| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| #include "bootstrapper.h" |
| #include "code-stubs.h" |
| #include "codegen.h" |
| #include "regexp-macro-assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define __ ACCESS_MASM(masm) |
| |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cc, |
| bool never_nan_nan); |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* rhs_not_nan, |
| Label* slow, |
| bool strict); |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| Register lhs, |
| Register rhs); |
| |
| |
| // Check if the operand is a heap number. |
| static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand, |
| Register scratch1, Register scratch2, |
| Label* not_a_heap_number) { |
| __ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset)); |
| __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex); |
| __ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2)); |
| } |
| |
| |
| void ToNumberStub::Generate(MacroAssembler* masm) { |
| // The ToNumber stub takes one argument in a0. |
| Label check_heap_number, call_builtin; |
| __ JumpIfNotSmi(a0, &check_heap_number); |
| __ mov(v0, a0); |
| __ Ret(); |
| |
| __ bind(&check_heap_number); |
| EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin); |
| __ mov(v0, a0); |
| __ Ret(); |
| |
| __ bind(&call_builtin); |
| __ push(a0); |
| __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); |
| } |
| |
| |
| void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| // Create a new closure from the given function info in new |
| // space. Set the context to the current context in cp. |
| Label gc; |
| |
| // Pop the function info from the stack. |
| __ pop(a3); |
| |
| // Attempt to allocate new JSFunction in new space. |
| __ AllocateInNewSpace(JSFunction::kSize, |
| v0, |
| a1, |
| a2, |
| &gc, |
| TAG_OBJECT); |
| |
| int map_index = strict_mode_ == kStrictMode |
| ? Context::STRICT_MODE_FUNCTION_MAP_INDEX |
| : Context::FUNCTION_MAP_INDEX; |
| |
| // Compute the function map in the current global context and set that |
| // as the map of the allocated object. |
| __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); |
| __ lw(a2, MemOperand(a2, Context::SlotOffset(map_index))); |
| __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| |
| // Initialize the rest of the function. We don't have to update the |
| // write barrier because the allocated object is in new space. |
| __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex); |
| __ LoadRoot(a2, Heap::kTheHoleValueRootIndex); |
| __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
| __ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset)); |
| __ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset)); |
| __ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); |
| __ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset)); |
| __ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset)); |
| __ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset)); |
| |
| // Initialize the code pointer in the function to be the one |
| // found in the shared function info object. |
| __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset)); |
| __ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset)); |
| |
| // Return result. The argument function info has been popped already. |
| __ Ret(); |
| |
| // Create a new closure through the slower runtime call. |
| __ bind(&gc); |
| __ LoadRoot(t0, Heap::kFalseValueRootIndex); |
| __ Push(cp, a3, t0); |
| __ TailCallRuntime(Runtime::kNewClosure, 3, 1); |
| } |
| |
| |
| void FastNewContextStub::Generate(MacroAssembler* masm) { |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| |
| // Attempt to allocate the context in new space. |
| __ AllocateInNewSpace(FixedArray::SizeFor(length), |
| v0, |
| a1, |
| a2, |
| &gc, |
| TAG_OBJECT); |
| |
| // Load the function from the stack. |
| __ lw(a3, MemOperand(sp, 0)); |
| |
| // Setup the object header. |
| __ LoadRoot(a2, Heap::kFunctionContextMapRootIndex); |
| __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| __ li(a2, Operand(Smi::FromInt(length))); |
| __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset)); |
| |
| // Setup the fixed slots. |
| __ li(a1, Operand(Smi::FromInt(0))); |
| __ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| __ sw(cp, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX))); |
| |
| // Copy the global object from the previous context. |
| __ lw(a1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| |
| // Initialize the rest of the slots to undefined. |
| __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| __ sw(a1, MemOperand(v0, Context::SlotOffset(i))); |
| } |
| |
| // Remove the on-stack argument and return. |
| __ mov(cp, v0); |
| __ Pop(); |
| __ Ret(); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1); |
| } |
| |
| |
| void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // [sp]: constant elements. |
| // [sp + kPointerSize]: literal index. |
| // [sp + (2 * kPointerSize)]: literals array. |
| |
| // All sizes here are multiples of kPointerSize. |
| int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| int size = JSArray::kSize + elements_size; |
| |
| // Load boilerplate object into r3 and check if we need to create a |
| // boilerplate. |
| Label slow_case; |
| __ lw(a3, MemOperand(sp, 2 * kPointerSize)); |
| __ lw(a0, MemOperand(sp, 1 * kPointerSize)); |
| __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(t0, a3, t0); |
| __ lw(a3, MemOperand(t0)); |
| __ LoadRoot(t1, Heap::kUndefinedValueRootIndex); |
| __ Branch(&slow_case, eq, a3, Operand(t1)); |
| |
| if (FLAG_debug_code) { |
| const char* message; |
| Heap::RootListIndex expected_map_index; |
| if (mode_ == CLONE_ELEMENTS) { |
| message = "Expected (writable) fixed array"; |
| expected_map_index = Heap::kFixedArrayMapRootIndex; |
| } else { |
| ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
| message = "Expected copy-on-write fixed array"; |
| expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
| } |
| __ push(a3); |
| __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset)); |
| __ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset)); |
| __ LoadRoot(at, expected_map_index); |
| __ Assert(eq, message, a3, Operand(at)); |
| __ pop(a3); |
| } |
| |
| // Allocate both the JS array and the elements array in one big |
| // allocation. This avoids multiple limit checks. |
| // Return new object in v0. |
| __ AllocateInNewSpace(size, |
| v0, |
| a1, |
| a2, |
| &slow_case, |
| TAG_OBJECT); |
| |
| // Copy the JS array part. |
| for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| __ lw(a1, FieldMemOperand(a3, i)); |
| __ sw(a1, FieldMemOperand(v0, i)); |
| } |
| } |
| |
| if (length_ > 0) { |
| // Get hold of the elements array of the boilerplate and setup the |
| // elements pointer in the resulting object. |
| __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset)); |
| __ Addu(a2, v0, Operand(JSArray::kSize)); |
| __ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset)); |
| |
| // Copy the elements array. |
| __ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize); |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ Addu(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&slow_case); |
| __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| } |
| |
| |
| // Takes a Smi and converts to an IEEE 64 bit floating point value in two |
| // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and |
| // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a |
| // scratch register. Destroys the source register. No GC occurs during this |
| // stub so you don't have to set up the frame. |
| class ConvertToDoubleStub : public CodeStub { |
| public: |
| ConvertToDoubleStub(Register result_reg_1, |
| Register result_reg_2, |
| Register source_reg, |
| Register scratch_reg) |
| : result1_(result_reg_1), |
| result2_(result_reg_2), |
| source_(source_reg), |
| zeros_(scratch_reg) { } |
| |
| private: |
| Register result1_; |
| Register result2_; |
| Register source_; |
| Register zeros_; |
| |
| // Minor key encoding in 16 bits. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 14> {}; |
| |
| Major MajorKey() { return ConvertToDouble; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return result1_.code() + |
| (result2_.code() << 4) + |
| (source_.code() << 8) + |
| (zeros_.code() << 12); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| void ConvertToDoubleStub::Generate(MacroAssembler* masm) { |
| #ifndef BIG_ENDIAN_FLOATING_POINT |
| Register exponent = result1_; |
| Register mantissa = result2_; |
| #else |
| Register exponent = result2_; |
| Register mantissa = result1_; |
| #endif |
| Label not_special; |
| // Convert from Smi to integer. |
| __ sra(source_, source_, kSmiTagSize); |
| // Move sign bit from source to destination. This works because the sign bit |
| // in the exponent word of the double has the same position and polarity as |
| // the 2's complement sign bit in a Smi. |
| STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ And(exponent, source_, Operand(HeapNumber::kSignMask)); |
| // Subtract from 0 if source was negative. |
| __ subu(at, zero_reg, source_); |
| __ movn(source_, at, exponent); |
| |
| // We have -1, 0 or 1, which we treat specially. Register source_ contains |
| // absolute value: it is either equal to 1 (special case of -1 and 1), |
| // greater than 1 (not a special case) or less than 1 (special case of 0). |
| __ Branch(¬_special, gt, source_, Operand(1)); |
| |
| // For 1 or -1 we need to or in the 0 exponent (biased to 1023). |
| static const uint32_t exponent_word_for_1 = |
| HeapNumber::kExponentBias << HeapNumber::kExponentShift; |
| // Safe to use 'at' as dest reg here. |
| __ Or(at, exponent, Operand(exponent_word_for_1)); |
| __ movn(exponent, at, source_); // Write exp when source not 0. |
| // 1, 0 and -1 all have 0 for the second word. |
| __ mov(mantissa, zero_reg); |
| __ Ret(); |
| |
| __ bind(¬_special); |
| // Count leading zeros. |
| // Gets the wrong answer for 0, but we already checked for that case above. |
| __ clz(zeros_, source_); |
| // Compute exponent and or it into the exponent register. |
| // We use mantissa as a scratch register here. |
| __ li(mantissa, Operand(31 + HeapNumber::kExponentBias)); |
| __ subu(mantissa, mantissa, zeros_); |
| __ sll(mantissa, mantissa, HeapNumber::kExponentShift); |
| __ Or(exponent, exponent, mantissa); |
| |
| // Shift up the source chopping the top bit off. |
| __ Addu(zeros_, zeros_, Operand(1)); |
| // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. |
| __ sllv(source_, source_, zeros_); |
| // Compute lower part of fraction (last 12 bits). |
| __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord); |
| // And the top (top 20 bits). |
| __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord); |
| __ or_(exponent, exponent, source_); |
| |
| __ Ret(); |
| } |
| |
| |
| void FloatingPointHelper::LoadSmis(MacroAssembler* masm, |
| FloatingPointHelper::Destination destination, |
| Register scratch1, |
| Register scratch2) { |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ sra(scratch1, a0, kSmiTagSize); |
| __ mtc1(scratch1, f14); |
| __ cvt_d_w(f14, f14); |
| __ sra(scratch1, a1, kSmiTagSize); |
| __ mtc1(scratch1, f12); |
| __ cvt_d_w(f12, f12); |
| if (destination == kCoreRegisters) { |
| __ Move(a2, a3, f14); |
| __ Move(a0, a1, f12); |
| } |
| } else { |
| ASSERT(destination == kCoreRegisters); |
| // Write Smi from a0 to a3 and a2 in double format. |
| __ mov(scratch1, a0); |
| ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2); |
| __ push(ra); |
| __ Call(stub1.GetCode()); |
| // Write Smi from a1 to a1 and a0 in double format. |
| __ mov(scratch1, a1); |
| ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2); |
| __ Call(stub2.GetCode()); |
| __ pop(ra); |
| } |
| } |
| |
| |
| void FloatingPointHelper::LoadOperands( |
| MacroAssembler* masm, |
| FloatingPointHelper::Destination destination, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Label* slow) { |
| |
| // Load right operand (a0) to f12 or a2/a3. |
| LoadNumber(masm, destination, |
| a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow); |
| |
| // Load left operand (a1) to f14 or a0/a1. |
| LoadNumber(masm, destination, |
| a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow); |
| } |
| |
| |
| void FloatingPointHelper::LoadNumber(MacroAssembler* masm, |
| Destination destination, |
| Register object, |
| FPURegister dst, |
| Register dst1, |
| Register dst2, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Label* not_number) { |
| if (FLAG_debug_code) { |
| __ AbortIfNotRootValue(heap_number_map, |
| Heap::kHeapNumberMapRootIndex, |
| "HeapNumberMap register clobbered."); |
| } |
| |
| Label is_smi, done; |
| |
| __ JumpIfSmi(object, &is_smi); |
| __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); |
| |
| // Handle loading a double from a heap number. |
| if (CpuFeatures::IsSupported(FPU) && |
| destination == kFPURegisters) { |
| CpuFeatures::Scope scope(FPU); |
| // Load the double from tagged HeapNumber to double register. |
| |
| // ARM uses a workaround here because of the unaligned HeapNumber |
| // kValueOffset. On MIPS this workaround is built into ldc1 so there's no |
| // point in generating even more instructions. |
| __ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| } else { |
| ASSERT(destination == kCoreRegisters); |
| // Load the double from heap number to dst1 and dst2 in double format. |
| __ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| __ lw(dst2, FieldMemOperand(object, |
| HeapNumber::kValueOffset + kPointerSize)); |
| } |
| __ Branch(&done); |
| |
| // Handle loading a double from a smi. |
| __ bind(&is_smi); |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Convert smi to double using FPU instructions. |
| __ SmiUntag(scratch1, object); |
| __ mtc1(scratch1, dst); |
| __ cvt_d_w(dst, dst); |
| if (destination == kCoreRegisters) { |
| // Load the converted smi to dst1 and dst2 in double format. |
| __ Move(dst1, dst2, dst); |
| } |
| } else { |
| ASSERT(destination == kCoreRegisters); |
| // Write smi to dst1 and dst2 double format. |
| __ mov(scratch1, object); |
| ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2); |
| __ push(ra); |
| __ Call(stub.GetCode()); |
| __ pop(ra); |
| } |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm, |
| Register object, |
| Register dst, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| FPURegister double_scratch, |
| Label* not_number) { |
| if (FLAG_debug_code) { |
| __ AbortIfNotRootValue(heap_number_map, |
| Heap::kHeapNumberMapRootIndex, |
| "HeapNumberMap register clobbered."); |
| } |
| Label is_smi; |
| Label done; |
| Label not_in_int32_range; |
| |
| __ JumpIfSmi(object, &is_smi); |
| __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset)); |
| __ Branch(not_number, ne, scratch1, Operand(heap_number_map)); |
| __ ConvertToInt32(object, |
| dst, |
| scratch1, |
| scratch2, |
| double_scratch, |
| ¬_in_int32_range); |
| __ jmp(&done); |
| |
| __ bind(¬_in_int32_range); |
| __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| __ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
| |
| __ EmitOutOfInt32RangeTruncate(dst, |
| scratch1, |
| scratch2, |
| scratch3); |
| |
| __ jmp(&done); |
| |
| __ bind(&is_smi); |
| __ SmiUntag(dst, object); |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm, |
| Register int_scratch, |
| Destination destination, |
| FPURegister double_dst, |
| Register dst1, |
| Register dst2, |
| Register scratch2, |
| FPURegister single_scratch) { |
| ASSERT(!int_scratch.is(scratch2)); |
| ASSERT(!int_scratch.is(dst1)); |
| ASSERT(!int_scratch.is(dst2)); |
| |
| Label done; |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ mtc1(int_scratch, single_scratch); |
| __ cvt_d_w(double_dst, single_scratch); |
| if (destination == kCoreRegisters) { |
| __ Move(dst1, dst2, double_dst); |
| } |
| } else { |
| Label fewer_than_20_useful_bits; |
| // Expected output: |
| // | dst2 | dst1 | |
| // | s | exp | mantissa | |
| |
| // Check for zero. |
| __ mov(dst2, int_scratch); |
| __ mov(dst1, int_scratch); |
| __ Branch(&done, eq, int_scratch, Operand(zero_reg)); |
| |
| // Preload the sign of the value. |
| __ And(dst2, int_scratch, Operand(HeapNumber::kSignMask)); |
| // Get the absolute value of the object (as an unsigned integer). |
| Label skip_sub; |
| __ Branch(&skip_sub, ge, dst2, Operand(zero_reg)); |
| __ Subu(int_scratch, zero_reg, int_scratch); |
| __ bind(&skip_sub); |
| |
| // Get mantisssa[51:20]. |
| |
| // Get the position of the first set bit. |
| __ clz(dst1, int_scratch); |
| __ li(scratch2, 31); |
| __ Subu(dst1, scratch2, dst1); |
| |
| // Set the exponent. |
| __ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias)); |
| __ Ins(dst2, scratch2, |
| HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
| |
| // Clear the first non null bit. |
| __ li(scratch2, Operand(1)); |
| __ sllv(scratch2, scratch2, dst1); |
| __ li(at, -1); |
| __ Xor(scratch2, scratch2, at); |
| __ And(int_scratch, int_scratch, scratch2); |
| |
| // Get the number of bits to set in the lower part of the mantissa. |
| __ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); |
| __ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg)); |
| // Set the higher 20 bits of the mantissa. |
| __ srlv(at, int_scratch, scratch2); |
| __ or_(dst2, dst2, at); |
| __ li(at, 32); |
| __ subu(scratch2, at, scratch2); |
| __ sllv(dst1, int_scratch, scratch2); |
| __ Branch(&done); |
| |
| __ bind(&fewer_than_20_useful_bits); |
| __ li(at, HeapNumber::kMantissaBitsInTopWord); |
| __ subu(scratch2, at, dst1); |
| __ sllv(scratch2, int_scratch, scratch2); |
| __ Or(dst2, dst2, scratch2); |
| // Set dst1 to 0. |
| __ mov(dst1, zero_reg); |
| } |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm, |
| Register object, |
| Destination destination, |
| FPURegister double_dst, |
| Register dst1, |
| Register dst2, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| FPURegister single_scratch, |
| Label* not_int32) { |
| ASSERT(!scratch1.is(object) && !scratch2.is(object)); |
| ASSERT(!scratch1.is(scratch2)); |
| ASSERT(!heap_number_map.is(object) && |
| !heap_number_map.is(scratch1) && |
| !heap_number_map.is(scratch2)); |
| |
| Label done, obj_is_not_smi; |
| |
| __ JumpIfNotSmi(object, &obj_is_not_smi); |
| __ SmiUntag(scratch1, object); |
| ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2, |
| scratch2, single_scratch); |
| __ Branch(&done); |
| |
| __ bind(&obj_is_not_smi); |
| if (FLAG_debug_code) { |
| __ AbortIfNotRootValue(heap_number_map, |
| Heap::kHeapNumberMapRootIndex, |
| "HeapNumberMap register clobbered."); |
| } |
| __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); |
| |
| // Load the number. |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Load the double value. |
| __ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| |
| // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate). |
| // On MIPS a lot of things cannot be implemented the same way so right |
| // now it makes a lot more sense to just do things manually. |
| |
| // Save FCSR. |
| __ cfc1(scratch1, FCSR); |
| // Disable FPU exceptions. |
| __ ctc1(zero_reg, FCSR); |
| __ trunc_w_d(single_scratch, double_dst); |
| // Retrieve FCSR. |
| __ cfc1(scratch2, FCSR); |
| // Restore FCSR. |
| __ ctc1(scratch1, FCSR); |
| |
| // Check for inexact conversion or exception. |
| __ And(scratch2, scratch2, kFCSRFlagMask); |
| |
| // Jump to not_int32 if the operation did not succeed. |
| __ Branch(not_int32, ne, scratch2, Operand(zero_reg)); |
| |
| if (destination == kCoreRegisters) { |
| __ Move(dst1, dst2, double_dst); |
| } |
| |
| } else { |
| ASSERT(!scratch1.is(object) && !scratch2.is(object)); |
| // Load the double value in the destination registers. |
| __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
| |
| // Check for 0 and -0. |
| __ And(scratch1, dst1, Operand(~HeapNumber::kSignMask)); |
| __ Or(scratch1, scratch1, Operand(dst2)); |
| __ Branch(&done, eq, scratch1, Operand(zero_reg)); |
| |
| // Check that the value can be exactly represented by a 32-bit integer. |
| // Jump to not_int32 if that's not the case. |
| DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32); |
| |
| // dst1 and dst2 were trashed. Reload the double value. |
| __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
| } |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, |
| Register object, |
| Register dst, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| FPURegister double_scratch, |
| Label* not_int32) { |
| ASSERT(!dst.is(object)); |
| ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object)); |
| ASSERT(!scratch1.is(scratch2) && |
| !scratch1.is(scratch3) && |
| !scratch2.is(scratch3)); |
| |
| Label done; |
| |
| // Untag the object into the destination register. |
| __ SmiUntag(dst, object); |
| // Just return if the object is a smi. |
| __ JumpIfSmi(object, &done); |
| |
| if (FLAG_debug_code) { |
| __ AbortIfNotRootValue(heap_number_map, |
| Heap::kHeapNumberMapRootIndex, |
| "HeapNumberMap register clobbered."); |
| } |
| __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); |
| |
| // Object is a heap number. |
| // Convert the floating point value to a 32-bit integer. |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Load the double value. |
| __ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| |
| // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate). |
| // On MIPS a lot of things cannot be implemented the same way so right |
| // now it makes a lot more sense to just do things manually. |
| |
| // Save FCSR. |
| __ cfc1(scratch1, FCSR); |
| // Disable FPU exceptions. |
| __ ctc1(zero_reg, FCSR); |
| __ trunc_w_d(double_scratch, double_scratch); |
| // Retrieve FCSR. |
| __ cfc1(scratch2, FCSR); |
| // Restore FCSR. |
| __ ctc1(scratch1, FCSR); |
| |
| // Check for inexact conversion or exception. |
| __ And(scratch2, scratch2, kFCSRFlagMask); |
| |
| // Jump to not_int32 if the operation did not succeed. |
| __ Branch(not_int32, ne, scratch2, Operand(zero_reg)); |
| // Get the result in the destination register. |
| __ mfc1(dst, double_scratch); |
| |
| } else { |
| // Load the double value in the destination registers. |
| __ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
| |
| // Check for 0 and -0. |
| __ And(dst, scratch1, Operand(~HeapNumber::kSignMask)); |
| __ Or(dst, scratch2, Operand(dst)); |
| __ Branch(&done, eq, dst, Operand(zero_reg)); |
| |
| DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32); |
| |
| // Registers state after DoubleIs32BitInteger. |
| // dst: mantissa[51:20]. |
| // scratch2: 1 |
| |
| // Shift back the higher bits of the mantissa. |
| __ srlv(dst, dst, scratch3); |
| // Set the implicit first bit. |
| __ li(at, 32); |
| __ subu(scratch3, at, scratch3); |
| __ sllv(scratch2, scratch2, scratch3); |
| __ Or(dst, dst, scratch2); |
| // Set the sign. |
| __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); |
| Label skip_sub; |
| __ Branch(&skip_sub, ge, scratch1, Operand(zero_reg)); |
| __ Subu(dst, zero_reg, dst); |
| __ bind(&skip_sub); |
| } |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm, |
| Register src1, |
| Register src2, |
| Register dst, |
| Register scratch, |
| Label* not_int32) { |
| // Get exponent alone in scratch. |
| __ Ext(scratch, |
| src1, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| |
| // Substract the bias from the exponent. |
| __ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias)); |
| |
| // src1: higher (exponent) part of the double value. |
| // src2: lower (mantissa) part of the double value. |
| // scratch: unbiased exponent. |
| |
| // Fast cases. Check for obvious non 32-bit integer values. |
| // Negative exponent cannot yield 32-bit integers. |
| __ Branch(not_int32, lt, scratch, Operand(zero_reg)); |
| // Exponent greater than 31 cannot yield 32-bit integers. |
| // Also, a positive value with an exponent equal to 31 is outside of the |
| // signed 32-bit integer range. |
| // Another way to put it is that if (exponent - signbit) > 30 then the |
| // number cannot be represented as an int32. |
| Register tmp = dst; |
| __ srl(at, src1, 31); |
| __ subu(tmp, scratch, at); |
| __ Branch(not_int32, gt, tmp, Operand(30)); |
| // - Bits [21:0] in the mantissa are not null. |
| __ And(tmp, src2, 0x3fffff); |
| __ Branch(not_int32, ne, tmp, Operand(zero_reg)); |
| |
| // Otherwise the exponent needs to be big enough to shift left all the |
| // non zero bits left. So we need the (30 - exponent) last bits of the |
| // 31 higher bits of the mantissa to be null. |
| // Because bits [21:0] are null, we can check instead that the |
| // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null. |
| |
| // Get the 32 higher bits of the mantissa in dst. |
| __ Ext(dst, |
| src2, |
| HeapNumber::kMantissaBitsInTopWord, |
| 32 - HeapNumber::kMantissaBitsInTopWord); |
| __ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord); |
| __ or_(dst, dst, at); |
| |
| // Create the mask and test the lower bits (of the higher bits). |
| __ li(at, 32); |
| __ subu(scratch, at, scratch); |
| __ li(src2, 1); |
| __ sllv(src1, src2, scratch); |
| __ Subu(src1, src1, Operand(1)); |
| __ And(src1, dst, src1); |
| __ Branch(not_int32, ne, src1, Operand(zero_reg)); |
| } |
| |
| |
| void FloatingPointHelper::CallCCodeForDoubleOperation( |
| MacroAssembler* masm, |
| Token::Value op, |
| Register heap_number_result, |
| Register scratch) { |
| // Using core registers: |
| // a0: Left value (least significant part of mantissa). |
| // a1: Left value (sign, exponent, top of mantissa). |
| // a2: Right value (least significant part of mantissa). |
| // a3: Right value (sign, exponent, top of mantissa). |
| |
| // Assert that heap_number_result is saved. |
| // We currently always use s0 to pass it. |
| ASSERT(heap_number_result.is(s0)); |
| |
| // Push the current return address before the C call. |
| __ push(ra); |
| __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments. |
| if (!IsMipsSoftFloatABI) { |
| CpuFeatures::Scope scope(FPU); |
| // We are not using MIPS FPU instructions, and parameters for the runtime |
| // function call are prepaired in a0-a3 registers, but function we are |
| // calling is compiled with hard-float flag and expecting hard float ABI |
| // (parameters in f12/f14 registers). We need to copy parameters from |
| // a0-a3 registers to f12/f14 register pairs. |
| __ Move(f12, a0, a1); |
| __ Move(f14, a2, a3); |
| } |
| // Call C routine that may not cause GC or other trouble. |
| __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()), |
| 4); |
| // Store answer in the overwritable heap number. |
| if (!IsMipsSoftFloatABI) { |
| CpuFeatures::Scope scope(FPU); |
| // Double returned in register f0. |
| __ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset)); |
| } else { |
| // Double returned in registers v0 and v1. |
| __ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset)); |
| __ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset)); |
| } |
| // Place heap_number_result in v0 and return to the pushed return address. |
| __ mov(v0, heap_number_result); |
| __ pop(ra); |
| __ Ret(); |
| } |
| |
| |
| // See comment for class, this does NOT work for int32's that are in Smi range. |
| void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
| Label max_negative_int; |
| // the_int_ has the answer which is a signed int32 but not a Smi. |
| // We test for the special value that has a different exponent. |
| STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| // Test sign, and save for later conditionals. |
| __ And(sign_, the_int_, Operand(0x80000000u)); |
| __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u)); |
| |
| // Set up the correct exponent in scratch_. All non-Smi int32s have the same. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). |
| uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ li(scratch_, Operand(non_smi_exponent)); |
| // Set the sign bit in scratch_ if the value was negative. |
| __ or_(scratch_, scratch_, sign_); |
| // Subtract from 0 if the value was negative. |
| __ subu(at, zero_reg, the_int_); |
| __ movn(the_int_, at, sign_); |
| // We should be masking the implict first digit of the mantissa away here, |
| // but it just ends up combining harmlessly with the last digit of the |
| // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get |
| // the most significant 1 to hit the last bit of the 12 bit sign and exponent. |
| ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ srl(at, the_int_, shift_distance); |
| __ or_(scratch_, scratch_, at); |
| __ sw(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kExponentOffset)); |
| __ sll(scratch_, the_int_, 32 - shift_distance); |
| __ sw(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| |
| __ bind(&max_negative_int); |
| // The max negative int32 is stored as a positive number in the mantissa of |
| // a double because it uses a sign bit instead of using two's complement. |
| // The actual mantissa bits stored are all 0 because the implicit most |
| // significant 1 bit is not stored. |
| non_smi_exponent += 1 << HeapNumber::kExponentShift; |
| __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
| __ sw(scratch_, |
| FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); |
| __ mov(scratch_, zero_reg); |
| __ sw(scratch_, |
| FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| } |
| |
| |
| // Handle the case where the lhs and rhs are the same object. |
| // Equality is almost reflexive (everything but NaN), so this is a test |
| // for "identity and not NaN". |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cc, |
| bool never_nan_nan) { |
| Label not_identical; |
| Label heap_number, return_equal; |
| Register exp_mask_reg = t5; |
| |
| __ Branch(¬_identical, ne, a0, Operand(a1)); |
| |
| // The two objects are identical. If we know that one of them isn't NaN then |
| // we now know they test equal. |
| if (cc != eq || !never_nan_nan) { |
| __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| |
| // Test for NaN. Sadly, we can't just compare to factory->nan_value(), |
| // so we do the second best thing - test it ourselves. |
| // They are both equal and they are not both Smis so both of them are not |
| // Smis. If it's not a heap number, then return equal. |
| if (cc == less || cc == greater) { |
| __ GetObjectType(a0, t4, t4); |
| __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| } else { |
| __ GetObjectType(a0, t4, t4); |
| __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE)); |
| // Comparing JS objects with <=, >= is complicated. |
| if (cc != eq) { |
| __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| // Normally here we fall through to return_equal, but undefined is |
| // special: (undefined == undefined) == true, but |
| // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
| if (cc == less_equal || cc == greater_equal) { |
| __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE)); |
| __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); |
| __ Branch(&return_equal, ne, a0, Operand(t2)); |
| if (cc == le) { |
| // undefined <= undefined should fail. |
| __ li(v0, Operand(GREATER)); |
| } else { |
| // undefined >= undefined should fail. |
| __ li(v0, Operand(LESS)); |
| } |
| __ Ret(); |
| } |
| } |
| } |
| } |
| |
| __ bind(&return_equal); |
| if (cc == less) { |
| __ li(v0, Operand(GREATER)); // Things aren't less than themselves. |
| } else if (cc == greater) { |
| __ li(v0, Operand(LESS)); // Things aren't greater than themselves. |
| } else { |
| __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves. |
| } |
| __ Ret(); |
| |
| if (cc != eq || !never_nan_nan) { |
| // For less and greater we don't have to check for NaN since the result of |
| // x < x is false regardless. For the others here is some code to check |
| // for NaN. |
| if (cc != lt && cc != gt) { |
| __ bind(&heap_number); |
| // It is a heap number, so return non-equal if it's NaN and equal if it's |
| // not NaN. |
| |
| // The representation of NaN values has all exponent bits (52..62) set, |
| // and not all mantissa bits (0..51) clear. |
| // Read top bits of double representation (second word of value). |
| __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
| // Test that exponent bits are all set. |
| __ And(t3, t2, Operand(exp_mask_reg)); |
| // If all bits not set (ne cond), then not a NaN, objects are equal. |
| __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg)); |
| |
| // Shift out flag and all exponent bits, retaining only mantissa. |
| __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord); |
| // Or with all low-bits of mantissa. |
| __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); |
| __ Or(v0, t3, Operand(t2)); |
| // For equal we already have the right value in v0: Return zero (equal) |
| // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
| // not (it's a NaN). For <= and >= we need to load v0 with the failing |
| // value if it's a NaN. |
| if (cc != eq) { |
| // All-zero means Infinity means equal. |
| __ Ret(eq, v0, Operand(zero_reg)); |
| if (cc == le) { |
| __ li(v0, Operand(GREATER)); // NaN <= NaN should fail. |
| } else { |
| __ li(v0, Operand(LESS)); // NaN >= NaN should fail. |
| } |
| } |
| __ Ret(); |
| } |
| // No fall through here. |
| } |
| |
| __ bind(¬_identical); |
| } |
| |
| |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* both_loaded_as_doubles, |
| Label* slow, |
| bool strict) { |
| ASSERT((lhs.is(a0) && rhs.is(a1)) || |
| (lhs.is(a1) && rhs.is(a0))); |
| |
| Label lhs_is_smi; |
| __ And(t0, lhs, Operand(kSmiTagMask)); |
| __ Branch(&lhs_is_smi, eq, t0, Operand(zero_reg)); |
| // Rhs is a Smi. |
| // Check whether the non-smi is a heap number. |
| __ GetObjectType(lhs, t4, t4); |
| if (strict) { |
| // If lhs was not a number and rhs was a Smi then strict equality cannot |
| // succeed. Return non-equal (lhs is already not zero). |
| __ mov(v0, lhs); |
| __ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE)); |
| } else { |
| // Smi compared non-strictly with a non-Smi non-heap-number. Call |
| // the runtime. |
| __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE)); |
| } |
| |
| // Rhs is a smi, lhs is a number. |
| // Convert smi rhs to double. |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ sra(at, rhs, kSmiTagSize); |
| __ mtc1(at, f14); |
| __ cvt_d_w(f14, f14); |
| __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| } else { |
| // Load lhs to a double in a2, a3. |
| __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4)); |
| __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| |
| // Write Smi from rhs to a1 and a0 in double format. t5 is scratch. |
| __ mov(t6, rhs); |
| ConvertToDoubleStub stub1(a1, a0, t6, t5); |
| __ push(ra); |
| __ Call(stub1.GetCode()); |
| |
| __ pop(ra); |
| } |
| |
| // We now have both loaded as doubles. |
| __ jmp(both_loaded_as_doubles); |
| |
| __ bind(&lhs_is_smi); |
| // Lhs is a Smi. Check whether the non-smi is a heap number. |
| __ GetObjectType(rhs, t4, t4); |
| if (strict) { |
| // If lhs was not a number and rhs was a Smi then strict equality cannot |
| // succeed. Return non-equal. |
| __ li(v0, Operand(1)); |
| __ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE)); |
| } else { |
| // Smi compared non-strictly with a non-Smi non-heap-number. Call |
| // the runtime. |
| __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE)); |
| } |
| |
| // Lhs is a smi, rhs is a number. |
| // Convert smi lhs to double. |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ sra(at, lhs, kSmiTagSize); |
| __ mtc1(at, f12); |
| __ cvt_d_w(f12, f12); |
| __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| } else { |
| // Convert lhs to a double format. t5 is scratch. |
| __ mov(t6, lhs); |
| ConvertToDoubleStub stub2(a3, a2, t6, t5); |
| __ push(ra); |
| __ Call(stub2.GetCode()); |
| __ pop(ra); |
| // Load rhs to a double in a1, a0. |
| if (rhs.is(a0)) { |
| __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); |
| __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| } else { |
| __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); |
| } |
| } |
| // Fall through to both_loaded_as_doubles. |
| } |
| |
| |
| void EmitNanCheck(MacroAssembler* masm, Condition cc) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Lhs and rhs are already loaded to f12 and f14 register pairs. |
| __ Move(t0, t1, f14); |
| __ Move(t2, t3, f12); |
| } else { |
| // Lhs and rhs are already loaded to GP registers. |
| __ mov(t0, a0); // a0 has LS 32 bits of rhs. |
| __ mov(t1, a1); // a1 has MS 32 bits of rhs. |
| __ mov(t2, a2); // a2 has LS 32 bits of lhs. |
| __ mov(t3, a3); // a3 has MS 32 bits of lhs. |
| } |
| Register rhs_exponent = exp_first ? t0 : t1; |
| Register lhs_exponent = exp_first ? t2 : t3; |
| Register rhs_mantissa = exp_first ? t1 : t0; |
| Register lhs_mantissa = exp_first ? t3 : t2; |
| Label one_is_nan, neither_is_nan; |
| Label lhs_not_nan_exp_mask_is_loaded; |
| |
| Register exp_mask_reg = t4; |
| __ li(exp_mask_reg, HeapNumber::kExponentMask); |
| __ and_(t5, lhs_exponent, exp_mask_reg); |
| __ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg)); |
| |
| __ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord); |
| __ Branch(&one_is_nan, ne, t5, Operand(zero_reg)); |
| |
| __ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg)); |
| |
| __ li(exp_mask_reg, HeapNumber::kExponentMask); |
| __ bind(&lhs_not_nan_exp_mask_is_loaded); |
| __ and_(t5, rhs_exponent, exp_mask_reg); |
| |
| __ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg)); |
| |
| __ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord); |
| __ Branch(&one_is_nan, ne, t5, Operand(zero_reg)); |
| |
| __ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg)); |
| |
| __ bind(&one_is_nan); |
| // NaN comparisons always fail. |
| // Load whatever we need in v0 to make the comparison fail. |
| if (cc == lt || cc == le) { |
| __ li(v0, Operand(GREATER)); |
| } else { |
| __ li(v0, Operand(LESS)); |
| } |
| __ Ret(); // Return. |
| |
| __ bind(&neither_is_nan); |
| } |
| |
| |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { |
| // f12 and f14 have the two doubles. Neither is a NaN. |
| // Call a native function to do a comparison between two non-NaNs. |
| // Call C routine that may not cause GC or other trouble. |
| // We use a call_was and return manually because we need arguments slots to |
| // be freed. |
| |
| Label return_result_not_equal, return_result_equal; |
| if (cc == eq) { |
| // Doubles are not equal unless they have the same bit pattern. |
| // Exception: 0 and -0. |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Lhs and rhs are already loaded to f12 and f14 register pairs. |
| __ Move(t0, t1, f14); |
| __ Move(t2, t3, f12); |
| } else { |
| // Lhs and rhs are already loaded to GP registers. |
| __ mov(t0, a0); // a0 has LS 32 bits of rhs. |
| __ mov(t1, a1); // a1 has MS 32 bits of rhs. |
| __ mov(t2, a2); // a2 has LS 32 bits of lhs. |
| __ mov(t3, a3); // a3 has MS 32 bits of lhs. |
| } |
| Register rhs_exponent = exp_first ? t0 : t1; |
| Register lhs_exponent = exp_first ? t2 : t3; |
| Register rhs_mantissa = exp_first ? t1 : t0; |
| Register lhs_mantissa = exp_first ? t3 : t2; |
| |
| __ xor_(v0, rhs_mantissa, lhs_mantissa); |
| __ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg)); |
| |
| __ subu(v0, rhs_exponent, lhs_exponent); |
| __ Branch(&return_result_equal, eq, v0, Operand(zero_reg)); |
| // 0, -0 case. |
| __ sll(rhs_exponent, rhs_exponent, kSmiTagSize); |
| __ sll(lhs_exponent, lhs_exponent, kSmiTagSize); |
| __ or_(t4, rhs_exponent, lhs_exponent); |
| __ or_(t4, t4, rhs_mantissa); |
| |
| __ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg)); |
| |
| __ bind(&return_result_equal); |
| __ li(v0, Operand(EQUAL)); |
| __ Ret(); |
| } |
| |
| __ bind(&return_result_not_equal); |
| |
| if (!CpuFeatures::IsSupported(FPU)) { |
| __ push(ra); |
| __ PrepareCallCFunction(4, t4); // Two doubles count as 4 arguments. |
| if (!IsMipsSoftFloatABI) { |
| // We are not using MIPS FPU instructions, and parameters for the runtime |
| // function call are prepaired in a0-a3 registers, but function we are |
| // calling is compiled with hard-float flag and expecting hard float ABI |
| // (parameters in f12/f14 registers). We need to copy parameters from |
| // a0-a3 registers to f12/f14 register pairs. |
| __ Move(f12, a0, a1); |
| __ Move(f14, a2, a3); |
| } |
| __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4); |
| __ pop(ra); // Because this function returns int, result is in v0. |
| __ Ret(); |
| } else { |
| CpuFeatures::Scope scope(FPU); |
| Label equal, less_than; |
| __ c(EQ, D, f12, f14); |
| __ bc1t(&equal); |
| __ nop(); |
| |
| __ c(OLT, D, f12, f14); |
| __ bc1t(&less_than); |
| __ nop(); |
| |
| // Not equal, not less, not NaN, must be greater. |
| __ li(v0, Operand(GREATER)); |
| __ Ret(); |
| |
| __ bind(&equal); |
| __ li(v0, Operand(EQUAL)); |
| __ Ret(); |
| |
| __ bind(&less_than); |
| __ li(v0, Operand(LESS)); |
| __ Ret(); |
| } |
| } |
| |
| |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| Register lhs, |
| Register rhs) { |
| // If either operand is a JS object or an oddball value, then they are |
| // not equal since their pointers are different. |
| // There is no test for undetectability in strict equality. |
| STATIC_ASSERT(LAST_TYPE == LAST_CALLABLE_SPEC_OBJECT_TYPE); |
| Label first_non_object; |
| // Get the type of the first operand into a2 and compare it with |
| // FIRST_SPEC_OBJECT_TYPE. |
| __ GetObjectType(lhs, a2, a2); |
| __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| // Return non-zero. |
| Label return_not_equal; |
| __ bind(&return_not_equal); |
| __ li(v0, Operand(1)); |
| __ Ret(); |
| |
| __ bind(&first_non_object); |
| // Check for oddballs: true, false, null, undefined. |
| __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE)); |
| |
| __ GetObjectType(rhs, a3, a3); |
| __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| // Check for oddballs: true, false, null, undefined. |
| __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE)); |
| |
| // Now that we have the types we might as well check for symbol-symbol. |
| // Ensure that no non-strings have the symbol bit set. |
| STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ And(t2, a2, Operand(a3)); |
| __ And(t0, t2, Operand(kIsSymbolMask)); |
| __ Branch(&return_not_equal, ne, t0, Operand(zero_reg)); |
| } |
| |
| |
| static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* both_loaded_as_doubles, |
| Label* not_heap_numbers, |
| Label* slow) { |
| __ GetObjectType(lhs, a3, a2); |
| __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
| __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| // If first was a heap number & second wasn't, go to slow case. |
| __ Branch(slow, ne, a3, Operand(a2)); |
| |
| // Both are heap numbers. Load them up then jump to the code we have |
| // for that. |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| } else { |
| __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4)); |
| if (rhs.is(a0)) { |
| __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); |
| __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| } else { |
| __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); |
| } |
| } |
| __ jmp(both_loaded_as_doubles); |
| } |
| |
| |
| // Fast negative check for symbol-to-symbol equality. |
| static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* possible_strings, |
| Label* not_both_strings) { |
| ASSERT((lhs.is(a0) && rhs.is(a1)) || |
| (lhs.is(a1) && rhs.is(a0))); |
| |
| // a2 is object type of lhs. |
| // Ensure that no non-strings have the symbol bit set. |
| Label object_test; |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ And(at, a2, Operand(kIsNotStringMask)); |
| __ Branch(&object_test, ne, at, Operand(zero_reg)); |
| __ And(at, a2, Operand(kIsSymbolMask)); |
| __ Branch(possible_strings, eq, at, Operand(zero_reg)); |
| __ GetObjectType(rhs, a3, a3); |
| __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE)); |
| __ And(at, a3, Operand(kIsSymbolMask)); |
| __ Branch(possible_strings, eq, at, Operand(zero_reg)); |
| |
| // Both are symbols. We already checked they weren't the same pointer |
| // so they are not equal. |
| __ li(v0, Operand(1)); // Non-zero indicates not equal. |
| __ Ret(); |
| |
| __ bind(&object_test); |
| __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| __ GetObjectType(rhs, a2, a3); |
| __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| // If both objects are undetectable, they are equal. Otherwise, they |
| // are not equal, since they are different objects and an object is not |
| // equal to undefined. |
| __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset)); |
| __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset)); |
| __ and_(a0, a2, a3); |
| __ And(a0, a0, Operand(1 << Map::kIsUndetectable)); |
| __ Xor(v0, a0, Operand(1 << Map::kIsUndetectable)); |
| __ Ret(); |
| } |
| |
| |
| void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| bool object_is_smi, |
| Label* not_found) { |
| // Use of registers. Register result is used as a temporary. |
| Register number_string_cache = result; |
| Register mask = scratch3; |
| |
| // Load the number string cache. |
| __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
| |
| // Make the hash mask from the length of the number string cache. It |
| // contains two elements (number and string) for each cache entry. |
| __ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); |
| // Divide length by two (length is a smi). |
| __ sra(mask, mask, kSmiTagSize + 1); |
| __ Addu(mask, mask, -1); // Make mask. |
| |
| // Calculate the entry in the number string cache. The hash value in the |
| // number string cache for smis is just the smi value, and the hash for |
| // doubles is the xor of the upper and lower words. See |
| // Heap::GetNumberStringCache. |
| Isolate* isolate = masm->isolate(); |
| Label is_smi; |
| Label load_result_from_cache; |
| if (!object_is_smi) { |
| __ JumpIfSmi(object, &is_smi); |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ CheckMap(object, |
| scratch1, |
| Heap::kHeapNumberMapRootIndex, |
| not_found, |
| DONT_DO_SMI_CHECK); |
| |
| STATIC_ASSERT(8 == kDoubleSize); |
| __ Addu(scratch1, |
| object, |
| Operand(HeapNumber::kValueOffset - kHeapObjectTag)); |
| __ lw(scratch2, MemOperand(scratch1, kPointerSize)); |
| __ lw(scratch1, MemOperand(scratch1, 0)); |
| __ Xor(scratch1, scratch1, Operand(scratch2)); |
| __ And(scratch1, scratch1, Operand(mask)); |
| |
| // Calculate address of entry in string cache: each entry consists |
| // of two pointer sized fields. |
| __ sll(scratch1, scratch1, kPointerSizeLog2 + 1); |
| __ Addu(scratch1, number_string_cache, scratch1); |
| |
| Register probe = mask; |
| __ lw(probe, |
| FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
| __ JumpIfSmi(probe, not_found); |
| __ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| __ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset)); |
| __ c(EQ, D, f12, f14); |
| __ bc1t(&load_result_from_cache); |
| __ nop(); // bc1t() requires explicit fill of branch delay slot. |
| __ Branch(not_found); |
| } else { |
| // Note that there is no cache check for non-FPU case, even though |
| // it seems there could be. May be a tiny opimization for non-FPU |
| // cores. |
| __ Branch(not_found); |
| } |
| } |
| |
| __ bind(&is_smi); |
| Register scratch = scratch1; |
| __ sra(scratch, object, 1); // Shift away the tag. |
| __ And(scratch, mask, Operand(scratch)); |
| |
| // Calculate address of entry in string cache: each entry consists |
| // of two pointer sized fields. |
| __ sll(scratch, scratch, kPointerSizeLog2 + 1); |
| __ Addu(scratch, number_string_cache, scratch); |
| |
| // Check if the entry is the smi we are looking for. |
| Register probe = mask; |
| __ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| __ Branch(not_found, ne, object, Operand(probe)); |
| |
| // Get the result from the cache. |
| __ bind(&load_result_from_cache); |
| __ lw(result, |
| FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
| |
| __ IncrementCounter(isolate->counters()->number_to_string_native(), |
| 1, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void NumberToStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| __ lw(a1, MemOperand(sp, 0)); |
| |
| // Generate code to lookup number in the number string cache. |
| GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime); |
| __ Addu(sp, sp, Operand(1 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&runtime); |
| // Handle number to string in the runtime system if not found in the cache. |
| __ TailCallRuntime(Runtime::kNumberToString, 1, 1); |
| } |
| |
| |
| // On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared. |
| // On exit, v0 is 0, positive, or negative (smi) to indicate the result |
| // of the comparison. |
| void CompareStub::Generate(MacroAssembler* masm) { |
| Label slow; // Call builtin. |
| Label not_smis, both_loaded_as_doubles; |
| |
| |
| if (include_smi_compare_) { |
| Label not_two_smis, smi_done; |
| __ Or(a2, a1, a0); |
| __ JumpIfNotSmi(a2, ¬_two_smis); |
| __ sra(a1, a1, 1); |
| __ sra(a0, a0, 1); |
| __ Subu(v0, a1, a0); |
| __ Ret(); |
| __ bind(¬_two_smis); |
| } else if (FLAG_debug_code) { |
| __ Or(a2, a1, a0); |
| __ And(a2, a2, kSmiTagMask); |
| __ Assert(ne, "CompareStub: unexpected smi operands.", |
| a2, Operand(zero_reg)); |
| } |
| |
| |
| // NOTICE! This code is only reached after a smi-fast-case check, so |
| // it is certain that at least one operand isn't a smi. |
| |
| // Handle the case where the objects are identical. Either returns the answer |
| // or goes to slow. Only falls through if the objects were not identical. |
| EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
| |
| // If either is a Smi (we know that not both are), then they can only |
| // be strictly equal if the other is a HeapNumber. |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ And(t2, lhs_, Operand(rhs_)); |
| __ JumpIfNotSmi(t2, ¬_smis, t0); |
| // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
| // 1) Return the answer. |
| // 2) Go to slow. |
| // 3) Fall through to both_loaded_as_doubles. |
| // 4) Jump to rhs_not_nan. |
| // In cases 3 and 4 we have found out we were dealing with a number-number |
| // comparison and the numbers have been loaded into f12 and f14 as doubles, |
| // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU. |
| EmitSmiNonsmiComparison(masm, lhs_, rhs_, |
| &both_loaded_as_doubles, &slow, strict_); |
| |
| __ bind(&both_loaded_as_doubles); |
| // f12, f14 are the double representations of the left hand side |
| // and the right hand side if we have FPU. Otherwise a2, a3 represent |
| // left hand side and a0, a1 represent right hand side. |
| |
| Isolate* isolate = masm->isolate(); |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| Label nan; |
| __ li(t0, Operand(LESS)); |
| __ li(t1, Operand(GREATER)); |
| __ li(t2, Operand(EQUAL)); |
| |
| // Check if either rhs or lhs is NaN. |
| __ c(UN, D, f12, f14); |
| __ bc1t(&nan); |
| __ nop(); |
| |
| // Check if LESS condition is satisfied. If true, move conditionally |
| // result to v0. |
| __ c(OLT, D, f12, f14); |
| __ movt(v0, t0); |
| // Use previous check to store conditionally to v0 oposite condition |
| // (GREATER). If rhs is equal to lhs, this will be corrected in next |
| // check. |
| __ movf(v0, t1); |
| // Check if EQUAL condition is satisfied. If true, move conditionally |
| // result to v0. |
| __ c(EQ, D, f12, f14); |
| __ movt(v0, t2); |
| |
| __ Ret(); |
| |
| __ bind(&nan); |
| // NaN comparisons always fail. |
| // Load whatever we need in v0 to make the comparison fail. |
| if (cc_ == lt || cc_ == le) { |
| __ li(v0, Operand(GREATER)); |
| } else { |
| __ li(v0, Operand(LESS)); |
| } |
| __ Ret(); |
| } else { |
| // Checks for NaN in the doubles we have loaded. Can return the answer or |
| // fall through if neither is a NaN. Also binds rhs_not_nan. |
| EmitNanCheck(masm, cc_); |
| |
| // Compares two doubles that are not NaNs. Returns the answer. |
| // Never falls through. |
| EmitTwoNonNanDoubleComparison(masm, cc_); |
| } |
| |
| __ bind(¬_smis); |
| // At this point we know we are dealing with two different objects, |
| // and neither of them is a Smi. The objects are in lhs_ and rhs_. |
| if (strict_) { |
| // This returns non-equal for some object types, or falls through if it |
| // was not lucky. |
| EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); |
| } |
| |
| Label check_for_symbols; |
| Label flat_string_check; |
| // Check for heap-number-heap-number comparison. Can jump to slow case, |
| // or load both doubles and jump to the code that handles |
| // that case. If the inputs are not doubles then jumps to check_for_symbols. |
| // In this case a2 will contain the type of lhs_. |
| EmitCheckForTwoHeapNumbers(masm, |
| lhs_, |
| rhs_, |
| &both_loaded_as_doubles, |
| &check_for_symbols, |
| &flat_string_check); |
| |
| __ bind(&check_for_symbols); |
| if (cc_ == eq && !strict_) { |
| // Returns an answer for two symbols or two detectable objects. |
| // Otherwise jumps to string case or not both strings case. |
| // Assumes that a2 is the type of lhs_ on entry. |
| EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); |
| } |
| |
| // Check for both being sequential ASCII strings, and inline if that is the |
| // case. |
| __ bind(&flat_string_check); |
| |
| __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow); |
| |
| __ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3); |
| if (cc_ == eq) { |
| StringCompareStub::GenerateFlatAsciiStringEquals(masm, |
| lhs_, |
| rhs_, |
| a2, |
| a3, |
| t0); |
| } else { |
| StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| lhs_, |
| rhs_, |
| a2, |
| a3, |
| t0, |
| t1); |
| } |
| // Never falls through to here. |
| |
| __ bind(&slow); |
| // Prepare for call to builtin. Push object pointers, a0 (lhs) first, |
| // a1 (rhs) second. |
| __ Push(lhs_, rhs_); |
| // Figure out which native to call and setup the arguments. |
| Builtins::JavaScript native; |
| if (cc_ == eq) { |
| native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| } else { |
| native = Builtins::COMPARE; |
| int ncr; // NaN compare result. |
| if (cc_ == lt || cc_ == le) { |
| ncr = GREATER; |
| } else { |
| ASSERT(cc_ == gt || cc_ == ge); // Remaining cases. |
| ncr = LESS; |
| } |
| __ li(a0, Operand(Smi::FromInt(ncr))); |
| __ push(a0); |
| } |
| |
| // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ InvokeBuiltin(native, JUMP_FUNCTION); |
| } |
| |
| |
| // The stub returns zero for false, and a non-zero value for true. |
| void ToBooleanStub::Generate(MacroAssembler* masm) { |
| // This stub uses FPU instructions. |
| CpuFeatures::Scope scope(FPU); |
| |
| Label false_result; |
| Label not_heap_number; |
| Register scratch0 = t5.is(tos_) ? t3 : t5; |
| |
| // undefined -> false |
| __ LoadRoot(scratch0, Heap::kUndefinedValueRootIndex); |
| __ Branch(&false_result, eq, tos_, Operand(scratch0)); |
| |
| // Boolean -> its value |
| __ LoadRoot(scratch0, Heap::kFalseValueRootIndex); |
| __ Branch(&false_result, eq, tos_, Operand(scratch0)); |
| __ LoadRoot(scratch0, Heap::kTrueValueRootIndex); |
| // "tos_" is a register and contains a non-zero value. Hence we implicitly |
| // return true if the equal condition is satisfied. |
| __ Ret(eq, tos_, Operand(scratch0)); |
| |
| // Smis: 0 -> false, all other -> true |
| __ And(scratch0, tos_, tos_); |
| __ Branch(&false_result, eq, scratch0, Operand(zero_reg)); |
| __ And(scratch0, tos_, Operand(kSmiTagMask)); |
| // "tos_" is a register and contains a non-zero value. Hence we implicitly |
| // return true if the not equal condition is satisfied. |
| __ Ret(eq, scratch0, Operand(zero_reg)); |
| |
| // 'null' -> false |
| __ LoadRoot(scratch0, Heap::kNullValueRootIndex); |
| __ Branch(&false_result, eq, tos_, Operand(scratch0)); |
| |
| // HeapNumber => false if +0, -0, or NaN. |
| __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
| __ Branch(¬_heap_number, ne, scratch0, Operand(at)); |
| |
| __ ldc1(f12, FieldMemOperand(tos_, HeapNumber::kValueOffset)); |
| __ fcmp(f12, 0.0, UEQ); |
| |
| // "tos_" is a register, and contains a non zero value by default. |
| // Hence we only need to overwrite "tos_" with zero to return false for |
| // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. |
| __ movt(tos_, zero_reg); |
| __ Ret(); |
| |
| __ bind(¬_heap_number); |
| |
| // It can be an undetectable object. |
| // Undetectable => false. |
| __ lw(at, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ lbu(scratch0, FieldMemOperand(at, Map::kBitFieldOffset)); |
| __ And(scratch0, scratch0, Operand(1 << Map::kIsUndetectable)); |
| __ Branch(&false_result, eq, scratch0, Operand(1 << Map::kIsUndetectable)); |
| |
| // JavaScript object => true. |
| __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset)); |
| |
| // "tos_" is a register and contains a non-zero value. |
| // Hence we implicitly return true if the greater than |
| // condition is satisfied. |
| __ Ret(ge, scratch0, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| // Check for string. |
| __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset)); |
| // "tos_" is a register and contains a non-zero value. |
| // Hence we implicitly return true if the greater than |
| // condition is satisfied. |
| __ Ret(ge, scratch0, Operand(FIRST_NONSTRING_TYPE)); |
| |
| // String value => false iff empty, i.e., length is zero. |
| __ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset)); |
| // If length is zero, "tos_" contains zero ==> false. |
| // If length is not zero, "tos_" contains a non-zero value ==> true. |
| __ Ret(); |
| |
| // Return 0 in "tos_" for false. |
| __ bind(&false_result); |
| __ mov(tos_, zero_reg); |
| __ Ret(); |
| } |
| |
| |
| void UnaryOpStub::PrintName(StringStream* stream) { |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name = NULL; // Make g++ happy. |
| switch (mode_) { |
| case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break; |
| } |
| stream->Add("UnaryOpStub_%s_%s_%s", |
| op_name, |
| overwrite_name, |
| UnaryOpIC::GetName(operand_type_)); |
| } |
| |
| |
| // TODO(svenpanne): Use virtual functions instead of switch. |
| void UnaryOpStub::Generate(MacroAssembler* masm) { |
| switch (operand_type_) { |
| case UnaryOpIC::UNINITIALIZED: |
| GenerateTypeTransition(masm); |
| break; |
| case UnaryOpIC::SMI: |
| GenerateSmiStub(masm); |
| break; |
| case UnaryOpIC::HEAP_NUMBER: |
| GenerateHeapNumberStub(masm); |
| break; |
| case UnaryOpIC::GENERIC: |
| GenerateGenericStub(masm); |
| break; |
| } |
| } |
| |
| |
| void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| // Argument is in a0 and v0 at this point, so we can overwrite a0. |
| __ li(a2, Operand(Smi::FromInt(op_))); |
| __ li(a1, Operand(Smi::FromInt(mode_))); |
| __ li(a0, Operand(Smi::FromInt(operand_type_))); |
| __ Push(v0, a2, a1, a0); |
| |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1); |
| } |
| |
| |
| // TODO(svenpanne): Use virtual functions instead of switch. |
| void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
| switch (op_) { |
| case Token::SUB: |
| GenerateSmiStubSub(masm); |
| break; |
| case Token::BIT_NOT: |
| GenerateSmiStubBitNot(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) { |
| Label non_smi, slow; |
| GenerateSmiCodeSub(masm, &non_smi, &slow); |
| __ bind(&non_smi); |
| __ bind(&slow); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) { |
| Label non_smi; |
| GenerateSmiCodeBitNot(masm, &non_smi); |
| __ bind(&non_smi); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm, |
| Label* non_smi, |
| Label* slow) { |
| __ JumpIfNotSmi(a0, non_smi); |
| |
| // The result of negating zero or the smallest negative smi is not a smi. |
| __ And(t0, a0, ~0x80000000); |
| __ Branch(slow, eq, t0, Operand(zero_reg)); |
| |
| // Return '0 - value'. |
| __ Subu(v0, zero_reg, a0); |
| __ Ret(); |
| } |
| |
| |
| void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm, |
| Label* non_smi) { |
| __ JumpIfNotSmi(a0, non_smi); |
| |
| // Flip bits and revert inverted smi-tag. |
| __ Neg(v0, a0); |
| __ And(v0, v0, ~kSmiTagMask); |
| __ Ret(); |
| } |
| |
| |
| // TODO(svenpanne): Use virtual functions instead of switch. |
| void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
| switch (op_) { |
| case Token::SUB: |
| GenerateHeapNumberStubSub(masm); |
| break; |
| case Token::BIT_NOT: |
| GenerateHeapNumberStubBitNot(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) { |
| Label non_smi, slow, call_builtin; |
| GenerateSmiCodeSub(masm, &non_smi, &call_builtin); |
| __ bind(&non_smi); |
| GenerateHeapNumberCodeSub(masm, &slow); |
| __ bind(&slow); |
| GenerateTypeTransition(masm); |
| __ bind(&call_builtin); |
| GenerateGenericCodeFallback(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) { |
| Label non_smi, slow; |
| GenerateSmiCodeBitNot(masm, &non_smi); |
| __ bind(&non_smi); |
| GenerateHeapNumberCodeBitNot(masm, &slow); |
| __ bind(&slow); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm, |
| Label* slow) { |
| EmitCheckForHeapNumber(masm, a0, a1, t2, slow); |
| // a0 is a heap number. Get a new heap number in a1. |
| if (mode_ == UNARY_OVERWRITE) { |
| __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
| __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
| } else { |
| Label slow_allocate_heapnumber, heapnumber_allocated; |
| __ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber); |
| __ jmp(&heapnumber_allocated); |
| |
| __ bind(&slow_allocate_heapnumber); |
| __ EnterInternalFrame(); |
| __ push(a0); |
| __ CallRuntime(Runtime::kNumberAlloc, 0); |
| __ mov(a1, v0); |
| __ pop(a0); |
| __ LeaveInternalFrame(); |
| |
| __ bind(&heapnumber_allocated); |
| __ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); |
| __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
| __ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset)); |
| __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset)); |
| __ mov(v0, a1); |
| } |
| __ Ret(); |
| } |
| |
| |
| void UnaryOpStub::GenerateHeapNumberCodeBitNot( |
| MacroAssembler* masm, |
| Label* slow) { |
| Label impossible; |
| |
| EmitCheckForHeapNumber(masm, a0, a1, t2, slow); |
| // Convert the heap number in a0 to an untagged integer in a1. |
| __ ConvertToInt32(a0, a1, a2, a3, f0, slow); |
| |
| // Do the bitwise operation and check if the result fits in a smi. |
| Label try_float; |
| __ Neg(a1, a1); |
| __ Addu(a2, a1, Operand(0x40000000)); |
| __ Branch(&try_float, lt, a2, Operand(zero_reg)); |
| |
| // Tag the result as a smi and we're done. |
| __ SmiTag(v0, a1); |
| __ Ret(); |
| |
| // Try to store the result in a heap number. |
| __ bind(&try_float); |
| if (mode_ == UNARY_NO_OVERWRITE) { |
| Label slow_allocate_heapnumber, heapnumber_allocated; |
| // Allocate a new heap number without zapping v0, which we need if it fails. |
| __ AllocateHeapNumber(a2, a3, t0, t2, &slow_allocate_heapnumber); |
| __ jmp(&heapnumber_allocated); |
| |
| __ bind(&slow_allocate_heapnumber); |
| __ EnterInternalFrame(); |
| __ push(v0); // Push the heap number, not the untagged int32. |
| __ CallRuntime(Runtime::kNumberAlloc, 0); |
| __ mov(a2, v0); // Move the new heap number into a2. |
| // Get the heap number into v0, now that the new heap number is in a2. |
| __ pop(v0); |
| __ LeaveInternalFrame(); |
| |
| // Convert the heap number in v0 to an untagged integer in a1. |
| // This can't go slow-case because it's the same number we already |
| // converted once again. |
| __ ConvertToInt32(v0, a1, a3, t0, f0, &impossible); |
| // Negate the result. |
| __ Xor(a1, a1, -1); |
| |
| __ bind(&heapnumber_allocated); |
| __ mov(v0, a2); // Move newly allocated heap number to v0. |
| } |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| // Convert the int32 in a1 to the heap number in v0. a2 is corrupted. |
| CpuFeatures::Scope scope(FPU); |
| __ mtc1(a1, f0); |
| __ cvt_d_w(f0, f0); |
| __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } else { |
| // WriteInt32ToHeapNumberStub does not trigger GC, so we do not |
| // have to set up a frame. |
| WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3); |
| __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&impossible); |
| if (FLAG_debug_code) { |
| __ stop("Incorrect assumption in bit-not stub"); |
| } |
| } |
| |
| |
| // TODO(svenpanne): Use virtual functions instead of switch. |
| void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) { |
| switch (op_) { |
| case Token::SUB: |
| GenerateGenericStubSub(masm); |
| break; |
| case Token::BIT_NOT: |
| GenerateGenericStubBitNot(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) { |
| Label non_smi, slow; |
| GenerateSmiCodeSub(masm, &non_smi, &slow); |
| __ bind(&non_smi); |
| GenerateHeapNumberCodeSub(masm, &slow); |
| __ bind(&slow); |
| GenerateGenericCodeFallback(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) { |
| Label non_smi, slow; |
| GenerateSmiCodeBitNot(masm, &non_smi); |
| __ bind(&non_smi); |
| GenerateHeapNumberCodeBitNot(masm, &slow); |
| __ bind(&slow); |
| GenerateGenericCodeFallback(masm); |
| } |
| |
| |
| void UnaryOpStub::GenerateGenericCodeFallback( |
| MacroAssembler* masm) { |
| // Handle the slow case by jumping to the JavaScript builtin. |
| __ push(a0); |
| switch (op_) { |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
| break; |
| case Token::BIT_NOT: |
| __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| Label get_result; |
| |
| __ Push(a1, a0); |
| |
| __ li(a2, Operand(Smi::FromInt(MinorKey()))); |
| __ li(a1, Operand(Smi::FromInt(op_))); |
| __ li(a0, Operand(Smi::FromInt(operands_type_))); |
| __ Push(a2, a1, a0); |
| |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kBinaryOp_Patch), |
| masm->isolate()), |
| 5, |
| 1); |
| } |
| |
| |
| void BinaryOpStub::GenerateTypeTransitionWithSavedArgs( |
| MacroAssembler* masm) { |
| UNIMPLEMENTED(); |
| } |
| |
| |
| void BinaryOpStub::Generate(MacroAssembler* masm) { |
| switch (operands_type_) { |
| case BinaryOpIC::UNINITIALIZED: |
| GenerateTypeTransition(masm); |
| break; |
| case BinaryOpIC::SMI: |
| GenerateSmiStub(masm); |
| break; |
| case BinaryOpIC::INT32: |
| GenerateInt32Stub(masm); |
| break; |
| case BinaryOpIC::HEAP_NUMBER: |
| GenerateHeapNumberStub(masm); |
| break; |
| case BinaryOpIC::ODDBALL: |
| GenerateOddballStub(masm); |
| break; |
| case BinaryOpIC::BOTH_STRING: |
| GenerateBothStringStub(masm); |
| break; |
| case BinaryOpIC::STRING: |
| GenerateStringStub(masm); |
| break; |
| case BinaryOpIC::GENERIC: |
| GenerateGeneric(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::PrintName(StringStream* stream) { |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| stream->Add("BinaryOpStub_%s_%s_%s", |
| op_name, |
| overwrite_name, |
| BinaryOpIC::GetName(operands_type_)); |
| } |
| |
| |
| |
| void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) { |
| Register left = a1; |
| Register right = a0; |
| |
| Register scratch1 = t0; |
| Register scratch2 = t1; |
| |
| ASSERT(right.is(a0)); |
| STATIC_ASSERT(kSmiTag == 0); |
| |
| Label not_smi_result; |
| switch (op_) { |
| case Token::ADD: |
| __ AdduAndCheckForOverflow(v0, left, right, scratch1); |
| __ RetOnNoOverflow(scratch1); |
| // No need to revert anything - right and left are intact. |
| break; |
| case Token::SUB: |
| __ SubuAndCheckForOverflow(v0, left, right, scratch1); |
| __ RetOnNoOverflow(scratch1); |
| // No need to revert anything - right and left are intact. |
| break; |
| case Token::MUL: { |
| // Remove tag from one of the operands. This way the multiplication result |
| // will be a smi if it fits the smi range. |
| __ SmiUntag(scratch1, right); |
| // Do multiplication. |
| // lo = lower 32 bits of scratch1 * left. |
| // hi = higher 32 bits of scratch1 * left. |
| __ Mult(left, scratch1); |
| // Check for overflowing the smi range - no overflow if higher 33 bits of |
| // the result are identical. |
| __ mflo(scratch1); |
| __ mfhi(scratch2); |
| __ sra(scratch1, scratch1, 31); |
| __ Branch(¬_smi_result, ne, scratch1, Operand(scratch2)); |
| // Go slow on zero result to handle -0. |
| __ mflo(v0); |
| __ Ret(ne, v0, Operand(zero_reg)); |
| // We need -0 if we were multiplying a negative number with 0 to get 0. |
| // We know one of them was zero. |
| __ Addu(scratch2, right, left); |
| Label skip; |
| // ARM uses the 'pl' condition, which is 'ge'. |
| // Negating it results in 'lt'. |
| __ Branch(&skip, lt, scratch2, Operand(zero_reg)); |
| ASSERT(Smi::FromInt(0) == 0); |
| __ mov(v0, zero_reg); |
| __ Ret(); // Return smi 0 if the non-zero one was positive. |
| __ bind(&skip); |
| // We fall through here if we multiplied a negative number with 0, because |
| // that would mean we should produce -0. |
| } |
| break; |
| case Token::DIV: { |
| Label done; |
| __ SmiUntag(scratch2, right); |
| __ SmiUntag(scratch1, left); |
| __ Div(scratch1, scratch2); |
| // A minor optimization: div may be calculated asynchronously, so we check |
| // for division by zero before getting the result. |
| __ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg)); |
| // If the result is 0, we need to make sure the dividsor (right) is |
| // positive, otherwise it is a -0 case. |
| // Quotient is in 'lo', remainder is in 'hi'. |
| // Check for no remainder first. |
| __ mfhi(scratch1); |
| __ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg)); |
| __ mflo(scratch1); |
| __ Branch(&done, ne, scratch1, Operand(zero_reg)); |
| __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); |
| __ bind(&done); |
| // Check that the signed result fits in a Smi. |
| __ Addu(scratch2, scratch1, Operand(0x40000000)); |
| __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); |
| __ SmiTag(v0, scratch1); |
| __ Ret(); |
| } |
| break; |
| case Token::MOD: { |
| Label done; |
| __ SmiUntag(scratch2, right); |
| __ SmiUntag(scratch1, left); |
| __ Div(scratch1, scratch2); |
| // A minor optimization: div may be calculated asynchronously, so we check |
| // for division by 0 before calling mfhi. |
| // Check for zero on the right hand side. |
| __ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg)); |
| // If the result is 0, we need to make sure the dividend (left) is |
| // positive (or 0), otherwise it is a -0 case. |
| // Remainder is in 'hi'. |
| __ mfhi(scratch2); |
| __ Branch(&done, ne, scratch2, Operand(zero_reg)); |
| __ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg)); |
| __ bind(&done); |
| // Check that the signed result fits in a Smi. |
| __ Addu(scratch1, scratch2, Operand(0x40000000)); |
| __ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg)); |
| __ SmiTag(v0, scratch2); |
| __ Ret(); |
| } |
| break; |
| case Token::BIT_OR: |
| __ Or(v0, left, Operand(right)); |
| __ Ret(); |
| break; |
| case Token::BIT_AND: |
| __ And(v0, left, Operand(right)); |
| __ Ret(); |
| break; |
| case Token::BIT_XOR: |
| __ Xor(v0, left, Operand(right)); |
| __ Ret(); |
| break; |
| case Token::SAR: |
| // Remove tags from right operand. |
| __ GetLeastBitsFromSmi(scratch1, right, 5); |
| __ srav(scratch1, left, scratch1); |
| // Smi tag result. |
| __ And(v0, scratch1, Operand(~kSmiTagMask)); |
| __ Ret(); |
| break; |
| case Token::SHR: |
| // Remove tags from operands. We can't do this on a 31 bit number |
| // because then the 0s get shifted into bit 30 instead of bit 31. |
| __ SmiUntag(scratch1, left); |
| __ GetLeastBitsFromSmi(scratch2, right, 5); |
| __ srlv(v0, scratch1, scratch2); |
| // Unsigned shift is not allowed to produce a negative number, so |
| // check the sign bit and the sign bit after Smi tagging. |
| __ And(scratch1, v0, Operand(0xc0000000)); |
| __ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg)); |
| // Smi tag result. |
| __ SmiTag(v0); |
| __ Ret(); |
| break; |
| case Token::SHL: |
| // Remove tags from operands. |
| __ SmiUntag(scratch1, left); |
| __ GetLeastBitsFromSmi(scratch2, right, 5); |
| __ sllv(scratch1, scratch1, scratch2); |
| // Check that the signed result fits in a Smi. |
| __ Addu(scratch2, scratch1, Operand(0x40000000)); |
| __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); |
| __ SmiTag(v0, scratch1); |
| __ Ret(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ bind(¬_smi_result); |
| } |
| |
| |
| void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
| bool smi_operands, |
| Label* not_numbers, |
| Label* gc_required) { |
| Register left = a1; |
| Register right = a0; |
| Register scratch1 = t3; |
| Register scratch2 = t5; |
| Register scratch3 = t0; |
| |
| ASSERT(smi_operands || (not_numbers != NULL)); |
| if (smi_operands && FLAG_debug_code) { |
| __ AbortIfNotSmi(left); |
| __ AbortIfNotSmi(right); |
| } |
| |
| Register heap_number_map = t2; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: { |
| // Load left and right operands into f12 and f14 or a0/a1 and a2/a3 |
| // depending on whether FPU is available or not. |
| FloatingPointHelper::Destination destination = |
| CpuFeatures::IsSupported(FPU) && |
| op_ != Token::MOD ? |
| FloatingPointHelper::kFPURegisters : |
| FloatingPointHelper::kCoreRegisters; |
| |
| // Allocate new heap number for result. |
| Register result = s0; |
| GenerateHeapResultAllocation( |
| masm, result, heap_number_map, scratch1, scratch2, gc_required); |
| |
| // Load the operands. |
| if (smi_operands) { |
| FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); |
| } else { |
| FloatingPointHelper::LoadOperands(masm, |
| destination, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| not_numbers); |
| } |
| |
| // Calculate the result. |
| if (destination == FloatingPointHelper::kFPURegisters) { |
| // Using FPU registers: |
| // f12: Left value. |
| // f14: Right value. |
| CpuFeatures::Scope scope(FPU); |
| switch (op_) { |
| case Token::ADD: |
| __ add_d(f10, f12, f14); |
| break; |
| case Token::SUB: |
| __ sub_d(f10, f12, f14); |
| break; |
| case Token::MUL: |
| __ mul_d(f10, f12, f14); |
| break; |
| case Token::DIV: |
| __ div_d(f10, f12, f14); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // ARM uses a workaround here because of the unaligned HeapNumber |
| // kValueOffset. On MIPS this workaround is built into sdc1 so |
| // there's no point in generating even more instructions. |
| __ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset)); |
| __ mov(v0, result); |
| __ Ret(); |
| } else { |
| // Call the C function to handle the double operation. |
| FloatingPointHelper::CallCCodeForDoubleOperation(masm, |
| op_, |
| result, |
| scratch1); |
| if (FLAG_debug_code) { |
| __ stop("Unreachable code."); |
| } |
| } |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::SAR: |
| case Token::SHR: |
| case Token::SHL: { |
| if (smi_operands) { |
| __ SmiUntag(a3, left); |
| __ SmiUntag(a2, right); |
| } else { |
| // Convert operands to 32-bit integers. Right in a2 and left in a3. |
| FloatingPointHelper::ConvertNumberToInt32(masm, |
| left, |
| a3, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| scratch3, |
| f0, |
| not_numbers); |
| FloatingPointHelper::ConvertNumberToInt32(masm, |
| right, |
| a2, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| scratch3, |
| f0, |
| not_numbers); |
| } |
| Label result_not_a_smi; |
| switch (op_) { |
| case Token::BIT_OR: |
| __ Or(a2, a3, Operand(a2)); |
| break; |
| case Token::BIT_XOR: |
| __ Xor(a2, a3, Operand(a2)); |
| break; |
| case Token::BIT_AND: |
| __ And(a2, a3, Operand(a2)); |
| break; |
| case Token::SAR: |
| // Use only the 5 least significant bits of the shift count. |
| __ GetLeastBitsFromInt32(a2, a2, 5); |
| __ srav(a2, a3, a2); |
| break; |
| case Token::SHR: |
| // Use only the 5 least significant bits of the shift count. |
| __ GetLeastBitsFromInt32(a2, a2, 5); |
| __ srlv(a2, a3, a2); |
| // SHR is special because it is required to produce a positive answer. |
| // The code below for writing into heap numbers isn't capable of |
| // writing the register as an unsigned int so we go to slow case if we |
| // hit this case. |
| if (CpuFeatures::IsSupported(FPU)) { |
| __ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg)); |
| } else { |
| __ Branch(not_numbers, lt, a2, Operand(zero_reg)); |
| } |
| break; |
| case Token::SHL: |
| // Use only the 5 least significant bits of the shift count. |
| __ GetLeastBitsFromInt32(a2, a2, 5); |
| __ sllv(a2, a3, a2); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| // Check that the *signed* result fits in a smi. |
| __ Addu(a3, a2, Operand(0x40000000)); |
| __ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg)); |
| __ SmiTag(v0, a2); |
| __ Ret(); |
| |
| // Allocate new heap number for result. |
| __ bind(&result_not_a_smi); |
| Register result = t1; |
| if (smi_operands) { |
| __ AllocateHeapNumber( |
| result, scratch1, scratch2, heap_number_map, gc_required); |
| } else { |
| GenerateHeapResultAllocation( |
| masm, result, heap_number_map, scratch1, scratch2, gc_required); |
| } |
| |
| // a2: Answer as signed int32. |
| // t1: Heap number to write answer into. |
| |
| // Nothing can go wrong now, so move the heap number to v0, which is the |
| // result. |
| __ mov(v0, t1); |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| // Convert the int32 in a2 to the heap number in a0. As |
| // mentioned above SHR needs to always produce a positive result. |
| CpuFeatures::Scope scope(FPU); |
| __ mtc1(a2, f0); |
| if (op_ == Token::SHR) { |
| __ Cvt_d_uw(f0, f0, f22); |
| } else { |
| __ cvt_d_w(f0, f0); |
| } |
| // ARM uses a workaround here because of the unaligned HeapNumber |
| // kValueOffset. On MIPS this workaround is built into sdc1 so |
| // there's no point in generating even more instructions. |
| __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } else { |
| // Tail call that writes the int32 in a2 to the heap number in v0, using |
| // a3 and a0 as scratch. v0 is preserved and returned. |
| WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0); |
| __ TailCallStub(&stub); |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| // Generate the smi code. If the operation on smis are successful this return is |
| // generated. If the result is not a smi and heap number allocation is not |
| // requested the code falls through. If number allocation is requested but a |
| // heap number cannot be allocated the code jumps to the lable gc_required. |
| void BinaryOpStub::GenerateSmiCode( |
| MacroAssembler* masm, |
| Label* use_runtime, |
| Label* gc_required, |
| SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { |
| Label not_smis; |
| |
| Register left = a1; |
| Register right = a0; |
| Register scratch1 = t3; |
| Register scratch2 = t5; |
| |
| // Perform combined smi check on both operands. |
| __ Or(scratch1, left, Operand(right)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfNotSmi(scratch1, ¬_smis); |
| |
| // If the smi-smi operation results in a smi return is generated. |
| GenerateSmiSmiOperation(masm); |
| |
| // If heap number results are possible generate the result in an allocated |
| // heap number. |
| if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) { |
| GenerateFPOperation(masm, true, use_runtime, gc_required); |
| } |
| __ bind(¬_smis); |
| } |
| |
| |
| void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
| Label not_smis, call_runtime; |
| |
| if (result_type_ == BinaryOpIC::UNINITIALIZED || |
| result_type_ == BinaryOpIC::SMI) { |
| // Only allow smi results. |
| GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS); |
| } else { |
| // Allow heap number result and don't make a transition if a heap number |
| // cannot be allocated. |
| GenerateSmiCode(masm, |
| &call_runtime, |
| &call_runtime, |
| ALLOW_HEAPNUMBER_RESULTS); |
| } |
| |
| // Code falls through if the result is not returned as either a smi or heap |
| // number. |
| GenerateTypeTransition(masm); |
| |
| __ bind(&call_runtime); |
| GenerateCallRuntime(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) { |
| ASSERT(operands_type_ == BinaryOpIC::STRING); |
| // Try to add arguments as strings, otherwise, transition to the generic |
| // BinaryOpIC type. |
| GenerateAddStrings(masm); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { |
| Label call_runtime; |
| ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING); |
| ASSERT(op_ == Token::ADD); |
| // If both arguments are strings, call the string add stub. |
| // Otherwise, do a transition. |
| |
| // Registers containing left and right operands respectively. |
| Register left = a1; |
| Register right = a0; |
| |
| // Test if left operand is a string. |
| __ JumpIfSmi(left, &call_runtime); |
| __ GetObjectType(left, a2, a2); |
| __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); |
| |
| // Test if right operand is a string. |
| __ JumpIfSmi(right, &call_runtime); |
| __ GetObjectType(right, a2, a2); |
| __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); |
| |
| StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_stub); |
| |
| __ bind(&call_runtime); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
| ASSERT(operands_type_ == BinaryOpIC::INT32); |
| |
| Register left = a1; |
| Register right = a0; |
| Register scratch1 = t3; |
| Register scratch2 = t5; |
| FPURegister double_scratch = f0; |
| FPURegister single_scratch = f6; |
| |
| Register heap_number_result = no_reg; |
| Register heap_number_map = t2; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| Label call_runtime; |
| // Labels for type transition, used for wrong input or output types. |
| // Both label are currently actually bound to the same position. We use two |
| // different label to differentiate the cause leading to type transition. |
| Label transition; |
| |
| // Smi-smi fast case. |
| Label skip; |
| __ Or(scratch1, left, right); |
| __ JumpIfNotSmi(scratch1, &skip); |
| GenerateSmiSmiOperation(masm); |
| // Fall through if the result is not a smi. |
| __ bind(&skip); |
| |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: { |
| // Load both operands and check that they are 32-bit integer. |
| // Jump to type transition if they are not. The registers a0 and a1 (right |
| // and left) are preserved for the runtime call. |
| FloatingPointHelper::Destination destination = |
| (CpuFeatures::IsSupported(FPU) && op_ != Token::MOD) |
| ? FloatingPointHelper::kFPURegisters |
| : FloatingPointHelper::kCoreRegisters; |
| |
| FloatingPointHelper::LoadNumberAsInt32Double(masm, |
| right, |
| destination, |
| f14, |
| a2, |
| a3, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| f2, |
| &transition); |
| FloatingPointHelper::LoadNumberAsInt32Double(masm, |
| left, |
| destination, |
| f12, |
| t0, |
| t1, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| f2, |
| &transition); |
| |
| if (destination == FloatingPointHelper::kFPURegisters) { |
| CpuFeatures::Scope scope(FPU); |
| Label return_heap_number; |
| switch (op_) { |
| case Token::ADD: |
| __ add_d(f10, f12, f14); |
| break; |
| case Token::SUB: |
| __ sub_d(f10, f12, f14); |
| break; |
| case Token::MUL: |
| __ mul_d(f10, f12, f14); |
| break; |
| case Token::DIV: |
| __ div_d(f10, f12, f14); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (op_ != Token::DIV) { |
| // These operations produce an integer result. |
| // Try to return a smi if we can. |
| // Otherwise return a heap number if allowed, or jump to type |
| // transition. |
| |
| // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate). |
| // On MIPS a lot of things cannot be implemented the same way so right |
| // now it makes a lot more sense to just do things manually. |
| |
| // Save FCSR. |
| __ cfc1(scratch1, FCSR); |
| // Disable FPU exceptions. |
| __ ctc1(zero_reg, FCSR); |
| __ trunc_w_d(single_scratch, f10); |
| // Retrieve FCSR. |
| __ cfc1(scratch2, FCSR); |
| // Restore FCSR. |
| __ ctc1(scratch1, FCSR); |
| |
| // Check for inexact conversion or exception. |
| __ And(scratch2, scratch2, kFCSRFlagMask); |
| |
| if (result_type_ <= BinaryOpIC::INT32) { |
| // If scratch2 != 0, result does not fit in a 32-bit integer. |
| __ Branch(&transition, ne, scratch2, Operand(zero_reg)); |
| } |
| |
| // Check if the result fits in a smi. |
| __ mfc1(scratch1, single_scratch); |
| __ Addu(scratch2, scratch1, Operand(0x40000000)); |
| // If not try to return a heap number. |
| __ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg)); |
| // Check for minus zero. Return heap number for minus zero. |
| Label not_zero; |
| __ Branch(¬_zero, ne, scratch1, Operand(zero_reg)); |
| __ mfc1(scratch2, f11); |
| __ And(scratch2, scratch2, HeapNumber::kSignMask); |
| __ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg)); |
| __ bind(¬_zero); |
| |
| // Tag the result and return. |
| __ SmiTag(v0, scratch1); |
| __ Ret(); |
| } else { |
| // DIV just falls through to allocating a heap number. |
| } |
| |
| __ bind(&return_heap_number); |
| // Return a heap number, or fall through to type transition or runtime |
| // call if we can't. |
| if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER |
| : BinaryOpIC::INT32)) { |
| // We are using FPU registers so s0 is available. |
| heap_number_result = s0; |
| GenerateHeapResultAllocation(masm, |
| heap_number_result, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| &call_runtime); |
| __ mov(v0, heap_number_result); |
| __ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } |
| |
| // A DIV operation expecting an integer result falls through |
| // to type transition. |
| |
| } else { |
| // We preserved a0 and a1 to be able to call runtime. |
| // Save the left value on the stack. |
| __ Push(t1, t0); |
| |
| Label pop_and_call_runtime; |
| |
| // Allocate a heap number to store the result. |
| heap_number_result = s0; |
| GenerateHeapResultAllocation(masm, |
| heap_number_result, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| &pop_and_call_runtime); |
| |
| // Load the left value from the value saved on the stack. |
| __ Pop(a1, a0); |
| |
| // Call the C function to handle the double operation. |
| FloatingPointHelper::CallCCodeForDoubleOperation( |
| masm, op_, heap_number_result, scratch1); |
| if (FLAG_debug_code) { |
| __ stop("Unreachable code."); |
| } |
| |
| __ bind(&pop_and_call_runtime); |
| __ Drop(2); |
| __ Branch(&call_runtime); |
| } |
| |
| break; |
| } |
| |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::SAR: |
| case Token::SHR: |
| case Token::SHL: { |
| Label return_heap_number; |
| Register scratch3 = t1; |
| // Convert operands to 32-bit integers. Right in a2 and left in a3. The |
| // registers a0 and a1 (right and left) are preserved for the runtime |
| // call. |
| FloatingPointHelper::LoadNumberAsInt32(masm, |
| left, |
| a3, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| scratch3, |
| f0, |
| &transition); |
| FloatingPointHelper::LoadNumberAsInt32(masm, |
| right, |
| a2, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| scratch3, |
| f0, |
| &transition); |
| |
| // The ECMA-262 standard specifies that, for shift operations, only the |
| // 5 least significant bits of the shift value should be used. |
| switch (op_) { |
| case Token::BIT_OR: |
| __ Or(a2, a3, Operand(a2)); |
| break; |
| case Token::BIT_XOR: |
| __ Xor(a2, a3, Operand(a2)); |
| break; |
| case Token::BIT_AND: |
| __ And(a2, a3, Operand(a2)); |
| break; |
| case Token::SAR: |
| __ And(a2, a2, Operand(0x1f)); |
| __ srav(a2, a3, a2); |
| break; |
| case Token::SHR: |
| __ And(a2, a2, Operand(0x1f)); |
| __ srlv(a2, a3, a2); |
| // SHR is special because it is required to produce a positive answer. |
| // We only get a negative result if the shift value (a2) is 0. |
| // This result cannot be respresented as a signed 32-bit integer, try |
| // to return a heap number if we can. |
| // The non FPU code does not support this special case, so jump to |
| // runtime if we don't support it. |
| if (CpuFeatures::IsSupported(FPU)) { |
| __ Branch((result_type_ <= BinaryOpIC::INT32) |
| ? &transition |
| : &return_heap_number, |
| lt, |
| a2, |
| Operand(zero_reg)); |
| } else { |
| __ Branch((result_type_ <= BinaryOpIC::INT32) |
| ? &transition |
| : &call_runtime, |
| lt, |
| a2, |
| Operand(zero_reg)); |
| } |
| break; |
| case Token::SHL: |
| __ And(a2, a2, Operand(0x1f)); |
| __ sllv(a2, a3, a2); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // Check if the result fits in a smi. |
| __ Addu(scratch1, a2, Operand(0x40000000)); |
| // If not try to return a heap number. (We know the result is an int32.) |
| __ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg)); |
| // Tag the result and return. |
| __ SmiTag(v0, a2); |
| __ Ret(); |
| |
| __ bind(&return_heap_number); |
| heap_number_result = t1; |
| GenerateHeapResultAllocation(masm, |
| heap_number_result, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| &call_runtime); |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| |
| if (op_ != Token::SHR) { |
| // Convert the result to a floating point value. |
| __ mtc1(a2, double_scratch); |
| __ cvt_d_w(double_scratch, double_scratch); |
| } else { |
| // The result must be interpreted as an unsigned 32-bit integer. |
| __ mtc1(a2, double_scratch); |
| __ Cvt_d_uw(double_scratch, double_scratch, single_scratch); |
| } |
| |
| // Store the result. |
| __ mov(v0, heap_number_result); |
| __ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } else { |
| // Tail call that writes the int32 in a2 to the heap number in v0, using |
| // a3 and a1 as scratch. v0 is preserved and returned. |
| __ mov(a0, t1); |
| WriteInt32ToHeapNumberStub stub(a2, v0, a3, a1); |
| __ TailCallStub(&stub); |
| } |
| |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| // We never expect DIV to yield an integer result, so we always generate |
| // type transition code for DIV operations expecting an integer result: the |
| // code will fall through to this type transition. |
| if (transition.is_linked() || |
| ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) { |
| __ bind(&transition); |
| GenerateTypeTransition(masm); |
| } |
| |
| __ bind(&call_runtime); |
| GenerateCallRuntime(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| if (op_ == Token::ADD) { |
| // Handle string addition here, because it is the only operation |
| // that does not do a ToNumber conversion on the operands. |
| GenerateAddStrings(masm); |
| } |
| |
| // Convert oddball arguments to numbers. |
| Label check, done; |
| __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
| __ Branch(&check, ne, a1, Operand(t0)); |
| if (Token::IsBitOp(op_)) { |
| __ li(a1, Operand(Smi::FromInt(0))); |
| } else { |
| __ LoadRoot(a1, Heap::kNanValueRootIndex); |
| } |
| __ jmp(&done); |
| __ bind(&check); |
| __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
| __ Branch(&done, ne, a0, Operand(t0)); |
| if (Token::IsBitOp(op_)) { |
| __ li(a0, Operand(Smi::FromInt(0))); |
| } else { |
| __ LoadRoot(a0, Heap::kNanValueRootIndex); |
| } |
| __ bind(&done); |
| |
| GenerateHeapNumberStub(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
| Label call_runtime; |
| GenerateFPOperation(masm, false, &call_runtime, &call_runtime); |
| |
| __ bind(&call_runtime); |
| GenerateCallRuntime(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) { |
| Label call_runtime, call_string_add_or_runtime; |
| |
| GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); |
| |
| GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime); |
| |
| __ bind(&call_string_add_or_runtime); |
| if (op_ == Token::ADD) { |
| GenerateAddStrings(masm); |
| } |
| |
| __ bind(&call_runtime); |
| GenerateCallRuntime(masm); |
| } |
| |
| |
| void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { |
| ASSERT(op_ == Token::ADD); |
| Label left_not_string, call_runtime; |
| |
| Register left = a1; |
| Register right = a0; |
| |
| // Check if left argument is a string. |
| __ JumpIfSmi(left, &left_not_string); |
| __ GetObjectType(left, a2, a2); |
| __ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE)); |
| |
| StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_left_stub); |
| |
| // Left operand is not a string, test right. |
| __ bind(&left_not_string); |
| __ JumpIfSmi(right, &call_runtime); |
| __ GetObjectType(right, a2, a2); |
| __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); |
| |
| StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_right_stub); |
| |
| // At least one argument is not a string. |
| __ bind(&call_runtime); |
| } |
| |
| |
| void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { |
| GenerateRegisterArgsPush(masm); |
| switch (op_) { |
| case Token::ADD: |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateHeapResultAllocation( |
| MacroAssembler* masm, |
| Register result, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| |
| // Code below will scratch result if allocation fails. To keep both arguments |
| // intact for the runtime call result cannot be one of these. |
| ASSERT(!result.is(a0) && !result.is(a1)); |
| |
| if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) { |
| Label skip_allocation, allocated; |
| Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0; |
| // If the overwritable operand is already an object, we skip the |
| // allocation of a heap number. |
| __ JumpIfNotSmi(overwritable_operand, &skip_allocation); |
| // Allocate a heap number for the result. |
| __ AllocateHeapNumber( |
| result, scratch1, scratch2, heap_number_map, gc_required); |
| __ Branch(&allocated); |
| __ bind(&skip_allocation); |
| // Use object holding the overwritable operand for result. |
| __ mov(result, overwritable_operand); |
| __ bind(&allocated); |
| } else { |
| ASSERT(mode_ == NO_OVERWRITE); |
| __ AllocateHeapNumber( |
| result, scratch1, scratch2, heap_number_map, gc_required); |
| } |
| } |
| |
| |
| void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
| __ Push(a1, a0); |
| } |
| |
| |
| |
| void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| // Untagged case: double input in f4, double result goes |
| // into f4. |
| // Tagged case: tagged input on top of stack and in a0, |
| // tagged result (heap number) goes into v0. |
| |
| Label input_not_smi; |
| Label loaded; |
| Label calculate; |
| Label invalid_cache; |
| const Register scratch0 = t5; |
| const Register scratch1 = t3; |
| const Register cache_entry = a0; |
| const bool tagged = (argument_type_ == TAGGED); |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| |
| if (tagged) { |
| // Argument is a number and is on stack and in a0. |
| // Load argument and check if it is a smi. |
| __ JumpIfNotSmi(a0, &input_not_smi); |
| |
| // Input is a smi. Convert to double and load the low and high words |
| // of the double into a2, a3. |
| __ sra(t0, a0, kSmiTagSize); |
| __ mtc1(t0, f4); |
| __ cvt_d_w(f4, f4); |
| __ Move(a2, a3, f4); |
| __ Branch(&loaded); |
| |
| __ bind(&input_not_smi); |
| // Check if input is a HeapNumber. |
| __ CheckMap(a0, |
| a1, |
| Heap::kHeapNumberMapRootIndex, |
| &calculate, |
| DONT_DO_SMI_CHECK); |
| // Input is a HeapNumber. Store the |
| // low and high words into a2, a3. |
| __ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset)); |
| __ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4)); |
| } else { |
| // Input is untagged double in f4. Output goes to f4. |
| __ Move(a2, a3, f4); |
| } |
| __ bind(&loaded); |
| // a2 = low 32 bits of double value. |
| // a3 = high 32 bits of double value. |
| // Compute hash (the shifts are arithmetic): |
| // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| __ Xor(a1, a2, a3); |
| __ sra(t0, a1, 16); |
| __ Xor(a1, a1, t0); |
| __ sra(t0, a1, 8); |
| __ Xor(a1, a1, t0); |
| ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); |
| __ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1)); |
| |
| // a2 = low 32 bits of double value. |
| // a3 = high 32 bits of double value. |
| // a1 = TranscendentalCache::hash(double value). |
| __ li(cache_entry, Operand( |
| ExternalReference::transcendental_cache_array_address( |
| masm->isolate()))); |
| // a0 points to cache array. |
| __ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof( |
| Isolate::Current()->transcendental_cache()->caches_[0]))); |
| // a0 points to the cache for the type type_. |
| // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| __ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg)); |
| |
| #ifdef DEBUG |
| // Check that the layout of cache elements match expectations. |
| { TranscendentalCache::SubCache::Element test_elem[2]; |
| char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| CHECK_EQ(0, elem_in0 - elem_start); |
| CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| } |
| #endif |
| |
| // Find the address of the a1'st entry in the cache, i.e., &a0[a1*12]. |
| __ sll(t0, a1, 1); |
| __ Addu(a1, a1, t0); |
| __ sll(t0, a1, 2); |
| __ Addu(cache_entry, cache_entry, t0); |
| |
| // Check if cache matches: Double value is stored in uint32_t[2] array. |
| __ lw(t0, MemOperand(cache_entry, 0)); |
| __ lw(t1, MemOperand(cache_entry, 4)); |
| __ lw(t2, MemOperand(cache_entry, 8)); |
| __ Addu(cache_entry, cache_entry, 12); |
| __ Branch(&calculate, ne, a2, Operand(t0)); |
| __ Branch(&calculate, ne, a3, Operand(t1)); |
| // Cache hit. Load result, cleanup and return. |
| if (tagged) { |
| // Pop input value from stack and load result into v0. |
| __ Drop(1); |
| __ mov(v0, t2); |
| } else { |
| // Load result into f4. |
| __ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset)); |
| } |
| __ Ret(); |
| } // if (CpuFeatures::IsSupported(FPU)) |
| |
| __ bind(&calculate); |
| if (tagged) { |
| __ bind(&invalid_cache); |
| __ TailCallExternalReference(ExternalReference(RuntimeFunction(), |
| masm->isolate()), |
| 1, |
| 1); |
| } else { |
| if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE(); |
| CpuFeatures::Scope scope(FPU); |
| |
| Label no_update; |
| Label skip_cache; |
| const Register heap_number_map = t2; |
| |
| // Call C function to calculate the result and update the cache. |
| // Register a0 holds precalculated cache entry address; preserve |
| // it on the stack and pop it into register cache_entry after the |
| // call. |
| __ push(cache_entry); |
| GenerateCallCFunction(masm, scratch0); |
| __ GetCFunctionDoubleResult(f4); |
| |
| // Try to update the cache. If we cannot allocate a |
| // heap number, we return the result without updating. |
| __ pop(cache_entry); |
| __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update); |
| __ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset)); |
| |
| __ sw(a2, MemOperand(cache_entry, 0 * kPointerSize)); |
| __ sw(a3, MemOperand(cache_entry, 1 * kPointerSize)); |
| __ sw(t2, MemOperand(cache_entry, 2 * kPointerSize)); |
| |
| __ mov(v0, cache_entry); |
| __ Ret(); |
| |
| __ bind(&invalid_cache); |
| // The cache is invalid. Call runtime which will recreate the |
| // cache. |
| __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache); |
| __ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset)); |
| __ EnterInternalFrame(); |
| __ push(a0); |
| __ CallRuntime(RuntimeFunction(), 1); |
| __ LeaveInternalFrame(); |
| __ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
| __ Ret(); |
| |
| __ bind(&skip_cache); |
| // Call C function to calculate the result and answer directly |
| // without updating the cache. |
| GenerateCallCFunction(masm, scratch0); |
| __ GetCFunctionDoubleResult(f4); |
| __ bind(&no_update); |
| |
| // We return the value in f4 without adding it to the cache, but |
| // we cause a scavenging GC so that future allocations will succeed. |
| __ EnterInternalFrame(); |
| |
| // Allocate an aligned object larger than a HeapNumber. |
| ASSERT(4 * kPointerSize >= HeapNumber::kSize); |
| __ li(scratch0, Operand(4 * kPointerSize)); |
| __ push(scratch0); |
| __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); |
| __ LeaveInternalFrame(); |
| __ Ret(); |
| } |
| } |
| |
| |
| void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm, |
| Register scratch) { |
| __ push(ra); |
| __ PrepareCallCFunction(2, scratch); |
| if (IsMipsSoftFloatABI) { |
| __ Move(v0, v1, f4); |
| } else { |
| __ mov_d(f12, f4); |
| } |
| switch (type_) { |
| case TranscendentalCache::SIN: |
| __ CallCFunction( |
| ExternalReference::math_sin_double_function(masm->isolate()), 2); |
| break; |
| case TranscendentalCache::COS: |
| __ CallCFunction( |
| ExternalReference::math_cos_double_function(masm->isolate()), 2); |
| break; |
| case TranscendentalCache::LOG: |
| __ CallCFunction( |
| ExternalReference::math_log_double_function(masm->isolate()), 2); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| __ pop(ra); |
| } |
| |
| |
| Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| switch (type_) { |
| // Add more cases when necessary. |
| case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| case TranscendentalCache::COS: return Runtime::kMath_cos; |
| case TranscendentalCache::LOG: return Runtime::kMath_log; |
| default: |
| UNIMPLEMENTED(); |
| return Runtime::kAbort; |
| } |
| } |
| |
| |
| void StackCheckStub::Generate(MacroAssembler* masm) { |
| __ TailCallRuntime(Runtime::kStackGuard, 0, 1); |
| } |
| |
| |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| |
| Label base_not_smi; |
| Label exponent_not_smi; |
| Label convert_exponent; |
| |
| const Register base = a0; |
| const Register exponent = a2; |
| const Register heapnumbermap = t1; |
| const Register heapnumber = s0; // Callee-saved register. |
| const Register scratch = t2; |
| const Register scratch2 = t3; |
| |
| // Alocate FP values in the ABI-parameter-passing regs. |
| const DoubleRegister double_base = f12; |
| const DoubleRegister double_exponent = f14; |
| const DoubleRegister double_result = f0; |
| const DoubleRegister double_scratch = f2; |
| |
| __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); |
| __ lw(base, MemOperand(sp, 1 * kPointerSize)); |
| __ lw(exponent, MemOperand(sp, 0 * kPointerSize)); |
| |
| // Convert base to double value and store it in f0. |
| __ JumpIfNotSmi(base, &base_not_smi); |
| // Base is a Smi. Untag and convert it. |
| __ SmiUntag(base); |
| __ mtc1(base, double_scratch); |
| __ cvt_d_w(double_base, double_scratch); |
| __ Branch(&convert_exponent); |
| |
| __ bind(&base_not_smi); |
| __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset)); |
| __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap)); |
| // Base is a heapnumber. Load it into double register. |
| __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); |
| |
| __ bind(&convert_exponent); |
| __ JumpIfNotSmi(exponent, &exponent_not_smi); |
| __ SmiUntag(exponent); |
| |
| // The base is in a double register and the exponent is |
| // an untagged smi. Allocate a heap number and call a |
| // C function for integer exponents. The register containing |
| // the heap number is callee-saved. |
| __ AllocateHeapNumber(heapnumber, |
| scratch, |
| scratch2, |
| heapnumbermap, |
| &call_runtime); |
| __ push(ra); |
| __ PrepareCallCFunction(3, scratch); |
| __ SetCallCDoubleArguments(double_base, exponent); |
| __ CallCFunction( |
| ExternalReference::power_double_int_function(masm->isolate()), 3); |
| __ pop(ra); |
| __ GetCFunctionDoubleResult(double_result); |
| __ sdc1(double_result, |
| FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); |
| __ mov(v0, heapnumber); |
| __ DropAndRet(2 * kPointerSize); |
| |
| __ bind(&exponent_not_smi); |
| __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); |
| __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap)); |
| // Exponent is a heapnumber. Load it into double register. |
| __ ldc1(double_exponent, |
| FieldMemOperand(exponent, HeapNumber::kValueOffset)); |
| |
| // The base and the exponent are in double registers. |
| // Allocate a heap number and call a C function for |
| // double exponents. The register containing |
| // the heap number is callee-saved. |
| __ AllocateHeapNumber(heapnumber, |
| scratch, |
| scratch2, |
| heapnumbermap, |
| &call_runtime); |
| __ push(ra); |
| __ PrepareCallCFunction(4, scratch); |
| // ABI (o32) for func(double a, double b): a in f12, b in f14. |
| ASSERT(double_base.is(f12)); |
| ASSERT(double_exponent.is(f14)); |
| __ SetCallCDoubleArguments(double_base, double_exponent); |
| __ CallCFunction( |
| ExternalReference::power_double_double_function(masm->isolate()), 4); |
| __ pop(ra); |
| __ GetCFunctionDoubleResult(double_result); |
| __ sdc1(double_result, |
| FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); |
| __ mov(v0, heapnumber); |
| __ DropAndRet(2 * kPointerSize); |
| } |
| |
| __ bind(&call_runtime); |
| __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
| } |
| |
| |
| bool CEntryStub::NeedsImmovableCode() { |
| return true; |
| } |
| |
| |
| void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| __ Throw(v0); |
| } |
| |
| |
| void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| UncatchableExceptionType type) { |
| __ ThrowUncatchable(type, v0); |
| } |
| |
| |
| void CEntryStub::GenerateCore(MacroAssembler* masm, |
| Label* throw_normal_exception, |
| Label* throw_termination_exception, |
| Label* throw_out_of_memory_exception, |
| bool do_gc, |
| bool always_allocate) { |
| // v0: result parameter for PerformGC, if any |
| // s0: number of arguments including receiver (C callee-saved) |
| // s1: pointer to the first argument (C callee-saved) |
| // s2: pointer to builtin function (C callee-saved) |
| |
| if (do_gc) { |
| // Move result passed in v0 into a0 to call PerformGC. |
| __ mov(a0, v0); |
| __ PrepareCallCFunction(1, a1); |
| __ CallCFunction( |
| ExternalReference::perform_gc_function(masm->isolate()), 1); |
| } |
| |
| ExternalReference scope_depth = |
| ExternalReference::heap_always_allocate_scope_depth(masm->isolate()); |
| if (always_allocate) { |
| __ li(a0, Operand(scope_depth)); |
| __ lw(a1, MemOperand(a0)); |
| __ Addu(a1, a1, Operand(1)); |
| __ sw(a1, MemOperand(a0)); |
| } |
| |
| // Prepare arguments for C routine: a0 = argc, a1 = argv |
| __ mov(a0, s0); |
| __ mov(a1, s1); |
| |
| // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We |
| // also need to reserve the 4 argument slots on the stack. |
| |
| __ AssertStackIsAligned(); |
| |
| __ li(a2, Operand(ExternalReference::isolate_address())); |
| |
| // To let the GC traverse the return address of the exit frames, we need to |
| // know where the return address is. The CEntryStub is unmovable, so |
| // we can store the address on the stack to be able to find it again and |
| // we never have to restore it, because it will not change. |
| { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); |
| // This branch-and-link sequence is needed to find the current PC on mips, |
| // saved to the ra register. |
| // Use masm-> here instead of the double-underscore macro since extra |
| // coverage code can interfere with the proper calculation of ra. |
| Label find_ra; |
| masm->bal(&find_ra); // bal exposes branch delay slot. |
| masm->nop(); // Branch delay slot nop. |
| masm->bind(&find_ra); |
| |
| // Adjust the value in ra to point to the correct return location, 2nd |
| // instruction past the real call into C code (the jalr(t9)), and push it. |
| // This is the return address of the exit frame. |
| const int kNumInstructionsToJump = 6; |
| masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize); |
| masm->sw(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame. |
| masm->Subu(sp, sp, kCArgsSlotsSize); |
| // Stack is still aligned. |
| |
| // Call the C routine. |
| masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC. |
| masm->jalr(t9); |
| masm->nop(); // Branch delay slot nop. |
| // Make sure the stored 'ra' points to this position. |
| ASSERT_EQ(kNumInstructionsToJump, |
| masm->InstructionsGeneratedSince(&find_ra)); |
| } |
| |
| // Restore stack (remove arg slots). |
| __ Addu(sp, sp, kCArgsSlotsSize); |
| |
| if (always_allocate) { |
| // It's okay to clobber a2 and a3 here. v0 & v1 contain result. |
| __ li(a2, Operand(scope_depth)); |
| __ lw(a3, MemOperand(a2)); |
| __ Subu(a3, a3, Operand(1)); |
| __ sw(a3, MemOperand(a2)); |
| } |
| |
| // Check for failure result. |
| Label failure_returned; |
| STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| __ addiu(a2, v0, 1); |
| __ andi(t0, a2, kFailureTagMask); |
| __ Branch(&failure_returned, eq, t0, Operand(zero_reg)); |
| |
| // Exit C frame and return. |
| // v0:v1: result |
| // sp: stack pointer |
| // fp: frame pointer |
| __ LeaveExitFrame(save_doubles_, s0); |
| __ Ret(); |
| |
| // Check if we should retry or throw exception. |
| Label retry; |
| __ bind(&failure_returned); |
| STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| __ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize); |
| __ Branch(&retry, eq, t0, Operand(zero_reg)); |
| |
| // Special handling of out of memory exceptions. |
| Failure* out_of_memory = Failure::OutOfMemoryException(); |
| __ Branch(throw_out_of_memory_exception, eq, |
| v0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| |
| // Retrieve the pending exception and clear the variable. |
| __ li(t0, |
| Operand(ExternalReference::the_hole_value_location(masm->isolate()))); |
| __ lw(a3, MemOperand(t0)); |
| __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| masm->isolate()))); |
| __ lw(v0, MemOperand(t0)); |
| __ sw(a3, MemOperand(t0)); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ Branch(throw_termination_exception, eq, |
| v0, Operand(masm->isolate()->factory()->termination_exception())); |
| |
| // Handle normal exception. |
| __ jmp(throw_normal_exception); |
| |
| __ bind(&retry); |
| // Last failure (v0) will be moved to (a0) for parameter when retrying. |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // Called from JavaScript; parameters are on stack as if calling JS function |
| // a0: number of arguments including receiver |
| // a1: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| |
| // NOTE: Invocations of builtins may return failure objects |
| // instead of a proper result. The builtin entry handles |
| // this by performing a garbage collection and retrying the |
| // builtin once. |
| |
| // Compute the argv pointer in a callee-saved register. |
| __ sll(s1, a0, kPointerSizeLog2); |
| __ Addu(s1, sp, s1); |
| __ Subu(s1, s1, Operand(kPointerSize)); |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| __ EnterExitFrame(save_doubles_); |
| |
| // Setup argc and the builtin function in callee-saved registers. |
| __ mov(s0, a0); |
| __ mov(s2, a1); |
| |
| // s0: number of arguments (C callee-saved) |
| // s1: pointer to first argument (C callee-saved) |
| // s2: pointer to builtin function (C callee-saved) |
| |
| Label throw_normal_exception; |
| Label throw_termination_exception; |
| Label throw_out_of_memory_exception; |
| |
| // Call into the runtime system. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| false, |
| false); |
| |
| // Do space-specific GC and retry runtime call. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| false); |
| |
| // Do full GC and retry runtime call one final time. |
| Failure* failure = Failure::InternalError(); |
| __ li(v0, Operand(reinterpret_cast<int32_t>(failure))); |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| true); |
| |
| __ bind(&throw_out_of_memory_exception); |
| GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| |
| __ bind(&throw_termination_exception); |
| GenerateThrowUncatchable(masm, TERMINATION); |
| |
| __ bind(&throw_normal_exception); |
| GenerateThrowTOS(masm); |
| } |
| |
| |
| void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| Label invoke, exit; |
| |
| // Registers: |
| // a0: entry address |
| // a1: function |
| // a2: reveiver |
| // a3: argc |
| // |
| // Stack: |
| // 4 args slots |
| // args |
| |
| // Save callee saved registers on the stack. |
| __ MultiPush(kCalleeSaved | ra.bit()); |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Save callee-saved FPU registers. |
| __ MultiPushFPU(kCalleeSavedFPU); |
| } |
| |
| // Load argv in s0 register. |
| int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; |
| if (CpuFeatures::IsSupported(FPU)) { |
| offset_to_argv += kNumCalleeSavedFPU * kDoubleSize; |
| } |
| |
| __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize)); |
| |
| // We build an EntryFrame. |
| __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| __ li(t2, Operand(Smi::FromInt(marker))); |
| __ li(t1, Operand(Smi::FromInt(marker))); |
| __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress, |
| masm->isolate()))); |
| __ lw(t0, MemOperand(t0)); |
| __ Push(t3, t2, t1, t0); |
| // Setup frame pointer for the frame to be pushed. |
| __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); |
| |
| // Registers: |
| // a0: entry_address |
| // a1: function |
| // a2: reveiver_pointer |
| // a3: argc |
| // s0: argv |
| // |
| // Stack: |
| // caller fp | |
| // function slot | entry frame |
| // context slot | |
| // bad fp (0xff...f) | |
| // callee saved registers + ra |
| // 4 args slots |
| // args |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| Label non_outermost_js; |
| ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, |
| masm->isolate()); |
| __ li(t1, Operand(ExternalReference(js_entry_sp))); |
| __ lw(t2, MemOperand(t1)); |
| __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg)); |
| __ sw(fp, MemOperand(t1)); |
| __ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
| Label cont; |
| __ b(&cont); |
| __ nop(); // Branch delay slot nop. |
| __ bind(&non_outermost_js); |
| __ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); |
| __ bind(&cont); |
| __ push(t0); |
| |
| // Call a faked try-block that does the invoke. |
| __ bal(&invoke); // bal exposes branch delay slot. |
| __ nop(); // Branch delay slot nop. |
| |
| // Caught exception: Store result (exception) in the pending |
| // exception field in the JSEnv and return a failure sentinel. |
| // Coming in here the fp will be invalid because the PushTryHandler below |
| // sets it to 0 to signal the existence of the JSEntry frame. |
| __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| masm->isolate()))); |
| __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0. |
| __ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
| __ b(&exit); // b exposes branch delay slot. |
| __ nop(); // Branch delay slot nop. |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the bal(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| |
| // Clear any pending exceptions. |
| __ li(t0, |
| Operand(ExternalReference::the_hole_value_location(masm->isolate()))); |
| __ lw(t1, MemOperand(t0)); |
| __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| masm->isolate()))); |
| __ sw(t1, MemOperand(t0)); |
| |
| // Invoke the function by calling through JS entry trampoline builtin. |
| // Notice that we cannot store a reference to the trampoline code directly in |
| // this stub, because runtime stubs are not traversed when doing GC. |
| |
| // Registers: |
| // a0: entry_address |
| // a1: function |
| // a2: reveiver_pointer |
| // a3: argc |
| // s0: argv |
| // |
| // Stack: |
| // handler frame |
| // entry frame |
| // callee saved registers + ra |
| // 4 args slots |
| // args |
| |
| if (is_construct) { |
| ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, |
| masm->isolate()); |
| __ li(t0, Operand(construct_entry)); |
| } else { |
| ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate()); |
| __ li(t0, Operand(entry)); |
| } |
| __ lw(t9, MemOperand(t0)); // Deref address. |
| |
| // Call JSEntryTrampoline. |
| __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag); |
| __ Call(t9); |
| |
| // Unlink this frame from the handler chain. |
| __ PopTryHandler(); |
| |
| __ bind(&exit); // v0 holds result |
| // Check if the current stack frame is marked as the outermost JS frame. |
| Label non_outermost_js_2; |
| __ pop(t1); |
| __ Branch(&non_outermost_js_2, ne, t1, |
| Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
| __ li(t1, Operand(ExternalReference(js_entry_sp))); |
| __ sw(zero_reg, MemOperand(t1)); |
| __ bind(&non_outermost_js_2); |
| |
| // Restore the top frame descriptors from the stack. |
| __ pop(t1); |
| __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress, |
| masm->isolate()))); |
| __ sw(t1, MemOperand(t0)); |
| |
| // Reset the stack to the callee saved registers. |
| __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Restore callee-saved fpu registers. |
| __ MultiPopFPU(kCalleeSavedFPU); |
| } |
| |
| // Restore callee saved registers from the stack. |
| __ MultiPop(kCalleeSaved | ra.bit()); |
| // Return. |
| __ Jump(ra); |
| } |
| |
| |
| // Uses registers a0 to t0. |
| // Expected input (depending on whether args are in registers or on the stack): |
| // * object: a0 or at sp + 1 * kPointerSize. |
| // * function: a1 or at sp. |
| // |
| // Inlined call site patching is a crankshaft-specific feature that is not |
| // implemented on MIPS. |
| void InstanceofStub::Generate(MacroAssembler* masm) { |
| // This is a crankshaft-specific feature that has not been implemented yet. |
| ASSERT(!HasCallSiteInlineCheck()); |
| // Call site inlining and patching implies arguments in registers. |
| ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); |
| // ReturnTrueFalse is only implemented for inlined call sites. |
| ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); |
| |
| // Fixed register usage throughout the stub: |
| const Register object = a0; // Object (lhs). |
| Register map = a3; // Map of the object. |
| const Register function = a1; // Function (rhs). |
| const Register prototype = t0; // Prototype of the function. |
| const Register inline_site = t5; |
| const Register scratch = a2; |
| |
| Label slow, loop, is_instance, is_not_instance, not_js_object; |
| |
| if (!HasArgsInRegisters()) { |
| __ lw(object, MemOperand(sp, 1 * kPointerSize)); |
| __ lw(function, MemOperand(sp, 0)); |
| } |
| |
| // Check that the left hand is a JS object and load map. |
| __ JumpIfSmi(object, ¬_js_object); |
| __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); |
| |
| // If there is a call site cache don't look in the global cache, but do the |
| // real lookup and update the call site cache. |
| if (!HasCallSiteInlineCheck()) { |
| Label miss; |
| __ LoadRoot(t1, Heap::kInstanceofCacheFunctionRootIndex); |
| __ Branch(&miss, ne, function, Operand(t1)); |
| __ LoadRoot(t1, Heap::kInstanceofCacheMapRootIndex); |
| __ Branch(&miss, ne, map, Operand(t1)); |
| __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); |
| __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
| |
| __ bind(&miss); |
| } |
| |
| // Get the prototype of the function. |
| __ TryGetFunctionPrototype(function, prototype, scratch, &slow); |
| |
| // Check that the function prototype is a JS object. |
| __ JumpIfSmi(prototype, &slow); |
| __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); |
| |
| // Update the global instanceof or call site inlined cache with the current |
| // map and function. The cached answer will be set when it is known below. |
| if (!HasCallSiteInlineCheck()) { |
| __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
| __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); |
| } else { |
| UNIMPLEMENTED_MIPS(); |
| } |
| |
| // Register mapping: a3 is object map and t0 is function prototype. |
| // Get prototype of object into a2. |
| __ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); |
| |
| // We don't need map any more. Use it as a scratch register. |
| Register scratch2 = map; |
| map = no_reg; |
| |
| // Loop through the prototype chain looking for the function prototype. |
| __ LoadRoot(scratch2, Heap::kNullValueRootIndex); |
| __ bind(&loop); |
| __ Branch(&is_instance, eq, scratch, Operand(prototype)); |
| __ Branch(&is_not_instance, eq, scratch, Operand(scratch2)); |
| __ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
| __ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); |
| __ Branch(&loop); |
| |
| __ bind(&is_instance); |
| ASSERT(Smi::FromInt(0) == 0); |
| if (!HasCallSiteInlineCheck()) { |
| __ mov(v0, zero_reg); |
| __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); |
| } else { |
| UNIMPLEMENTED_MIPS(); |
| } |
| __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
| |
| __ bind(&is_not_instance); |
| if (!HasCallSiteInlineCheck()) { |
| __ li(v0, Operand(Smi::FromInt(1))); |
| __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); |
| } else { |
| UNIMPLEMENTED_MIPS(); |
| } |
| __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
| |
| Label object_not_null, object_not_null_or_smi; |
| __ bind(¬_js_object); |
| // Before null, smi and string value checks, check that the rhs is a function |
| // as for a non-function rhs an exception needs to be thrown. |
| __ JumpIfSmi(function, &slow); |
| __ GetObjectType(function, scratch2, scratch); |
| __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE)); |
| |
| // Null is not instance of anything. |
| __ Branch(&object_not_null, ne, scratch, |
| Operand(masm->isolate()->factory()->null_value())); |
| __ li(v0, Operand(Smi::FromInt(1))); |
| __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
| |
| __ bind(&object_not_null); |
| // Smi values are not instances of anything. |
| __ JumpIfNotSmi(object, &object_not_null_or_smi); |
| __ li(v0, Operand(Smi::FromInt(1))); |
| __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
| |
| __ bind(&object_not_null_or_smi); |
| // String values are not instances of anything. |
| __ IsObjectJSStringType(object, scratch, &slow); |
| __ li(v0, Operand(Smi::FromInt(1))); |
| __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
| |
| // Slow-case. Tail call builtin. |
| __ bind(&slow); |
| if (!ReturnTrueFalseObject()) { |
| if (HasArgsInRegisters()) { |
| __ Push(a0, a1); |
| } |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
| } else { |
| __ EnterInternalFrame(); |
| __ Push(a0, a1); |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); |
| __ LeaveInternalFrame(); |
| __ mov(a0, v0); |
| __ LoadRoot(v0, Heap::kTrueValueRootIndex); |
| __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg)); |
| __ LoadRoot(v0, Heap::kFalseValueRootIndex); |
| __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
| } |
| } |
| |
| |
| Register InstanceofStub::left() { return a0; } |
| |
| |
| Register InstanceofStub::right() { return a1; } |
| |
| |
| void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| // The displacement is the offset of the last parameter (if any) |
| // relative to the frame pointer. |
| static const int kDisplacement = |
| StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| |
| // Check that the key is a smiGenerateReadElement. |
| Label slow; |
| __ JumpIfNotSmi(a1, &slow); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor; |
| __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); |
| __ Branch(&adaptor, |
| eq, |
| a3, |
| Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Check index (a1) against formal parameters count limit passed in |
| // through register a0. Use unsigned comparison to get negative |
| // check for free. |
| __ Branch(&slow, hs, a1, Operand(a0)); |
| |
| // Read the argument from the stack and return it. |
| __ subu(a3, a0, a1); |
| __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(a3, fp, Operand(t3)); |
| __ lw(v0, MemOperand(a3, kDisplacement)); |
| __ Ret(); |
| |
| // Arguments adaptor case: Check index (a1) against actual arguments |
| // limit found in the arguments adaptor frame. Use unsigned |
| // comparison to get negative check for free. |
| __ bind(&adaptor); |
| __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ Branch(&slow, Ugreater_equal, a1, Operand(a0)); |
| |
| // Read the argument from the adaptor frame and return it. |
| __ subu(a3, a0, a1); |
| __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(a3, a2, Operand(t3)); |
| __ lw(v0, MemOperand(a3, kDisplacement)); |
| __ Ret(); |
| |
| // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| // by calling the runtime system. |
| __ bind(&slow); |
| __ push(a1); |
| __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { |
| // sp[0] : number of parameters |
| // sp[4] : receiver displacement |
| // sp[8] : function |
| // Check if the calling frame is an arguments adaptor frame. |
| Label runtime; |
| __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset)); |
| __ Branch(&runtime, ne, |
| a2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Patch the arguments.length and the parameters pointer in the current frame. |
| __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ sw(a2, MemOperand(sp, 0 * kPointerSize)); |
| __ sll(t3, a2, 1); |
| __ Addu(a3, a3, Operand(t3)); |
| __ addiu(a3, a3, StandardFrameConstants::kCallerSPOffset); |
| __ sw(a3, MemOperand(sp, 1 * kPointerSize)); |
| |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { |
| // Stack layout: |
| // sp[0] : number of parameters (tagged) |
| // sp[4] : address of receiver argument |
| // sp[8] : function |
| // Registers used over whole function: |
| // t2 : allocated object (tagged) |
| // t5 : mapped parameter count (tagged) |
| |
| __ lw(a1, MemOperand(sp, 0 * kPointerSize)); |
| // a1 = parameter count (tagged) |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label runtime; |
| Label adaptor_frame, try_allocate; |
| __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset)); |
| __ Branch(&adaptor_frame, eq, a2, |
| Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // No adaptor, parameter count = argument count. |
| __ mov(a2, a1); |
| __ b(&try_allocate); |
| __ nop(); // Branch delay slot nop. |
| |
| // We have an adaptor frame. Patch the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ sll(t6, a2, 1); |
| __ Addu(a3, a3, Operand(t6)); |
| __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset)); |
| __ sw(a3, MemOperand(sp, 1 * kPointerSize)); |
| |
| // a1 = parameter count (tagged) |
| // a2 = argument count (tagged) |
| // Compute the mapped parameter count = min(a1, a2) in a1. |
| Label skip_min; |
| __ Branch(&skip_min, lt, a1, Operand(a2)); |
| __ mov(a1, a2); |
| __ bind(&skip_min); |
| |
| __ bind(&try_allocate); |
| |
| // Compute the sizes of backing store, parameter map, and arguments object. |
| // 1. Parameter map, has 2 extra words containing context and backing store. |
| const int kParameterMapHeaderSize = |
| FixedArray::kHeaderSize + 2 * kPointerSize; |
| // If there are no mapped parameters, we do not need the parameter_map. |
| Label param_map_size; |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ Branch(USE_DELAY_SLOT, ¶m_map_size, eq, a1, Operand(zero_reg)); |
| __ mov(t5, zero_reg); // In delay slot: param map size = 0 when a1 == 0. |
| __ sll(t5, a1, 1); |
| __ addiu(t5, t5, kParameterMapHeaderSize); |
| __ bind(¶m_map_size); |
| |
| // 2. Backing store. |
| __ sll(t6, a2, 1); |
| __ Addu(t5, t5, Operand(t6)); |
| __ Addu(t5, t5, Operand(FixedArray::kHeaderSize)); |
| |
| // 3. Arguments object. |
| __ Addu(t5, t5, Operand(Heap::kArgumentsObjectSize)); |
| |
| // Do the allocation of all three objects in one go. |
| __ AllocateInNewSpace(t5, v0, a3, t0, &runtime, TAG_OBJECT); |
| |
| // v0 = address of new object(s) (tagged) |
| // a2 = argument count (tagged) |
| // Get the arguments boilerplate from the current (global) context into t0. |
| const int kNormalOffset = |
| Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| const int kAliasedOffset = |
| Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX); |
| |
| __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset)); |
| Label skip2_ne, skip2_eq; |
| __ Branch(&skip2_ne, ne, a1, Operand(zero_reg)); |
| __ lw(t0, MemOperand(t0, kNormalOffset)); |
| __ bind(&skip2_ne); |
| |
| __ Branch(&skip2_eq, eq, a1, Operand(zero_reg)); |
| __ lw(t0, MemOperand(t0, kAliasedOffset)); |
| __ bind(&skip2_eq); |
| |
| // v0 = address of new object (tagged) |
| // a1 = mapped parameter count (tagged) |
| // a2 = argument count (tagged) |
| // t0 = address of boilerplate object (tagged) |
| // Copy the JS object part. |
| for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
| __ lw(a3, FieldMemOperand(t0, i)); |
| __ sw(a3, FieldMemOperand(v0, i)); |
| } |
| |
| // Setup the callee in-object property. |
| STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
| __ lw(a3, MemOperand(sp, 2 * kPointerSize)); |
| const int kCalleeOffset = JSObject::kHeaderSize + |
| Heap::kArgumentsCalleeIndex * kPointerSize; |
| __ sw(a3, FieldMemOperand(v0, kCalleeOffset)); |
| |
| // Use the length (smi tagged) and set that as an in-object property too. |
| STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
| const int kLengthOffset = JSObject::kHeaderSize + |
| Heap::kArgumentsLengthIndex * kPointerSize; |
| __ sw(a2, FieldMemOperand(v0, kLengthOffset)); |
| |
| // Setup the elements pointer in the allocated arguments object. |
| // If we allocated a parameter map, t0 will point there, otherwise |
| // it will point to the backing store. |
| __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSize)); |
| __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); |
| |
| // v0 = address of new object (tagged) |
| // a1 = mapped parameter count (tagged) |
| // a2 = argument count (tagged) |
| // t0 = address of parameter map or backing store (tagged) |
| // Initialize parameter map. If there are no mapped arguments, we're done. |
| Label skip_parameter_map; |
| Label skip3; |
| __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0))); |
| // Move backing store address to a3, because it is |
| // expected there when filling in the unmapped arguments. |
| __ mov(a3, t0); |
| __ bind(&skip3); |
| |
| __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0))); |
| |
| __ LoadRoot(t2, Heap::kNonStrictArgumentsElementsMapRootIndex); |
| __ sw(t2, FieldMemOperand(t0, FixedArray::kMapOffset)); |
| __ Addu(t2, a1, Operand(Smi::FromInt(2))); |
| __ sw(t2, FieldMemOperand(t0, FixedArray::kLengthOffset)); |
| __ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize)); |
| __ sll(t6, a1, 1); |
| __ Addu(t2, t0, Operand(t6)); |
| __ Addu(t2, t2, Operand(kParameterMapHeaderSize)); |
| __ sw(t2, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize)); |
| |
| // Copy the parameter slots and the holes in the arguments. |
| // We need to fill in mapped_parameter_count slots. They index the context, |
| // where parameters are stored in reverse order, at |
| // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 |
| // The mapped parameter thus need to get indices |
| // MIN_CONTEXT_SLOTS+parameter_count-1 .. |
| // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count |
| // We loop from right to left. |
| Label parameters_loop, parameters_test; |
| __ mov(t2, a1); |
| __ lw(t5, MemOperand(sp, 0 * kPointerSize)); |
| __ Addu(t5, t5, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); |
| __ Subu(t5, t5, Operand(a1)); |
| __ LoadRoot(t3, Heap::kTheHoleValueRootIndex); |
| __ sll(t6, t2, 1); |
| __ Addu(a3, t0, Operand(t6)); |
| __ Addu(a3, a3, Operand(kParameterMapHeaderSize)); |
| |
| // t2 = loop variable (tagged) |
| // a1 = mapping index (tagged) |
| // a3 = address of backing store (tagged) |
| // t0 = address of parameter map (tagged) |
| // t1 = temporary scratch (a.o., for address calculation) |
| // t3 = the hole value |
| __ jmp(¶meters_test); |
| |
| __ bind(¶meters_loop); |
| __ Subu(t2, t2, Operand(Smi::FromInt(1))); |
| __ sll(t1, t2, 1); |
| __ Addu(t1, t1, Operand(kParameterMapHeaderSize - kHeapObjectTag)); |
| __ Addu(t6, t0, t1); |
| __ sw(t5, MemOperand(t6)); |
| __ Subu(t1, t1, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); |
| __ Addu(t6, a3, t1); |
| __ sw(t3, MemOperand(t6)); |
| __ Addu(t5, t5, Operand(Smi::FromInt(1))); |
| __ bind(¶meters_test); |
| __ Branch(¶meters_loop, ne, t2, Operand(Smi::FromInt(0))); |
| |
| __ bind(&skip_parameter_map); |
| // a2 = argument count (tagged) |
| // a3 = address of backing store (tagged) |
| // t1 = scratch |
| // Copy arguments header and remaining slots (if there are any). |
| __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex); |
| __ sw(t1, FieldMemOperand(a3, FixedArray::kMapOffset)); |
| __ sw(a2, FieldMemOperand(a3, FixedArray::kLengthOffset)); |
| |
| Label arguments_loop, arguments_test; |
| __ mov(t5, a1); |
| __ lw(t0, MemOperand(sp, 1 * kPointerSize)); |
| __ sll(t6, t5, 1); |
| __ Subu(t0, t0, Operand(t6)); |
| __ jmp(&arguments_test); |
| |
| __ bind(&arguments_loop); |
| __ Subu(t0, t0, Operand(kPointerSize)); |
| __ lw(t2, MemOperand(t0, 0)); |
| __ sll(t6, t5, 1); |
| __ Addu(t1, a3, Operand(t6)); |
| __ sw(t2, FieldMemOperand(t1, FixedArray::kHeaderSize)); |
| __ Addu(t5, t5, Operand(Smi::FromInt(1))); |
| |
| __ bind(&arguments_test); |
| __ Branch(&arguments_loop, lt, t5, Operand(a2)); |
| |
| // Return and remove the on-stack parameters. |
| __ Addu(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to allocate the arguments object. |
| // a2 = argument count (taggged) |
| __ bind(&runtime); |
| __ sw(a2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. |
| __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { |
| // sp[0] : number of parameters |
| // sp[4] : receiver displacement |
| // sp[8] : function |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor_frame, try_allocate, runtime; |
| __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); |
| __ Branch(&adaptor_frame, |
| eq, |
| a3, |
| Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Get the length from the frame. |
| __ lw(a1, MemOperand(sp, 0)); |
| __ Branch(&try_allocate); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ sw(a1, MemOperand(sp, 0)); |
| __ sll(at, a1, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(a3, a2, Operand(at)); |
| |
| __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset)); |
| __ sw(a3, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Try the new space allocation. Start out with computing the size |
| // of the arguments object and the elements array in words. |
| Label add_arguments_object; |
| __ bind(&try_allocate); |
| __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg)); |
| __ srl(a1, a1, kSmiTagSize); |
| |
| __ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize)); |
| __ bind(&add_arguments_object); |
| __ Addu(a1, a1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize)); |
| |
| // Do the allocation of both objects in one go. |
| __ AllocateInNewSpace(a1, |
| v0, |
| a2, |
| a3, |
| &runtime, |
| static_cast<AllocationFlags>(TAG_OBJECT | |
| SIZE_IN_WORDS)); |
| |
| // Get the arguments boilerplate from the current (global) context. |
| __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset)); |
| __ lw(t0, MemOperand(t0, Context::SlotOffset( |
| Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX))); |
| |
| // Copy the JS object part. |
| __ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize); |
| |
| // Get the length (smi tagged) and set that as an in-object property too. |
| STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
| __ lw(a1, MemOperand(sp, 0 * kPointerSize)); |
| __ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize + |
| Heap::kArgumentsLengthIndex * kPointerSize)); |
| |
| Label done; |
| __ Branch(&done, eq, a1, Operand(zero_reg)); |
| |
| // Get the parameters pointer from the stack. |
| __ lw(a2, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Setup the elements pointer in the allocated arguments object and |
| // initialize the header in the elements fixed array. |
| __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSizeStrict)); |
| __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); |
| __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex); |
| __ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset)); |
| __ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset)); |
| // Untag the length for the loop. |
| __ srl(a1, a1, kSmiTagSize); |
| |
| // Copy the fixed array slots. |
| Label loop; |
| // Setup t0 to point to the first array slot. |
| __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| // Pre-decrement a2 with kPointerSize on each iteration. |
| // Pre-decrement in order to skip receiver. |
| __ Addu(a2, a2, Operand(-kPointerSize)); |
| __ lw(a3, MemOperand(a2)); |
| // Post-increment t0 with kPointerSize on each iteration. |
| __ sw(a3, MemOperand(t0)); |
| __ Addu(t0, t0, Operand(kPointerSize)); |
| __ Subu(a1, a1, Operand(1)); |
| __ Branch(&loop, ne, a1, Operand(zero_reg)); |
| |
| // Return and remove the on-stack parameters. |
| __ bind(&done); |
| __ Addu(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); |
| } |
| |
| |
| void RegExpExecStub::Generate(MacroAssembler* masm) { |
| // Just jump directly to runtime if native RegExp is not selected at compile |
| // time or if regexp entry in generated code is turned off runtime switch or |
| // at compilation. |
| #ifdef V8_INTERPRETED_REGEXP |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #else // V8_INTERPRETED_REGEXP |
| if (!FLAG_regexp_entry_native) { |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| return; |
| } |
| |
| // Stack frame on entry. |
| // sp[0]: last_match_info (expected JSArray) |
| // sp[4]: previous index |
| // sp[8]: subject string |
| // sp[12]: JSRegExp object |
| |
| static const int kLastMatchInfoOffset = 0 * kPointerSize; |
| static const int kPreviousIndexOffset = 1 * kPointerSize; |
| static const int kSubjectOffset = 2 * kPointerSize; |
| static const int kJSRegExpOffset = 3 * kPointerSize; |
| |
| Label runtime, invoke_regexp; |
| |
| // Allocation of registers for this function. These are in callee save |
| // registers and will be preserved by the call to the native RegExp code, as |
| // this code is called using the normal C calling convention. When calling |
| // directly from generated code the native RegExp code will not do a GC and |
| // therefore the content of these registers are safe to use after the call. |
| // MIPS - using s0..s2, since we are not using CEntry Stub. |
| Register subject = s0; |
| Register regexp_data = s1; |
| Register last_match_info_elements = s2; |
| |
| // Ensure that a RegExp stack is allocated. |
| ExternalReference address_of_regexp_stack_memory_address = |
| ExternalReference::address_of_regexp_stack_memory_address( |
| masm->isolate()); |
| ExternalReference address_of_regexp_stack_memory_size = |
| ExternalReference::address_of_regexp_stack_memory_size(masm->isolate()); |
| __ li(a0, Operand(address_of_regexp_stack_memory_size)); |
| __ lw(a0, MemOperand(a0, 0)); |
| __ Branch(&runtime, eq, a0, Operand(zero_reg)); |
| |
| // Check that the first argument is a JSRegExp object. |
| __ lw(a0, MemOperand(sp, kJSRegExpOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(a0, &runtime); |
| __ GetObjectType(a0, a1, a1); |
| __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE)); |
| |
| // Check that the RegExp has been compiled (data contains a fixed array). |
| __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset)); |
| if (FLAG_debug_code) { |
| __ And(t0, regexp_data, Operand(kSmiTagMask)); |
| __ Check(nz, |
| "Unexpected type for RegExp data, FixedArray expected", |
| t0, |
| Operand(zero_reg)); |
| __ GetObjectType(regexp_data, a0, a0); |
| __ Check(eq, |
| "Unexpected type for RegExp data, FixedArray expected", |
| a0, |
| Operand(FIXED_ARRAY_TYPE)); |
| } |
| |
| // regexp_data: RegExp data (FixedArray) |
| // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
| __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); |
| |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the number of captures fit in the static offsets vector buffer. |
| __ lw(a2, |
| FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| // uses the asumption that smis are 2 * their untagged value. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ Addu(a2, a2, Operand(2)); // a2 was a smi. |
| // Check that the static offsets vector buffer is large enough. |
| __ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); |
| |
| // a2: Number of capture registers |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the second argument is a string. |
| __ lw(subject, MemOperand(sp, kSubjectOffset)); |
| __ JumpIfSmi(subject, &runtime); |
| __ GetObjectType(subject, a0, a0); |
| __ And(a0, a0, Operand(kIsNotStringMask)); |
| STATIC_ASSERT(kStringTag == 0); |
| __ Branch(&runtime, ne, a0, Operand(zero_reg)); |
| |
| // Get the length of the string to r3. |
| __ lw(a3, FieldMemOperand(subject, String::kLengthOffset)); |
| |
| // a2: Number of capture registers |
| // a3: Length of subject string as a smi |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the third argument is a positive smi less than the subject |
| // string length. A negative value will be greater (unsigned comparison). |
| __ lw(a0, MemOperand(sp, kPreviousIndexOffset)); |
| __ And(at, a0, Operand(kSmiTagMask)); |
| __ Branch(&runtime, ne, at, Operand(zero_reg)); |
| __ Branch(&runtime, ls, a3, Operand(a0)); |
| |
| // a2: Number of capture registers |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the fourth object is a JSArray object. |
| __ lw(a0, MemOperand(sp, kLastMatchInfoOffset)); |
| __ JumpIfSmi(a0, &runtime); |
| __ GetObjectType(a0, a1, a1); |
| __ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE)); |
| // Check that the JSArray is in fast case. |
| __ lw(last_match_info_elements, |
| FieldMemOperand(a0, JSArray::kElementsOffset)); |
| __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
| __ Branch(&runtime, ne, a0, Operand( |
| masm->isolate()->factory()->fixed_array_map())); |
| // Check that the last match info has space for the capture registers and the |
| // additional information. |
| __ lw(a0, |
| FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); |
| __ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead)); |
| __ sra(at, a0, kSmiTagSize); // Untag length for comparison. |
| __ Branch(&runtime, gt, a2, Operand(at)); |
| |
| // Reset offset for possibly sliced string. |
| __ mov(t0, zero_reg); |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check the representation and encoding of the subject string. |
| Label seq_string; |
| __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); |
| // First check for flat string. |
| __ And(a1, a0, Operand(kIsNotStringMask | kStringRepresentationMask)); |
| STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
| __ Branch(&seq_string, eq, a1, Operand(zero_reg)); |
| |
| // subject: Subject string |
| // a0: instance type if Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check for flat cons string or sliced string. |
| // A flat cons string is a cons string where the second part is the empty |
| // string. In that case the subject string is just the first part of the cons |
| // string. Also in this case the first part of the cons string is known to be |
| // a sequential string or an external string. |
| // In the case of a sliced string its offset has to be taken into account. |
| Label cons_string, check_encoding; |
| STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
| STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); |
| __ Branch(&cons_string, lt, a1, Operand(kExternalStringTag)); |
| __ Branch(&runtime, eq, a1, Operand(kExternalStringTag)); |
| |
| // String is sliced. |
| __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset)); |
| __ sra(t0, t0, kSmiTagSize); |
| __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); |
| // t5: offset of sliced string, smi-tagged. |
| __ jmp(&check_encoding); |
| // String is a cons string, check whether it is flat. |
| __ bind(&cons_string); |
| __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset)); |
| __ LoadRoot(a1, Heap::kEmptyStringRootIndex); |
| __ Branch(&runtime, ne, a0, Operand(a1)); |
| __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
| // Is first part of cons or parent of slice a flat string? |
| __ bind(&check_encoding); |
| __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ And(at, a0, Operand(kStringRepresentationMask)); |
| __ Branch(&runtime, ne, at, Operand(zero_reg)); |
| |
| __ bind(&seq_string); |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // a0: Instance type of subject string |
| STATIC_ASSERT(kStringEncodingMask == 4); |
| STATIC_ASSERT(kAsciiStringTag == 4); |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| // Find the code object based on the assumptions above. |
| __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for ascii. |
| __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset)); |
| __ sra(a3, a0, 2); // a3 is 1 for ascii, 0 for UC16 (usyed below). |
| __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); |
| __ movz(t9, t1, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset. |
| |
| // Check that the irregexp code has been generated for the actual string |
| // encoding. If it has, the field contains a code object otherwise it contains |
| // a smi (code flushing support). |
| __ JumpIfSmi(t9, &runtime); |
| |
| // a3: encoding of subject string (1 if ASCII, 0 if two_byte); |
| // t9: code |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Load used arguments before starting to push arguments for call to native |
| // RegExp code to avoid handling changing stack height. |
| __ lw(a1, MemOperand(sp, kPreviousIndexOffset)); |
| __ sra(a1, a1, kSmiTagSize); // Untag the Smi. |
| |
| // a1: previous index |
| // a3: encoding of subject string (1 if ASCII, 0 if two_byte); |
| // t9: code |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // All checks done. Now push arguments for native regexp code. |
| __ IncrementCounter(masm->isolate()->counters()->regexp_entry_native(), |
| 1, a0, a2); |
| |
| // Isolates: note we add an additional parameter here (isolate pointer). |
| static const int kRegExpExecuteArguments = 8; |
| static const int kParameterRegisters = 4; |
| __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); |
| |
| // Stack pointer now points to cell where return address is to be written. |
| // Arguments are before that on the stack or in registers, meaning we |
| // treat the return address as argument 5. Thus every argument after that |
| // needs to be shifted back by 1. Since DirectCEntryStub will handle |
| // allocating space for the c argument slots, we don't need to calculate |
| // that into the argument positions on the stack. This is how the stack will |
| // look (sp meaning the value of sp at this moment): |
| // [sp + 4] - Argument 8 |
| // [sp + 3] - Argument 7 |
| // [sp + 2] - Argument 6 |
| // [sp + 1] - Argument 5 |
| // [sp + 0] - saved ra |
| |
| // Argument 8: Pass current isolate address. |
| // CFunctionArgumentOperand handles MIPS stack argument slots. |
| __ li(a0, Operand(ExternalReference::isolate_address())); |
| __ sw(a0, MemOperand(sp, 4 * kPointerSize)); |
| |
| // Argument 7: Indicate that this is a direct call from JavaScript. |
| __ li(a0, Operand(1)); |
| __ sw(a0, MemOperand(sp, 3 * kPointerSize)); |
| |
| // Argument 6: Start (high end) of backtracking stack memory area. |
| __ li(a0, Operand(address_of_regexp_stack_memory_address)); |
| __ lw(a0, MemOperand(a0, 0)); |
| __ li(a2, Operand(address_of_regexp_stack_memory_size)); |
| __ lw(a2, MemOperand(a2, 0)); |
| __ addu(a0, a0, a2); |
| __ sw(a0, MemOperand(sp, 2 * kPointerSize)); |
| |
| // Argument 5: static offsets vector buffer. |
| __ li(a0, Operand( |
| ExternalReference::address_of_static_offsets_vector(masm->isolate()))); |
| __ sw(a0, MemOperand(sp, 1 * kPointerSize)); |
| |
| // For arguments 4 and 3 get string length, calculate start of string data |
| // and calculate the shift of the index (0 for ASCII and 1 for two byte). |
| STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); |
| __ Addu(t2, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte. |
| // Load the length from the original subject string from the previous stack |
| // frame. Therefore we have to use fp, which points exactly to two pointer |
| // sizes below the previous sp. (Because creating a new stack frame pushes |
| // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) |
| __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); |
| // If slice offset is not 0, load the length from the original sliced string. |
| // Argument 4, a3: End of string data |
| // Argument 3, a2: Start of string data |
| // Prepare start and end index of the input. |
| __ sllv(t1, t0, a3); |
| __ addu(t0, t2, t1); |
| __ sllv(t1, a1, a3); |
| __ addu(a2, t0, t1); |
| |
| __ lw(t2, FieldMemOperand(subject, String::kLengthOffset)); |
| __ sra(t2, t2, kSmiTagSize); |
| __ sllv(t1, t2, a3); |
| __ addu(a3, t0, t1); |
| // Argument 2 (a1): Previous index. |
| // Already there |
| |
| // Argument 1 (a0): Subject string. |
| __ mov(a0, subject); |
| |
| // Locate the code entry and call it. |
| __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| DirectCEntryStub stub; |
| stub.GenerateCall(masm, t9); |
| |
| __ LeaveExitFrame(false, no_reg); |
| |
| // v0: result |
| // subject: subject string (callee saved) |
| // regexp_data: RegExp data (callee saved) |
| // last_match_info_elements: Last match info elements (callee saved) |
| |
| // Check the result. |
| |
| Label success; |
| __ Branch(&success, eq, |
| v0, Operand(NativeRegExpMacroAssembler::SUCCESS)); |
| Label failure; |
| __ Branch(&failure, eq, |
| v0, Operand(NativeRegExpMacroAssembler::FAILURE)); |
| // If not exception it can only be retry. Handle that in the runtime system. |
| __ Branch(&runtime, ne, |
| v0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); |
| // Result must now be exception. If there is no pending exception already a |
| // stack overflow (on the backtrack stack) was detected in RegExp code but |
| // haven't created the exception yet. Handle that in the runtime system. |
| // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| __ li(a1, Operand( |
| ExternalReference::the_hole_value_location(masm->isolate()))); |
| __ lw(a1, MemOperand(a1, 0)); |
| __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
| masm->isolate()))); |
| __ lw(v0, MemOperand(a2, 0)); |
| __ Branch(&runtime, eq, v0, Operand(a1)); |
| |
| __ sw(a1, MemOperand(a2, 0)); // Clear pending exception. |
| |
| // Check if the exception is a termination. If so, throw as uncatchable. |
| __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex); |
| Label termination_exception; |
| __ Branch(&termination_exception, eq, v0, Operand(a0)); |
| |
| __ Throw(v0); // Expects thrown value in v0. |
| |
| __ bind(&termination_exception); |
| __ ThrowUncatchable(TERMINATION, v0); // Expects thrown value in v0. |
| |
| __ bind(&failure); |
| // For failure and exception return null. |
| __ li(v0, Operand(masm->isolate()->factory()->null_value())); |
| __ Addu(sp, sp, Operand(4 * kPointerSize)); |
| __ Ret(); |
| |
| // Process the result from the native regexp code. |
| __ bind(&success); |
| __ lw(a1, |
| FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ Addu(a1, a1, Operand(2)); // a1 was a smi. |
| |
| // a1: number of capture registers |
| // subject: subject string |
| // Store the capture count. |
| __ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi. |
| __ sw(a2, FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastCaptureCountOffset)); |
| // Store last subject and last input. |
| __ mov(a3, last_match_info_elements); // Moved up to reduce latency. |
| __ sw(subject, |
| FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastSubjectOffset)); |
| __ RecordWrite(a3, Operand(RegExpImpl::kLastSubjectOffset), a2, t0); |
| __ sw(subject, |
| FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastInputOffset)); |
| __ mov(a3, last_match_info_elements); |
| __ RecordWrite(a3, Operand(RegExpImpl::kLastInputOffset), a2, t0); |
| |
| // Get the static offsets vector filled by the native regexp code. |
| ExternalReference address_of_static_offsets_vector = |
| ExternalReference::address_of_static_offsets_vector(masm->isolate()); |
| __ li(a2, Operand(address_of_static_offsets_vector)); |
| |
| // a1: number of capture registers |
| // a2: offsets vector |
| Label next_capture, done; |
| // Capture register counter starts from number of capture registers and |
| // counts down until wrapping after zero. |
| __ Addu(a0, |
| last_match_info_elements, |
| Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); |
| __ bind(&next_capture); |
| __ Subu(a1, a1, Operand(1)); |
| __ Branch(&done, lt, a1, Operand(zero_reg)); |
| // Read the value from the static offsets vector buffer. |
| __ lw(a3, MemOperand(a2, 0)); |
| __ addiu(a2, a2, kPointerSize); |
| // Store the smi value in the last match info. |
| __ sll(a3, a3, kSmiTagSize); // Convert to Smi. |
| __ sw(a3, MemOperand(a0, 0)); |
| __ Branch(&next_capture, USE_DELAY_SLOT); |
| __ addiu(a0, a0, kPointerSize); // In branch delay slot. |
| |
| __ bind(&done); |
| |
| // Return last match info. |
| __ lw(v0, MemOperand(sp, kLastMatchInfoOffset)); |
| __ Addu(sp, sp, Operand(4 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to execute the regexp. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #endif // V8_INTERPRETED_REGEXP |
| } |
| |
| |
| void RegExpConstructResultStub::Generate(MacroAssembler* masm) { |
| const int kMaxInlineLength = 100; |
| Label slowcase; |
| Label done; |
| __ lw(a1, MemOperand(sp, kPointerSize * 2)); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ JumpIfNotSmi(a1, &slowcase); |
| __ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength))); |
| // Smi-tagging is equivalent to multiplying by 2. |
| // Allocate RegExpResult followed by FixedArray with size in ebx. |
| // JSArray: [Map][empty properties][Elements][Length-smi][index][input] |
| // Elements: [Map][Length][..elements..] |
| // Size of JSArray with two in-object properties and the header of a |
| // FixedArray. |
| int objects_size = |
| (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize; |
| __ srl(t1, a1, kSmiTagSize + kSmiShiftSize); |
| __ Addu(a2, t1, Operand(objects_size)); |
| __ AllocateInNewSpace( |
| a2, // In: Size, in words. |
| v0, // Out: Start of allocation (tagged). |
| a3, // Scratch register. |
| t0, // Scratch register. |
| &slowcase, |
| static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| // v0: Start of allocated area, object-tagged. |
| // a1: Number of elements in array, as smi. |
| // t1: Number of elements, untagged. |
| |
| // Set JSArray map to global.regexp_result_map(). |
| // Set empty properties FixedArray. |
| // Set elements to point to FixedArray allocated right after the JSArray. |
| // Interleave operations for better latency. |
| __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ Addu(a3, v0, Operand(JSRegExpResult::kSize)); |
| __ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array())); |
| __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); |
| __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset)); |
| __ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX)); |
| __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset)); |
| __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| |
| // Set input, index and length fields from arguments. |
| __ lw(a1, MemOperand(sp, kPointerSize * 0)); |
| __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset)); |
| __ lw(a1, MemOperand(sp, kPointerSize * 1)); |
| __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kIndexOffset)); |
| __ lw(a1, MemOperand(sp, kPointerSize * 2)); |
| __ sw(a1, FieldMemOperand(v0, JSArray::kLengthOffset)); |
| |
| // Fill out the elements FixedArray. |
| // v0: JSArray, tagged. |
| // a3: FixedArray, tagged. |
| // t1: Number of elements in array, untagged. |
| |
| // Set map. |
| __ li(a2, Operand(masm->isolate()->factory()->fixed_array_map())); |
| __ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset)); |
| // Set FixedArray length. |
| __ sll(t2, t1, kSmiTagSize); |
| __ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset)); |
| // Fill contents of fixed-array with the-hole. |
| __ li(a2, Operand(masm->isolate()->factory()->the_hole_value())); |
| __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| // Fill fixed array elements with hole. |
| // v0: JSArray, tagged. |
| // a2: the hole. |
| // a3: Start of elements in FixedArray. |
| // t1: Number of elements to fill. |
| Label loop; |
| __ sll(t1, t1, kPointerSizeLog2); // Convert num elements to num bytes. |
| __ addu(t1, t1, a3); // Point past last element to store. |
| __ bind(&loop); |
| __ Branch(&done, ge, a3, Operand(t1)); // Break when a3 past end of elem. |
| __ sw(a2, MemOperand(a3)); |
| __ Branch(&loop, USE_DELAY_SLOT); |
| __ addiu(a3, a3, kPointerSize); // In branch delay slot. |
| |
| __ bind(&done); |
| __ Addu(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&slowcase); |
| __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); |
| } |
| |
| |
| void CallFunctionStub::Generate(MacroAssembler* masm) { |
| Label slow; |
| |
| // The receiver might implicitly be the global object. This is |
| // indicated by passing the hole as the receiver to the call |
| // function stub. |
| if (ReceiverMightBeImplicit()) { |
| Label call; |
| // Get the receiver from the stack. |
| // function, receiver [, arguments] |
| __ lw(t0, MemOperand(sp, argc_ * kPointerSize)); |
| // Call as function is indicated with the hole. |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| __ Branch(&call, ne, t0, Operand(at)); |
| // Patch the receiver on the stack with the global receiver object. |
| __ lw(a1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset)); |
| __ sw(a1, MemOperand(sp, argc_ * kPointerSize)); |
| __ bind(&call); |
| } |
| |
| // Get the function to call from the stack. |
| // function, receiver [, arguments] |
| __ lw(a1, MemOperand(sp, (argc_ + 1) * kPointerSize)); |
| |
| // Check that the function is really a JavaScript function. |
| // a1: pushed function (to be verified) |
| __ JumpIfSmi(a1, &slow); |
| // Get the map of the function object. |
| __ GetObjectType(a1, a2, a2); |
| __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE)); |
| |
| // Fast-case: Invoke the function now. |
| // a1: pushed function |
| ParameterCount actual(argc_); |
| |
| if (ReceiverMightBeImplicit()) { |
| Label call_as_function; |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| __ Branch(&call_as_function, eq, t0, Operand(at)); |
| __ InvokeFunction(a1, |
| actual, |
| JUMP_FUNCTION, |
| NullCallWrapper(), |
| CALL_AS_METHOD); |
| __ bind(&call_as_function); |
| } |
| __ InvokeFunction(a1, |
| actual, |
| JUMP_FUNCTION, |
| NullCallWrapper(), |
| CALL_AS_FUNCTION); |
| |
| // Slow-case: Non-function called. |
| __ bind(&slow); |
| // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| // of the original receiver from the call site). |
| __ sw(a1, MemOperand(sp, argc_ * kPointerSize)); |
| __ li(a0, Operand(argc_)); // Setup the number of arguments. |
| __ mov(a2, zero_reg); |
| __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION); |
| __ SetCallKind(t1, CALL_AS_METHOD); |
| __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| |
| // Unfortunately you have to run without snapshots to see most of these |
| // names in the profile since most compare stubs end up in the snapshot. |
| void CompareStub::PrintName(StringStream* stream) { |
| ASSERT((lhs_.is(a0) && rhs_.is(a1)) || |
| (lhs_.is(a1) && rhs_.is(a0))); |
| const char* cc_name; |
| switch (cc_) { |
| case lt: cc_name = "LT"; break; |
| case gt: cc_name = "GT"; break; |
| case le: cc_name = "LE"; break; |
| case ge: cc_name = "GE"; break; |
| case eq: cc_name = "EQ"; break; |
| case ne: cc_name = "NE"; break; |
| default: cc_name = "UnknownCondition"; break; |
| } |
| bool is_equality = cc_ == eq || cc_ == ne; |
| stream->Add("CompareStub_%s", cc_name); |
| stream->Add(lhs_.is(a0) ? "_a0" : "_a1"); |
| stream->Add(rhs_.is(a0) ? "_a0" : "_a1"); |
| if (strict_ && is_equality) stream->Add("_STRICT"); |
| if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN"); |
| if (!include_number_compare_) stream->Add("_NO_NUMBER"); |
| if (!include_smi_compare_) stream->Add("_NO_SMI"); |
| } |
| |
| |
| int CompareStub::MinorKey() { |
| // Encode the two parameters in a unique 16 bit value. |
| ASSERT(static_cast<unsigned>(cc_) < (1 << 14)); |
| ASSERT((lhs_.is(a0) && rhs_.is(a1)) || |
| (lhs_.is(a1) && rhs_.is(a0))); |
| return ConditionField::encode(static_cast<unsigned>(cc_)) |
| | RegisterField::encode(lhs_.is(a0)) |
| | StrictField::encode(strict_) |
| | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) |
| | IncludeSmiCompareField::encode(include_smi_compare_); |
| } |
| |
| |
| // StringCharCodeAtGenerator. |
| void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| Label flat_string; |
| Label ascii_string; |
| Label got_char_code; |
| Label sliced_string; |
| |
| ASSERT(!t0.is(scratch_)); |
| ASSERT(!t0.is(index_)); |
| ASSERT(!t0.is(result_)); |
| ASSERT(!t0.is(object_)); |
| |
| // If the receiver is a smi trigger the non-string case. |
| __ JumpIfSmi(object_, receiver_not_string_); |
| |
| // Fetch the instance type of the receiver into result register. |
| __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| // If the receiver is not a string trigger the non-string case. |
| __ And(t0, result_, Operand(kIsNotStringMask)); |
| __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg)); |
| |
| // If the index is non-smi trigger the non-smi case. |
| __ JumpIfNotSmi(index_, &index_not_smi_); |
| |
| // Put smi-tagged index into scratch register. |
| __ mov(scratch_, index_); |
| __ bind(&got_smi_index_); |
| |
| // Check for index out of range. |
| __ lw(t0, FieldMemOperand(object_, String::kLengthOffset)); |
| __ Branch(index_out_of_range_, ls, t0, Operand(scratch_)); |
| |
| // We need special handling for non-flat strings. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ And(t0, result_, Operand(kStringRepresentationMask)); |
| __ Branch(&flat_string, eq, t0, Operand(zero_reg)); |
| |
| // Handle non-flat strings. |
| __ And(result_, result_, Operand(kStringRepresentationMask)); |
| STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
| STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); |
| __ Branch(&sliced_string, gt, result_, Operand(kExternalStringTag)); |
| __ Branch(&call_runtime_, eq, result_, Operand(kExternalStringTag)); |
| |
| // ConsString. |
| // Check whether the right hand side is the empty string (i.e. if |
| // this is really a flat string in a cons string). If that is not |
| // the case we would rather go to the runtime system now to flatten |
| // the string. |
| Label assure_seq_string; |
| __ lw(result_, FieldMemOperand(object_, ConsString::kSecondOffset)); |
| __ LoadRoot(t0, Heap::kEmptyStringRootIndex); |
| __ Branch(&call_runtime_, ne, result_, Operand(t0)); |
| |
| // Get the first of the two strings and load its instance type. |
| __ lw(object_, FieldMemOperand(object_, ConsString::kFirstOffset)); |
| __ jmp(&assure_seq_string); |
| |
| // SlicedString, unpack and add offset. |
| __ bind(&sliced_string); |
| __ lw(result_, FieldMemOperand(object_, SlicedString::kOffsetOffset)); |
| __ addu(scratch_, scratch_, result_); |
| __ lw(object_, FieldMemOperand(object_, SlicedString::kParentOffset)); |
| |
| // Assure that we are dealing with a sequential string. Go to runtime if not. |
| __ bind(&assure_seq_string); |
| __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| // Check that parent is not an external string. Go to runtime otherwise. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| |
| __ And(t0, result_, Operand(kStringRepresentationMask)); |
| __ Branch(&call_runtime_, ne, t0, Operand(zero_reg)); |
| |
| // Check for 1-byte or 2-byte string. |
| __ bind(&flat_string); |
| STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); |
| STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
| __ And(t0, result_, Operand(kStringEncodingMask)); |
| __ Branch(&ascii_string, ne, t0, Operand(zero_reg)); |
| |
| // 2-byte string. |
| // Load the 2-byte character code into the result register. We can |
| // add without shifting since the smi tag size is the log2 of the |
| // number of bytes in a two-byte character. |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); |
| __ Addu(scratch_, object_, Operand(scratch_)); |
| __ lhu(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); |
| __ Branch(&got_char_code); |
| |
| // ASCII string. |
| // Load the byte into the result register. |
| __ bind(&ascii_string); |
| |
| __ srl(t0, scratch_, kSmiTagSize); |
| __ Addu(scratch_, object_, t0); |
| |
| __ lbu(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize)); |
| |
| __ bind(&got_char_code); |
| __ sll(result_, result_, kSmiTagSize); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharCodeAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| |
| // Index is not a smi. |
| __ bind(&index_not_smi_); |
| // If index is a heap number, try converting it to an integer. |
| __ CheckMap(index_, |
| scratch_, |
| Heap::kHeapNumberMapRootIndex, |
| index_not_number_, |
| DONT_DO_SMI_CHECK); |
| call_helper.BeforeCall(masm); |
| // Consumed by runtime conversion function: |
| __ Push(object_, index_, index_); |
| if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| } else { |
| ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| // NumberToSmi discards numbers that are not exact integers. |
| __ CallRuntime(Runtime::kNumberToSmi, 1); |
| } |
| |
| // Save the conversion result before the pop instructions below |
| // have a chance to overwrite it. |
| |
| __ Move(scratch_, v0); |
| |
| __ pop(index_); |
| __ pop(object_); |
| // Reload the instance type. |
| __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| call_helper.AfterCall(masm); |
| // If index is still not a smi, it must be out of range. |
| __ JumpIfNotSmi(scratch_, index_out_of_range_); |
| // Otherwise, return to the fast path. |
| __ Branch(&got_smi_index_); |
| |
| // Call runtime. We get here when the receiver is a string and the |
| // index is a number, but the code of getting the actual character |
| // is too complex (e.g., when the string needs to be flattened). |
| __ bind(&call_runtime_); |
| call_helper.BeforeCall(masm); |
| __ Push(object_, index_); |
| __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| |
| __ Move(result_, v0); |
| |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharFromCodeGenerator |
| |
| void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| |
| ASSERT(!t0.is(result_)); |
| ASSERT(!t0.is(code_)); |
| |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
| __ And(t0, |
| code_, |
| Operand(kSmiTagMask | |
| ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
| __ Branch(&slow_case_, ne, t0, Operand(zero_reg)); |
| |
| __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
| // At this point code register contains smi tagged ASCII char code. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(result_, result_, t0); |
| __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
| __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
| __ Branch(&slow_case_, eq, result_, Operand(t0)); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharFromCodeGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| |
| __ bind(&slow_case_); |
| call_helper.BeforeCall(masm); |
| __ push(code_); |
| __ CallRuntime(Runtime::kCharFromCode, 1); |
| __ Move(result_, v0); |
| |
| call_helper.AfterCall(masm); |
| __ Branch(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharAtGenerator |
| |
| void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| char_code_at_generator_.GenerateFast(masm); |
| char_from_code_generator_.GenerateFast(masm); |
| } |
| |
| |
| void StringCharAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| char_code_at_generator_.GenerateSlow(masm, call_helper); |
| char_from_code_generator_.GenerateSlow(masm, call_helper); |
| } |
| |
| |
| class StringHelper : public AllStatic { |
| public: |
| // Generate code for copying characters using a simple loop. This should only |
| // be used in places where the number of characters is small and the |
| // additional setup and checking in GenerateCopyCharactersLong adds too much |
| // overhead. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| static void GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii); |
| |
| // Generate code for copying a large number of characters. This function |
| // is allowed to spend extra time setting up conditions to make copying |
| // faster. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| static void GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags); |
| |
| |
| // Probe the symbol table for a two character string. If the string is |
| // not found by probing a jump to the label not_found is performed. This jump |
| // does not guarantee that the string is not in the symbol table. If the |
| // string is found the code falls through with the string in register r0. |
| // Contents of both c1 and c2 registers are modified. At the exit c1 is |
| // guaranteed to contain halfword with low and high bytes equal to |
| // initial contents of c1 and c2 respectively. |
| static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| Label* not_found); |
| |
| // Generate string hash. |
| static void GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character); |
| |
| static void GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character); |
| |
| static void GenerateHashGetHash(MacroAssembler* masm, |
| Register hash); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); |
| }; |
| |
| |
| void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| Label loop; |
| Label done; |
| // This loop just copies one character at a time, as it is only used for |
| // very short strings. |
| if (!ascii) { |
| __ addu(count, count, count); |
| } |
| __ Branch(&done, eq, count, Operand(zero_reg)); |
| __ addu(count, dest, count); // Count now points to the last dest byte. |
| |
| __ bind(&loop); |
| __ lbu(scratch, MemOperand(src)); |
| __ addiu(src, src, 1); |
| __ sb(scratch, MemOperand(dest)); |
| __ addiu(dest, dest, 1); |
| __ Branch(&loop, lt, dest, Operand(count)); |
| |
| __ bind(&done); |
| } |
| |
| |
| enum CopyCharactersFlags { |
| COPY_ASCII = 1, |
| DEST_ALWAYS_ALIGNED = 2 |
| }; |
| |
| |
| void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags) { |
| bool ascii = (flags & COPY_ASCII) != 0; |
| bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; |
| |
| if (dest_always_aligned && FLAG_debug_code) { |
| // Check that destination is actually word aligned if the flag says |
| // that it is. |
| __ And(scratch4, dest, Operand(kPointerAlignmentMask)); |
| __ Check(eq, |
| "Destination of copy not aligned.", |
| scratch4, |
| Operand(zero_reg)); |
| } |
| |
| const int kReadAlignment = 4; |
| const int kReadAlignmentMask = kReadAlignment - 1; |
| // Ensure that reading an entire aligned word containing the last character |
| // of a string will not read outside the allocated area (because we pad up |
| // to kObjectAlignment). |
| STATIC_ASSERT(kObjectAlignment >= kReadAlignment); |
| // Assumes word reads and writes are little endian. |
| // Nothing to do for zero characters. |
| Label done; |
| |
| if (!ascii) { |
| __ addu(count, count, count); |
| } |
| __ Branch(&done, eq, count, Operand(zero_reg)); |
| |
| Label byte_loop; |
| // Must copy at least eight bytes, otherwise just do it one byte at a time. |
| __ Subu(scratch1, count, Operand(8)); |
| __ Addu(count, dest, Operand(count)); |
| Register limit = count; // Read until src equals this. |
| __ Branch(&byte_loop, lt, scratch1, Operand(zero_reg)); |
| |
| if (!dest_always_aligned) { |
| // Align dest by byte copying. Copies between zero and three bytes. |
| __ And(scratch4, dest, Operand(kReadAlignmentMask)); |
| Label dest_aligned; |
| __ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg)); |
| Label aligned_loop; |
| __ bind(&aligned_loop); |
| __ lbu(scratch1, MemOperand(src)); |
| __ addiu(src, src, 1); |
| __ sb(scratch1, MemOperand(dest)); |
| __ addiu(dest, dest, 1); |
| __ addiu(scratch4, scratch4, 1); |
| __ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask)); |
| __ bind(&dest_aligned); |
| } |
| |
| Label simple_loop; |
| |
| __ And(scratch4, src, Operand(kReadAlignmentMask)); |
| __ Branch(&simple_loop, eq, scratch4, Operand(zero_reg)); |
| |
| // Loop for src/dst that are not aligned the same way. |
| // This loop uses lwl and lwr instructions. These instructions |
| // depend on the endianness, and the implementation assumes little-endian. |
| { |
| Label loop; |
| __ bind(&loop); |
| __ lwr(scratch1, MemOperand(src)); |
| __ Addu(src, src, Operand(kReadAlignment)); |
| __ lwl(scratch1, MemOperand(src, -1)); |
| __ sw(scratch1, MemOperand(dest)); |
| __ Addu(dest, dest, Operand(kReadAlignment)); |
| __ Subu(scratch2, limit, dest); |
| __ Branch(&loop, ge, scratch2, Operand(kReadAlignment)); |
| } |
| |
| __ Branch(&byte_loop); |
| |
| // Simple loop. |
| // Copy words from src to dest, until less than four bytes left. |
| // Both src and dest are word aligned. |
| __ bind(&simple_loop); |
| { |
| Label loop; |
| __ bind(&loop); |
| __ lw(scratch1, MemOperand(src)); |
| __ Addu(src, src, Operand(kReadAlignment)); |
| __ sw(scratch1, MemOperand(dest)); |
| __ Addu(dest, dest, Operand(kReadAlignment)); |
| __ Subu(scratch2, limit, dest); |
| __ Branch(&loop, ge, scratch2, Operand(kReadAlignment)); |
| } |
| |
| // Copy bytes from src to dest until dest hits limit. |
| __ bind(&byte_loop); |
| // Test if dest has already reached the limit. |
| __ Branch(&done, ge, dest, Operand(limit)); |
| __ lbu(scratch1, MemOperand(src)); |
| __ addiu(src, src, 1); |
| __ sb(scratch1, MemOperand(dest)); |
| __ addiu(dest, dest, 1); |
| __ Branch(&byte_loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| Label* not_found) { |
| // Register scratch3 is the general scratch register in this function. |
| Register scratch = scratch3; |
| |
| // Make sure that both characters are not digits as such strings has a |
| // different hash algorithm. Don't try to look for these in the symbol table. |
| Label not_array_index; |
| __ Subu(scratch, c1, Operand(static_cast<int>('0'))); |
| __ Branch(¬_array_index, |
| Ugreater, |
| scratch, |
| Operand(static_cast<int>('9' - '0'))); |
| __ Subu(scratch, c2, Operand(static_cast<int>('0'))); |
| |
| // If check failed combine both characters into single halfword. |
| // This is required by the contract of the method: code at the |
| // not_found branch expects this combination in c1 register. |
| Label tmp; |
| __ sll(scratch1, c2, kBitsPerByte); |
| __ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0'))); |
| __ Or(c1, c1, scratch1); |
| __ bind(&tmp); |
| __ Branch(not_found, |
| Uless_equal, |
| scratch, |
| Operand(static_cast<int>('9' - '0'))); |
| |
| __ bind(¬_array_index); |
| // Calculate the two character string hash. |
| Register hash = scratch1; |
| StringHelper::GenerateHashInit(masm, hash, c1); |
| StringHelper::GenerateHashAddCharacter(masm, hash, c2); |
| StringHelper::GenerateHashGetHash(masm, hash); |
| |
| // Collect the two characters in a register. |
| Register chars = c1; |
| __ sll(scratch, c2, kBitsPerByte); |
| __ Or(chars, chars, scratch); |
| |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string. |
| |
| // Load symbol table. |
| // Load address of first element of the symbol table. |
| Register symbol_table = c2; |
| __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
| |
| Register undefined = scratch4; |
| __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
| |
| // Calculate capacity mask from the symbol table capacity. |
| Register mask = scratch2; |
| __ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| __ sra(mask, mask, 1); |
| __ Addu(mask, mask, -1); |
| |
| // Calculate untagged address of the first element of the symbol table. |
| Register first_symbol_table_element = symbol_table; |
| __ Addu(first_symbol_table_element, symbol_table, |
| Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); |
| |
| // Registers. |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string |
| // mask: capacity mask |
| // first_symbol_table_element: address of the first element of |
| // the symbol table |
| // undefined: the undefined object |
| // scratch: - |
| |
| // Perform a number of probes in the symbol table. |
| static const int kProbes = 4; |
| Label found_in_symbol_table; |
| Label next_probe[kProbes]; |
| Register candidate = scratch5; // Scratch register contains candidate. |
| for (int i = 0; i < kProbes; i++) { |
| // Calculate entry in symbol table. |
| if (i > 0) { |
| __ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); |
| } else { |
| __ mov(candidate, hash); |
| } |
| |
| __ And(candidate, candidate, Operand(mask)); |
| |
| // Load the entry from the symble table. |
| STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
| __ sll(scratch, candidate, kPointerSizeLog2); |
| __ Addu(scratch, scratch, first_symbol_table_element); |
| __ lw(candidate, MemOperand(scratch)); |
| |
| // If entry is undefined no string with this hash can be found. |
| Label is_string; |
| __ GetObjectType(candidate, scratch, scratch); |
| __ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE)); |
| |
| __ Branch(not_found, eq, undefined, Operand(candidate)); |
| // Must be null (deleted entry). |
| if (FLAG_debug_code) { |
| __ LoadRoot(scratch, Heap::kNullValueRootIndex); |
| __ Assert(eq, "oddball in symbol table is not undefined or null", |
| scratch, Operand(candidate)); |
| } |
| __ jmp(&next_probe[i]); |
| |
| __ bind(&is_string); |
| |
| // Check that the candidate is a non-external ASCII string. The instance |
| // type is still in the scratch register from the CompareObjectType |
| // operation. |
| __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]); |
| |
| // If length is not 2 the string is not a candidate. |
| __ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset)); |
| __ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2))); |
| |
| // Check if the two characters match. |
| // Assumes that word load is little endian. |
| __ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); |
| __ Branch(&found_in_symbol_table, eq, chars, Operand(scratch)); |
| __ bind(&next_probe[i]); |
| } |
| |
| // No matching 2 character string found by probing. |
| __ jmp(not_found); |
| |
| // Scratch register contains result when we fall through to here. |
| Register result = candidate; |
| __ bind(&found_in_symbol_table); |
| __ mov(v0, result); |
| } |
| |
| |
| void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character) { |
| // hash = character + (character << 10); |
| __ sll(hash, character, 10); |
| __ addu(hash, hash, character); |
| // hash ^= hash >> 6; |
| __ sra(at, hash, 6); |
| __ xor_(hash, hash, at); |
| } |
| |
| |
| void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character) { |
| // hash += character; |
| __ addu(hash, hash, character); |
| // hash += hash << 10; |
| __ sll(at, hash, 10); |
| __ addu(hash, hash, at); |
| // hash ^= hash >> 6; |
| __ sra(at, hash, 6); |
| __ xor_(hash, hash, at); |
| } |
| |
| |
| void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| Register hash) { |
| // hash += hash << 3; |
| __ sll(at, hash, 3); |
| __ addu(hash, hash, at); |
| // hash ^= hash >> 11; |
| __ sra(at, hash, 11); |
| __ xor_(hash, hash, at); |
| // hash += hash << 15; |
| __ sll(at, hash, 15); |
| __ addu(hash, hash, at); |
| |
| // if (hash == 0) hash = 27; |
| __ ori(at, zero_reg, 27); |
| __ movz(hash, at, hash); |
| } |
| |
| |
| void SubStringStub::Generate(MacroAssembler* masm) { |
| Label sub_string_runtime; |
| // Stack frame on entry. |
| // ra: return address |
| // sp[0]: to |
| // sp[4]: from |
| // sp[8]: string |
| |
| // This stub is called from the native-call %_SubString(...), so |
| // nothing can be assumed about the arguments. It is tested that: |
| // "string" is a sequential string, |
| // both "from" and "to" are smis, and |
| // 0 <= from <= to <= string.length. |
| // If any of these assumptions fail, we call the runtime system. |
| |
| static const int kToOffset = 0 * kPointerSize; |
| static const int kFromOffset = 1 * kPointerSize; |
| static const int kStringOffset = 2 * kPointerSize; |
| |
| Register to = t2; |
| Register from = t3; |
| |
| // Check bounds and smi-ness. |
| __ lw(to, MemOperand(sp, kToOffset)); |
| __ lw(from, MemOperand(sp, kFromOffset)); |
| STATIC_ASSERT(kFromOffset == kToOffset + 4); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| |
| __ JumpIfNotSmi(from, &sub_string_runtime); |
| __ JumpIfNotSmi(to, &sub_string_runtime); |
| |
| __ sra(a3, from, kSmiTagSize); // Remove smi tag. |
| __ sra(t5, to, kSmiTagSize); // Remove smi tag. |
| |
| // a3: from index (untagged smi) |
| // t5: to index (untagged smi) |
| |
| __ Branch(&sub_string_runtime, lt, a3, Operand(zero_reg)); // From < 0. |
| |
| __ subu(a2, t5, a3); |
| __ Branch(&sub_string_runtime, gt, a3, Operand(t5)); // Fail if from > to. |
| |
| // Special handling of sub-strings of length 1 and 2. One character strings |
| // are handled in the runtime system (looked up in the single character |
| // cache). Two character strings are looked for in the symbol cache in |
| // generated code. |
| __ Branch(&sub_string_runtime, lt, a2, Operand(2)); |
| |
| // Both to and from are smis. |
| |
| // a2: result string length |
| // a3: from index (untagged smi) |
| // t2: (a.k.a. to): to (smi) |
| // t3: (a.k.a. from): from offset (smi) |
| // t5: to index (untagged smi) |
| |
| // Make sure first argument is a sequential (or flat) string. |
| __ lw(v0, MemOperand(sp, kStringOffset)); |
| __ Branch(&sub_string_runtime, eq, v0, Operand(kSmiTagMask)); |
| |
| __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); |
| __ And(t4, v0, Operand(kIsNotStringMask)); |
| |
| __ Branch(&sub_string_runtime, ne, t4, Operand(zero_reg)); |
| |
| // Short-cut for the case of trivial substring. |
| Label return_v0; |
| // v0: original string |
| // a2: result string length |
| __ lw(t0, FieldMemOperand(v0, String::kLengthOffset)); |
| __ sra(t0, t0, 1); |
| __ Branch(&return_v0, eq, a2, Operand(t0)); |
| |
| Label create_slice; |
| if (FLAG_string_slices) { |
| __ Branch(&create_slice, ge, a2, Operand(SlicedString::kMinLength)); |
| } |
| |
| // v0: original string |
| // a1: instance type |
| // a2: result string length |
| // a3: from index (untagged smi) |
| // t2: (a.k.a. to): to (smi) |
| // t3: (a.k.a. from): from offset (smi) |
| // t5: to index (untagged smi) |
| |
| Label seq_string; |
| __ And(t0, a1, Operand(kStringRepresentationMask)); |
| STATIC_ASSERT(kSeqStringTag < kConsStringTag); |
| STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
| STATIC_ASSERT(kConsStringTag < kSlicedStringTag); |
| |
| // Slices and external strings go to runtime. |
| __ Branch(&sub_string_runtime, gt, t0, Operand(kConsStringTag)); |
| |
| // Sequential strings are handled directly. |
| __ Branch(&seq_string, lt, t0, Operand(kConsStringTag)); |
| |
| // Cons string. Try to recurse (once) on the first substring. |
| // (This adds a little more generality than necessary to handle flattened |
| // cons strings, but not much). |
| __ lw(v0, FieldMemOperand(v0, ConsString::kFirstOffset)); |
| __ lw(t0, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| __ lbu(a1, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kSeqStringTag == 0); |
| // Cons, slices and external strings go to runtime. |
| __ Branch(&sub_string_runtime, ne, a1, Operand(kStringRepresentationMask)); |
| |
| // Definitly a sequential string. |
| __ bind(&seq_string); |
| |
| // v0: original string |
| // a1: instance type |
| // a2: result string length |
| // a3: from index (untagged smi) |
| // t2: (a.k.a. to): to (smi) |
| // t3: (a.k.a. from): from offset (smi) |
| // t5: to index (untagged smi) |
| |
| __ lw(t0, FieldMemOperand(v0, String::kLengthOffset)); |
| __ Branch(&sub_string_runtime, lt, t0, Operand(to)); // Fail if to > length. |
| to = no_reg; |
| |
| // v0: original string or left hand side of the original cons string. |
| // a1: instance type |
| // a2: result string length |
| // a3: from index (untagged smi) |
| // t3: (a.k.a. from): from offset (smi) |
| // t5: to index (untagged smi) |
| |
| // Check for flat ASCII string. |
| Label non_ascii_flat; |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| |
| __ And(t4, a1, Operand(kStringEncodingMask)); |
| __ Branch(&non_ascii_flat, eq, t4, Operand(zero_reg)); |
| |
| Label result_longer_than_two; |
| __ Branch(&result_longer_than_two, gt, a2, Operand(2)); |
| |
| // Sub string of length 2 requested. |
| // Get the two characters forming the sub string. |
| __ Addu(v0, v0, Operand(a3)); |
| __ lbu(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize)); |
| __ lbu(t0, FieldMemOperand(v0, SeqAsciiString::kHeaderSize + 1)); |
| |
| // Try to lookup two character string in symbol table. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, a3, t0, a1, t1, t2, t3, t4, &make_two_character_string); |
| Counters* counters = masm->isolate()->counters(); |
| __ jmp(&return_v0); |
| |
| // a2: result string length. |
| // a3: two characters combined into halfword in little endian byte order. |
| __ bind(&make_two_character_string); |
| __ AllocateAsciiString(v0, a2, t0, t1, t4, &sub_string_runtime); |
| __ sh(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize)); |
| __ jmp(&return_v0); |
| |
| __ bind(&result_longer_than_two); |
| |
| // Locate 'from' character of string. |
| __ Addu(t1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ sra(t4, from, 1); |
| __ Addu(t1, t1, t4); |
| |
| // Allocate the result. |
| __ AllocateAsciiString(v0, a2, t4, t0, a1, &sub_string_runtime); |
| |
| // v0: result string |
| // a2: result string length |
| // a3: from index (untagged smi) |
| // t1: first character of substring to copy |
| // t3: (a.k.a. from): from offset (smi) |
| // Locate first character of result. |
| __ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| |
| // v0: result string |
| // a1: first character of result string |
| // a2: result string length |
| // t1: first character of substring to copy |
| STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| StringHelper::GenerateCopyCharactersLong( |
| masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED); |
| __ jmp(&return_v0); |
| |
| __ bind(&non_ascii_flat); |
| // a2: result string length |
| // t1: string |
| // t3: (a.k.a. from): from offset (smi) |
| // Check for flat two byte string. |
| |
| // Locate 'from' character of string. |
| __ Addu(t1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // As "from" is a smi it is 2 times the value which matches the size of a two |
| // byte character. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ Addu(t1, t1, Operand(from)); |
| |
| // Allocate the result. |
| __ AllocateTwoByteString(v0, a2, a1, a3, t0, &sub_string_runtime); |
| |
| // v0: result string |
| // a2: result string length |
| // t1: first character of substring to copy |
| // Locate first character of result. |
| __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| from = no_reg; |
| |
| // v0: result string. |
| // a1: first character of result. |
| // a2: result length. |
| // t1: first character of substring to copy. |
| STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| StringHelper::GenerateCopyCharactersLong( |
| masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED); |
| __ jmp(&return_v0); |
| |
| if (FLAG_string_slices) { |
| __ bind(&create_slice); |
| // v0: original string |
| // a1: instance type |
| // a2: length |
| // a3: from index (untagged smi) |
| // t2 (a.k.a. to): to (smi) |
| // t3 (a.k.a. from): from offset (smi) |
| Label allocate_slice, sliced_string, seq_string; |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ And(t4, a1, Operand(kStringRepresentationMask)); |
| __ Branch(&seq_string, eq, t4, Operand(zero_reg)); |
| STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
| STATIC_ASSERT(kIsIndirectStringMask != 0); |
| __ And(t4, a1, Operand(kIsIndirectStringMask)); |
| // External string. Jump to runtime. |
| __ Branch(&sub_string_runtime, eq, t4, Operand(zero_reg)); |
| |
| __ And(t4, a1, Operand(kSlicedNotConsMask)); |
| __ Branch(&sliced_string, ne, t4, Operand(zero_reg)); |
| // Cons string. Check whether it is flat, then fetch first part. |
| __ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset)); |
| __ LoadRoot(t5, Heap::kEmptyStringRootIndex); |
| __ Branch(&sub_string_runtime, ne, t1, Operand(t5)); |
| __ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset)); |
| __ jmp(&allocate_slice); |
| |
| __ bind(&sliced_string); |
| // Sliced string. Fetch parent and correct start index by offset. |
| __ lw(t1, FieldMemOperand(v0, SlicedString::kOffsetOffset)); |
| __ addu(t3, t3, t1); |
| __ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset)); |
| __ jmp(&allocate_slice); |
| |
| __ bind(&seq_string); |
| // Sequential string. Just move string to the right register. |
| __ mov(t1, v0); |
| |
| __ bind(&allocate_slice); |
| // a1: instance type of original string |
| // a2: length |
| // t1: underlying subject string |
| // t3 (a.k.a. from): from offset (smi) |
| // Allocate new sliced string. At this point we do not reload the instance |
| // type including the string encoding because we simply rely on the info |
| // provided by the original string. It does not matter if the original |
| // string's encoding is wrong because we always have to recheck encoding of |
| // the newly created string's parent anyways due to externalized strings. |
| Label two_byte_slice, set_slice_header; |
| STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); |
| STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
| __ And(t4, a1, Operand(kStringEncodingMask)); |
| __ Branch(&two_byte_slice, eq, t4, Operand(zero_reg)); |
| __ AllocateAsciiSlicedString(v0, a2, a3, t0, &sub_string_runtime); |
| __ jmp(&set_slice_header); |
| __ bind(&two_byte_slice); |
| __ AllocateTwoByteSlicedString(v0, a2, a3, t0, &sub_string_runtime); |
| __ bind(&set_slice_header); |
| __ sw(t3, FieldMemOperand(v0, SlicedString::kOffsetOffset)); |
| __ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset)); |
| } |
| |
| __ bind(&return_v0); |
| __ IncrementCounter(counters->sub_string_native(), 1, a3, t0); |
| __ Addu(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to create the sub string. |
| __ bind(&sub_string_runtime); |
| __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| } |
| |
| |
| void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3) { |
| Register length = scratch1; |
| |
| // Compare lengths. |
| Label strings_not_equal, check_zero_length; |
| __ lw(length, FieldMemOperand(left, String::kLengthOffset)); |
| __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
| __ Branch(&check_zero_length, eq, length, Operand(scratch2)); |
| __ bind(&strings_not_equal); |
| __ li(v0, Operand(Smi::FromInt(NOT_EQUAL))); |
| __ Ret(); |
| |
| // Check if the length is zero. |
| Label compare_chars; |
| __ bind(&check_zero_length); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Branch(&compare_chars, ne, length, Operand(zero_reg)); |
| __ li(v0, Operand(Smi::FromInt(EQUAL))); |
| __ Ret(); |
| |
| // Compare characters. |
| __ bind(&compare_chars); |
| |
| GenerateAsciiCharsCompareLoop(masm, |
| left, right, length, scratch2, scratch3, v0, |
| &strings_not_equal); |
| |
| // Characters are equal. |
| __ li(v0, Operand(Smi::FromInt(EQUAL))); |
| __ Ret(); |
| } |
| |
| |
| void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4) { |
| Label result_not_equal, compare_lengths; |
| // Find minimum length and length difference. |
| __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
| __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
| __ Subu(scratch3, scratch1, Operand(scratch2)); |
| Register length_delta = scratch3; |
| __ slt(scratch4, scratch2, scratch1); |
| __ movn(scratch1, scratch2, scratch4); |
| Register min_length = scratch1; |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg)); |
| |
| // Compare loop. |
| GenerateAsciiCharsCompareLoop(masm, |
| left, right, min_length, scratch2, scratch4, v0, |
| &result_not_equal); |
| |
| // Compare lengths - strings up to min-length are equal. |
| __ bind(&compare_lengths); |
| ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
| // Use length_delta as result if it's zero. |
| __ mov(scratch2, length_delta); |
| __ mov(scratch4, zero_reg); |
| __ mov(v0, zero_reg); |
| |
| __ bind(&result_not_equal); |
| // Conditionally update the result based either on length_delta or |
| // the last comparion performed in the loop above. |
| Label ret; |
| __ Branch(&ret, eq, scratch2, Operand(scratch4)); |
| __ li(v0, Operand(Smi::FromInt(GREATER))); |
| __ Branch(&ret, gt, scratch2, Operand(scratch4)); |
| __ li(v0, Operand(Smi::FromInt(LESS))); |
| __ bind(&ret); |
| __ Ret(); |
| } |
| |
| |
| void StringCompareStub::GenerateAsciiCharsCompareLoop( |
| MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* chars_not_equal) { |
| // Change index to run from -length to -1 by adding length to string |
| // start. This means that loop ends when index reaches zero, which |
| // doesn't need an additional compare. |
| __ SmiUntag(length); |
| __ Addu(scratch1, length, |
| Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ Addu(left, left, Operand(scratch1)); |
| __ Addu(right, right, Operand(scratch1)); |
| __ Subu(length, zero_reg, length); |
| Register index = length; // index = -length; |
| |
| |
| // Compare loop. |
| Label loop; |
| __ bind(&loop); |
| __ Addu(scratch3, left, index); |
| __ lbu(scratch1, MemOperand(scratch3)); |
| __ Addu(scratch3, right, index); |
| __ lbu(scratch2, MemOperand(scratch3)); |
| __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2)); |
| __ Addu(index, index, 1); |
| __ Branch(&loop, ne, index, Operand(zero_reg)); |
| } |
| |
| |
| void StringCompareStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| Counters* counters = masm->isolate()->counters(); |
| |
| // Stack frame on entry. |
| // sp[0]: right string |
| // sp[4]: left string |
| __ lw(a1, MemOperand(sp, 1 * kPointerSize)); // Left. |
| __ lw(a0, MemOperand(sp, 0 * kPointerSize)); // Right. |
| |
| Label not_same; |
| __ Branch(¬_same, ne, a0, Operand(a1)); |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ li(v0, Operand(Smi::FromInt(EQUAL))); |
| __ IncrementCounter(counters->string_compare_native(), 1, a1, a2); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(¬_same); |
| |
| // Check that both objects are sequential ASCII strings. |
| __ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime); |
| |
| // Compare flat ASCII strings natively. Remove arguments from stack first. |
| __ IncrementCounter(counters->string_compare_native(), 1, a2, a3); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1); |
| |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| } |
| |
| |
| void StringAddStub::Generate(MacroAssembler* masm) { |
| Label string_add_runtime, call_builtin; |
| Builtins::JavaScript builtin_id = Builtins::ADD; |
| |
| Counters* counters = masm->isolate()->counters(); |
| |
| // Stack on entry: |
| // sp[0]: second argument (right). |
| // sp[4]: first argument (left). |
| |
| // Load the two arguments. |
| __ lw(a0, MemOperand(sp, 1 * kPointerSize)); // First argument. |
| __ lw(a1, MemOperand(sp, 0 * kPointerSize)); // Second argument. |
| |
| // Make sure that both arguments are strings if not known in advance. |
| if (flags_ == NO_STRING_ADD_FLAGS) { |
| __ JumpIfEitherSmi(a0, a1, &string_add_runtime); |
| // Load instance types. |
| __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
| __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
| __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kStringTag == 0); |
| // If either is not a string, go to runtime. |
| __ Or(t4, t0, Operand(t1)); |
| __ And(t4, t4, Operand(kIsNotStringMask)); |
| __ Branch(&string_add_runtime, ne, t4, Operand(zero_reg)); |
| } else { |
| // Here at least one of the arguments is definitely a string. |
| // We convert the one that is not known to be a string. |
| if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { |
| ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); |
| GenerateConvertArgument( |
| masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin); |
| builtin_id = Builtins::STRING_ADD_RIGHT; |
| } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { |
| ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); |
| GenerateConvertArgument( |
| masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin); |
| builtin_id = Builtins::STRING_ADD_LEFT; |
| } |
| } |
| |
| // Both arguments are strings. |
| // a0: first string |
| // a1: second string |
| // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| { |
| Label strings_not_empty; |
| // Check if either of the strings are empty. In that case return the other. |
| // These tests use zero-length check on string-length whch is an Smi. |
| // Assert that Smi::FromInt(0) is really 0. |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT(Smi::FromInt(0) == 0); |
| __ lw(a2, FieldMemOperand(a0, String::kLengthOffset)); |
| __ lw(a3, FieldMemOperand(a1, String::kLengthOffset)); |
| __ mov(v0, a0); // Assume we'll return first string (from a0). |
| __ movz(v0, a1, a2); // If first is empty, return second (from a1). |
| __ slt(t4, zero_reg, a2); // if (a2 > 0) t4 = 1. |
| __ slt(t5, zero_reg, a3); // if (a3 > 0) t5 = 1. |
| __ and_(t4, t4, t5); // Branch if both strings were non-empty. |
| __ Branch(&strings_not_empty, ne, t4, Operand(zero_reg)); |
| |
| __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&strings_not_empty); |
| } |
| |
| // Untag both string-lengths. |
| __ sra(a2, a2, kSmiTagSize); |
| __ sra(a3, a3, kSmiTagSize); |
| |
| // Both strings are non-empty. |
| // a0: first string |
| // a1: second string |
| // a2: length of first string |
| // a3: length of second string |
| // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // Look at the length of the result of adding the two strings. |
| Label string_add_flat_result, longer_than_two; |
| // Adding two lengths can't overflow. |
| STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); |
| __ Addu(t2, a2, Operand(a3)); |
| // Use the symbol table when adding two one character strings, as it |
| // helps later optimizations to return a symbol here. |
| __ Branch(&longer_than_two, ne, t2, Operand(2)); |
| |
| // Check that both strings are non-external ASCII strings. |
| if (flags_ != NO_STRING_ADD_FLAGS) { |
| __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
| __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
| __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
| } |
| __ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3, |
| &string_add_runtime); |
| |
| // Get the two characters forming the sub string. |
| __ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize)); |
| __ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize)); |
| |
| // Try to lookup two character string in symbol table. If it is not found |
| // just allocate a new one. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, a2, a3, t2, t3, t0, t1, t4, &make_two_character_string); |
| __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&make_two_character_string); |
| // Resulting string has length 2 and first chars of two strings |
| // are combined into single halfword in a2 register. |
| // So we can fill resulting string without two loops by a single |
| // halfword store instruction (which assumes that processor is |
| // in a little endian mode). |
| __ li(t2, Operand(2)); |
| __ AllocateAsciiString(v0, t2, t0, t1, t4, &string_add_runtime); |
| __ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize)); |
| __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&longer_than_two); |
| // Check if resulting string will be flat. |
| __ Branch(&string_add_flat_result, lt, t2, |
| Operand(String::kMinNonFlatLength)); |
| // Handle exceptionally long strings in the runtime system. |
| STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); |
| ASSERT(IsPowerOf2(String::kMaxLength + 1)); |
| // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. |
| __ Branch(&string_add_runtime, hs, t2, Operand(String::kMaxLength + 1)); |
| |
| // If result is not supposed to be flat, allocate a cons string object. |
| // If both strings are ASCII the result is an ASCII cons string. |
| if (flags_ != NO_STRING_ADD_FLAGS) { |
| __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
| __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
| __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
| } |
| Label non_ascii, allocated, ascii_data; |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| // Branch to non_ascii if either string-encoding field is zero (non-ascii). |
| __ And(t4, t0, Operand(t1)); |
| __ And(t4, t4, Operand(kStringEncodingMask)); |
| __ Branch(&non_ascii, eq, t4, Operand(zero_reg)); |
| |
| // Allocate an ASCII cons string. |
| __ bind(&ascii_data); |
| __ AllocateAsciiConsString(t3, t2, t0, t1, &string_add_runtime); |
| __ bind(&allocated); |
| // Fill the fields of the cons string. |
| __ sw(a0, FieldMemOperand(t3, ConsString::kFirstOffset)); |
| __ sw(a1, FieldMemOperand(t3, ConsString::kSecondOffset)); |
| __ mov(v0, t3); |
| __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii); |
| // At least one of the strings is two-byte. Check whether it happens |
| // to contain only ASCII characters. |
| // t0: first instance type. |
| // t1: second instance type. |
| // Branch to if _both_ instances have kAsciiDataHintMask set. |
| __ And(at, t0, Operand(kAsciiDataHintMask)); |
| __ and_(at, at, t1); |
| __ Branch(&ascii_data, ne, at, Operand(zero_reg)); |
| |
| __ xor_(t0, t0, t1); |
| STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
| __ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
| __ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
| |
| // Allocate a two byte cons string. |
| __ AllocateTwoByteConsString(t3, t2, t0, t1, &string_add_runtime); |
| __ Branch(&allocated); |
| |
| // Handle creating a flat result. First check that both strings are |
| // sequential and that they have the same encoding. |
| // a0: first string |
| // a1: second string |
| // a2: length of first string |
| // a3: length of second string |
| // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // t2: sum of lengths. |
| __ bind(&string_add_flat_result); |
| if (flags_ != NO_STRING_ADD_FLAGS) { |
| __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
| __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
| __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
| } |
| // Check that both strings are sequential, meaning that we |
| // branch to runtime if either string tag is non-zero. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ Or(t4, t0, Operand(t1)); |
| __ And(t4, t4, Operand(kStringRepresentationMask)); |
| __ Branch(&string_add_runtime, ne, t4, Operand(zero_reg)); |
| |
| // Now check if both strings have the same encoding (ASCII/Two-byte). |
| // a0: first string |
| // a1: second string |
| // a2: length of first string |
| // a3: length of second string |
| // t0: first string instance type |
| // t1: second string instance type |
| // t2: sum of lengths. |
| Label non_ascii_string_add_flat_result; |
| ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. |
| __ xor_(t3, t1, t0); |
| __ And(t3, t3, Operand(kStringEncodingMask)); |
| __ Branch(&string_add_runtime, ne, t3, Operand(zero_reg)); |
| // And see if it's ASCII (0) or two-byte (1). |
| __ And(t3, t0, Operand(kStringEncodingMask)); |
| __ Branch(&non_ascii_string_add_flat_result, eq, t3, Operand(zero_reg)); |
| |
| // Both strings are sequential ASCII strings. We also know that they are |
| // short (since the sum of the lengths is less than kMinNonFlatLength). |
| // t2: length of resulting flat string |
| __ AllocateAsciiString(t3, t2, t0, t1, t4, &string_add_runtime); |
| // Locate first character of result. |
| __ Addu(t2, t3, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ Addu(a0, a0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // a0: first character of first string. |
| // a1: second string. |
| // a2: length of first string. |
| // a3: length of second string. |
| // t2: first character of result. |
| // t3: result string. |
| StringHelper::GenerateCopyCharacters(masm, t2, a0, a2, t0, true); |
| |
| // Load second argument and locate first character. |
| __ Addu(a1, a1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // a1: first character of second string. |
| // a3: length of second string. |
| // t2: next character of result. |
| // t3: result string. |
| StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true); |
| __ mov(v0, t3); |
| __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_string_add_flat_result); |
| // Both strings are sequential two byte strings. |
| // a0: first string. |
| // a1: second string. |
| // a2: length of first string. |
| // a3: length of second string. |
| // t2: sum of length of strings. |
| __ AllocateTwoByteString(t3, t2, t0, t1, t4, &string_add_runtime); |
| // a0: first string. |
| // a1: second string. |
| // a2: length of first string. |
| // a3: length of second string. |
| // t3: result string. |
| |
| // Locate first character of result. |
| __ Addu(t2, t3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ Addu(a0, a0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // a0: first character of first string. |
| // a1: second string. |
| // a2: length of first string. |
| // a3: length of second string. |
| // t2: first character of result. |
| // t3: result string. |
| StringHelper::GenerateCopyCharacters(masm, t2, a0, a2, t0, false); |
| |
| // Locate first character of second argument. |
| __ Addu(a1, a1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // a1: first character of second string. |
| // a3: length of second string. |
| // t2: next character of result (after copy of first string). |
| // t3: result string. |
| StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false); |
| |
| __ mov(v0, t3); |
| __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
| __ Addu(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to add the two strings. |
| __ bind(&string_add_runtime); |
| __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| |
| if (call_builtin.is_linked()) { |
| __ bind(&call_builtin); |
| __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); |
| } |
| } |
| |
| |
| void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, |
| int stack_offset, |
| Register arg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Label* slow) { |
| // First check if the argument is already a string. |
| Label not_string, done; |
| __ JumpIfSmi(arg, ¬_string); |
| __ GetObjectType(arg, scratch1, scratch1); |
| __ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE)); |
| |
| // Check the number to string cache. |
| Label not_cached; |
| __ bind(¬_string); |
| // Puts the cached result into scratch1. |
| NumberToStringStub::GenerateLookupNumberStringCache(masm, |
| arg, |
| scratch1, |
| scratch2, |
| scratch3, |
| scratch4, |
| false, |
| ¬_cached); |
| __ mov(arg, scratch1); |
| __ sw(arg, MemOperand(sp, stack_offset)); |
| __ jmp(&done); |
| |
| // Check if the argument is a safe string wrapper. |
| __ bind(¬_cached); |
| __ JumpIfSmi(arg, slow); |
| __ GetObjectType(arg, scratch1, scratch2); // map -> scratch1. |
| __ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE)); |
| __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset)); |
| __ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf); |
| __ And(scratch2, scratch2, scratch4); |
| __ Branch(slow, ne, scratch2, Operand(scratch4)); |
| __ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset)); |
| __ sw(arg, MemOperand(sp, stack_offset)); |
| |
| __ bind(&done); |
| } |
| |
| |
| void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::SMIS); |
| Label miss; |
| __ Or(a2, a1, a0); |
| __ JumpIfNotSmi(a2, &miss); |
| |
| if (GetCondition() == eq) { |
| // For equality we do not care about the sign of the result. |
| __ Subu(v0, a0, a1); |
| } else { |
| // Untag before subtracting to avoid handling overflow. |
| __ SmiUntag(a1); |
| __ SmiUntag(a0); |
| __ Subu(v0, a1, a0); |
| } |
| __ Ret(); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::HEAP_NUMBERS); |
| |
| Label generic_stub; |
| Label unordered; |
| Label miss; |
| __ And(a2, a1, Operand(a0)); |
| __ JumpIfSmi(a2, &generic_stub); |
| |
| __ GetObjectType(a0, a2, a2); |
| __ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
| __ GetObjectType(a1, a2, a2); |
| __ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
| |
| // Inlining the double comparison and falling back to the general compare |
| // stub if NaN is involved or FPU is unsupported. |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| |
| // Load left and right operand. |
| __ Subu(a2, a1, Operand(kHeapObjectTag)); |
| __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset)); |
| __ Subu(a2, a0, Operand(kHeapObjectTag)); |
| __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset)); |
| |
| Label fpu_eq, fpu_lt, fpu_gt; |
| // Compare operands (test if unordered). |
| __ c(UN, D, f0, f2); |
| // Don't base result on status bits when a NaN is involved. |
| __ bc1t(&unordered); |
| __ nop(); |
| |
| // Test if equal. |
| __ c(EQ, D, f0, f2); |
| __ bc1t(&fpu_eq); |
| __ nop(); |
| |
| // Test if unordered or less (unordered case is already handled). |
| __ c(ULT, D, f0, f2); |
| __ bc1t(&fpu_lt); |
| __ nop(); |
| |
| // Otherwise it's greater. |
| __ bc1f(&fpu_gt); |
| __ nop(); |
| |
| // Return a result of -1, 0, or 1. |
| __ bind(&fpu_eq); |
| __ li(v0, Operand(EQUAL)); |
| __ Ret(); |
| |
| __ bind(&fpu_lt); |
| __ li(v0, Operand(LESS)); |
| __ Ret(); |
| |
| __ bind(&fpu_gt); |
| __ li(v0, Operand(GREATER)); |
| __ Ret(); |
| |
| __ bind(&unordered); |
| } |
| |
| CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0); |
| __ bind(&generic_stub); |
| __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::SYMBOLS); |
| Label miss; |
| |
| // Registers containing left and right operands respectively. |
| Register left = a1; |
| Register right = a0; |
| Register tmp1 = a2; |
| Register tmp2 = a3; |
| |
| // Check that both operands are heap objects. |
| __ JumpIfEitherSmi(left, right, &miss); |
| |
| // Check that both operands are symbols. |
| __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
| __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
| __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
| __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ And(tmp1, tmp1, Operand(tmp2)); |
| __ And(tmp1, tmp1, kIsSymbolMask); |
| __ Branch(&miss, eq, tmp1, Operand(zero_reg)); |
| // Make sure a0 is non-zero. At this point input operands are |
| // guaranteed to be non-zero. |
| ASSERT(right.is(a0)); |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ mov(v0, right); |
| // Symbols are compared by identity. |
| __ Ret(ne, left, Operand(right)); |
| __ li(v0, Operand(Smi::FromInt(EQUAL))); |
| __ Ret(); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::STRINGS); |
| Label miss; |
| |
| // Registers containing left and right operands respectively. |
| Register left = a1; |
| Register right = a0; |
| Register tmp1 = a2; |
| Register tmp2 = a3; |
| Register tmp3 = t0; |
| Register tmp4 = t1; |
| Register tmp5 = t2; |
| |
| // Check that both operands are heap objects. |
| __ JumpIfEitherSmi(left, right, &miss); |
| |
| // Check that both operands are strings. This leaves the instance |
| // types loaded in tmp1 and tmp2. |
| __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
| __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
| __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
| __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kNotStringTag != 0); |
| __ Or(tmp3, tmp1, tmp2); |
| __ And(tmp5, tmp3, Operand(kIsNotStringMask)); |
| __ Branch(&miss, ne, tmp5, Operand(zero_reg)); |
| |
| // Fast check for identical strings. |
| Label left_ne_right; |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Branch(&left_ne_right, ne, left, Operand(right), USE_DELAY_SLOT); |
| __ mov(v0, zero_reg); // In the delay slot. |
| __ Ret(); |
| __ bind(&left_ne_right); |
| |
| // Handle not identical strings. |
| |
| // Check that both strings are symbols. If they are, we're done |
| // because we already know they are not identical. |
| ASSERT(GetCondition() == eq); |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ And(tmp3, tmp1, Operand(tmp2)); |
| __ And(tmp5, tmp3, Operand(kIsSymbolMask)); |
| Label is_symbol; |
| __ Branch(&is_symbol, eq, tmp5, Operand(zero_reg), USE_DELAY_SLOT); |
| __ mov(v0, a0); // In the delay slot. |
| // Make sure a0 is non-zero. At this point input operands are |
| // guaranteed to be non-zero. |
| ASSERT(right.is(a0)); |
| __ Ret(); |
| __ bind(&is_symbol); |
| |
| // Check that both strings are sequential ASCII. |
| Label runtime; |
| __ JumpIfBothInstanceTypesAreNotSequentialAscii(tmp1, tmp2, tmp3, tmp4, |
| &runtime); |
| |
| // Compare flat ASCII strings. Returns when done. |
| StringCompareStub::GenerateFlatAsciiStringEquals( |
| masm, left, right, tmp1, tmp2, tmp3); |
| |
| // Handle more complex cases in runtime. |
| __ bind(&runtime); |
| __ Push(left, right); |
| __ TailCallRuntime(Runtime::kStringEquals, 2, 1); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::OBJECTS); |
| Label miss; |
| __ And(a2, a1, Operand(a0)); |
| __ JumpIfSmi(a2, &miss); |
| |
| __ GetObjectType(a0, a2, a2); |
| __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE)); |
| __ GetObjectType(a1, a2, a2); |
| __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE)); |
| |
| ASSERT(GetCondition() == eq); |
| __ Subu(v0, a0, Operand(a1)); |
| __ Ret(); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
| __ Push(a1, a0); |
| __ push(ra); |
| |
| // Call the runtime system in a fresh internal frame. |
| ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), |
| masm->isolate()); |
| __ EnterInternalFrame(); |
| __ Push(a1, a0); |
| __ li(t0, Operand(Smi::FromInt(op_))); |
| __ push(t0); |
| __ CallExternalReference(miss, 3); |
| __ LeaveInternalFrame(); |
| // Compute the entry point of the rewritten stub. |
| __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| // Restore registers. |
| __ pop(ra); |
| __ pop(a0); |
| __ pop(a1); |
| __ Jump(a2); |
| } |
| |
| |
| void DirectCEntryStub::Generate(MacroAssembler* masm) { |
| // No need to pop or drop anything, LeaveExitFrame will restore the old |
| // stack, thus dropping the allocated space for the return value. |
| // The saved ra is after the reserved stack space for the 4 args. |
| __ lw(t9, MemOperand(sp, kCArgsSlotsSize)); |
| |
| if (FLAG_debug_code && EnableSlowAsserts()) { |
| // In case of an error the return address may point to a memory area |
| // filled with kZapValue by the GC. |
| // Dereference the address and check for this. |
| __ lw(t0, MemOperand(t9)); |
| __ Assert(ne, "Received invalid return address.", t0, |
| Operand(reinterpret_cast<uint32_t>(kZapValue))); |
| } |
| __ Jump(t9); |
| } |
| |
| |
| void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
| ExternalReference function) { |
| __ li(t9, Operand(function)); |
| this->GenerateCall(masm, t9); |
| } |
| |
| |
| void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
| Register target) { |
| __ Move(t9, target); |
| __ AssertStackIsAligned(); |
| // Allocate space for arg slots. |
| __ Subu(sp, sp, kCArgsSlotsSize); |
| |
| // Block the trampoline pool through the whole function to make sure the |
| // number of generated instructions is constant. |
| Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); |
| |
| // We need to get the current 'pc' value, which is not available on MIPS. |
| Label find_ra; |
| masm->bal(&find_ra); // ra = pc + 8. |
| masm->nop(); // Branch delay slot nop. |
| masm->bind(&find_ra); |
| |
| const int kNumInstructionsToJump = 6; |
| masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize); |
| // Push return address (accessible to GC through exit frame pc). |
| // This spot for ra was reserved in EnterExitFrame. |
| masm->sw(ra, MemOperand(sp, kCArgsSlotsSize)); |
| masm->li(ra, Operand(reinterpret_cast<intptr_t>(GetCode().location()), |
| RelocInfo::CODE_TARGET), true); |
| // Call the function. |
| masm->Jump(t9); |
| // Make sure the stored 'ra' points to this position. |
| ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra)); |
| } |
| |
| |
| MaybeObject* StringDictionaryLookupStub::GenerateNegativeLookup( |
| MacroAssembler* masm, |
| Label* miss, |
| Label* done, |
| Register receiver, |
| Register properties, |
| String* name, |
| Register scratch0) { |
| // If names of slots in range from 1 to kProbes - 1 for the hash value are |
| // not equal to the name and kProbes-th slot is not used (its name is the |
| // undefined value), it guarantees the hash table doesn't contain the |
| // property. It's true even if some slots represent deleted properties |
| // (their names are the null value). |
| for (int i = 0; i < kInlinedProbes; i++) { |
| // scratch0 points to properties hash. |
| // Compute the masked index: (hash + i + i * i) & mask. |
| Register index = scratch0; |
| // Capacity is smi 2^n. |
| __ lw(index, FieldMemOperand(properties, kCapacityOffset)); |
| __ Subu(index, index, Operand(1)); |
| __ And(index, index, Operand( |
| Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i)))); |
| |
| // Scale the index by multiplying by the entry size. |
| ASSERT(StringDictionary::kEntrySize == 3); |
| // index *= 3. |
| __ mov(at, index); |
| __ sll(index, index, 1); |
| __ Addu(index, index, at); |
| |
| Register entity_name = scratch0; |
| // Having undefined at this place means the name is not contained. |
| ASSERT_EQ(kSmiTagSize, 1); |
| Register tmp = properties; |
| |
| __ sll(scratch0, index, 1); |
| __ Addu(tmp, properties, scratch0); |
| __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); |
| |
| ASSERT(!tmp.is(entity_name)); |
| __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); |
| __ Branch(done, eq, entity_name, Operand(tmp)); |
| |
| if (i != kInlinedProbes - 1) { |
| // Stop if found the property. |
| __ Branch(miss, eq, entity_name, Operand(Handle<String>(name))); |
| |
| // Check if the entry name is not a symbol. |
| __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); |
| __ lbu(entity_name, |
| FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); |
| __ And(scratch0, entity_name, Operand(kIsSymbolMask)); |
| __ Branch(miss, eq, scratch0, Operand(zero_reg)); |
| |
| // Restore the properties. |
| __ lw(properties, |
| FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
| } |
| } |
| |
| const int spill_mask = |
| (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() | |
| a2.bit() | a1.bit() | a0.bit()); |
| |
| __ MultiPush(spill_mask); |
| __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
| __ li(a1, Operand(Handle<String>(name))); |
| StringDictionaryLookupStub stub(NEGATIVE_LOOKUP); |
| MaybeObject* result = masm->TryCallStub(&stub); |
| if (result->IsFailure()) return result; |
| __ MultiPop(spill_mask); |
| |
| __ Branch(done, eq, v0, Operand(zero_reg)); |
| __ Branch(miss, ne, v0, Operand(zero_reg)); |
| return result; |
| } |
| |
| |
| // Probe the string dictionary in the |elements| register. Jump to the |
| // |done| label if a property with the given name is found. Jump to |
| // the |miss| label otherwise. |
| // If lookup was successful |scratch2| will be equal to elements + 4 * index. |
| void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, |
| Label* miss, |
| Label* done, |
| Register elements, |
| Register name, |
| Register scratch1, |
| Register scratch2) { |
| // Assert that name contains a string. |
| if (FLAG_debug_code) __ AbortIfNotString(name); |
| |
| // Compute the capacity mask. |
| __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset)); |
| __ sra(scratch1, scratch1, kSmiTagSize); // convert smi to int |
| __ Subu(scratch1, scratch1, Operand(1)); |
| |
| // Generate an unrolled loop that performs a few probes before |
| // giving up. Measurements done on Gmail indicate that 2 probes |
| // cover ~93% of loads from dictionaries. |
| for (int i = 0; i < kInlinedProbes; i++) { |
| // Compute the masked index: (hash + i + i * i) & mask. |
| __ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset)); |
| if (i > 0) { |
| // Add the probe offset (i + i * i) left shifted to avoid right shifting |
| // the hash in a separate instruction. The value hash + i + i * i is right |
| // shifted in the following and instruction. |
| ASSERT(StringDictionary::GetProbeOffset(i) < |
| 1 << (32 - String::kHashFieldOffset)); |
| __ Addu(scratch2, scratch2, Operand( |
| StringDictionary::GetProbeOffset(i) << String::kHashShift)); |
| } |
| __ srl(scratch2, scratch2, String::kHashShift); |
| __ And(scratch2, scratch1, scratch2); |
| |
| // Scale the index by multiplying by the element size. |
| ASSERT(StringDictionary::kEntrySize == 3); |
| // scratch2 = scratch2 * 3. |
| |
| __ mov(at, scratch2); |
| __ sll(scratch2, scratch2, 1); |
| __ Addu(scratch2, scratch2, at); |
| |
| // Check if the key is identical to the name. |
| __ sll(at, scratch2, 2); |
| __ Addu(scratch2, elements, at); |
| __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset)); |
| __ Branch(done, eq, name, Operand(at)); |
| } |
| |
| const int spill_mask = |
| (ra.bit() | t2.bit() | t1.bit() | t0.bit() | |
| a3.bit() | a2.bit() | a1.bit() | a0.bit()) & |
| ~(scratch1.bit() | scratch2.bit()); |
| |
| __ MultiPush(spill_mask); |
| __ Move(a0, elements); |
| __ Move(a1, name); |
| StringDictionaryLookupStub stub(POSITIVE_LOOKUP); |
| __ CallStub(&stub); |
| __ mov(scratch2, a2); |
| __ MultiPop(spill_mask); |
| |
| __ Branch(done, ne, v0, Operand(zero_reg)); |
| __ Branch(miss, eq, v0, Operand(zero_reg)); |
| } |
| |
| |
| void StringDictionaryLookupStub::Generate(MacroAssembler* masm) { |
| // Registers: |
| // result: StringDictionary to probe |
| // a1: key |
| // : StringDictionary to probe. |
| // index_: will hold an index of entry if lookup is successful. |
| // might alias with result_. |
| // Returns: |
| // result_ is zero if lookup failed, non zero otherwise. |
| |
| Register result = v0; |
| Register dictionary = a0; |
| Register key = a1; |
| Register index = a2; |
| Register mask = a3; |
| Register hash = t0; |
| Register undefined = t1; |
| Register entry_key = t2; |
| |
| Label in_dictionary, maybe_in_dictionary, not_in_dictionary; |
| |
| __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset)); |
| __ sra(mask, mask, kSmiTagSize); |
| __ Subu(mask, mask, Operand(1)); |
| |
| __ lw(hash, FieldMemOperand(key, String::kHashFieldOffset)); |
| |
| __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
| |
| for (int i = kInlinedProbes; i < kTotalProbes; i++) { |
| // Compute the masked index: (hash + i + i * i) & mask. |
| // Capacity is smi 2^n. |
| if (i > 0) { |
| // Add the probe offset (i + i * i) left shifted to avoid right shifting |
| // the hash in a separate instruction. The value hash + i + i * i is right |
| // shifted in the following and instruction. |
| ASSERT(StringDictionary::GetProbeOffset(i) < |
| 1 << (32 - String::kHashFieldOffset)); |
| __ Addu(index, hash, Operand( |
| StringDictionary::GetProbeOffset(i) << String::kHashShift)); |
| } else { |
| __ mov(index, hash); |
| } |
| __ srl(index, index, String::kHashShift); |
| __ And(index, mask, index); |
| |
| // Scale the index by multiplying by the entry size. |
| ASSERT(StringDictionary::kEntrySize == 3); |
| // index *= 3. |
| __ mov(at, index); |
| __ sll(index, index, 1); |
| __ Addu(index, index, at); |
| |
| |
| ASSERT_EQ(kSmiTagSize, 1); |
| __ sll(index, index, 2); |
| __ Addu(index, index, dictionary); |
| __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset)); |
| |
| // Having undefined at this place means the name is not contained. |
| __ Branch(¬_in_dictionary, eq, entry_key, Operand(undefined)); |
| |
| // Stop if found the property. |
| __ Branch(&in_dictionary, eq, entry_key, Operand(key)); |
| |
| if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { |
| // Check if the entry name is not a symbol. |
| __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); |
| __ lbu(entry_key, |
| FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); |
| __ And(result, entry_key, Operand(kIsSymbolMask)); |
| __ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg)); |
| } |
| } |
| |
| __ bind(&maybe_in_dictionary); |
| // If we are doing negative lookup then probing failure should be |
| // treated as a lookup success. For positive lookup probing failure |
| // should be treated as lookup failure. |
| if (mode_ == POSITIVE_LOOKUP) { |
| __ mov(result, zero_reg); |
| __ Ret(); |
| } |
| |
| __ bind(&in_dictionary); |
| __ li(result, 1); |
| __ Ret(); |
| |
| __ bind(¬_in_dictionary); |
| __ mov(result, zero_reg); |
| __ Ret(); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS |