFunctionOffset)); |
| __ InvokeFunction(a1, actual, CALL_FUNCTION, |
| NullCallWrapper(), CALL_AS_METHOD); |
| |
| // Tear down the internal frame and remove function, receiver and args. |
| __ LeaveInternalFrame(); |
| __ Addu(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| } |
| |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ sll(a0, a0, kSmiTagSize); |
| __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit()); |
| __ Addu(fp, sp, Operand(3 * kPointerSize)); |
| } |
| |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- v0 : result being passed through |
| // ----------------------------------- |
| // Get the number of arguments passed (as a smi), tear down the frame and |
| // then tear down the parameters. |
| __ lw(a1, MemOperand(fp, -3 * kPointerSize)); |
| __ mov(sp, fp); |
| __ MultiPop(fp.bit() | ra.bit()); |
| __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(sp, sp, t0); |
| // Adjust for the receiver. |
| __ Addu(sp, sp, Operand(kPointerSize)); |
| } |
| |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // State setup as expected by MacroAssembler::InvokePrologue. |
| // ----------- S t a t e ------------- |
| // -- a0: actual arguments count |
| // -- a1: function (passed through to callee) |
| // -- a2: expected arguments count |
| // -- a3: callee code entry |
| // -- t1: call kind information |
| // ----------------------------------- |
| |
| Label invoke, dont_adapt_arguments; |
| |
| Label enough, too_few; |
| __ Branch(&dont_adapt_arguments, eq, |
| a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); |
| // We use Uless as the number of argument should always be greater than 0. |
| __ Branch(&too_few, Uless, a0, Operand(a2)); |
| |
| { // Enough parameters: actual >= expected. |
| // a0: actual number of arguments as a smi |
| // a1: function |
| // a2: expected number of arguments |
| // a3: code entry to call |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| // Calculate copy start address into a0 and copy end address into a2. |
| __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(a0, fp, a0); |
| // Adjust for return address and receiver. |
| __ Addu(a0, a0, Operand(2 * kPointerSize)); |
| // Compute copy end address. |
| __ sll(a2, a2, kPointerSizeLog2); |
| __ subu(a2, a0, a2); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // a0: copy start address |
| // a1: function |
| // a2: copy end address |
| // a3: code entry to call |
| |
| Label copy; |
| __ bind(©); |
| __ lw(t0, MemOperand(a0)); |
| __ push(t0); |
| __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a2)); |
| __ addiu(a0, a0, -kPointerSize); // In delay slot. |
| |
| __ jmp(&invoke); |
| } |
| |
| { // Too few parameters: Actual < expected. |
| __ bind(&too_few); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| // TODO(MIPS): Optimize these loops. |
| |
| // Calculate copy start address into a0 and copy end address is fp. |
| // a0: actual number of arguments as a smi |
| // a1: function |
| // a2: expected number of arguments |
| // a3: code entry to call |
| __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(a0, fp, a0); |
| // Adjust for return address and receiver. |
| __ Addu(a0, a0, Operand(2 * kPointerSize)); |
| // Compute copy end address. Also adjust for return address. |
| __ Addu(t3, fp, kPointerSize); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // a0: copy start address |
| // a1: function |
| // a2: expected number of arguments |
| // a3: code entry to call |
| // t3: copy end address |
| Label copy; |
| __ bind(©); |
| __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver. |
| __ push(t0); |
| __ Subu(a0, a0, kPointerSize); |
| __ Branch(©, ne, a0, Operand(t3)); |
| |
| // Fill the remaining expected arguments with undefined. |
| // a1: function |
| // a2: expected number of arguments |
| // a3: code entry to call |
| __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
| __ sll(t2, a2, kPointerSizeLog2); |
| __ Subu(a2, fp, Operand(t2)); |
| __ Addu(a2, a2, Operand(-4 * kPointerSize)); // Adjust for frame. |
| |
| Label fill; |
| __ bind(&fill); |
| __ push(t0); |
| __ Branch(&fill, ne, sp, Operand(a2)); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| |
| __ Call(a3); |
| |
| // Exit frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ Ret(); |
| |
| |
| // ------------------------------------------- |
| // Don't adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| __ Jump(a3); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS |