| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| #include "ic-inl.h" |
| #include "codegen.h" |
| #include "stub-cache.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| |
| static void ProbeTable(Isolate* isolate, |
| MacroAssembler* masm, |
| Code::Flags flags, |
| StubCache::Table table, |
| Register name, |
| Register offset, |
| Register scratch, |
| Register scratch2) { |
| ExternalReference key_offset(isolate->stub_cache()->key_reference(table)); |
| ExternalReference value_offset(isolate->stub_cache()->value_reference(table)); |
| |
| uint32_t key_off_addr = reinterpret_cast<uint32_t>(key_offset.address()); |
| uint32_t value_off_addr = reinterpret_cast<uint32_t>(value_offset.address()); |
| |
| // Check the relative positions of the address fields. |
| ASSERT(value_off_addr > key_off_addr); |
| ASSERT((value_off_addr - key_off_addr) % 4 == 0); |
| ASSERT((value_off_addr - key_off_addr) < (256 * 4)); |
| |
| Label miss; |
| Register offsets_base_addr = scratch; |
| |
| // Check that the key in the entry matches the name. |
| __ li(offsets_base_addr, Operand(key_offset)); |
| __ sll(scratch2, offset, 1); |
| __ addu(scratch2, offsets_base_addr, scratch2); |
| __ lw(scratch2, MemOperand(scratch2)); |
| __ Branch(&miss, ne, name, Operand(scratch2)); |
| |
| // Get the code entry from the cache. |
| __ Addu(offsets_base_addr, offsets_base_addr, |
| Operand(value_off_addr - key_off_addr)); |
| __ sll(scratch2, offset, 1); |
| __ addu(scratch2, offsets_base_addr, scratch2); |
| __ lw(scratch2, MemOperand(scratch2)); |
| |
| // Check that the flags match what we're looking for. |
| __ lw(scratch2, FieldMemOperand(scratch2, Code::kFlagsOffset)); |
| __ And(scratch2, scratch2, Operand(~Code::kFlagsNotUsedInLookup)); |
| __ Branch(&miss, ne, scratch2, Operand(flags)); |
| |
| // Re-load code entry from cache. |
| __ sll(offset, offset, 1); |
| __ addu(offset, offset, offsets_base_addr); |
| __ lw(offset, MemOperand(offset)); |
| |
| // Jump to the first instruction in the code stub. |
| __ Addu(offset, offset, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(offset); |
| |
| // Miss: fall through. |
| __ bind(&miss); |
| } |
| |
| |
| // Helper function used to check that the dictionary doesn't contain |
| // the property. This function may return false negatives, so miss_label |
| // must always call a backup property check that is complete. |
| // This function is safe to call if the receiver has fast properties. |
| // Name must be a symbol and receiver must be a heap object. |
| MUST_USE_RESULT static MaybeObject* GenerateDictionaryNegativeLookup( |
| MacroAssembler* masm, |
| Label* miss_label, |
| Register receiver, |
| String* name, |
| Register scratch0, |
| Register scratch1) { |
| ASSERT(name->IsSymbol()); |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1); |
| __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); |
| |
| Label done; |
| |
| const int kInterceptorOrAccessCheckNeededMask = |
| (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); |
| |
| // Bail out if the receiver has a named interceptor or requires access checks. |
| Register map = scratch1; |
| __ lw(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| __ lbu(scratch0, FieldMemOperand(map, Map::kBitFieldOffset)); |
| __ And(at, scratch0, Operand(kInterceptorOrAccessCheckNeededMask)); |
| __ Branch(miss_label, ne, at, Operand(zero_reg)); |
| |
| |
| // Check that receiver is a JSObject. |
| __ lbu(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| __ Branch(miss_label, lt, scratch0, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| |
| // Load properties array. |
| Register properties = scratch0; |
| __ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
| // Check that the properties array is a dictionary. |
| __ lw(map, FieldMemOperand(properties, HeapObject::kMapOffset)); |
| Register tmp = properties; |
| __ LoadRoot(tmp, Heap::kHashTableMapRootIndex); |
| __ Branch(miss_label, ne, map, Operand(tmp)); |
| |
| // Restore the temporarily used register. |
| __ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
| |
| MaybeObject* result = StringDictionaryLookupStub::GenerateNegativeLookup( |
| masm, |
| miss_label, |
| &done, |
| receiver, |
| properties, |
| name, |
| scratch1); |
| if (result->IsFailure()) return result; |
| |
| __ bind(&done); |
| __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); |
| |
| return result; |
| } |
| |
| |
| void StubCache::GenerateProbe(MacroAssembler* masm, |
| Code::Flags flags, |
| Register receiver, |
| Register name, |
| Register scratch, |
| Register extra, |
| Register extra2) { |
| Isolate* isolate = masm->isolate(); |
| Label miss; |
| |
| // Make sure that code is valid. The shifting code relies on the |
| // entry size being 8. |
| ASSERT(sizeof(Entry) == 8); |
| |
| // Make sure the flags does not name a specific type. |
| ASSERT(Code::ExtractTypeFromFlags(flags) == 0); |
| |
| // Make sure that there are no register conflicts. |
| ASSERT(!scratch.is(receiver)); |
| ASSERT(!scratch.is(name)); |
| ASSERT(!extra.is(receiver)); |
| ASSERT(!extra.is(name)); |
| ASSERT(!extra.is(scratch)); |
| ASSERT(!extra2.is(receiver)); |
| ASSERT(!extra2.is(name)); |
| ASSERT(!extra2.is(scratch)); |
| ASSERT(!extra2.is(extra)); |
| |
| // Check scratch, extra and extra2 registers are valid. |
| ASSERT(!scratch.is(no_reg)); |
| ASSERT(!extra.is(no_reg)); |
| ASSERT(!extra2.is(no_reg)); |
| |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver, &miss, t0); |
| |
| // Get the map of the receiver and compute the hash. |
| __ lw(scratch, FieldMemOperand(name, String::kHashFieldOffset)); |
| __ lw(t8, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| __ Addu(scratch, scratch, Operand(t8)); |
| __ Xor(scratch, scratch, Operand(flags)); |
| __ And(scratch, |
| scratch, |
| Operand((kPrimaryTableSize - 1) << kHeapObjectTagSize)); |
| |
| // Probe the primary table. |
| ProbeTable(isolate, masm, flags, kPrimary, name, scratch, extra, extra2); |
| |
| // Primary miss: Compute hash for secondary probe. |
| __ Subu(scratch, scratch, Operand(name)); |
| __ Addu(scratch, scratch, Operand(flags)); |
| __ And(scratch, |
| scratch, |
| Operand((kSecondaryTableSize - 1) << kHeapObjectTagSize)); |
| |
| // Probe the secondary table. |
| ProbeTable(isolate, masm, flags, kSecondary, name, scratch, extra, extra2); |
| |
| // Cache miss: Fall-through and let caller handle the miss by |
| // entering the runtime system. |
| __ bind(&miss); |
| } |
| |
| |
| void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm, |
| int index, |
| Register prototype) { |
| // Load the global or builtins object from the current context. |
| __ lw(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| // Load the global context from the global or builtins object. |
| __ lw(prototype, |
| FieldMemOperand(prototype, GlobalObject::kGlobalContextOffset)); |
| // Load the function from the global context. |
| __ lw(prototype, MemOperand(prototype, Context::SlotOffset(index))); |
| // Load the initial map. The global functions all have initial maps. |
| __ lw(prototype, |
| FieldMemOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Load the prototype from the initial map. |
| __ lw(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); |
| } |
| |
| |
| void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype( |
| MacroAssembler* masm, int index, Register prototype, Label* miss) { |
| Isolate* isolate = masm->isolate(); |
| // Check we're still in the same context. |
| __ lw(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| ASSERT(!prototype.is(at)); |
| __ li(at, isolate->global()); |
| __ Branch(miss, ne, prototype, Operand(at)); |
| // Get the global function with the given index. |
| JSFunction* function = |
| JSFunction::cast(isolate->global_context()->get(index)); |
| // Load its initial map. The global functions all have initial maps. |
| __ li(prototype, Handle<Map>(function->initial_map())); |
| // Load the prototype from the initial map. |
| __ lw(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); |
| } |
| |
| |
| // Load a fast property out of a holder object (src). In-object properties |
| // are loaded directly otherwise the property is loaded from the properties |
| // fixed array. |
| void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm, |
| Register dst, Register src, |
| JSObject* holder, int index) { |
| // Adjust for the number of properties stored in the holder. |
| index -= holder->map()->inobject_properties(); |
| if (index < 0) { |
| // Get the property straight out of the holder. |
| int offset = holder->map()->instance_size() + (index * kPointerSize); |
| __ lw(dst, FieldMemOperand(src, offset)); |
| } else { |
| // Calculate the offset into the properties array. |
| int offset = index * kPointerSize + FixedArray::kHeaderSize; |
| __ lw(dst, FieldMemOperand(src, JSObject::kPropertiesOffset)); |
| __ lw(dst, FieldMemOperand(dst, offset)); |
| } |
| } |
| |
| |
| void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm, |
| Register receiver, |
| Register scratch, |
| Label* miss_label) { |
| // Check that the receiver isn't a smi. |
| __ And(scratch, receiver, Operand(kSmiTagMask)); |
| __ Branch(miss_label, eq, scratch, Operand(zero_reg)); |
| |
| // Check that the object is a JS array. |
| __ GetObjectType(receiver, scratch, scratch); |
| __ Branch(miss_label, ne, scratch, Operand(JS_ARRAY_TYPE)); |
| |
| // Load length directly from the JS array. |
| __ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| __ Ret(); |
| } |
| |
| |
| // Generate code to check if an object is a string. If the object is a |
| // heap object, its map's instance type is left in the scratch1 register. |
| // If this is not needed, scratch1 and scratch2 may be the same register. |
| static void GenerateStringCheck(MacroAssembler* masm, |
| Register receiver, |
| Register scratch1, |
| Register scratch2, |
| Label* smi, |
| Label* non_string_object) { |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver, smi, t0); |
| |
| // Check that the object is a string. |
| __ lw(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
| __ And(scratch2, scratch1, Operand(kIsNotStringMask)); |
| // The cast is to resolve the overload for the argument of 0x0. |
| __ Branch(non_string_object, |
| ne, |
| scratch2, |
| Operand(static_cast<int32_t>(kStringTag))); |
| } |
| |
| |
| // Generate code to load the length from a string object and return the length. |
| // If the receiver object is not a string or a wrapped string object the |
| // execution continues at the miss label. The register containing the |
| // receiver is potentially clobbered. |
| void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm, |
| Register receiver, |
| Register scratch1, |
| Register scratch2, |
| Label* miss, |
| bool support_wrappers) { |
| Label check_wrapper; |
| |
| // Check if the object is a string leaving the instance type in the |
| // scratch1 register. |
| GenerateStringCheck(masm, receiver, scratch1, scratch2, miss, |
| support_wrappers ? &check_wrapper : miss); |
| |
| // Load length directly from the string. |
| __ lw(v0, FieldMemOperand(receiver, String::kLengthOffset)); |
| __ Ret(); |
| |
| if (support_wrappers) { |
| // Check if the object is a JSValue wrapper. |
| __ bind(&check_wrapper); |
| __ Branch(miss, ne, scratch1, Operand(JS_VALUE_TYPE)); |
| |
| // Unwrap the value and check if the wrapped value is a string. |
| __ lw(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset)); |
| GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss); |
| __ lw(v0, FieldMemOperand(scratch1, String::kLengthOffset)); |
| __ Ret(); |
| } |
| } |
| |
| |
| void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm, |
| Register receiver, |
| Register scratch1, |
| Register scratch2, |
| Label* miss_label) { |
| __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); |
| __ mov(v0, scratch1); |
| __ Ret(); |
| } |
| |
| |
| // Generate StoreField code, value is passed in a0 register. |
| // After executing generated code, the receiver_reg and name_reg |
| // may be clobbered. |
| void StubCompiler::GenerateStoreField(MacroAssembler* masm, |
| JSObject* object, |
| int index, |
| Map* transition, |
| Register receiver_reg, |
| Register name_reg, |
| Register scratch, |
| Label* miss_label) { |
| // a0 : value. |
| Label exit; |
| |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver_reg, miss_label, scratch); |
| |
| // Check that the map of the receiver hasn't changed. |
| __ lw(scratch, FieldMemOperand(receiver_reg, HeapObject::kMapOffset)); |
| __ Branch(miss_label, ne, scratch, Operand(Handle<Map>(object->map()))); |
| |
| // Perform global security token check if needed. |
| if (object->IsJSGlobalProxy()) { |
| __ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label); |
| } |
| |
| // Stub never generated for non-global objects that require access |
| // checks. |
| ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); |
| |
| // Perform map transition for the receiver if necessary. |
| if ((transition != NULL) && (object->map()->unused_property_fields() == 0)) { |
| // The properties must be extended before we can store the value. |
| // We jump to a runtime call that extends the properties array. |
| __ push(receiver_reg); |
| __ li(a2, Operand(Handle<Map>(transition))); |
| __ Push(a2, a0); |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), |
| masm->isolate()), |
| 3, 1); |
| return; |
| } |
| |
| if (transition != NULL) { |
| // Update the map of the object; no write barrier updating is |
| // needed because the map is never in new space. |
| __ li(t0, Operand(Handle<Map>(transition))); |
| __ sw(t0, FieldMemOperand(receiver_reg, HeapObject::kMapOffset)); |
| } |
| |
| // Adjust for the number of properties stored in the object. Even in the |
| // face of a transition we can use the old map here because the size of the |
| // object and the number of in-object properties is not going to change. |
| index -= object->map()->inobject_properties(); |
| |
| if (index < 0) { |
| // Set the property straight into the object. |
| int offset = object->map()->instance_size() + (index * kPointerSize); |
| __ sw(a0, FieldMemOperand(receiver_reg, offset)); |
| |
| // Skip updating write barrier if storing a smi. |
| __ JumpIfSmi(a0, &exit, scratch); |
| |
| // Update the write barrier for the array address. |
| // Pass the now unused name_reg as a scratch register. |
| __ RecordWrite(receiver_reg, Operand(offset), name_reg, scratch); |
| } else { |
| // Write to the properties array. |
| int offset = index * kPointerSize + FixedArray::kHeaderSize; |
| // Get the properties array. |
| __ lw(scratch, FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset)); |
| __ sw(a0, FieldMemOperand(scratch, offset)); |
| |
| // Skip updating write barrier if storing a smi. |
| __ JumpIfSmi(a0, &exit); |
| |
| // Update the write barrier for the array address. |
| // Ok to clobber receiver_reg and name_reg, since we return. |
| __ RecordWrite(scratch, Operand(offset), name_reg, receiver_reg); |
| } |
| |
| // Return the value (register v0). |
| __ bind(&exit); |
| __ mov(v0, a0); |
| __ Ret(); |
| } |
| |
| |
| void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) { |
| ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC); |
| Code* code = NULL; |
| if (kind == Code::LOAD_IC) { |
| code = masm->isolate()->builtins()->builtin(Builtins::kLoadIC_Miss); |
| } else { |
| code = masm->isolate()->builtins()->builtin(Builtins::kKeyedLoadIC_Miss); |
| } |
| |
| Handle<Code> ic(code); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| static void GenerateCallFunction(MacroAssembler* masm, |
| Object* object, |
| const ParameterCount& arguments, |
| Label* miss, |
| Code::ExtraICState extra_ic_state) { |
| // ----------- S t a t e ------------- |
| // -- a0: receiver |
| // -- a1: function to call |
| // ----------------------------------- |
| // Check that the function really is a function. |
| __ JumpIfSmi(a1, miss); |
| __ GetObjectType(a1, a3, a3); |
| __ Branch(miss, ne, a3, Operand(JS_FUNCTION_TYPE)); |
| |
| // Patch the receiver on the stack with the global proxy if |
| // necessary. |
| if (object->IsGlobalObject()) { |
| __ lw(a3, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset)); |
| __ sw(a3, MemOperand(sp, arguments.immediate() * kPointerSize)); |
| } |
| |
| // Invoke the function. |
| CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state) |
| ? CALL_AS_FUNCTION |
| : CALL_AS_METHOD; |
| __ InvokeFunction(a1, arguments, JUMP_FUNCTION, NullCallWrapper(), call_kind); |
| } |
| |
| |
| static void PushInterceptorArguments(MacroAssembler* masm, |
| Register receiver, |
| Register holder, |
| Register name, |
| JSObject* holder_obj) { |
| __ push(name); |
| InterceptorInfo* interceptor = holder_obj->GetNamedInterceptor(); |
| ASSERT(!masm->isolate()->heap()->InNewSpace(interceptor)); |
| Register scratch = name; |
| __ li(scratch, Operand(Handle<Object>(interceptor))); |
| __ Push(scratch, receiver, holder); |
| __ lw(scratch, FieldMemOperand(scratch, InterceptorInfo::kDataOffset)); |
| __ push(scratch); |
| } |
| |
| |
| static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm, |
| Register receiver, |
| Register holder, |
| Register name, |
| JSObject* holder_obj) { |
| PushInterceptorArguments(masm, receiver, holder, name, holder_obj); |
| |
| ExternalReference ref = |
| ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly), |
| masm->isolate()); |
| __ li(a0, Operand(5)); |
| __ li(a1, Operand(ref)); |
| |
| CEntryStub stub(1); |
| __ CallStub(&stub); |
| } |
| |
| |
| static const int kFastApiCallArguments = 3; |
| |
| |
| // Reserves space for the extra arguments to FastHandleApiCall in the |
| // caller's frame. |
| // |
| // These arguments are set by CheckPrototypes and GenerateFastApiDirectCall. |
| static void ReserveSpaceForFastApiCall(MacroAssembler* masm, |
| Register scratch) { |
| ASSERT(Smi::FromInt(0) == 0); |
| for (int i = 0; i < kFastApiCallArguments; i++) { |
| __ push(zero_reg); |
| } |
| } |
| |
| |
| // Undoes the effects of ReserveSpaceForFastApiCall. |
| static void FreeSpaceForFastApiCall(MacroAssembler* masm) { |
| __ Drop(kFastApiCallArguments); |
| } |
| |
| |
| static MaybeObject* GenerateFastApiDirectCall(MacroAssembler* masm, |
| const CallOptimization& optimization, |
| int argc) { |
| // ----------- S t a t e ------------- |
| // -- sp[0] : holder (set by CheckPrototypes) |
| // -- sp[4] : callee js function |
| // -- sp[8] : call data |
| // -- sp[12] : last js argument |
| // -- ... |
| // -- sp[(argc + 3) * 4] : first js argument |
| // -- sp[(argc + 4) * 4] : receiver |
| // ----------------------------------- |
| // Get the function and setup the context. |
| JSFunction* function = optimization.constant_function(); |
| __ li(t1, Operand(Handle<JSFunction>(function))); |
| __ lw(cp, FieldMemOperand(t1, JSFunction::kContextOffset)); |
| |
| // Pass the additional arguments FastHandleApiCall expects. |
| Object* call_data = optimization.api_call_info()->data(); |
| Handle<CallHandlerInfo> api_call_info_handle(optimization.api_call_info()); |
| if (masm->isolate()->heap()->InNewSpace(call_data)) { |
| __ li(a0, api_call_info_handle); |
| __ lw(t2, FieldMemOperand(a0, CallHandlerInfo::kDataOffset)); |
| } else { |
| __ li(t2, Operand(Handle<Object>(call_data))); |
| } |
| |
| // Store js function and call data. |
| __ sw(t1, MemOperand(sp, 1 * kPointerSize)); |
| __ sw(t2, MemOperand(sp, 2 * kPointerSize)); |
| |
| // a2 points to call data as expected by Arguments |
| // (refer to layout above). |
| __ Addu(a2, sp, Operand(2 * kPointerSize)); |
| |
| Object* callback = optimization.api_call_info()->callback(); |
| Address api_function_address = v8::ToCData<Address>(callback); |
| ApiFunction fun(api_function_address); |
| |
| const int kApiStackSpace = 4; |
| |
| __ EnterExitFrame(false, kApiStackSpace); |
| |
| // NOTE: the O32 abi requires a0 to hold a special pointer when returning a |
| // struct from the function (which is currently the case). This means we pass |
| // the first argument in a1 instead of a0. TryCallApiFunctionAndReturn |
| // will handle setting up a0. |
| |
| // a1 = v8::Arguments& |
| // Arguments is built at sp + 1 (sp is a reserved spot for ra). |
| __ Addu(a1, sp, kPointerSize); |
| |
| // v8::Arguments::implicit_args = data |
| __ sw(a2, MemOperand(a1, 0 * kPointerSize)); |
| // v8::Arguments::values = last argument |
| __ Addu(t0, a2, Operand(argc * kPointerSize)); |
| __ sw(t0, MemOperand(a1, 1 * kPointerSize)); |
| // v8::Arguments::length_ = argc |
| __ li(t0, Operand(argc)); |
| __ sw(t0, MemOperand(a1, 2 * kPointerSize)); |
| // v8::Arguments::is_construct_call = 0 |
| __ sw(zero_reg, MemOperand(a1, 3 * kPointerSize)); |
| |
| // Emitting a stub call may try to allocate (if the code is not |
| // already generated). Do not allow the assembler to perform a |
| // garbage collection but instead return the allocation failure |
| // object. |
| const int kStackUnwindSpace = argc + kFastApiCallArguments + 1; |
| ExternalReference ref = |
| ExternalReference(&fun, |
| ExternalReference::DIRECT_API_CALL, |
| masm->isolate()); |
| return masm->TryCallApiFunctionAndReturn(ref, kStackUnwindSpace); |
| } |
| |
| class CallInterceptorCompiler BASE_EMBEDDED { |
| public: |
| CallInterceptorCompiler(StubCompiler* stub_compiler, |
| const ParameterCount& arguments, |
| Register name, |
| Code::ExtraICState extra_ic_state) |
| : stub_compiler_(stub_compiler), |
| arguments_(arguments), |
| name_(name), |
| extra_ic_state_(extra_ic_state) {} |
| |
| MaybeObject* Compile(MacroAssembler* masm, |
| JSObject* object, |
| JSObject* holder, |
| String* name, |
| LookupResult* lookup, |
| Register receiver, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* miss) { |
| ASSERT(holder->HasNamedInterceptor()); |
| ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined()); |
| |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver, miss); |
| |
| CallOptimization optimization(lookup); |
| |
| if (optimization.is_constant_call()) { |
| return CompileCacheable(masm, |
| object, |
| receiver, |
| scratch1, |
| scratch2, |
| scratch3, |
| holder, |
| lookup, |
| name, |
| optimization, |
| miss); |
| } else { |
| CompileRegular(masm, |
| object, |
| receiver, |
| scratch1, |
| scratch2, |
| scratch3, |
| name, |
| holder, |
| miss); |
| return masm->isolate()->heap()->undefined_value(); |
| } |
| } |
| |
| private: |
| MaybeObject* CompileCacheable(MacroAssembler* masm, |
| JSObject* object, |
| Register receiver, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| JSObject* interceptor_holder, |
| LookupResult* lookup, |
| String* name, |
| const CallOptimization& optimization, |
| Label* miss_label) { |
| ASSERT(optimization.is_constant_call()); |
| ASSERT(!lookup->holder()->IsGlobalObject()); |
| |
| Counters* counters = masm->isolate()->counters(); |
| |
| int depth1 = kInvalidProtoDepth; |
| int depth2 = kInvalidProtoDepth; |
| bool can_do_fast_api_call = false; |
| if (optimization.is_simple_api_call() && |
| !lookup->holder()->IsGlobalObject()) { |
| depth1 = |
| optimization.GetPrototypeDepthOfExpectedType(object, |
| interceptor_holder); |
| if (depth1 == kInvalidProtoDepth) { |
| depth2 = |
| optimization.GetPrototypeDepthOfExpectedType(interceptor_holder, |
| lookup->holder()); |
| } |
| can_do_fast_api_call = (depth1 != kInvalidProtoDepth) || |
| (depth2 != kInvalidProtoDepth); |
| } |
| |
| __ IncrementCounter(counters->call_const_interceptor(), 1, |
| scratch1, scratch2); |
| |
| if (can_do_fast_api_call) { |
| __ IncrementCounter(counters->call_const_interceptor_fast_api(), 1, |
| scratch1, scratch2); |
| ReserveSpaceForFastApiCall(masm, scratch1); |
| } |
| |
| // Check that the maps from receiver to interceptor's holder |
| // haven't changed and thus we can invoke interceptor. |
| Label miss_cleanup; |
| Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label; |
| Register holder = |
| stub_compiler_->CheckPrototypes(object, receiver, |
| interceptor_holder, scratch1, |
| scratch2, scratch3, name, depth1, miss); |
| |
| // Invoke an interceptor and if it provides a value, |
| // branch to |regular_invoke|. |
| Label regular_invoke; |
| LoadWithInterceptor(masm, receiver, holder, interceptor_holder, scratch2, |
| ®ular_invoke); |
| |
| // Interceptor returned nothing for this property. Try to use cached |
| // constant function. |
| |
| // Check that the maps from interceptor's holder to constant function's |
| // holder haven't changed and thus we can use cached constant function. |
| if (interceptor_holder != lookup->holder()) { |
| stub_compiler_->CheckPrototypes(interceptor_holder, receiver, |
| lookup->holder(), scratch1, |
| scratch2, scratch3, name, depth2, miss); |
| } else { |
| // CheckPrototypes has a side effect of fetching a 'holder' |
| // for API (object which is instanceof for the signature). It's |
| // safe to omit it here, as if present, it should be fetched |
| // by the previous CheckPrototypes. |
| ASSERT(depth2 == kInvalidProtoDepth); |
| } |
| |
| // Invoke function. |
| if (can_do_fast_api_call) { |
| MaybeObject* result = GenerateFastApiDirectCall(masm, |
| optimization, |
| arguments_.immediate()); |
| if (result->IsFailure()) return result; |
| } else { |
| CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_) |
| ? CALL_AS_FUNCTION |
| : CALL_AS_METHOD; |
| __ InvokeFunction(optimization.constant_function(), arguments_, |
| JUMP_FUNCTION, call_kind); |
| } |
| |
| // Deferred code for fast API call case---clean preallocated space. |
| if (can_do_fast_api_call) { |
| __ bind(&miss_cleanup); |
| FreeSpaceForFastApiCall(masm); |
| __ Branch(miss_label); |
| } |
| |
| // Invoke a regular function. |
| __ bind(®ular_invoke); |
| if (can_do_fast_api_call) { |
| FreeSpaceForFastApiCall(masm); |
| } |
| |
| return masm->isolate()->heap()->undefined_value(); |
| } |
| |
| void CompileRegular(MacroAssembler* masm, |
| JSObject* object, |
| Register receiver, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| String* name, |
| JSObject* interceptor_holder, |
| Label* miss_label) { |
| Register holder = |
| stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder, |
| scratch1, scratch2, scratch3, name, |
| miss_label); |
| |
| // Call a runtime function to load the interceptor property. |
| __ EnterInternalFrame(); |
| // Save the name_ register across the call. |
| __ push(name_); |
| |
| PushInterceptorArguments(masm, |
| receiver, |
| holder, |
| name_, |
| interceptor_holder); |
| |
| __ CallExternalReference( |
| ExternalReference( |
| IC_Utility(IC::kLoadPropertyWithInterceptorForCall), |
| masm->isolate()), |
| 5); |
| |
| // Restore the name_ register. |
| __ pop(name_); |
| __ LeaveInternalFrame(); |
| } |
| |
| void LoadWithInterceptor(MacroAssembler* masm, |
| Register receiver, |
| Register holder, |
| JSObject* holder_obj, |
| Register scratch, |
| Label* interceptor_succeeded) { |
| __ EnterInternalFrame(); |
| |
| __ Push(holder, name_); |
| |
| CompileCallLoadPropertyWithInterceptor(masm, |
| receiver, |
| holder, |
| name_, |
| holder_obj); |
| |
| __ pop(name_); // Restore the name. |
| __ pop(receiver); // Restore the holder. |
| __ LeaveInternalFrame(); |
| |
| // If interceptor returns no-result sentinel, call the constant function. |
| __ LoadRoot(scratch, Heap::kNoInterceptorResultSentinelRootIndex); |
| __ Branch(interceptor_succeeded, ne, v0, Operand(scratch)); |
| } |
| |
| StubCompiler* stub_compiler_; |
| const ParameterCount& arguments_; |
| Register name_; |
| Code::ExtraICState extra_ic_state_; |
| }; |
| |
| |
| |
| // Generate code to check that a global property cell is empty. Create |
| // the property cell at compilation time if no cell exists for the |
| // property. |
| MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCell( |
| MacroAssembler* masm, |
| GlobalObject* global, |
| String* name, |
| Register scratch, |
| Label* miss) { |
| Object* probe; |
| { MaybeObject* maybe_probe = global->EnsurePropertyCell(name); |
| if (!maybe_probe->ToObject(&probe)) return maybe_probe; |
| } |
| JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(probe); |
| ASSERT(cell->value()->IsTheHole()); |
| __ li(scratch, Operand(Handle<Object>(cell))); |
| __ lw(scratch, |
| FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| __ Branch(miss, ne, scratch, Operand(at)); |
| return cell; |
| } |
| |
| |
| // Calls GenerateCheckPropertyCell for each global object in the prototype chain |
| // from object to (but not including) holder. |
| MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCells( |
| MacroAssembler* masm, |
| JSObject* object, |
| JSObject* holder, |
| String* name, |
| Register scratch, |
| Label* miss) { |
| JSObject* current = object; |
| while (current != holder) { |
| if (current->IsGlobalObject()) { |
| // Returns a cell or a failure. |
| MaybeObject* result = GenerateCheckPropertyCell( |
| masm, |
| GlobalObject::cast(current), |
| name, |
| scratch, |
| miss); |
| if (result->IsFailure()) return result; |
| } |
| ASSERT(current->IsJSObject()); |
| current = JSObject::cast(current->GetPrototype()); |
| } |
| return NULL; |
| } |
| |
| |
| // Convert and store int passed in register ival to IEEE 754 single precision |
| // floating point value at memory location (dst + 4 * wordoffset) |
| // If FPU is available use it for conversion. |
| static void StoreIntAsFloat(MacroAssembler* masm, |
| Register dst, |
| Register wordoffset, |
| Register ival, |
| Register fval, |
| Register scratch1, |
| Register scratch2) { |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ mtc1(ival, f0); |
| __ cvt_s_w(f0, f0); |
| __ sll(scratch1, wordoffset, 2); |
| __ addu(scratch1, dst, scratch1); |
| __ swc1(f0, MemOperand(scratch1, 0)); |
| } else { |
| // FPU is not available, do manual conversions. |
| |
| Label not_special, done; |
| // Move sign bit from source to destination. This works because the sign |
| // bit in the exponent word of the double has the same position and polarity |
| // as the 2's complement sign bit in a Smi. |
| ASSERT(kBinary32SignMask == 0x80000000u); |
| |
| __ And(fval, ival, Operand(kBinary32SignMask)); |
| // Negate value if it is negative. |
| __ subu(scratch1, zero_reg, ival); |
| __ movn(ival, scratch1, fval); |
| |
| // We have -1, 0 or 1, which we treat specially. Register ival contains |
| // absolute value: it is either equal to 1 (special case of -1 and 1), |
| // greater than 1 (not a special case) or less than 1 (special case of 0). |
| __ Branch(¬_special, gt, ival, Operand(1)); |
| |
| // For 1 or -1 we need to or in the 0 exponent (biased). |
| static const uint32_t exponent_word_for_1 = |
| kBinary32ExponentBias << kBinary32ExponentShift; |
| |
| __ Xor(scratch1, ival, Operand(1)); |
| __ li(scratch2, exponent_word_for_1); |
| __ or_(scratch2, fval, scratch2); |
| __ movz(fval, scratch2, scratch1); // Only if ival is equal to 1. |
| __ Branch(&done); |
| |
| __ bind(¬_special); |
| // Count leading zeros. |
| // Gets the wrong answer for 0, but we already checked for that case above. |
| Register zeros = scratch2; |
| __ clz(zeros, ival); |
| |
| // Compute exponent and or it into the exponent register. |
| __ li(scratch1, (kBitsPerInt - 1) + kBinary32ExponentBias); |
| __ subu(scratch1, scratch1, zeros); |
| |
| __ sll(scratch1, scratch1, kBinary32ExponentShift); |
| __ or_(fval, fval, scratch1); |
| |
| // Shift up the source chopping the top bit off. |
| __ Addu(zeros, zeros, Operand(1)); |
| // This wouldn't work for 1 and -1 as the shift would be 32 which means 0. |
| __ sllv(ival, ival, zeros); |
| // And the top (top 20 bits). |
| __ srl(scratch1, ival, kBitsPerInt - kBinary32MantissaBits); |
| __ or_(fval, fval, scratch1); |
| |
| __ bind(&done); |
| |
| __ sll(scratch1, wordoffset, 2); |
| __ addu(scratch1, dst, scratch1); |
| __ sw(fval, MemOperand(scratch1, 0)); |
| } |
| } |
| |
| |
| // Convert unsigned integer with specified number of leading zeroes in binary |
| // representation to IEEE 754 double. |
| // Integer to convert is passed in register hiword. |
| // Resulting double is returned in registers hiword:loword. |
| // This functions does not work correctly for 0. |
| static void GenerateUInt2Double(MacroAssembler* masm, |
| Register hiword, |
| Register loword, |
| Register scratch, |
| int leading_zeroes) { |
| const int meaningful_bits = kBitsPerInt - leading_zeroes - 1; |
| const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits; |
| |
| const int mantissa_shift_for_hi_word = |
| meaningful_bits - HeapNumber::kMantissaBitsInTopWord; |
| |
| const int mantissa_shift_for_lo_word = |
| kBitsPerInt - mantissa_shift_for_hi_word; |
| |
| __ li(scratch, biased_exponent << HeapNumber::kExponentShift); |
| if (mantissa_shift_for_hi_word > 0) { |
| __ sll(loword, hiword, mantissa_shift_for_lo_word); |
| __ srl(hiword, hiword, mantissa_shift_for_hi_word); |
| __ or_(hiword, scratch, hiword); |
| } else { |
| __ mov(loword, zero_reg); |
| __ sll(hiword, hiword, mantissa_shift_for_hi_word); |
| __ or_(hiword, scratch, hiword); |
| } |
| |
| // If least significant bit of biased exponent was not 1 it was corrupted |
| // by most significant bit of mantissa so we should fix that. |
| if (!(biased_exponent & 1)) { |
| __ li(scratch, 1 << HeapNumber::kExponentShift); |
| __ nor(scratch, scratch, scratch); |
| __ and_(hiword, hiword, scratch); |
| } |
| } |
| |
| |
| #undef __ |
| #define __ ACCESS_MASM(masm()) |
| |
| |
| Register StubCompiler::CheckPrototypes(JSObject* object, |
| Register object_reg, |
| JSObject* holder, |
| Register holder_reg, |
| Register scratch1, |
| Register scratch2, |
| String* name, |
| int save_at_depth, |
| Label* miss) { |
| // Make sure there's no overlap between holder and object registers. |
| ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); |
| ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg) |
| && !scratch2.is(scratch1)); |
| |
| // Keep track of the current object in register reg. |
| Register reg = object_reg; |
| int depth = 0; |
| |
| if (save_at_depth == depth) { |
| __ sw(reg, MemOperand(sp)); |
| } |
| |
| // Check the maps in the prototype chain. |
| // Traverse the prototype chain from the object and do map checks. |
| JSObject* current = object; |
| while (current != holder) { |
| depth++; |
| |
| // Only global objects and objects that do not require access |
| // checks are allowed in stubs. |
| ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded()); |
| |
| ASSERT(current->GetPrototype()->IsJSObject()); |
| JSObject* prototype = JSObject::cast(current->GetPrototype()); |
| if (!current->HasFastProperties() && |
| !current->IsJSGlobalObject() && |
| !current->IsJSGlobalProxy()) { |
| if (!name->IsSymbol()) { |
| MaybeObject* maybe_lookup_result = heap()->LookupSymbol(name); |
| Object* lookup_result = NULL; // Initialization to please compiler. |
| if (!maybe_lookup_result->ToObject(&lookup_result)) { |
| set_failure(Failure::cast(maybe_lookup_result)); |
| return reg; |
| } |
| name = String::cast(lookup_result); |
| } |
| ASSERT(current->property_dictionary()->FindEntry(name) == |
| StringDictionary::kNotFound); |
| |
| MaybeObject* negative_lookup = GenerateDictionaryNegativeLookup(masm(), |
| miss, |
| reg, |
| name, |
| scratch1, |
| scratch2); |
| if (negative_lookup->IsFailure()) { |
| set_failure(Failure::cast(negative_lookup)); |
| return reg; |
| } |
| |
| __ lw(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| reg = holder_reg; // From now the object is in holder_reg. |
| __ lw(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); |
| } else if (heap()->InNewSpace(prototype)) { |
| // Get the map of the current object. |
| __ lw(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| |
| // Branch on the result of the map check. |
| __ Branch(miss, ne, scratch1, Operand(Handle<Map>(current->map()))); |
| |
| // Check access rights to the global object. This has to happen |
| // after the map check so that we know that the object is |
| // actually a global object. |
| if (current->IsJSGlobalProxy()) { |
| __ CheckAccessGlobalProxy(reg, scratch1, miss); |
| // Restore scratch register to be the map of the object. In the |
| // new space case below, we load the prototype from the map in |
| // the scratch register. |
| __ lw(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| } |
| |
| reg = holder_reg; // From now the object is in holder_reg. |
| // The prototype is in new space; we cannot store a reference |
| // to it in the code. Load it from the map. |
| __ lw(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); |
| } else { |
| // Check the map of the current object. |
| __ lw(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| // Branch on the result of the map check. |
| __ Branch(miss, ne, scratch1, Operand(Handle<Map>(current->map()))); |
| // Check access rights to the global object. This has to happen |
| // after the map check so that we know that the object is |
| // actually a global object. |
| if (current->IsJSGlobalProxy()) { |
| __ CheckAccessGlobalProxy(reg, scratch1, miss); |
| } |
| // The prototype is in old space; load it directly. |
| reg = holder_reg; // From now the object is in holder_reg. |
| __ li(reg, Operand(Handle<JSObject>(prototype))); |
| } |
| |
| if (save_at_depth == depth) { |
| __ sw(reg, MemOperand(sp)); |
| } |
| |
| // Go to the next object in the prototype chain. |
| current = prototype; |
| } |
| |
| // Check the holder map. |
| __ lw(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| __ Branch(miss, ne, scratch1, Operand(Handle<Map>(current->map()))); |
| |
| // Log the check depth. |
| LOG(masm()->isolate(), IntEvent("check-maps-depth", depth + 1)); |
| // Perform security check for access to the global object. |
| ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded()); |
| if (holder->IsJSGlobalProxy()) { |
| __ CheckAccessGlobalProxy(reg, scratch1, miss); |
| }; |
| |
| // If we've skipped any global objects, it's not enough to verify |
| // that their maps haven't changed. We also need to check that the |
| // property cell for the property is still empty. |
| |
| MaybeObject* result = GenerateCheckPropertyCells(masm(), |
| object, |
| holder, |
| name, |
| scratch1, |
| miss); |
| if (result->IsFailure()) set_failure(Failure::cast(result)); |
| |
| // Return the register containing the holder. |
| return reg; |
| } |
| |
| |
| void StubCompiler::GenerateLoadField(JSObject* object, |
| JSObject* holder, |
| Register receiver, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| int index, |
| String* name, |
| Label* miss) { |
| // Check that the receiver isn't a smi. |
| __ And(scratch1, receiver, Operand(kSmiTagMask)); |
| __ Branch(miss, eq, scratch1, Operand(zero_reg)); |
| |
| // Check that the maps haven't changed. |
| Register reg = |
| CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, |
| name, miss); |
| GenerateFastPropertyLoad(masm(), v0, reg, holder, index); |
| __ Ret(); |
| } |
| |
| |
| void StubCompiler::GenerateLoadConstant(JSObject* object, |
| JSObject* holder, |
| Register receiver, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Object* value, |
| String* name, |
| Label* miss) { |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver, miss, scratch1); |
| |
| // Check that the maps haven't changed. |
| Register reg = |
| CheckPrototypes(object, receiver, holder, |
| scratch1, scratch2, scratch3, name, miss); |
| |
| // Return the constant value. |
| __ li(v0, Operand(Handle<Object>(value))); |
| __ Ret(); |
| } |
| |
| |
| MaybeObject* StubCompiler::GenerateLoadCallback(JSObject* object, |
| JSObject* holder, |
| Register receiver, |
| Register name_reg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| AccessorInfo* callback, |
| String* name, |
| Label* miss) { |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver, miss, scratch1); |
| |
| // Check that the maps haven't changed. |
| Register reg = |
| CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, |
| name, miss); |
| |
| // Build AccessorInfo::args_ list on the stack and push property name below |
| // the exit frame to make GC aware of them and store pointers to them. |
| __ push(receiver); |
| __ mov(scratch2, sp); // scratch2 = AccessorInfo::args_ |
| Handle<AccessorInfo> callback_handle(callback); |
| if (heap()->InNewSpace(callback_handle->data())) { |
| __ li(scratch3, callback_handle); |
| __ lw(scratch3, FieldMemOperand(scratch3, AccessorInfo::kDataOffset)); |
| } else { |
| __ li(scratch3, Handle<Object>(callback_handle->data())); |
| } |
| __ Push(reg, scratch3, name_reg); |
| __ mov(a2, scratch2); // Saved in case scratch2 == a1. |
| __ mov(a1, sp); // a1 (first argument - see note below) = Handle<String> |
| |
| Address getter_address = v8::ToCData<Address>(callback->getter()); |
| ApiFunction fun(getter_address); |
| |
| // NOTE: the O32 abi requires a0 to hold a special pointer when returning a |
| // struct from the function (which is currently the case). This means we pass |
| // the arguments in a1-a2 instead of a0-a1. TryCallApiFunctionAndReturn |
| // will handle setting up a0. |
| |
| const int kApiStackSpace = 1; |
| |
| __ EnterExitFrame(false, kApiStackSpace); |
| // Create AccessorInfo instance on the stack above the exit frame with |
| // scratch2 (internal::Object **args_) as the data. |
| __ sw(a2, MemOperand(sp, kPointerSize)); |
| // a2 (second argument - see note above) = AccessorInfo& |
| __ Addu(a2, sp, kPointerSize); |
| |
| // Emitting a stub call may try to allocate (if the code is not |
| // already generated). Do not allow the assembler to perform a |
| // garbage collection but instead return the allocation failure |
| // object. |
| ExternalReference ref = |
| ExternalReference(&fun, |
| ExternalReference::DIRECT_GETTER_CALL, |
| masm()->isolate()); |
| // 4 args - will be freed later by LeaveExitFrame. |
| return masm()->TryCallApiFunctionAndReturn(ref, 4); |
| } |
| |
| |
| void StubCompiler::GenerateLoadInterceptor(JSObject* object, |
| JSObject* interceptor_holder, |
| LookupResult* lookup, |
| Register receiver, |
| Register name_reg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| String* name, |
| Label* miss) { |
| ASSERT(interceptor_holder->HasNamedInterceptor()); |
| ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined()); |
| |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver, miss); |
| |
| // So far the most popular follow ups for interceptor loads are FIELD |
| // and CALLBACKS, so inline only them, other cases may be added |
| // later. |
| bool compile_followup_inline = false; |
| if (lookup->IsProperty() && lookup->IsCacheable()) { |
| if (lookup->type() == FIELD) { |
| compile_followup_inline = true; |
| } else if (lookup->type() == CALLBACKS && |
| lookup->GetCallbackObject()->IsAccessorInfo() && |
| AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL) { |
| compile_followup_inline = true; |
| } |
| } |
| |
| if (compile_followup_inline) { |
| // Compile the interceptor call, followed by inline code to load the |
| // property from further up the prototype chain if the call fails. |
| // Check that the maps haven't changed. |
| Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, |
| scratch1, scratch2, scratch3, |
| name, miss); |
| ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1)); |
| |
| // Save necessary data before invoking an interceptor. |
| // Requires a frame to make GC aware of pushed pointers. |
| __ EnterInternalFrame(); |
| |
| if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) { |
| // CALLBACKS case needs a receiver to be passed into C++ callback. |
| __ Push(receiver, holder_reg, name_reg); |
| } else { |
| __ Push(holder_reg, name_reg); |
| } |
| |
| // Invoke an interceptor. Note: map checks from receiver to |
| // interceptor's holder has been compiled before (see a caller |
| // of this method). |
| CompileCallLoadPropertyWithInterceptor(masm(), |
| receiver, |
| holder_reg, |
| name_reg, |
| interceptor_holder); |
| |
| // Check if interceptor provided a value for property. If it's |
| // the case, return immediately. |
| Label interceptor_failed; |
| __ LoadRoot(scratch1, Heap::kNoInterceptorResultSentinelRootIndex); |
| __ Branch(&interceptor_failed, eq, v0, Operand(scratch1)); |
| __ LeaveInternalFrame(); |
| __ Ret(); |
| |
| __ bind(&interceptor_failed); |
| __ pop(name_reg); |
| __ pop(holder_reg); |
| if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) { |
| __ pop(receiver); |
| } |
| |
| __ LeaveInternalFrame(); |
| |
| // Check that the maps from interceptor's holder to lookup's holder |
| // haven't changed. And load lookup's holder into |holder| register. |
| if (interceptor_holder != lookup->holder()) { |
| holder_reg = CheckPrototypes(interceptor_holder, |
| holder_reg, |
| lookup->holder(), |
| scratch1, |
| scratch2, |
| scratch3, |
| name, |
| miss); |
| } |
| |
| if (lookup->type() == FIELD) { |
| // We found FIELD property in prototype chain of interceptor's holder. |
| // Retrieve a field from field's holder. |
| GenerateFastPropertyLoad(masm(), v0, holder_reg, |
| lookup->holder(), lookup->GetFieldIndex()); |
| __ Ret(); |
| } else { |
| // We found CALLBACKS property in prototype chain of interceptor's |
| // holder. |
| ASSERT(lookup->type() == CALLBACKS); |
| ASSERT(lookup->GetCallbackObject()->IsAccessorInfo()); |
| AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject()); |
| ASSERT(callback != NULL); |
| ASSERT(callback->getter() != NULL); |
| |
| // Tail call to runtime. |
| // Important invariant in CALLBACKS case: the code above must be |
| // structured to never clobber |receiver| register. |
| __ li(scratch2, Handle<AccessorInfo>(callback)); |
| // holder_reg is either receiver or scratch1. |
| if (!receiver.is(holder_reg)) { |
| ASSERT(scratch1.is(holder_reg)); |
| __ Push(receiver, holder_reg); |
| __ lw(scratch3, |
| FieldMemOperand(scratch2, AccessorInfo::kDataOffset)); |
| __ Push(scratch3, scratch2, name_reg); |
| } else { |
| __ push(receiver); |
| __ lw(scratch3, |
| FieldMemOperand(scratch2, AccessorInfo::kDataOffset)); |
| __ Push(holder_reg, scratch3, scratch2, name_reg); |
| } |
| |
| ExternalReference ref = |
| ExternalReference(IC_Utility(IC::kLoadCallbackProperty), |
| masm()->isolate()); |
| __ TailCallExternalReference(ref, 5, 1); |
| } |
| } else { // !compile_followup_inline |
| // Call the runtime system to load the interceptor. |
| // Check that the maps haven't changed. |
| Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder, |
| scratch1, scratch2, scratch3, |
| name, miss); |
| PushInterceptorArguments(masm(), receiver, holder_reg, |
| name_reg, interceptor_holder); |
| |
| ExternalReference ref = ExternalReference( |
| IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), masm()->isolate()); |
| __ TailCallExternalReference(ref, 5, 1); |
| } |
| } |
| |
| |
| void CallStubCompiler::GenerateNameCheck(String* name, Label* miss) { |
| if (kind_ == Code::KEYED_CALL_IC) { |
| __ Branch(miss, ne, a2, Operand(Handle<String>(name))); |
| } |
| } |
| |
| |
| void CallStubCompiler::GenerateGlobalReceiverCheck(JSObject* object, |
| JSObject* holder, |
| String* name, |
| Label* miss) { |
| ASSERT(holder->IsGlobalObject()); |
| |
| // Get the number of arguments. |
| const int argc = arguments().immediate(); |
| |
| // Get the receiver from the stack. |
| __ lw(a0, MemOperand(sp, argc * kPointerSize)); |
| |
| // If the object is the holder then we know that it's a global |
| // object which can only happen for contextual calls. In this case, |
| // the receiver cannot be a smi. |
| if (object != holder) { |
| __ JumpIfSmi(a0, miss); |
| } |
| |
| // Check that the maps haven't changed. |
| CheckPrototypes(object, a0, holder, a3, a1, t0, name, miss); |
| } |
| |
| |
| void CallStubCompiler::GenerateLoadFunctionFromCell(JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| Label* miss) { |
| // Get the value from the cell. |
| __ li(a3, Operand(Handle<JSGlobalPropertyCell>(cell))); |
| __ lw(a1, FieldMemOperand(a3, JSGlobalPropertyCell::kValueOffset)); |
| |
| // Check that the cell contains the same function. |
| if (heap()->InNewSpace(function)) { |
| // We can't embed a pointer to a function in new space so we have |
| // to verify that the shared function info is unchanged. This has |
| // the nice side effect that multiple closures based on the same |
| // function can all use this call IC. Before we load through the |
| // function, we have to verify that it still is a function. |
| __ JumpIfSmi(a1, miss); |
| __ GetObjectType(a1, a3, a3); |
| __ Branch(miss, ne, a3, Operand(JS_FUNCTION_TYPE)); |
| |
| // Check the shared function info. Make sure it hasn't changed. |
| __ li(a3, Handle<SharedFunctionInfo>(function->shared())); |
| __ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ Branch(miss, ne, t0, Operand(a3)); |
| } else { |
| __ Branch(miss, ne, a1, Operand(Handle<JSFunction>(function))); |
| } |
| } |
| |
| |
| MaybeObject* CallStubCompiler::GenerateMissBranch() { |
| MaybeObject* maybe_obj = |
| isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(), |
| kind_, |
| extra_ic_state_); |
| Object* obj; |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| __ Jump(Handle<Code>(Code::cast(obj)), RelocInfo::CODE_TARGET); |
| return obj; |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileCallField(JSObject* object, |
| JSObject* holder, |
| int index, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| GenerateNameCheck(name, &miss); |
| |
| const int argc = arguments().immediate(); |
| |
| // Get the receiver of the function from the stack into a0. |
| __ lw(a0, MemOperand(sp, argc * kPointerSize)); |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(a0, &miss, t0); |
| |
| // Do the right check and compute the holder register. |
| Register reg = CheckPrototypes(object, a0, holder, a1, a3, t0, name, &miss); |
| GenerateFastPropertyLoad(masm(), a1, reg, holder, index); |
| |
| GenerateCallFunction(masm(), object, arguments(), &miss, extra_ic_state_); |
| |
| // Handle call cache miss. |
| __ bind(&miss); |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(FIELD, name); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileArrayPushCall(Object* object, |
| JSObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : name |
| // -- ra : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) |
| // -- ... |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| // If object is not an array, bail out to regular call. |
| if (!object->IsJSArray() || cell != NULL) return heap()->undefined_value(); |
| |
| Label miss; |
| |
| GenerateNameCheck(name, &miss); |
| |
| Register receiver = a1; |
| |
| // Get the receiver from the stack. |
| const int argc = arguments().immediate(); |
| __ lw(receiver, MemOperand(sp, argc * kPointerSize)); |
| |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver, &miss); |
| |
| // Check that the maps haven't changed. |
| CheckPrototypes(JSObject::cast(object), receiver, |
| holder, a3, v0, t0, name, &miss); |
| |
| if (argc == 0) { |
| // Nothing to do, just return the length. |
| __ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| __ Drop(argc + 1); |
| __ Ret(); |
| } else { |
| Label call_builtin; |
| |
| Register elements = a3; |
| Register end_elements = t1; |
| |
| // Get the elements array of the object. |
| __ lw(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); |
| |
| // Check that the elements are in fast mode and writable. |
| __ CheckMap(elements, |
| v0, |
| Heap::kFixedArrayMapRootIndex, |
| &call_builtin, |
| DONT_DO_SMI_CHECK); |
| |
| if (argc == 1) { // Otherwise fall through to call the builtin. |
| Label exit, with_write_barrier, attempt_to_grow_elements; |
| |
| // Get the array's length into v0 and calculate new length. |
| __ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Addu(v0, v0, Operand(Smi::FromInt(argc))); |
| |
| // Get the element's length. |
| __ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| |
| // Check if we could survive without allocation. |
| __ Branch(&attempt_to_grow_elements, gt, v0, Operand(t0)); |
| |
| // Save new length. |
| __ sw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| |
| // Push the element. |
| __ lw(t0, MemOperand(sp, (argc - 1) * kPointerSize)); |
| // We may need a register containing the address end_elements below, |
| // so write back the value in end_elements. |
| __ sll(end_elements, v0, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(end_elements, elements, end_elements); |
| const int kEndElementsOffset = |
| FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize; |
| __ sw(t0, MemOperand(end_elements, kEndElementsOffset)); |
| __ Addu(end_elements, end_elements, kPointerSize); |
| |
| // Check for a smi. |
| __ JumpIfNotSmi(t0, &with_write_barrier); |
| __ bind(&exit); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| __ bind(&with_write_barrier); |
| __ InNewSpace(elements, t0, eq, &exit); |
| __ RecordWriteHelper(elements, end_elements, t0); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| __ bind(&attempt_to_grow_elements); |
| // v0: array's length + 1. |
| // t0: elements' length. |
| |
| if (!FLAG_inline_new) { |
| __ Branch(&call_builtin); |
| } |
| |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address( |
| masm()->isolate()); |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address( |
| masm()->isolate()); |
| |
| const int kAllocationDelta = 4; |
| // Load top and check if it is the end of elements. |
| __ sll(end_elements, v0, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(end_elements, elements, end_elements); |
| __ Addu(end_elements, end_elements, Operand(kEndElementsOffset)); |
| __ li(t3, Operand(new_space_allocation_top)); |
| __ lw(t2, MemOperand(t3)); |
| __ Branch(&call_builtin, ne, end_elements, Operand(t2)); |
| |
| __ li(t5, Operand(new_space_allocation_limit)); |
| __ lw(t5, MemOperand(t5)); |
| __ Addu(t2, t2, Operand(kAllocationDelta * kPointerSize)); |
| __ Branch(&call_builtin, hi, t2, Operand(t5)); |
| |
| // We fit and could grow elements. |
| // Update new_space_allocation_top. |
| __ sw(t2, MemOperand(t3)); |
| // Push the argument. |
| __ lw(t2, MemOperand(sp, (argc - 1) * kPointerSize)); |
| __ sw(t2, MemOperand(end_elements)); |
| // Fill the rest with holes. |
| __ LoadRoot(t2, Heap::kTheHoleValueRootIndex); |
| for (int i = 1; i < kAllocationDelta; i++) { |
| __ sw(t2, MemOperand(end_elements, i * kPointerSize)); |
| } |
| |
| // Update elements' and array's sizes. |
| __ sw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| __ Addu(t0, t0, Operand(Smi::FromInt(kAllocationDelta))); |
| __ sw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| |
| // Elements are in new space, so write barrier is not required. |
| __ Drop(argc + 1); |
| __ Ret(); |
| } |
| __ bind(&call_builtin); |
| __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush, |
| masm()->isolate()), |
| argc + 1, |
| 1); |
| } |
| |
| // Handle call cache miss. |
| __ bind(&miss); |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(function); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileArrayPopCall(Object* object, |
| JSObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : name |
| // -- ra : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) |
| // -- ... |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| // If object is not an array, bail out to regular call. |
| if (!object->IsJSArray() || cell != NULL) return heap()->undefined_value(); |
| |
| Label miss, return_undefined, call_builtin; |
| |
| Register receiver = a1; |
| Register elements = a3; |
| |
| GenerateNameCheck(name, &miss); |
| |
| // Get the receiver from the stack. |
| const int argc = arguments().immediate(); |
| __ lw(receiver, MemOperand(sp, argc * kPointerSize)); |
| |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(receiver, &miss); |
| |
| // Check that the maps haven't changed. |
| CheckPrototypes(JSObject::cast(object), |
| receiver, holder, elements, t0, v0, name, &miss); |
| |
| // Get the elements array of the object. |
| __ lw(elements, FieldMemOperand(receiver, JSArray::kElementsOffset)); |
| |
| // Check that the elements are in fast mode and writable. |
| __ CheckMap(elements, |
| v0, |
| Heap::kFixedArrayMapRootIndex, |
| &call_builtin, |
| DONT_DO_SMI_CHECK); |
| |
| // Get the array's length into t0 and calculate new length. |
| __ lw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| __ Subu(t0, t0, Operand(Smi::FromInt(1))); |
| __ Branch(&return_undefined, lt, t0, Operand(zero_reg)); |
| |
| // Get the last element. |
| __ LoadRoot(t2, Heap::kTheHoleValueRootIndex); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); |
| // We can't address the last element in one operation. Compute the more |
| // expensive shift first, and use an offset later on. |
| __ sll(t1, t0, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(elements, elements, t1); |
| __ lw(v0, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ Branch(&call_builtin, eq, v0, Operand(t2)); |
| |
| // Set the array's length. |
| __ sw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| |
| // Fill with the hole. |
| __ sw(t2, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| __ bind(&return_undefined); |
| __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| __ bind(&call_builtin); |
| __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop, |
| masm()->isolate()), |
| argc + 1, |
| 1); |
| |
| // Handle call cache miss. |
| __ bind(&miss); |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(function); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileStringCharCodeAtCall( |
| Object* object, |
| JSObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : function name |
| // -- ra : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) |
| // -- ... |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| // If object is not a string, bail out to regular call. |
| if (!object->IsString() || cell != NULL) return heap()->undefined_value(); |
| |
| const int argc = arguments().immediate(); |
| |
| Label miss; |
| Label name_miss; |
| Label index_out_of_range; |
| |
| Label* index_out_of_range_label = &index_out_of_range; |
| |
| if (kind_ == Code::CALL_IC && |
| (CallICBase::StringStubState::decode(extra_ic_state_) == |
| DEFAULT_STRING_STUB)) { |
| index_out_of_range_label = &miss; |
| } |
| |
| GenerateNameCheck(name, &name_miss); |
| |
| // Check that the maps starting from the prototype haven't changed. |
| GenerateDirectLoadGlobalFunctionPrototype(masm(), |
| Context::STRING_FUNCTION_INDEX, |
| v0, |
| &miss); |
| ASSERT(object != holder); |
| CheckPrototypes(JSObject::cast(object->GetPrototype()), v0, holder, |
| a1, a3, t0, name, &miss); |
| |
| Register receiver = a1; |
| Register index = t1; |
| Register scratch = a3; |
| Register result = v0; |
| __ lw(receiver, MemOperand(sp, argc * kPointerSize)); |
| if (argc > 0) { |
| __ lw(index, MemOperand(sp, (argc - 1) * kPointerSize)); |
| } else { |
| __ LoadRoot(index, Heap::kUndefinedValueRootIndex); |
| } |
| |
| StringCharCodeAtGenerator char_code_at_generator(receiver, |
| index, |
| scratch, |
| result, |
| &miss, // When not a string. |
| &miss, // When not a number. |
| index_out_of_range_label, |
| STRING_INDEX_IS_NUMBER); |
| char_code_at_generator.GenerateFast(masm()); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| StubRuntimeCallHelper call_helper; |
| char_code_at_generator.GenerateSlow(masm(), call_helper); |
| |
| if (index_out_of_range.is_linked()) { |
| __ bind(&index_out_of_range); |
| __ LoadRoot(v0, Heap::kNanValueRootIndex); |
| __ Drop(argc + 1); |
| __ Ret(); |
| } |
| |
| __ bind(&miss); |
| // Restore function name in a2. |
| __ li(a2, Handle<String>(name)); |
| __ bind(&name_miss); |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(function); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileStringCharAtCall( |
| Object* object, |
| JSObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : function name |
| // -- ra : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) |
| // -- ... |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| // If object is not a string, bail out to regular call. |
| if (!object->IsString() || cell != NULL) return heap()->undefined_value(); |
| |
| const int argc = arguments().immediate(); |
| |
| Label miss; |
| Label name_miss; |
| Label index_out_of_range; |
| Label* index_out_of_range_label = &index_out_of_range; |
| |
| if (kind_ == Code::CALL_IC && |
| (CallICBase::StringStubState::decode(extra_ic_state_) == |
| DEFAULT_STRING_STUB)) { |
| index_out_of_range_label = &miss; |
| } |
| |
| GenerateNameCheck(name, &name_miss); |
| |
| // Check that the maps starting from the prototype haven't changed. |
| GenerateDirectLoadGlobalFunctionPrototype(masm(), |
| Context::STRING_FUNCTION_INDEX, |
| v0, |
| &miss); |
| ASSERT(object != holder); |
| CheckPrototypes(JSObject::cast(object->GetPrototype()), v0, holder, |
| a1, a3, t0, name, &miss); |
| |
| Register receiver = v0; |
| Register index = t1; |
| Register scratch1 = a1; |
| Register scratch2 = a3; |
| Register result = v0; |
| __ lw(receiver, MemOperand(sp, argc * kPointerSize)); |
| if (argc > 0) { |
| __ lw(index, MemOperand(sp, (argc - 1) * kPointerSize)); |
| } else { |
| __ LoadRoot(index, Heap::kUndefinedValueRootIndex); |
| } |
| |
| StringCharAtGenerator char_at_generator(receiver, |
| index, |
| scratch1, |
| scratch2, |
| result, |
| &miss, // When not a string. |
| &miss, // When not a number. |
| index_out_of_range_label, |
| STRING_INDEX_IS_NUMBER); |
| char_at_generator.GenerateFast(masm()); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| StubRuntimeCallHelper call_helper; |
| char_at_generator.GenerateSlow(masm(), call_helper); |
| |
| if (index_out_of_range.is_linked()) { |
| __ bind(&index_out_of_range); |
| __ LoadRoot(v0, Heap::kEmptyStringRootIndex); |
| __ Drop(argc + 1); |
| __ Ret(); |
| } |
| |
| __ bind(&miss); |
| // Restore function name in a2. |
| __ li(a2, Handle<String>(name)); |
| __ bind(&name_miss); |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(function); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileStringFromCharCodeCall( |
| Object* object, |
| JSObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : function name |
| // -- ra : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) |
| // -- ... |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| const int argc = arguments().immediate(); |
| |
| // If the object is not a JSObject or we got an unexpected number of |
| // arguments, bail out to the regular call. |
| if (!object->IsJSObject() || argc != 1) return heap()->undefined_value(); |
| |
| Label miss; |
| GenerateNameCheck(name, &miss); |
| |
| if (cell == NULL) { |
| __ lw(a1, MemOperand(sp, 1 * kPointerSize)); |
| |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(a1, &miss); |
| |
| CheckPrototypes(JSObject::cast(object), a1, holder, v0, a3, t0, name, |
| &miss); |
| } else { |
| ASSERT(cell->value() == function); |
| GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss); |
| GenerateLoadFunctionFromCell(cell, function, &miss); |
| } |
| |
| // Load the char code argument. |
| Register code = a1; |
| __ lw(code, MemOperand(sp, 0 * kPointerSize)); |
| |
| // Check the code is a smi. |
| Label slow; |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfNotSmi(code, &slow); |
| |
| // Convert the smi code to uint16. |
| __ And(code, code, Operand(Smi::FromInt(0xffff))); |
| |
| StringCharFromCodeGenerator char_from_code_generator(code, v0); |
| char_from_code_generator.GenerateFast(masm()); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| StubRuntimeCallHelper call_helper; |
| char_from_code_generator.GenerateSlow(masm(), call_helper); |
| |
| // Tail call the full function. We do not have to patch the receiver |
| // because the function makes no use of it. |
| __ bind(&slow); |
| __ InvokeFunction(function, arguments(), JUMP_FUNCTION, CALL_AS_METHOD); |
| |
| __ bind(&miss); |
| // a2: function name. |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileMathFloorCall(Object* object, |
| JSObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : function name |
| // -- ra : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) |
| // -- ... |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| if (!CpuFeatures::IsSupported(FPU)) |
| return heap()->undefined_value(); |
| CpuFeatures::Scope scope_fpu(FPU); |
| |
| const int argc = arguments().immediate(); |
| |
| // If the object is not a JSObject or we got an unexpected number of |
| // arguments, bail out to the regular call. |
| if (!object->IsJSObject() || argc != 1) return heap()->undefined_value(); |
| |
| Label miss, slow; |
| GenerateNameCheck(name, &miss); |
| |
| if (cell == NULL) { |
| __ lw(a1, MemOperand(sp, 1 * kPointerSize)); |
| |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(a1, &miss); |
| |
| CheckPrototypes(JSObject::cast(object), a1, holder, a0, a3, t0, name, |
| &miss); |
| } else { |
| ASSERT(cell->value() == function); |
| GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss); |
| GenerateLoadFunctionFromCell(cell, function, &miss); |
| } |
| |
| // Load the (only) argument into v0. |
| __ lw(v0, MemOperand(sp, 0 * kPointerSize)); |
| |
| // If the argument is a smi, just return. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ And(t0, v0, Operand(kSmiTagMask)); |
| __ Drop(argc + 1, eq, t0, Operand(zero_reg)); |
| __ Ret(eq, t0, Operand(zero_reg)); |
| |
| __ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK); |
| |
| Label wont_fit_smi, no_fpu_error, restore_fcsr_and_return; |
| |
| // If fpu is enabled, we use the floor instruction. |
| |
| // Load the HeapNumber value. |
| __ ldc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
| |
| // Backup FCSR. |
| __ cfc1(a3, FCSR); |
| // Clearing FCSR clears the exception mask with no side-effects. |
| __ ctc1(zero_reg, FCSR); |
| // Convert the argument to an integer. |
| __ floor_w_d(f0, f0); |
| |
| // Start checking for special cases. |
| // Get the argument exponent and clear the sign bit. |
| __ lw(t1, FieldMemOperand(v0, HeapNumber::kValueOffset + kPointerSize)); |
| __ And(t2, t1, Operand(~HeapNumber::kSignMask)); |
| __ srl(t2, t2, HeapNumber::kMantissaBitsInTopWord); |
| |
| // Retrieve FCSR and check for fpu errors. |
| __ cfc1(t5, FCSR); |
| __ And(t5, t5, Operand(kFCSRExceptionFlagMask)); |
| __ Branch(&no_fpu_error, eq, t5, Operand(zero_reg)); |
| |
| // Check for NaN, Infinity, and -Infinity. |
| // They are invariant through a Math.Floor call, so just |
| // return the original argument. |
| __ Subu(t3, t2, Operand(HeapNumber::kExponentMask |
| >> HeapNumber::kMantissaBitsInTopWord)); |
| __ Branch(&restore_fcsr_and_return, eq, t3, Operand(zero_reg)); |
| // We had an overflow or underflow in the conversion. Check if we |
| // have a big exponent. |
| // If greater or equal, the argument is already round and in v0. |
| __ Branch(&restore_fcsr_and_return, ge, t3, |
| Operand(HeapNumber::kMantissaBits)); |
| __ Branch(&wont_fit_smi); |
| |
| __ bind(&no_fpu_error); |
| // Move the result back to v0. |
| __ mfc1(v0, f0); |
| // Check if the result fits into a smi. |
| __ Addu(a1, v0, Operand(0x40000000)); |
| __ Branch(&wont_fit_smi, lt, a1, Operand(zero_reg)); |
| // Tag the result. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ sll(v0, v0, kSmiTagSize); |
| |
| // Check for -0. |
| __ Branch(&restore_fcsr_and_return, ne, v0, Operand(zero_reg)); |
| // t1 already holds the HeapNumber exponent. |
| __ And(t0, t1, Operand(HeapNumber::kSignMask)); |
| // If our HeapNumber is negative it was -0, so load its address and return. |
| // Else v0 is loaded with 0, so we can also just return. |
| __ Branch(&restore_fcsr_and_return, eq, t0, Operand(zero_reg)); |
| __ lw(v0, MemOperand(sp, 0 * kPointerSize)); |
| |
| __ bind(&restore_fcsr_and_return); |
| // Restore FCSR and return. |
| __ ctc1(a3, FCSR); |
| |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| __ bind(&wont_fit_smi); |
| // Restore FCSR and fall to slow case. |
| __ ctc1(a3, FCSR); |
| |
| __ bind(&slow); |
| // Tail call the full function. We do not have to patch the receiver |
| // because the function makes no use of it. |
| __ InvokeFunction(function, arguments(), JUMP_FUNCTION, CALL_AS_METHOD); |
| |
| __ bind(&miss); |
| // a2: function name. |
| MaybeObject* obj = GenerateMissBranch(); |
| if (obj->IsFailure()) return obj; |
| |
| // Return the generated code. |
| return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileMathAbsCall(Object* object, |
| JSObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : function name |
| // -- ra : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero-based) |
| // -- ... |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| const int argc = arguments().immediate(); |
| |
| // If the object is not a JSObject or we got an unexpected number of |
| // arguments, bail out to the regular call. |
| if (!object->IsJSObject() || argc != 1) return heap()->undefined_value(); |
| |
| Label miss; |
| GenerateNameCheck(name, &miss); |
| |
| if (cell == NULL) { |
| __ lw(a1, MemOperand(sp, 1 * kPointerSize)); |
| |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(a1, &miss); |
| |
| CheckPrototypes(JSObject::cast(object), a1, holder, v0, a3, t0, name, |
| &miss); |
| } else { |
| ASSERT(cell->value() == function); |
| GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss); |
| GenerateLoadFunctionFromCell(cell, function, &miss); |
| } |
| |
| // Load the (only) argument into v0. |
| __ lw(v0, MemOperand(sp, 0 * kPointerSize)); |
| |
| // Check if the argument is a smi. |
| Label not_smi; |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfNotSmi(v0, ¬_smi); |
| |
| // Do bitwise not or do nothing depending on the sign of the |
| // argument. |
| __ sra(t0, v0, kBitsPerInt - 1); |
| __ Xor(a1, v0, t0); |
| |
| // Add 1 or do nothing depending on the sign of the argument. |
| __ Subu(v0, a1, t0); |
| |
| // If the result is still negative, go to the slow case. |
| // This only happens for the most negative smi. |
| Label slow; |
| __ Branch(&slow, lt, v0, Operand(zero_reg)); |
| |
| // Smi case done. |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| // Check if the argument is a heap number and load its exponent and |
| // sign. |
| __ bind(¬_smi); |
| __ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK); |
| __ lw(a1, FieldMemOperand(v0, HeapNumber::kExponentOffset)); |
| |
| // Check the sign of the argument. If the argument is positive, |
| // just return it. |
| Label negative_sign; |
| __ And(t0, a1, Operand(HeapNumber::kSignMask)); |
| __ Branch(&negative_sign, ne, t0, Operand(zero_reg)); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| // If the argument is negative, clear the sign, and return a new |
| // number. |
| __ bind(&negative_sign); |
| __ Xor(a1, a1, Operand(HeapNumber::kSignMask)); |
| __ lw(a3, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); |
| __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(v0, t0, t1, t2, &slow); |
| __ sw(a1, FieldMemOperand(v0, HeapNumber::kExponentOffset)); |
| __ sw(a3, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); |
| __ Drop(argc + 1); |
| __ Ret(); |
| |
| // Tail call the full function. We do not have to patch the receiver |
| // because the function makes no use of it. |
| __ bind(&slow); |
| __ InvokeFunction(function, arguments(), JUMP_FUNCTION, CALL_AS_METHOD); |
| |
| __ bind(&miss); |
| // a2: function name. |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileFastApiCall( |
| const CallOptimization& optimization, |
| Object* object, |
| JSObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| |
| Counters* counters = isolate()->counters(); |
| |
| ASSERT(optimization.is_simple_api_call()); |
| // Bail out if object is a global object as we don't want to |
| // repatch it to global receiver. |
| if (object->IsGlobalObject()) return heap()->undefined_value(); |
| if (cell != NULL) return heap()->undefined_value(); |
| if (!object->IsJSObject()) return heap()->undefined_value(); |
| int depth = optimization.GetPrototypeDepthOfExpectedType( |
| JSObject::cast(object), holder); |
| if (depth == kInvalidProtoDepth) return heap()->undefined_value(); |
| |
| Label miss, miss_before_stack_reserved; |
| |
| GenerateNameCheck(name, &miss_before_stack_reserved); |
| |
| // Get the receiver from the stack. |
| const int argc = arguments().immediate(); |
| __ lw(a1, MemOperand(sp, argc * kPointerSize)); |
| |
| // Check that the receiver isn't a smi. |
| __ JumpIfSmi(a1, &miss_before_stack_reserved); |
| |
| __ IncrementCounter(counters->call_const(), 1, a0, a3); |
| __ IncrementCounter(counters->call_const_fast_api(), 1, a0, a3); |
| |
| ReserveSpaceForFastApiCall(masm(), a0); |
| |
| // Check that the maps haven't changed and find a Holder as a side effect. |
| CheckPrototypes(JSObject::cast(object), a1, holder, a0, a3, t0, name, |
| depth, &miss); |
| |
| MaybeObject* result = GenerateFastApiDirectCall(masm(), optimization, argc); |
| if (result->IsFailure()) return result; |
| |
| __ bind(&miss); |
| FreeSpaceForFastApiCall(masm()); |
| |
| __ bind(&miss_before_stack_reserved); |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(function); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileCallConstant(Object* object, |
| JSObject* holder, |
| JSFunction* function, |
| String* name, |
| CheckType check) { |
| // ----------- S t a t e ------------- |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| if (HasCustomCallGenerator(function)) { |
| MaybeObject* maybe_result = CompileCustomCall( |
| object, holder, NULL, function, name); |
| Object* result; |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| // Undefined means bail out to regular compiler. |
| if (!result->IsUndefined()) return result; |
| } |
| |
| Label miss; |
| |
| GenerateNameCheck(name, &miss); |
| |
| // Get the receiver from the stack. |
| const int argc = arguments().immediate(); |
| __ lw(a1, MemOperand(sp, argc * kPointerSize)); |
| |
| // Check that the receiver isn't a smi. |
| if (check != NUMBER_CHECK) { |
| __ And(t1, a1, Operand(kSmiTagMask)); |
| __ Branch(&miss, eq, t1, Operand(zero_reg)); |
| } |
| |
| // Make sure that it's okay not to patch the on stack receiver |
| // unless we're doing a receiver map check. |
| ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK); |
| |
| SharedFunctionInfo* function_info = function->shared(); |
| switch (check) { |
| case RECEIVER_MAP_CHECK: |
| __ IncrementCounter(masm()->isolate()->counters()->call_const(), |
| 1, a0, a3); |
| |
| // Check that the maps haven't changed. |
| CheckPrototypes(JSObject::cast(object), a1, holder, a0, a3, t0, name, |
| &miss); |
| |
| // Patch the receiver on the stack with the global proxy if |
| // necessary. |
| if (object->IsGlobalObject()) { |
| __ lw(a3, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset)); |
| __ sw(a3, MemOperand(sp, argc * kPointerSize)); |
| } |
| break; |
| |
| case STRING_CHECK: |
| if (!function->IsBuiltin() && !function_info->strict_mode()) { |
| // Calling non-strict non-builtins with a value as the receiver |
| // requires boxing. |
| __ jmp(&miss); |
| } else { |
| // Check that the object is a two-byte string or a symbol. |
| __ GetObjectType(a1, a3, a3); |
| __ Branch(&miss, Ugreater_equal, a3, Operand(FIRST_NONSTRING_TYPE)); |
| // Check that the maps starting from the prototype haven't changed. |
| GenerateDirectLoadGlobalFunctionPrototype( |
| masm(), Context::STRING_FUNCTION_INDEX, a0, &miss); |
| CheckPrototypes(JSObject::cast(object->GetPrototype()), a0, holder, a3, |
| a1, t0, name, &miss); |
| } |
| break; |
| |
| case NUMBER_CHECK: { |
| if (!function->IsBuiltin() && !function_info->strict_mode()) { |
| // Calling non-strict non-builtins with a value as the receiver |
| // requires boxing. |
| __ jmp(&miss); |
| } else { |
| Label fast; |
| // Check that the object is a smi or a heap number. |
| __ And(t1, a1, Operand(kSmiTagMask)); |
| __ Branch(&fast, eq, t1, Operand(zero_reg)); |
| __ GetObjectType(a1, a0, a0); |
| __ Branch(&miss, ne, a0, Operand(HEAP_NUMBER_TYPE)); |
| __ bind(&fast); |
| // Check that the maps starting from the prototype haven't changed. |
| GenerateDirectLoadGlobalFunctionPrototype( |
| masm(), Context::NUMBER_FUNCTION_INDEX, a0, &miss); |
| CheckPrototypes(JSObject::cast(object->GetPrototype()), a0, holder, a3, |
| a1, t0, name, &miss); |
| } |
| break; |
| } |
| |
| case BOOLEAN_CHECK: { |
| if (!function->IsBuiltin() && !function_info->strict_mode()) { |
| // Calling non-strict non-builtins with a value as the receiver |
| // requires boxing. |
| __ jmp(&miss); |
| } else { |
| Label fast; |
| // Check that the object is a boolean. |
| __ LoadRoot(t0, Heap::kTrueValueRootIndex); |
| __ Branch(&fast, eq, a1, Operand(t0)); |
| __ LoadRoot(t0, Heap::kFalseValueRootIndex); |
| __ Branch(&miss, ne, a1, Operand(t0)); |
| __ bind(&fast); |
| // Check that the maps starting from the prototype haven't changed. |
| GenerateDirectLoadGlobalFunctionPrototype( |
| masm(), Context::BOOLEAN_FUNCTION_INDEX, a0, &miss); |
| CheckPrototypes(JSObject::cast(object->GetPrototype()), a0, holder, a3, |
| a1, t0, name, &miss); |
| } |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_) |
| ? CALL_AS_FUNCTION |
| : CALL_AS_METHOD; |
| __ InvokeFunction(function, arguments(), JUMP_FUNCTION, call_kind); |
| |
| // Handle call cache miss. |
| __ bind(&miss); |
| |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(function); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileCallInterceptor(JSObject* object, |
| JSObject* holder, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| |
| Label miss; |
| |
| GenerateNameCheck(name, &miss); |
| |
| // Get the number of arguments. |
| const int argc = arguments().immediate(); |
| |
| LookupResult lookup; |
| LookupPostInterceptor(holder, name, &lookup); |
| |
| // Get the receiver from the stack. |
| __ lw(a1, MemOperand(sp, argc * kPointerSize)); |
| |
| CallInterceptorCompiler compiler(this, arguments(), a2, extra_ic_state_); |
| MaybeObject* result = compiler.Compile(masm(), |
| object, |
| holder, |
| name, |
| &lookup, |
| a1, |
| a3, |
| t0, |
| a0, |
| &miss); |
| if (result->IsFailure()) { |
| return result; |
| } |
| |
| // Move returned value, the function to call, to a1. |
| __ mov(a1, v0); |
| // Restore receiver. |
| __ lw(a0, MemOperand(sp, argc * kPointerSize)); |
| |
| GenerateCallFunction(masm(), object, arguments(), &miss, extra_ic_state_); |
| |
| // Handle call cache miss. |
| __ bind(&miss); |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(INTERCEPTOR, name); |
| } |
| |
| |
| MaybeObject* CallStubCompiler::CompileCallGlobal(JSObject* object, |
| GlobalObject* holder, |
| JSGlobalPropertyCell* cell, |
| JSFunction* function, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| |
| if (HasCustomCallGenerator(function)) { |
| MaybeObject* maybe_result = CompileCustomCall( |
| object, holder, cell, function, name); |
| Object* result; |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| // Undefined means bail out to regular compiler. |
| if (!result->IsUndefined()) return result; |
| } |
| |
| Label miss; |
| |
| GenerateNameCheck(name, &miss); |
| |
| // Get the number of arguments. |
| const int argc = arguments().immediate(); |
| |
| GenerateGlobalReceiverCheck(object, holder, name, &miss); |
| GenerateLoadFunctionFromCell(cell, function, &miss); |
| |
| // Patch the receiver on the stack with the global proxy if |
| // necessary. |
| if (object->IsGlobalObject()) { |
| __ lw(a3, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset)); |
| __ sw(a3, MemOperand(sp, argc * kPointerSize)); |
| } |
| |
| // Setup the context (function already in r1). |
| __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| |
| // Jump to the cached code (tail call). |
| Counters* counters = masm()->isolate()->counters(); |
| __ IncrementCounter(counters->call_global_inline(), 1, a3, t0); |
| ASSERT(function->is_compiled()); |
| Handle<Code> code(function->code()); |
| ParameterCount expected(function->shared()->formal_parameter_count()); |
| CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_) |
| ? CALL_AS_FUNCTION |
| : CALL_AS_METHOD; |
| if (V8::UseCrankshaft()) { |
| UNIMPLEMENTED_MIPS(); |
| } else { |
| __ InvokeCode(code, expected, arguments(), RelocInfo::CODE_TARGET, |
| JUMP_FUNCTION, call_kind); |
| } |
| |
| // Handle call cache miss. |
| __ bind(&miss); |
| __ IncrementCounter(counters->call_global_inline_miss(), 1, a1, a3); |
| MaybeObject* maybe_result = GenerateMissBranch(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| // Return the generated code. |
| return GetCode(NORMAL, name); |
| } |
| |
| |
| MaybeObject* StoreStubCompiler::CompileStoreField(JSObject* object, |
| int index, |
| Map* transition, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| // Name register might be clobbered. |
| GenerateStoreField(masm(), |
| object, |
| index, |
| transition, |
| a1, a2, a3, |
| &miss); |
| __ bind(&miss); |
| __ li(a2, Operand(Handle<String>(name))); // Restore name. |
| Handle<Code> ic = masm()->isolate()->builtins()->Builtins::StoreIC_Miss(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name); |
| } |
| |
| |
| MaybeObject* StoreStubCompiler::CompileStoreCallback(JSObject* object, |
| AccessorInfo* callback, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| // Check that the object isn't a smi. |
| __ JumpIfSmi(a1, &miss); |
| |
| // Check that the map of the object hasn't changed. |
| __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ Branch(&miss, ne, a3, Operand(Handle<Map>(object->map()))); |
| |
| // Perform global security token check if needed. |
| if (object->IsJSGlobalProxy()) { |
| __ CheckAccessGlobalProxy(a1, a3, &miss); |
| } |
| |
| // Stub never generated for non-global objects that require access |
| // checks. |
| ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); |
| |
| __ push(a1); // Receiver. |
| __ li(a3, Operand(Handle<AccessorInfo>(callback))); // Callback info. |
| __ Push(a3, a2, a0); |
| |
| // Do tail-call to the runtime system. |
| ExternalReference store_callback_property = |
| ExternalReference(IC_Utility(IC::kStoreCallbackProperty), |
| masm()->isolate()); |
| __ TailCallExternalReference(store_callback_property, 4, 1); |
| |
| // Handle store cache miss. |
| __ bind(&miss); |
| Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(CALLBACKS, name); |
| } |
| |
| |
| MaybeObject* StoreStubCompiler::CompileStoreInterceptor(JSObject* receiver, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| // Check that the object isn't a smi. |
| __ JumpIfSmi(a1, &miss); |
| |
| // Check that the map of the object hasn't changed. |
| __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ Branch(&miss, ne, a3, Operand(Handle<Map>(receiver->map()))); |
| |
| // Perform global security token check if needed. |
| if (receiver->IsJSGlobalProxy()) { |
| __ CheckAccessGlobalProxy(a1, a3, &miss); |
| } |
| |
| // Stub is never generated for non-global objects that require access |
| // checks. |
| ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded()); |
| |
| __ Push(a1, a2, a0); // Receiver, name, value. |
| |
| __ li(a0, Operand(Smi::FromInt(strict_mode_))); |
| __ push(a0); // Strict mode. |
| |
| // Do tail-call to the runtime system. |
| ExternalReference store_ic_property = |
| ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), |
| masm()->isolate()); |
| __ TailCallExternalReference(store_ic_property, 4, 1); |
| |
| // Handle store cache miss. |
| __ bind(&miss); |
| Handle<Code> ic = masm()->isolate()->builtins()->Builtins::StoreIC_Miss(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(INTERCEPTOR, name); |
| } |
| |
| |
| MaybeObject* StoreStubCompiler::CompileStoreGlobal(GlobalObject* object, |
| JSGlobalPropertyCell* cell, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| // Check that the map of the global has not changed. |
| __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ Branch(&miss, ne, a3, Operand(Handle<Map>(object->map()))); |
| |
| // Check that the value in the cell is not the hole. If it is, this |
| // cell could have been deleted and reintroducing the global needs |
| // to update the property details in the property dictionary of the |
| // global object. We bail out to the runtime system to do that. |
| __ li(t0, Operand(Handle<JSGlobalPropertyCell>(cell))); |
| __ LoadRoot(t1, Heap::kTheHoleValueRootIndex); |
| __ lw(t2, FieldMemOperand(t0, JSGlobalPropertyCell::kValueOffset)); |
| __ Branch(&miss, eq, t1, Operand(t2)); |
| |
| // Store the value in the cell. |
| __ sw(a0, FieldMemOperand(t0, JSGlobalPropertyCell::kValueOffset)); |
| __ mov(v0, a0); // Stored value must be returned in v0. |
| Counters* counters = masm()->isolate()->counters(); |
| __ IncrementCounter(counters->named_store_global_inline(), 1, a1, a3); |
| __ Ret(); |
| |
| // Handle store cache miss. |
| __ bind(&miss); |
| __ IncrementCounter(counters->named_store_global_inline_miss(), 1, a1, a3); |
| Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(NORMAL, name); |
| } |
| |
| |
| MaybeObject* LoadStubCompiler::CompileLoadNonexistent(String* name, |
| JSObject* object, |
| JSObject* last) { |
| // ----------- S t a t e ------------- |
| // -- a0 : receiver |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| // Check that the receiver is not a smi. |
| __ JumpIfSmi(a0, &miss); |
| |
| // Check the maps of the full prototype chain. |
| CheckPrototypes(object, a0, last, a3, a1, t0, name, &miss); |
| |
| // If the last object in the prototype chain is a global object, |
| // check that the global property cell is empty. |
| if (last->IsGlobalObject()) { |
| MaybeObject* cell = GenerateCheckPropertyCell(masm(), |
| GlobalObject::cast(last), |
| name, |
| a1, |
| &miss); |
| if (cell->IsFailure()) { |
| miss.Unuse(); |
| return cell; |
| } |
| } |
| |
| // Return undefined if maps of the full prototype chain is still the same. |
| __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
| __ Ret(); |
| |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::LOAD_IC); |
| |
| // Return the generated code. |
| return GetCode(NONEXISTENT, heap()->empty_string()); |
| } |
| |
| |
| MaybeObject* LoadStubCompiler::CompileLoadField(JSObject* object, |
| JSObject* holder, |
| int index, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a0 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| __ mov(v0, a0); |
| |
| GenerateLoadField(object, holder, v0, a3, a1, t0, index, name, &miss); |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::LOAD_IC); |
| |
| // Return the generated code. |
| return GetCode(FIELD, name); |
| } |
| |
| |
| MaybeObject* LoadStubCompiler::CompileLoadCallback(String* name, |
| JSObject* object, |
| JSObject* holder, |
| AccessorInfo* callback) { |
| // ----------- S t a t e ------------- |
| // -- a0 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| MaybeObject* result = GenerateLoadCallback(object, holder, a0, a2, a3, a1, t0, |
| callback, name, &miss); |
| if (result->IsFailure()) { |
| miss.Unuse(); |
| return result; |
| } |
| |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::LOAD_IC); |
| |
| // Return the generated code. |
| return GetCode(CALLBACKS, name); |
| } |
| |
| |
| MaybeObject* LoadStubCompiler::CompileLoadConstant(JSObject* object, |
| JSObject* holder, |
| Object* value, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a0 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| GenerateLoadConstant(object, holder, a0, a3, a1, t0, value, name, &miss); |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::LOAD_IC); |
| |
| // Return the generated code. |
| return GetCode(CONSTANT_FUNCTION, name); |
| } |
| |
| |
| MaybeObject* LoadStubCompiler::CompileLoadInterceptor(JSObject* object, |
| JSObject* holder, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a0 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // -- [sp] : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| LookupResult lookup; |
| LookupPostInterceptor(holder, name, &lookup); |
| GenerateLoadInterceptor(object, |
| holder, |
| &lookup, |
| a0, |
| a2, |
| a3, |
| a1, |
| t0, |
| name, |
| &miss); |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::LOAD_IC); |
| |
| // Return the generated code. |
| return GetCode(INTERCEPTOR, name); |
| } |
| |
| |
| MaybeObject* LoadStubCompiler::CompileLoadGlobal(JSObject* object, |
| GlobalObject* holder, |
| JSGlobalPropertyCell* cell, |
| String* name, |
| bool is_dont_delete) { |
| // ----------- S t a t e ------------- |
| // -- a0 : receiver |
| // -- a2 : name |
| // -- ra : return address |
| // ----------------------------------- |
| Label miss; |
| |
| // If the object is the holder then we know that it's a global |
| // object which can only happen for contextual calls. In this case, |
| // the receiver cannot be a smi. |
| if (object != holder) { |
| __ And(t0, a0, Operand(kSmiTagMask)); |
| __ Branch(&miss, eq, t0, Operand(zero_reg)); |
| } |
| |
| // Check that the map of the global has not changed. |
| CheckPrototypes(object, a0, holder, a3, t0, a1, name, &miss); |
| |
| // Get the value from the cell. |
| __ li(a3, Operand(Handle<JSGlobalPropertyCell>(cell))); |
| __ lw(t0, FieldMemOperand(a3, JSGlobalPropertyCell::kValueOffset)); |
| |
| // Check for deleted property if property can actually be deleted. |
| if (!is_dont_delete) { |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| __ Branch(&miss, eq, t0, Operand(at)); |
| } |
| |
| __ mov(v0, t0); |
| Counters* counters = masm()->isolate()->counters(); |
| __ IncrementCounter(counters->named_load_global_stub(), 1, a1, a3); |
| __ Ret(); |
| |
| __ bind(&miss); |
| __ IncrementCounter(counters->named_load_global_stub_miss(), 1, a1, a3); |
| GenerateLoadMiss(masm(), Code::LOAD_IC); |
| |
| // Return the generated code. |
| return GetCode(NORMAL, name); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadField(String* name, |
| JSObject* receiver, |
| JSObject* holder, |
| int index) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| // Check the key is the cached one. |
| __ Branch(&miss, ne, a0, Operand(Handle<String>(name))); |
| |
| GenerateLoadField(receiver, holder, a1, a2, a3, t0, index, name, &miss); |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); |
| |
| return GetCode(FIELD, name); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadCallback( |
| String* name, |
| JSObject* receiver, |
| JSObject* holder, |
| AccessorInfo* callback) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| // Check the key is the cached one. |
| __ Branch(&miss, ne, a0, Operand(Handle<String>(name))); |
| |
| MaybeObject* result = GenerateLoadCallback(receiver, holder, a1, a0, a2, a3, |
| t0, callback, name, &miss); |
| if (result->IsFailure()) { |
| miss.Unuse(); |
| return result; |
| } |
| |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); |
| |
| return GetCode(CALLBACKS, name); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadConstant(String* name, |
| JSObject* receiver, |
| JSObject* holder, |
| Object* value) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| // Check the key is the cached one. |
| __ Branch(&miss, ne, a0, Operand(Handle<String>(name))); |
| |
| GenerateLoadConstant(receiver, holder, a1, a2, a3, t0, value, name, &miss); |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); |
| |
| // Return the generated code. |
| return GetCode(CONSTANT_FUNCTION, name); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadInterceptor(JSObject* receiver, |
| JSObject* holder, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| // Check the key is the cached one. |
| __ Branch(&miss, ne, a0, Operand(Handle<String>(name))); |
| |
| LookupResult lookup; |
| LookupPostInterceptor(holder, name, &lookup); |
| GenerateLoadInterceptor(receiver, |
| holder, |
| &lookup, |
| a1, |
| a0, |
| a2, |
| a3, |
| t0, |
| name, |
| &miss); |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); |
| |
| return GetCode(INTERCEPTOR, name); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadArrayLength(String* name) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| // Check the key is the cached one. |
| __ Branch(&miss, ne, a0, Operand(Handle<String>(name))); |
| |
| GenerateLoadArrayLength(masm(), a1, a2, &miss); |
| __ bind(&miss); |
| GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); |
| |
| return GetCode(CALLBACKS, name); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadStringLength(String* name) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| Counters* counters = masm()->isolate()->counters(); |
| __ IncrementCounter(counters->keyed_load_string_length(), 1, a2, a3); |
| |
| // Check the key is the cached one. |
| __ Branch(&miss, ne, a0, Operand(Handle<String>(name))); |
| |
| GenerateLoadStringLength(masm(), a1, a2, a3, &miss, true); |
| __ bind(&miss); |
| __ DecrementCounter(counters->keyed_load_string_length(), 1, a2, a3); |
| |
| GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); |
| |
| return GetCode(CALLBACKS, name); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadFunctionPrototype(String* name) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| Counters* counters = masm()->isolate()->counters(); |
| __ IncrementCounter(counters->keyed_load_function_prototype(), 1, a2, a3); |
| |
| // Check the name hasn't changed. |
| __ Branch(&miss, ne, a0, Operand(Handle<String>(name))); |
| |
| GenerateLoadFunctionPrototype(masm(), a1, a2, a3, &miss); |
| __ bind(&miss); |
| __ DecrementCounter(counters->keyed_load_function_prototype(), 1, a2, a3); |
| GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC); |
| |
| return GetCode(CALLBACKS, name); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadElement(Map* receiver_map) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Code* stub; |
| ElementsKind elements_kind = receiver_map->elements_kind(); |
| MaybeObject* maybe_stub = KeyedLoadElementStub(elements_kind).TryGetCode(); |
| if (!maybe_stub->To(&stub)) return maybe_stub; |
| __ DispatchMap(a1, |
| a2, |
| Handle<Map>(receiver_map), |
| Handle<Code>(stub), |
| DO_SMI_CHECK); |
| |
| Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(NORMAL, NULL); |
| } |
| |
| |
| MaybeObject* KeyedLoadStubCompiler::CompileLoadMegamorphic( |
| MapList* receiver_maps, |
| CodeList* handler_ics) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss; |
| __ JumpIfSmi(a1, &miss); |
| |
| int receiver_count = receiver_maps->length(); |
| __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| for (int current = 0; current < receiver_count; ++current) { |
| Handle<Map> map(receiver_maps->at(current)); |
| Handle<Code> code(handler_ics->at(current)); |
| __ Jump(code, RelocInfo::CODE_TARGET, eq, a2, Operand(map)); |
| } |
| |
| __ bind(&miss); |
| Handle<Code> miss_ic = isolate()->builtins()->KeyedLoadIC_Miss(); |
| __ Jump(miss_ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(NORMAL, NULL, MEGAMORPHIC); |
| } |
| |
| |
| MaybeObject* KeyedStoreStubCompiler::CompileStoreField(JSObject* object, |
| int index, |
| Map* transition, |
| String* name) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : key |
| // -- a2 : receiver |
| // -- ra : return address |
| // ----------------------------------- |
| |
| Label miss; |
| |
| Counters* counters = masm()->isolate()->counters(); |
| __ IncrementCounter(counters->keyed_store_field(), 1, a3, t0); |
| |
| // Check that the name has not changed. |
| __ Branch(&miss, ne, a1, Operand(Handle<String>(name))); |
| |
| // a3 is used as scratch register. a1 and a2 keep their values if a jump to |
| // the miss label is generated. |
| GenerateStoreField(masm(), |
| object, |
| index, |
| transition, |
| a2, a1, a3, |
| &miss); |
| __ bind(&miss); |
| |
| __ DecrementCounter(counters->keyed_store_field(), 1, a3, t0); |
| Handle<Code> ic = masm()->isolate()->builtins()->KeyedStoreIC_Miss(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name); |
| } |
| |
| |
| MaybeObject* KeyedStoreStubCompiler::CompileStoreElement(Map* receiver_map) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : key |
| // -- a2 : receiver |
| // -- ra : return address |
| // -- a3 : scratch |
| // ----------------------------------- |
| Code* stub; |
| ElementsKind elements_kind = receiver_map->elements_kind(); |
| bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE; |
| MaybeObject* maybe_stub = |
| KeyedStoreElementStub(is_js_array, elements_kind).TryGetCode(); |
| if (!maybe_stub->To(&stub)) return maybe_stub; |
| __ DispatchMap(a2, |
| a3, |
| Handle<Map>(receiver_map), |
| Handle<Code>(stub), |
| DO_SMI_CHECK); |
| |
| Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(NORMAL, NULL); |
| } |
| |
| |
| MaybeObject* KeyedStoreStubCompiler::CompileStoreMegamorphic( |
| MapList* receiver_maps, |
| CodeList* handler_ics) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : key |
| // -- a2 : receiver |
| // -- ra : return address |
| // -- a3 : scratch |
| // ----------------------------------- |
| Label miss; |
| __ JumpIfSmi(a2, &miss); |
| |
| int receiver_count = receiver_maps->length(); |
| __ lw(a3, FieldMemOperand(a2, HeapObject::kMapOffset)); |
| for (int current = 0; current < receiver_count; ++current) { |
| Handle<Map> map(receiver_maps->at(current)); |
| Handle<Code> code(handler_ics->at(current)); |
| __ Jump(code, RelocInfo::CODE_TARGET, eq, a3, Operand(map)); |
| } |
| |
| __ bind(&miss); |
| Handle<Code> miss_ic = isolate()->builtins()->KeyedStoreIC_Miss(); |
| __ Jump(miss_ic, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(NORMAL, NULL, MEGAMORPHIC); |
| } |
| |
| |
| MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) { |
| // a0 : argc |
| // a1 : constructor |
| // ra : return address |
| // [sp] : last argument |
| Label generic_stub_call; |
| |
| // Use t7 for holding undefined which is used in several places below. |
| __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Check to see whether there are any break points in the function code. If |
| // there are jump to the generic constructor stub which calls the actual |
| // code for the function thereby hitting the break points. |
| __ lw(t5, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(a2, FieldMemOperand(t5, SharedFunctionInfo::kDebugInfoOffset)); |
| __ Branch(&generic_stub_call, ne, a2, Operand(t7)); |
| #endif |
| |
| // Load the initial map and verify that it is in fact a map. |
| // a1: constructor function |
| // t7: undefined |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ And(t0, a2, Operand(kSmiTagMask)); |
| __ Branch(&generic_stub_call, eq, t0, Operand(zero_reg)); |
| __ GetObjectType(a2, a3, t0); |
| __ Branch(&generic_stub_call, ne, t0, Operand(MAP_TYPE)); |
| |
| #ifdef DEBUG |
| // Cannot construct functions this way. |
| // a0: argc |
| // a1: constructor function |
| // a2: initial map |
| // t7: undefined |
| __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); |
| __ Check(ne, "Function constructed by construct stub.", |
| a3, Operand(JS_FUNCTION_TYPE)); |
| #endif |
| |
| // Now allocate the JSObject in new space. |
| // a0: argc |
| // a1: constructor function |
| // a2: initial map |
| // t7: undefined |
| __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset)); |
| __ AllocateInNewSpace(a3, |
| t4, |
| t5, |
| t6, |
| &generic_stub_call, |
| SIZE_IN_WORDS); |
| |
| // Allocated the JSObject, now initialize the fields. Map is set to initial |
| // map and properties and elements are set to empty fixed array. |
| // a0: argc |
| // a1: constructor function |
| // a2: initial map |
| // a3: object size (in words) |
| // t4: JSObject (not tagged) |
| // t7: undefined |
| __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex); |
| __ mov(t5, t4); |
| __ sw(a2, MemOperand(t5, JSObject::kMapOffset)); |
| __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset)); |
| __ sw(t6, MemOperand(t5, JSObject::kElementsOffset)); |
| __ Addu(t5, t5, Operand(3 * kPointerSize)); |
| ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); |
| ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); |
| ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); |
| |
| |
| // Calculate the location of the first argument. The stack contains only the |
| // argc arguments. |
| __ sll(a1, a0, kPointerSizeLog2); |
| __ Addu(a1, a1, sp); |
| |
| // Fill all the in-object properties with undefined. |
| // a0: argc |
| // a1: first argument |
| // a3: object size (in words) |
| // t4: JSObject (not tagged) |
| // t5: First in-object property of JSObject (not tagged) |
| // t7: undefined |
| // Fill the initialized properties with a constant value or a passed argument |
| // depending on the this.x = ...; assignment in the function. |
| SharedFunctionInfo* shared = function->shared(); |
| for (int i = 0; i < shared->this_property_assignments_count(); i++) { |
| if (shared->IsThisPropertyAssignmentArgument(i)) { |
| Label not_passed, next; |
| // Check if the argument assigned to the property is actually passed. |
| int arg_number = shared->GetThisPropertyAssignmentArgument(i); |
| __ Branch(¬_passed, less_equal, a0, Operand(arg_number)); |
| // Argument passed - find it on the stack. |
| __ lw(a2, MemOperand(a1, (arg_number + 1) * -kPointerSize)); |
| __ sw(a2, MemOperand(t5)); |
| __ Addu(t5, t5, kPointerSize); |
| __ jmp(&next); |
| __ bind(¬_passed); |
| // Set the property to undefined. |
| __ sw(t7, MemOperand(t5)); |
| __ Addu(t5, t5, Operand(kPointerSize)); |
| __ bind(&next); |
| } else { |
| // Set the property to the constant value. |
| Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i)); |
| __ li(a2, Operand(constant)); |
| __ sw(a2, MemOperand(t5)); |
| __ Addu(t5, t5, kPointerSize); |
| } |
| } |
| |
| // Fill the unused in-object property fields with undefined. |
| ASSERT(function->has_initial_map()); |
| for (int i = shared->this_property_assignments_count(); |
| i < function->initial_map()->inobject_properties(); |
| i++) { |
| __ sw(t7, MemOperand(t5)); |
| __ Addu(t5, t5, kPointerSize); |
| } |
| |
| // a0: argc |
| // t4: JSObject (not tagged) |
| // Move argc to a1 and the JSObject to return to v0 and tag it. |
| __ mov(a1, a0); |
| __ mov(v0, t4); |
| __ Or(v0, v0, Operand(kHeapObjectTag)); |
| |
| // v0: JSObject |
| // a1: argc |
| // Remove caller arguments and receiver from the stack and return. |
| __ sll(t0, a1, kPointerSizeLog2); |
| __ Addu(sp, sp, t0); |
| __ Addu(sp, sp, Operand(kPointerSize)); |
| Counters* counters = masm()->isolate()->counters(); |
| __ IncrementCounter(counters->constructed_objects(), 1, a1, a2); |
| __ IncrementCounter(counters->constructed_objects_stub(), 1, a1, a2); |
| __ Ret(); |
| |
| // Jump to the generic stub in case the specialized code cannot handle the |
| // construction. |
| __ bind(&generic_stub_call); |
| Handle<Code> generic_construct_stub = |
| masm()->isolate()->builtins()->JSConstructStubGeneric(); |
| __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); |
| |
| // Return the generated code. |
| return GetCode(); |
| } |
| |
| |
| #undef __ |
| #define __ ACCESS_MASM(masm) |
| |
| |
| void KeyedLoadStubCompiler::GenerateLoadDictionaryElement( |
| MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label slow, miss_force_generic; |
| |
| Register key = a0; |
| Register receiver = a1; |
| |
| __ JumpIfNotSmi(key, &miss_force_generic); |
| __ lw(t0, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| __ sra(a2, a0, kSmiTagSize); |
| __ LoadFromNumberDictionary(&slow, t0, a0, v0, a2, a3, t1); |
| __ Ret(); |
| |
| // Slow case, key and receiver still in a0 and a1. |
| __ bind(&slow); |
| __ IncrementCounter( |
| masm->isolate()->counters()->keyed_load_external_array_slow(), |
| 1, a2, a3); |
| // Entry registers are intact. |
| // ---------- S t a t e -------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Handle<Code> slow_ic = |
| masm->isolate()->builtins()->KeyedLoadIC_Slow(); |
| __ Jump(slow_ic, RelocInfo::CODE_TARGET); |
| |
| // Miss case, call the runtime. |
| __ bind(&miss_force_generic); |
| |
| // ---------- S t a t e -------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| |
| Handle<Code> miss_ic = |
| masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
| __ Jump(miss_ic, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| static bool IsElementTypeSigned(ElementsKind elements_kind) { |
| switch (elements_kind) { |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| return true; |
| |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_PIXEL_ELEMENTS: |
| return false; |
| |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| return false; |
| } |
| return false; |
| } |
| |
| |
| void KeyedLoadStubCompiler::GenerateLoadExternalArray( |
| MacroAssembler* masm, |
| ElementsKind elements_kind) { |
| // ---------- S t a t e -------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss_force_generic, slow, failed_allocation; |
| |
| Register key = a0; |
| Register receiver = a1; |
| |
| // This stub is meant to be tail-jumped to, the receiver must already |
| // have been verified by the caller to not be a smi. |
| |
| // Check that the key is a smi. |
| __ JumpIfNotSmi(key, &miss_force_generic); |
| |
| __ lw(a3, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| // a3: elements array |
| |
| // Check that the index is in range. |
| __ lw(t1, FieldMemOperand(a3, ExternalArray::kLengthOffset)); |
| __ sra(t2, key, kSmiTagSize); |
| // Unsigned comparison catches both negative and too-large values. |
| __ Branch(&miss_force_generic, Ugreater_equal, key, Operand(t1)); |
| |
| __ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset)); |
| // a3: base pointer of external storage |
| |
| // We are not untagging smi key and instead work with it |
| // as if it was premultiplied by 2. |
| STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); |
| |
| Register value = a2; |
| switch (elements_kind) { |
| case EXTERNAL_BYTE_ELEMENTS: |
| __ srl(t2, key, 1); |
| __ addu(t3, a3, t2); |
| __ lb(value, MemOperand(t3, 0)); |
| break; |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| __ srl(t2, key, 1); |
| __ addu(t3, a3, t2); |
| __ lbu(value, MemOperand(t3, 0)); |
| break; |
| case EXTERNAL_SHORT_ELEMENTS: |
| __ addu(t3, a3, key); |
| __ lh(value, MemOperand(t3, 0)); |
| break; |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| __ addu(t3, a3, key); |
| __ lhu(value, MemOperand(t3, 0)); |
| break; |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| __ sll(t2, key, 1); |
| __ addu(t3, a3, t2); |
| __ lw(value, MemOperand(t3, 0)); |
| break; |
| case EXTERNAL_FLOAT_ELEMENTS: |
| __ sll(t3, t2, 2); |
| __ addu(t3, a3, t3); |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ lwc1(f0, MemOperand(t3, 0)); |
| } else { |
| __ lw(value, MemOperand(t3, 0)); |
| } |
| break; |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| __ sll(t2, key, 2); |
| __ addu(t3, a3, t2); |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ ldc1(f0, MemOperand(t3, 0)); |
| } else { |
| // t3: pointer to the beginning of the double we want to load. |
| __ lw(a2, MemOperand(t3, 0)); |
| __ lw(a3, MemOperand(t3, Register::kSizeInBytes)); |
| } |
| break; |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // For integer array types: |
| // a2: value |
| // For float array type: |
| // f0: value (if FPU is supported) |
| // a2: value (if FPU is not supported) |
| // For double array type: |
| // f0: value (if FPU is supported) |
| // a2/a3: value (if FPU is not supported) |
| |
| if (elements_kind == EXTERNAL_INT_ELEMENTS) { |
| // For the Int and UnsignedInt array types, we need to see whether |
| // the value can be represented in a Smi. If not, we need to convert |
| // it to a HeapNumber. |
| Label box_int; |
| __ Subu(t3, value, Operand(0xC0000000)); // Non-smi value gives neg result. |
| __ Branch(&box_int, lt, t3, Operand(zero_reg)); |
| // Tag integer as smi and return it. |
| __ sll(v0, value, kSmiTagSize); |
| __ Ret(); |
| |
| __ bind(&box_int); |
| // Allocate a HeapNumber for the result and perform int-to-double |
| // conversion. |
| // The arm version uses a temporary here to save r0, but we don't need to |
| // (a0 is not modified). |
| __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(v0, a3, t0, t1, &slow); |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| __ mtc1(value, f0); |
| __ cvt_d_w(f0, f0); |
| __ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset - kHeapObjectTag)); |
| __ Ret(); |
| } else { |
| Register dst1 = t2; |
| Register dst2 = t3; |
| FloatingPointHelper::Destination dest = |
| FloatingPointHelper::kCoreRegisters; |
| FloatingPointHelper::ConvertIntToDouble(masm, |
| value, |
| dest, |
| f0, |
| dst1, |
| dst2, |
| t1, |
| f2); |
| __ sw(dst1, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); |
| __ sw(dst2, FieldMemOperand(v0, HeapNumber::kExponentOffset)); |
| __ Ret(); |
| } |
| } else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) { |
| // The test is different for unsigned int values. Since we need |
| // the value to be in the range of a positive smi, we can't |
| // handle either of the top two bits being set in the value. |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| Label pl_box_int; |
| __ And(t2, value, Operand(0xC0000000)); |
| __ Branch(&pl_box_int, ne, t2, Operand(zero_reg)); |
| |
| // It can fit in an Smi. |
| // Tag integer as smi and return it. |
| __ sll(v0, value, kSmiTagSize); |
| __ Ret(); |
| |
| __ bind(&pl_box_int); |
| // Allocate a HeapNumber for the result and perform int-to-double |
| // conversion. Don't use a0 and a1 as AllocateHeapNumber clobbers all |
| // registers - also when jumping due to exhausted young space. |
| __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(v0, t2, t3, t6, &slow); |
| |
| // This is replaced by a macro: |
| // __ mtc1(value, f0); // LS 32-bits. |
| // __ mtc1(zero_reg, f1); // MS 32-bits are all zero. |
| // __ cvt_d_l(f0, f0); // Use 64 bit conv to get correct unsigned 32-bit. |
| |
| __ Cvt_d_uw(f0, value, f22); |
| |
| __ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset - kHeapObjectTag)); |
| |
| __ Ret(); |
| } else { |
| // Check whether unsigned integer fits into smi. |
| Label box_int_0, box_int_1, done; |
| __ And(t2, value, Operand(0x80000000)); |
| __ Branch(&box_int_0, ne, t2, Operand(zero_reg)); |
| __ And(t2, value, Operand(0x40000000)); |
| __ Branch(&box_int_1, ne, t2, Operand(zero_reg)); |
| |
| // Tag integer as smi and return it. |
| __ sll(v0, value, kSmiTagSize); |
| __ Ret(); |
| |
| Register hiword = value; // a2. |
| Register loword = a3; |
| |
| __ bind(&box_int_0); |
| // Integer does not have leading zeros. |
| GenerateUInt2Double(masm, hiword, loword, t0, 0); |
| __ Branch(&done); |
| |
| __ bind(&box_int_1); |
| // Integer has one leading zero. |
| GenerateUInt2Double(masm, hiword, loword, t0, 1); |
| |
| |
| __ bind(&done); |
| // Integer was converted to double in registers hiword:loword. |
| // Wrap it into a HeapNumber. Don't use a0 and a1 as AllocateHeapNumber |
| // clobbers all registers - also when jumping due to exhausted young |
| // space. |
| __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(t2, t3, t5, t6, &slow); |
| |
| __ sw(hiword, FieldMemOperand(t2, HeapNumber::kExponentOffset)); |
| __ sw(loword, FieldMemOperand(t2, HeapNumber::kMantissaOffset)); |
| |
| __ mov(v0, t2); |
| __ Ret(); |
| } |
| } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
| // For the floating-point array type, we need to always allocate a |
| // HeapNumber. |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Allocate a HeapNumber for the result. Don't use a0 and a1 as |
| // AllocateHeapNumber clobbers all registers - also when jumping due to |
| // exhausted young space. |
| __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(v0, t3, t5, t6, &slow); |
| // The float (single) value is already in fpu reg f0 (if we use float). |
| __ cvt_d_s(f0, f0); |
| __ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset - kHeapObjectTag)); |
| __ Ret(); |
| } else { |
| // Allocate a HeapNumber for the result. Don't use a0 and a1 as |
| // AllocateHeapNumber clobbers all registers - also when jumping due to |
| // exhausted young space. |
| __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(v0, t3, t5, t6, &slow); |
| // FPU is not available, do manual single to double conversion. |
| |
| // a2: floating point value (binary32). |
| // v0: heap number for result |
| |
| // Extract mantissa to t4. |
| __ And(t4, value, Operand(kBinary32MantissaMask)); |
| |
| // Extract exponent to t5. |
| __ srl(t5, value, kBinary32MantissaBits); |
| __ And(t5, t5, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); |
| |
| Label exponent_rebiased; |
| __ Branch(&exponent_rebiased, eq, t5, Operand(zero_reg)); |
| |
| __ li(t0, 0x7ff); |
| __ Xor(t1, t5, Operand(0xFF)); |
| __ movz(t5, t0, t1); // Set t5 to 0x7ff only if t5 is equal to 0xff. |
| __ Branch(&exponent_rebiased, eq, t0, Operand(0xff)); |
| |
| // Rebias exponent. |
| __ Addu(t5, |
| t5, |
| Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); |
| |
| __ bind(&exponent_rebiased); |
| __ And(a2, value, Operand(kBinary32SignMask)); |
| value = no_reg; |
| __ sll(t0, t5, HeapNumber::kMantissaBitsInTopWord); |
| __ or_(a2, a2, t0); |
| |
| // Shift mantissa. |
| static const int kMantissaShiftForHiWord = |
| kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
| |
| static const int kMantissaShiftForLoWord = |
| kBitsPerInt - kMantissaShiftForHiWord; |
| |
| __ srl(t0, t4, kMantissaShiftForHiWord); |
| __ or_(a2, a2, t0); |
| __ sll(a0, t4, kMantissaShiftForLoWord); |
| |
| __ sw(a2, FieldMemOperand(v0, HeapNumber::kExponentOffset)); |
| __ sw(a0, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| } |
| |
| } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // Allocate a HeapNumber for the result. Don't use a0 and a1 as |
| // AllocateHeapNumber clobbers all registers - also when jumping due to |
| // exhausted young space. |
| __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(v0, t3, t5, t6, &slow); |
| // The double value is already in f0 |
| __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } else { |
| // Allocate a HeapNumber for the result. Don't use a0 and a1 as |
| // AllocateHeapNumber clobbers all registers - also when jumping due to |
| // exhausted young space. |
| __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(v0, t3, t5, t6, &slow); |
| |
| __ sw(a2, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); |
| __ sw(a3, FieldMemOperand(v0, HeapNumber::kExponentOffset)); |
| __ Ret(); |
| } |
| |
| } else { |
| // Tag integer as smi and return it. |
| __ sll(v0, value, kSmiTagSize); |
| __ Ret(); |
| } |
| |
| // Slow case, key and receiver still in a0 and a1. |
| __ bind(&slow); |
| __ IncrementCounter( |
| masm->isolate()->counters()->keyed_load_external_array_slow(), |
| 1, a2, a3); |
| |
| // ---------- S t a t e -------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| |
| __ Push(a1, a0); |
| |
| __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); |
| |
| __ bind(&miss_force_generic); |
| Code* stub = masm->isolate()->builtins()->builtin( |
| Builtins::kKeyedLoadIC_MissForceGeneric); |
| __ Jump(Handle<Code>(stub), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void KeyedStoreStubCompiler::GenerateStoreExternalArray( |
| MacroAssembler* masm, |
| ElementsKind elements_kind) { |
| // ---------- S t a t e -------------- |
| // -- a0 : value |
| // -- a1 : key |
| // -- a2 : receiver |
| // -- ra : return address |
| // ----------------------------------- |
| |
| Label slow, check_heap_number, miss_force_generic; |
| |
| // Register usage. |
| Register value = a0; |
| Register key = a1; |
| Register receiver = a2; |
| // a3 mostly holds the elements array or the destination external array. |
| |
| // This stub is meant to be tail-jumped to, the receiver must already |
| // have been verified by the caller to not be a smi. |
| |
| // Check that the key is a smi. |
| __ JumpIfNotSmi(key, &miss_force_generic); |
| |
| __ lw(a3, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| |
| // Check that the index is in range. |
| __ SmiUntag(t0, key); |
| __ lw(t1, FieldMemOperand(a3, ExternalArray::kLengthOffset)); |
| // Unsigned comparison catches both negative and too-large values. |
| __ Branch(&miss_force_generic, Ugreater_equal, key, Operand(t1)); |
| |
| // Handle both smis and HeapNumbers in the fast path. Go to the |
| // runtime for all other kinds of values. |
| // a3: external array. |
| // t0: key (integer). |
| |
| if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) { |
| // Double to pixel conversion is only implemented in the runtime for now. |
| __ JumpIfNotSmi(value, &slow); |
| } else { |
| __ JumpIfNotSmi(value, &check_heap_number); |
| } |
| __ SmiUntag(t1, value); |
| __ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset)); |
| |
| // a3: base pointer of external storage. |
| // t0: key (integer). |
| // t1: value (integer). |
| |
| switch (elements_kind) { |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| // Clamp the value to [0..255]. |
| // v0 is used as a scratch register here. |
| Label done; |
| __ li(v0, Operand(255)); |
| // Normal branch: nop in delay slot. |
| __ Branch(&done, gt, t1, Operand(v0)); |
| // Use delay slot in this branch. |
| __ Branch(USE_DELAY_SLOT, &done, lt, t1, Operand(zero_reg)); |
| __ mov(v0, zero_reg); // In delay slot. |
| __ mov(v0, t1); // Value is in range 0..255. |
| __ bind(&done); |
| __ mov(t1, v0); |
| __ addu(t8, a3, t0); |
| __ sb(t1, MemOperand(t8, 0)); |
| } |
| break; |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| __ addu(t8, a3, t0); |
| __ sb(t1, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| __ sll(t8, t0, 1); |
| __ addu(t8, a3, t8); |
| __ sh(t1, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| __ sll(t8, t0, 2); |
| __ addu(t8, a3, t8); |
| __ sw(t1, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_FLOAT_ELEMENTS: |
| // Perform int-to-float conversion and store to memory. |
| StoreIntAsFloat(masm, a3, t0, t1, t2, t3, t4); |
| break; |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| __ sll(t8, t0, 3); |
| __ addu(a3, a3, t8); |
| // a3: effective address of the double element |
| FloatingPointHelper::Destination destination; |
| if (CpuFeatures::IsSupported(FPU)) { |
| destination = FloatingPointHelper::kFPURegisters; |
| } else { |
| destination = FloatingPointHelper::kCoreRegisters; |
| } |
| FloatingPointHelper::ConvertIntToDouble( |
| masm, t1, destination, |
| f0, t2, t3, // These are: double_dst, dst1, dst2. |
| t0, f2); // These are: scratch2, single_scratch. |
| if (destination == FloatingPointHelper::kFPURegisters) { |
| CpuFeatures::Scope scope(FPU); |
| __ sdc1(f0, MemOperand(a3, 0)); |
| } else { |
| __ sw(t2, MemOperand(a3, 0)); |
| __ sw(t3, MemOperand(a3, Register::kSizeInBytes)); |
| } |
| break; |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // Entry registers are intact, a0 holds the value which is the return value. |
| __ mov(v0, value); |
| __ Ret(); |
| |
| if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) { |
| // a3: external array. |
| // t0: index (integer). |
| __ bind(&check_heap_number); |
| __ GetObjectType(value, t1, t2); |
| __ Branch(&slow, ne, t2, Operand(HEAP_NUMBER_TYPE)); |
| |
| __ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset)); |
| |
| // a3: base pointer of external storage. |
| // t0: key (integer). |
| |
| // The WebGL specification leaves the behavior of storing NaN and |
| // +/-Infinity into integer arrays basically undefined. For more |
| // reproducible behavior, convert these to zero. |
| |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| |
| __ ldc1(f0, FieldMemOperand(a0, HeapNumber::kValueOffset)); |
| |
| if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
| __ cvt_s_d(f0, f0); |
| __ sll(t8, t0, 2); |
| __ addu(t8, a3, t8); |
| __ swc1(f0, MemOperand(t8, 0)); |
| } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
| __ sll(t8, t0, 3); |
| __ addu(t8, a3, t8); |
| __ sdc1(f0, MemOperand(t8, 0)); |
| } else { |
| __ EmitECMATruncate(t3, f0, f2, t2, t1, t5); |
| |
| switch (elements_kind) { |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| __ addu(t8, a3, t0); |
| __ sb(t3, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| __ sll(t8, t0, 1); |
| __ addu(t8, a3, t8); |
| __ sh(t3, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| __ sll(t8, t0, 2); |
| __ addu(t8, a3, t8); |
| __ sw(t3, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| // Entry registers are intact, a0 holds the value |
| // which is the return value. |
| __ mov(v0, value); |
| __ Ret(); |
| } else { |
| // FPU is not available, do manual conversions. |
| |
| __ lw(t3, FieldMemOperand(value, HeapNumber::kExponentOffset)); |
| __ lw(t4, FieldMemOperand(value, HeapNumber::kMantissaOffset)); |
| |
| if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
| Label done, nan_or_infinity_or_zero; |
| static const int kMantissaInHiWordShift = |
| kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
| |
| static const int kMantissaInLoWordShift = |
| kBitsPerInt - kMantissaInHiWordShift; |
| |
| // Test for all special exponent values: zeros, subnormal numbers, NaNs |
| // and infinities. All these should be converted to 0. |
| __ li(t5, HeapNumber::kExponentMask); |
| __ and_(t6, t3, t5); |
| __ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(zero_reg)); |
| |
| __ xor_(t1, t6, t5); |
| __ li(t2, kBinary32ExponentMask); |
| __ movz(t6, t2, t1); // Only if t6 is equal to t5. |
| __ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(t5)); |
| |
| // Rebias exponent. |
| __ srl(t6, t6, HeapNumber::kExponentShift); |
| __ Addu(t6, |
| t6, |
| Operand(kBinary32ExponentBias - HeapNumber::kExponentBias)); |
| |
| __ li(t1, Operand(kBinary32MaxExponent)); |
| __ Slt(t1, t1, t6); |
| __ And(t2, t3, Operand(HeapNumber::kSignMask)); |
| __ Or(t2, t2, Operand(kBinary32ExponentMask)); |
| __ movn(t3, t2, t1); // Only if t6 is gt kBinary32MaxExponent. |
| __ Branch(&done, gt, t6, Operand(kBinary32MaxExponent)); |
| |
| __ Slt(t1, t6, Operand(kBinary32MinExponent)); |
| __ And(t2, t3, Operand(HeapNumber::kSignMask)); |
| __ movn(t3, t2, t1); // Only if t6 is lt kBinary32MinExponent. |
| __ Branch(&done, lt, t6, Operand(kBinary32MinExponent)); |
| |
| __ And(t7, t3, Operand(HeapNumber::kSignMask)); |
| __ And(t3, t3, Operand(HeapNumber::kMantissaMask)); |
| __ sll(t3, t3, kMantissaInHiWordShift); |
| __ or_(t7, t7, t3); |
| __ srl(t4, t4, kMantissaInLoWordShift); |
| __ or_(t7, t7, t4); |
| __ sll(t6, t6, kBinary32ExponentShift); |
| __ or_(t3, t7, t6); |
| |
| __ bind(&done); |
| __ sll(t9, a1, 2); |
| __ addu(t9, a2, t9); |
| __ sw(t3, MemOperand(t9, 0)); |
| |
| // Entry registers are intact, a0 holds the value which is the return |
| // value. |
| __ mov(v0, value); |
| __ Ret(); |
| |
| __ bind(&nan_or_infinity_or_zero); |
| __ And(t7, t3, Operand(HeapNumber::kSignMask)); |
| __ And(t3, t3, Operand(HeapNumber::kMantissaMask)); |
| __ or_(t6, t6, t7); |
| __ sll(t3, t3, kMantissaInHiWordShift); |
| __ or_(t6, t6, t3); |
| __ srl(t4, t4, kMantissaInLoWordShift); |
| __ or_(t3, t6, t4); |
| __ Branch(&done); |
| } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
| __ sll(t8, t0, 3); |
| __ addu(t8, a3, t8); |
| // t8: effective address of destination element. |
| __ sw(t4, MemOperand(t8, 0)); |
| __ sw(t3, MemOperand(t8, Register::kSizeInBytes)); |
| __ Ret(); |
| } else { |
| bool is_signed_type = IsElementTypeSigned(elements_kind); |
| int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt; |
| int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000; |
| |
| Label done, sign; |
| |
| // Test for all special exponent values: zeros, subnormal numbers, NaNs |
| // and infinities. All these should be converted to 0. |
| __ li(t5, HeapNumber::kExponentMask); |
| __ and_(t6, t3, t5); |
| __ movz(t3, zero_reg, t6); // Only if t6 is equal to zero. |
| __ Branch(&done, eq, t6, Operand(zero_reg)); |
| |
| __ xor_(t2, t6, t5); |
| __ movz(t3, zero_reg, t2); // Only if t6 is equal to t5. |
| __ Branch(&done, eq, t6, Operand(t5)); |
| |
| // Unbias exponent. |
| __ srl(t6, t6, HeapNumber::kExponentShift); |
| __ Subu(t6, t6, Operand(HeapNumber::kExponentBias)); |
| // If exponent is negative then result is 0. |
| __ slt(t2, t6, zero_reg); |
| __ movn(t3, zero_reg, t2); // Only if exponent is negative. |
| __ Branch(&done, lt, t6, Operand(zero_reg)); |
| |
| // If exponent is too big then result is minimal value. |
| __ slti(t1, t6, meaningfull_bits - 1); |
| __ li(t2, min_value); |
| __ movz(t3, t2, t1); // Only if t6 is ge meaningfull_bits - 1. |
| __ Branch(&done, ge, t6, Operand(meaningfull_bits - 1)); |
| |
| __ And(t5, t3, Operand(HeapNumber::kSignMask)); |
| __ And(t3, t3, Operand(HeapNumber::kMantissaMask)); |
| __ Or(t3, t3, Operand(1u << HeapNumber::kMantissaBitsInTopWord)); |
| |
| __ li(t9, HeapNumber::kMantissaBitsInTopWord); |
| __ subu(t6, t9, t6); |
| __ slt(t1, t6, zero_reg); |
| __ srlv(t2, t3, t6); |
| __ movz(t3, t2, t1); // Only if t6 is positive. |
| __ Branch(&sign, ge, t6, Operand(zero_reg)); |
| |
| __ subu(t6, zero_reg, t6); |
| __ sllv(t3, t3, t6); |
| __ li(t9, meaningfull_bits); |
| __ subu(t6, t9, t6); |
| __ srlv(t4, t4, t6); |
| __ or_(t3, t3, t4); |
| |
| __ bind(&sign); |
| __ subu(t2, t3, zero_reg); |
| __ movz(t3, t2, t5); // Only if t5 is zero. |
| |
| __ bind(&done); |
| |
| // Result is in t3. |
| // This switch block should be exactly the same as above (FPU mode). |
| switch (elements_kind) { |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| __ addu(t8, a3, t0); |
| __ sb(t3, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| __ sll(t8, t0, 1); |
| __ addu(t8, a3, t8); |
| __ sh(t3, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| __ sll(t8, t0, 2); |
| __ addu(t8, a3, t8); |
| __ sw(t3, MemOperand(t8, 0)); |
| break; |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Slow case, key and receiver still in a0 and a1. |
| __ bind(&slow); |
| __ IncrementCounter( |
| masm->isolate()->counters()->keyed_load_external_array_slow(), |
| 1, a2, a3); |
| // Entry registers are intact. |
| // ---------- S t a t e -------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Handle<Code> slow_ic = |
| masm->isolate()->builtins()->KeyedStoreIC_Slow(); |
| __ Jump(slow_ic, RelocInfo::CODE_TARGET); |
| |
| // Miss case, call the runtime. |
| __ bind(&miss_force_generic); |
| |
| // ---------- S t a t e -------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| |
| Handle<Code> miss_ic = |
| masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); |
| __ Jump(miss_ic, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss_force_generic; |
| |
| // This stub is meant to be tail-jumped to, the receiver must already |
| // have been verified by the caller to not be a smi. |
| |
| // Check that the key is a smi. |
| __ JumpIfNotSmi(a0, &miss_force_generic); |
| |
| // Get the elements array. |
| __ lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset)); |
| __ AssertFastElements(a2); |
| |
| // Check that the key is within bounds. |
| __ lw(a3, FieldMemOperand(a2, FixedArray::kLengthOffset)); |
| __ Branch(&miss_force_generic, hs, a0, Operand(a3)); |
| |
| // Load the result and make sure it's not the hole. |
| __ Addu(a3, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); |
| __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(t0, t0, a3); |
| __ lw(t0, MemOperand(t0)); |
| __ LoadRoot(t1, Heap::kTheHoleValueRootIndex); |
| __ Branch(&miss_force_generic, eq, t0, Operand(t1)); |
| __ mov(v0, t0); |
| __ Ret(); |
| |
| __ bind(&miss_force_generic); |
| Code* stub = masm->isolate()->builtins()->builtin( |
| Builtins::kKeyedLoadIC_MissForceGeneric); |
| __ Jump(Handle<Code>(stub), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement( |
| MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- ra : return address |
| // -- a0 : key |
| // -- a1 : receiver |
| // ----------------------------------- |
| Label miss_force_generic, slow_allocate_heapnumber; |
| |
| Register key_reg = a0; |
| Register receiver_reg = a1; |
| Register elements_reg = a2; |
| Register heap_number_reg = a2; |
| Register indexed_double_offset = a3; |
| Register scratch = t0; |
| Register scratch2 = t1; |
| Register scratch3 = t2; |
| Register heap_number_map = t3; |
| |
| // This stub is meant to be tail-jumped to, the receiver must already |
| // have been verified by the caller to not be a smi. |
| |
| // Check that the key is a smi. |
| __ JumpIfNotSmi(key_reg, &miss_force_generic); |
| |
| // Get the elements array. |
| __ lw(elements_reg, |
| FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); |
| |
| // Check that the key is within bounds. |
| __ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); |
| __ Branch(&miss_force_generic, hs, key_reg, Operand(scratch)); |
| |
| // Load the upper word of the double in the fixed array and test for NaN. |
| __ sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize); |
| __ Addu(indexed_double_offset, elements_reg, Operand(scratch2)); |
| uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32); |
| __ lw(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset)); |
| __ Branch(&miss_force_generic, eq, scratch, Operand(kHoleNanUpper32)); |
| |
| // Non-NaN. Allocate a new heap number and copy the double value into it. |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(heap_number_reg, scratch2, scratch3, |
| heap_number_map, &slow_allocate_heapnumber); |
| |
| // Don't need to reload the upper 32 bits of the double, it's already in |
| // scratch. |
| __ sw(scratch, FieldMemOperand(heap_number_reg, |
| HeapNumber::kExponentOffset)); |
| __ lw(scratch, FieldMemOperand(indexed_double_offset, |
| FixedArray::kHeaderSize)); |
| __ sw(scratch, FieldMemOperand(heap_number_reg, |
| HeapNumber::kMantissaOffset)); |
| |
| __ mov(v0, heap_number_reg); |
| __ Ret(); |
| |
| __ bind(&slow_allocate_heapnumber); |
| Handle<Code> slow_ic = |
| masm->isolate()->builtins()->KeyedLoadIC_Slow(); |
| __ Jump(slow_ic, RelocInfo::CODE_TARGET); |
| |
| __ bind(&miss_force_generic); |
| Handle<Code> miss_ic = |
| masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
| __ Jump(miss_ic, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void KeyedStoreStubCompiler::GenerateStoreFastElement(MacroAssembler* masm, |
| bool is_js_array) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : key |
| // -- a2 : receiver |
| // -- ra : return address |
| // -- a3 : scratch |
| // -- a4 : scratch (elements) |
| // ----------------------------------- |
| Label miss_force_generic; |
| |
| Register value_reg = a0; |
| Register key_reg = a1; |
| Register receiver_reg = a2; |
| Register scratch = a3; |
| Register elements_reg = t0; |
| Register scratch2 = t1; |
| Register scratch3 = t2; |
| |
| // This stub is meant to be tail-jumped to, the receiver must already |
| // have been verified by the caller to not be a smi. |
| |
| // Check that the key is a smi. |
| __ JumpIfNotSmi(key_reg, &miss_force_generic); |
| |
| // Get the elements array and make sure it is a fast element array, not 'cow'. |
| __ lw(elements_reg, |
| FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); |
| __ CheckMap(elements_reg, |
| scratch, |
| Heap::kFixedArrayMapRootIndex, |
| &miss_force_generic, |
| DONT_DO_SMI_CHECK); |
| |
| // Check that the key is within bounds. |
| if (is_js_array) { |
| __ lw(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); |
| } else { |
| __ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); |
| } |
| // Compare smis. |
| __ Branch(&miss_force_generic, hs, key_reg, Operand(scratch)); |
| |
| __ Addu(scratch, |
| elements_reg, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); |
| __ sll(scratch2, key_reg, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(scratch3, scratch2, scratch); |
| __ sw(value_reg, MemOperand(scratch3)); |
| __ RecordWrite(scratch, Operand(scratch2), receiver_reg , elements_reg); |
| |
| // value_reg (a0) is preserved. |
| // Done. |
| __ Ret(); |
| |
| __ bind(&miss_force_generic); |
| Handle<Code> ic = |
| masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement( |
| MacroAssembler* masm, |
| bool is_js_array) { |
| // ----------- S t a t e ------------- |
| // -- a0 : value |
| // -- a1 : key |
| // -- a2 : receiver |
| // -- ra : return address |
| // -- a3 : scratch |
| // -- t0 : scratch (elements_reg) |
| // -- t1 : scratch (mantissa_reg) |
| // -- t2 : scratch (exponent_reg) |
| // -- t3 : scratch4 |
| // ----------------------------------- |
| Label miss_force_generic, smi_value, is_nan, maybe_nan, have_double_value; |
| |
| Register value_reg = a0; |
| Register key_reg = a1; |
| Register receiver_reg = a2; |
| Register scratch = a3; |
| Register elements_reg = t0; |
| Register mantissa_reg = t1; |
| Register exponent_reg = t2; |
| Register scratch4 = t3; |
| |
| // This stub is meant to be tail-jumped to, the receiver must already |
| // have been verified by the caller to not be a smi. |
| __ JumpIfNotSmi(key_reg, &miss_force_generic); |
| |
| __ lw(elements_reg, |
| FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); |
| |
| // Check that the key is within bounds. |
| if (is_js_array) { |
| __ lw(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset)); |
| } else { |
| __ lw(scratch, |
| FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); |
| } |
| // Compare smis, unsigned compare catches both negative and out-of-bound |
| // indexes. |
| __ Branch(&miss_force_generic, hs, key_reg, Operand(scratch)); |
| |
| // Handle smi values specially. |
| __ JumpIfSmi(value_reg, &smi_value); |
| |
| // Ensure that the object is a heap number |
| __ CheckMap(value_reg, |
| scratch, |
| masm->isolate()->factory()->heap_number_map(), |
| &miss_force_generic, |
| DONT_DO_SMI_CHECK); |
| |
| // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000 |
| // in the exponent. |
| __ li(scratch, Operand(kNaNOrInfinityLowerBoundUpper32)); |
| __ lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); |
| __ Branch(&maybe_nan, ge, exponent_reg, Operand(scratch)); |
| |
| __ lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); |
| |
| __ bind(&have_double_value); |
| __ sll(scratch4, key_reg, kDoubleSizeLog2 - kSmiTagSize); |
| __ Addu(scratch, elements_reg, Operand(scratch4)); |
| __ sw(mantissa_reg, FieldMemOperand(scratch, FixedDoubleArray::kHeaderSize)); |
| uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); |
| __ sw(exponent_reg, FieldMemOperand(scratch, offset)); |
| __ Ret(USE_DELAY_SLOT); |
| __ mov(v0, value_reg); // In delay slot. |
| |
| __ bind(&maybe_nan); |
| // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise |
| // it's an Infinity, and the non-NaN code path applies. |
| __ li(scratch, Operand(kNaNOrInfinityLowerBoundUpper32)); |
| __ Branch(&is_nan, gt, exponent_reg, Operand(scratch)); |
| __ lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); |
| __ Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg)); |
| |
| __ bind(&is_nan); |
| // Load canonical NaN for storing into the double array. |
| uint64_t nan_int64 = BitCast<uint64_t>( |
| FixedDoubleArray::canonical_not_the_hole_nan_as_double()); |
| __ li(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64))); |
| __ li(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32))); |
| __ jmp(&have_double_value); |
| |
| __ bind(&smi_value); |
| __ Addu(scratch, elements_reg, |
| Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| __ sll(scratch4, key_reg, kDoubleSizeLog2 - kSmiTagSize); |
| __ Addu(scratch, scratch, scratch4); |
| // scratch is now effective address of the double element |
| |
| FloatingPointHelper::Destination destination; |
| if (CpuFeatures::IsSupported(FPU)) { |
| destination = FloatingPointHelper::kFPURegisters; |
| } else { |
| destination = FloatingPointHelper::kCoreRegisters; |
| } |
| |
| Register untagged_value = receiver_reg; |
| __ SmiUntag(untagged_value, value_reg); |
| FloatingPointHelper::ConvertIntToDouble( |
| masm, |
| untagged_value, |
| destination, |
| f0, |
| mantissa_reg, |
| exponent_reg, |
| scratch4, |
| f2); |
| if (destination == FloatingPointHelper::kFPURegisters) { |
| CpuFeatures::Scope scope(FPU); |
| __ sdc1(f0, MemOperand(scratch, 0)); |
| } else { |
| __ sw(mantissa_reg, MemOperand(scratch, 0)); |
| __ sw(exponent_reg, MemOperand(scratch, Register::kSizeInBytes)); |
| } |
| __ Ret(USE_DELAY_SLOT); |
| __ mov(v0, value_reg); // In delay slot. |
| |
| // Handle store cache miss, replacing the ic with the generic stub. |
| __ bind(&miss_force_generic); |
| Handle<Code> ic = |
| masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric(); |
| __ Jump(ic, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS |