blob: b5f4deefeb906b5caa74a458676536fec46e4d07 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_IA32)
#include "codegen-inl.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
#include "utils.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm,
Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ cmp(type, JS_GLOBAL_OBJECT_TYPE);
__ j(equal, global_object, not_taken);
__ cmp(type, JS_BUILTINS_OBJECT_TYPE);
__ j(equal, global_object, not_taken);
__ cmp(type, JS_GLOBAL_PROXY_TYPE);
__ j(equal, global_object, not_taken);
}
// Generated code falls through if the receiver is a regular non-global
// JS object with slow properties and no interceptors.
static void GenerateStringDictionaryReceiverCheck(MacroAssembler* masm,
Register receiver,
Register r0,
Register r1,
Label* miss) {
// Register usage:
// receiver: holds the receiver on entry and is unchanged.
// r0: used to hold receiver instance type.
// Holds the property dictionary on fall through.
// r1: used to hold receivers map.
// Check that the receiver isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, miss, not_taken);
// Check that the receiver is a valid JS object.
__ mov(r1, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzx_b(r0, FieldOperand(r1, Map::kInstanceTypeOffset));
__ cmp(r0, FIRST_JS_OBJECT_TYPE);
__ j(below, miss, not_taken);
// If this assert fails, we have to check upper bound too.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
GenerateGlobalInstanceTypeCheck(masm, r0, miss);
// Check for non-global object that requires access check.
__ test_b(FieldOperand(r1, Map::kBitFieldOffset),
(1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasNamedInterceptor));
__ j(not_zero, miss, not_taken);
__ mov(r0, FieldOperand(receiver, JSObject::kPropertiesOffset));
__ CheckMap(r0, Factory::hash_table_map(), miss, true);
}
// Probe the string dictionary in the |elements| register. Jump to the
// |done| label if a property with the given name is found leaving the
// index into the dictionary in |r0|. Jump to the |miss| label
// otherwise.
static void GenerateStringDictionaryProbes(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register r0,
Register r1) {
// Compute the capacity mask.
const int kCapacityOffset =
StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
__ mov(r1, FieldOperand(elements, kCapacityOffset));
__ shr(r1, kSmiTagSize); // convert smi to int
__ dec(r1);
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
static const int kProbes = 4;
const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
for (int i = 0; i < kProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ mov(r0, FieldOperand(name, String::kHashFieldOffset));
__ shr(r0, String::kHashShift);
if (i > 0) {
__ add(Operand(r0), Immediate(StringDictionary::GetProbeOffset(i)));
}
__ and_(r0, Operand(r1));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
// Check if the key is identical to the name.
__ cmp(name, Operand(elements, r0, times_4,
kElementsStartOffset - kHeapObjectTag));
if (i != kProbes - 1) {
__ j(equal, done, taken);
} else {
__ j(not_equal, miss, not_taken);
}
}
}
// Helper function used to load a property from a dictionary backing
// storage. This function may fail to load a property even though it is
// in the dictionary, so code at miss_label must always call a backup
// property load that is complete. This function is safe to call if
// name is not a symbol, and will jump to the miss_label in that
// case. The generated code assumes that the receiver has slow
// properties, is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm,
Label* miss_label,
Register elements,
Register name,
Register r0,
Register r1,
Register result) {
// Register use:
//
// elements - holds the property dictionary on entry and is unchanged.
//
// name - holds the name of the property on entry and is unchanged.
//
// Scratch registers:
//
// r0 - used for the index into the property dictionary
//
// r1 - used to hold the capacity of the property dictionary.
//
// result - holds the result on exit.
Label done;
// Probe the dictionary.
GenerateStringDictionaryProbes(masm,
miss_label,
&done,
elements,
name,
r0,
r1);
// If probing finds an entry in the dictionary, r0 contains the
// index into the dictionary. Check that the value is a normal
// property.
__ bind(&done);
const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
Immediate(PropertyDetails::TypeField::mask() << kSmiTagSize));
__ j(not_zero, miss_label, not_taken);
// Get the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ mov(result, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
}
// Helper function used to store a property to a dictionary backing
// storage. This function may fail to store a property eventhough it
// is in the dictionary, so code at miss_label must always call a
// backup property store that is complete. This function is safe to
// call if name is not a symbol, and will jump to the miss_label in
// that case. The generated code assumes that the receiver has slow
// properties, is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm,
Label* miss_label,
Register elements,
Register name,
Register value,
Register r0,
Register r1) {
// Register use:
//
// elements - holds the property dictionary on entry and is clobbered.
//
// name - holds the name of the property on entry and is unchanged.
//
// value - holds the value to store and is unchanged.
//
// r0 - used for index into the property dictionary and is clobbered.
//
// r1 - used to hold the capacity of the property dictionary and is clobbered.
Label done;
// Probe the dictionary.
GenerateStringDictionaryProbes(masm,
miss_label,
&done,
elements,
name,
r0,
r1);
// If probing finds an entry in the dictionary, r0 contains the
// index into the dictionary. Check that the value is a normal
// property that is not read only.
__ bind(&done);
const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask
= (PropertyDetails::TypeField::mask() |
PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize;
__ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
Immediate(kTypeAndReadOnlyMask));
__ j(not_zero, miss_label, not_taken);
// Store the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ lea(r0, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
__ mov(Operand(r0, 0), value);
// Update write barrier. Make sure not to clobber the value.
__ mov(r1, value);
__ RecordWrite(elements, r0, r1);
}
static void GenerateNumberDictionaryLoad(MacroAssembler* masm,
Label* miss,
Register elements,
Register key,
Register r0,
Register r1,
Register r2,
Register result) {
// Register use:
//
// elements - holds the slow-case elements of the receiver and is unchanged.
//
// key - holds the smi key on entry and is unchanged.
//
// Scratch registers:
//
// r0 - holds the untagged key on entry and holds the hash once computed.
//
// r1 - used to hold the capacity mask of the dictionary
//
// r2 - used for the index into the dictionary.
//
// result - holds the result on exit if the load succeeds and we fall through.
Label done;
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
__ mov(r1, r0);
__ not_(r0);
__ shl(r1, 15);
__ add(r0, Operand(r1));
// hash = hash ^ (hash >> 12);
__ mov(r1, r0);
__ shr(r1, 12);
__ xor_(r0, Operand(r1));
// hash = hash + (hash << 2);
__ lea(r0, Operand(r0, r0, times_4, 0));
// hash = hash ^ (hash >> 4);
__ mov(r1, r0);
__ shr(r1, 4);
__ xor_(r0, Operand(r1));
// hash = hash * 2057;
__ imul(r0, r0, 2057);
// hash = hash ^ (hash >> 16);
__ mov(r1, r0);
__ shr(r1, 16);
__ xor_(r0, Operand(r1));
// Compute capacity mask.
__ mov(r1, FieldOperand(elements, NumberDictionary::kCapacityOffset));
__ shr(r1, kSmiTagSize); // convert smi to int
__ dec(r1);
// Generate an unrolled loop that performs a few probes before giving up.
const int kProbes = 4;
for (int i = 0; i < kProbes; i++) {
// Use r2 for index calculations and keep the hash intact in r0.
__ mov(r2, r0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
__ add(Operand(r2), Immediate(NumberDictionary::GetProbeOffset(i)));
}
__ and_(r2, Operand(r1));
// Scale the index by multiplying by the entry size.
ASSERT(NumberDictionary::kEntrySize == 3);
__ lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
// Check if the key matches.
__ cmp(key, FieldOperand(elements,
r2,
times_pointer_size,
NumberDictionary::kElementsStartOffset));
if (i != (kProbes - 1)) {
__ j(equal, &done, taken);
} else {
__ j(not_equal, miss, not_taken);
}
}
__ bind(&done);
// Check that the value is a normal propety.
const int kDetailsOffset =
NumberDictionary::kElementsStartOffset + 2 * kPointerSize;
ASSERT_EQ(NORMAL, 0);
__ test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
Immediate(PropertyDetails::TypeField::mask() << kSmiTagSize));
__ j(not_zero, miss);
// Get the value at the masked, scaled index.
const int kValueOffset =
NumberDictionary::kElementsStartOffset + kPointerSize;
__ mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
}
// The offset from the inlined patch site to the start of the
// inlined load instruction. It is 7 bytes (test eax, imm) plus
// 6 bytes (jne slow_label).
const int LoadIC::kOffsetToLoadInstruction = 13;
void LoadIC::GenerateArrayLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadArrayLength(masm, eax, edx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateStringLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadStringLength(masm, eax, edx, ebx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadFunctionPrototype(masm, eax, edx, ebx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver,
Register map,
int interceptor_bit,
Label* slow) {
// Register use:
// receiver - holds the receiver and is unchanged.
// Scratch registers:
// map - used to hold the map of the receiver.
// Check that the object isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, slow, not_taken);
// Get the map of the receiver.
__ mov(map, FieldOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ test_b(FieldOperand(map, Map::kBitFieldOffset),
(1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit));
__ j(not_zero, slow, not_taken);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing
// into string objects works as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ CmpInstanceType(map, JS_OBJECT_TYPE);
__ j(below, slow, not_taken);
}
// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
static void GenerateFastArrayLoad(MacroAssembler* masm,
Register receiver,
Register key,
Register scratch,
Register result,
Label* not_fast_array,
Label* out_of_range) {
// Register use:
// receiver - holds the receiver and is unchanged.
// key - holds the key and is unchanged (must be a smi).
// Scratch registers:
// scratch - used to hold elements of the receiver and the loaded value.
// result - holds the result on exit if the load succeeds and
// we fall through.
__ mov(scratch, FieldOperand(receiver, JSObject::kElementsOffset));
if (not_fast_array != NULL) {
// Check that the object is in fast mode and writable.
__ CheckMap(scratch, Factory::fixed_array_map(), not_fast_array, true);
} else {
__ AssertFastElements(scratch);
}
// Check that the key (index) is within bounds.
__ cmp(key, FieldOperand(scratch, FixedArray::kLengthOffset));
__ j(above_equal, out_of_range);
// Fast case: Do the load.
ASSERT((kPointerSize == 4) && (kSmiTagSize == 1) && (kSmiTag == 0));
__ mov(scratch, FieldOperand(scratch, key, times_2, FixedArray::kHeaderSize));
__ cmp(Operand(scratch), Immediate(Factory::the_hole_value()));
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ j(equal, out_of_range);
if (!result.is(scratch)) {
__ mov(result, scratch);
}
}
// Checks whether a key is an array index string or a symbol string.
// Falls through if the key is a symbol.
static void GenerateKeyStringCheck(MacroAssembler* masm,
Register key,
Register map,
Register hash,
Label* index_string,
Label* not_symbol) {
// Register use:
// key - holds the key and is unchanged. Assumed to be non-smi.
// Scratch registers:
// map - used to hold the map of the key.
// hash - used to hold the hash of the key.
__ CmpObjectType(key, FIRST_NONSTRING_TYPE, map);
__ j(above_equal, not_symbol);
// Is the string an array index, with cached numeric value?
__ mov(hash, FieldOperand(key, String::kHashFieldOffset));
__ test(hash, Immediate(String::kContainsCachedArrayIndexMask));
__ j(zero, index_string, not_taken);
// Is the string a symbol?
ASSERT(kSymbolTag != 0);
__ test_b(FieldOperand(map, Map::kInstanceTypeOffset), kIsSymbolMask);
__ j(zero, not_symbol, not_taken);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, check_string, index_smi, index_string, property_array_property;
Label check_pixel_array, probe_dictionary, check_number_dictionary;
// Check that the key is a smi.
__ test(eax, Immediate(kSmiTagMask));
__ j(not_zero, &check_string, not_taken);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, edx, ecx, Map::kHasIndexedInterceptor, &slow);
// Check the "has fast elements" bit in the receiver's map which is
// now in ecx.
__ test_b(FieldOperand(ecx, Map::kBitField2Offset),
1 << Map::kHasFastElements);
__ j(zero, &check_pixel_array, not_taken);
GenerateFastArrayLoad(masm,
edx,
eax,
ecx,
eax,
NULL,
&slow);
__ IncrementCounter(&Counters::keyed_load_generic_smi, 1);
__ ret(0);
__ bind(&check_pixel_array);
// Check whether the elements is a pixel array.
// edx: receiver
// eax: key
__ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset));
__ mov(ebx, eax);
__ SmiUntag(ebx);
__ CheckMap(ecx, Factory::pixel_array_map(), &check_number_dictionary, true);
__ cmp(ebx, FieldOperand(ecx, PixelArray::kLengthOffset));
__ j(above_equal, &slow);
__ mov(eax, FieldOperand(ecx, PixelArray::kExternalPointerOffset));
__ movzx_b(eax, Operand(eax, ebx, times_1, 0));
__ SmiTag(eax);
__ ret(0);
__ bind(&check_number_dictionary);
// Check whether the elements is a number dictionary.
// edx: receiver
// ebx: untagged index
// eax: key
// ecx: elements
__ CheckMap(ecx, Factory::hash_table_map(), &slow, true);
Label slow_pop_receiver;
// Push receiver on the stack to free up a register for the dictionary
// probing.
__ push(edx);
GenerateNumberDictionaryLoad(masm,
&slow_pop_receiver,
ecx,
eax,
ebx,
edx,
edi,
eax);
// Pop receiver before returning.
__ pop(edx);
__ ret(0);
__ bind(&slow_pop_receiver);
// Pop the receiver from the stack and jump to runtime.
__ pop(edx);
__ bind(&slow);
// Slow case: jump to runtime.
// edx: receiver
// eax: key
__ IncrementCounter(&Counters::keyed_load_generic_slow, 1);
GenerateRuntimeGetProperty(masm);
__ bind(&check_string);
GenerateKeyStringCheck(masm, eax, ecx, ebx, &index_string, &slow);
GenerateKeyedLoadReceiverCheck(
masm, edx, ecx, Map::kHasNamedInterceptor, &slow);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary.
__ mov(ebx, FieldOperand(edx, JSObject::kPropertiesOffset));
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(Factory::hash_table_map()));
__ j(equal, &probe_dictionary);
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the string hash.
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ mov(ecx, ebx);
__ shr(ecx, KeyedLookupCache::kMapHashShift);
__ mov(edi, FieldOperand(eax, String::kHashFieldOffset));
__ shr(edi, String::kHashShift);
__ xor_(ecx, Operand(edi));
__ and_(ecx, KeyedLookupCache::kCapacityMask);
// Load the key (consisting of map and symbol) from the cache and
// check for match.
ExternalReference cache_keys
= ExternalReference::keyed_lookup_cache_keys();
__ mov(edi, ecx);
__ shl(edi, kPointerSizeLog2 + 1);
__ cmp(ebx, Operand::StaticArray(edi, times_1, cache_keys));
__ j(not_equal, &slow);
__ add(Operand(edi), Immediate(kPointerSize));
__ cmp(eax, Operand::StaticArray(edi, times_1, cache_keys));
__ j(not_equal, &slow);
// Get field offset.
// edx : receiver
// ebx : receiver's map
// eax : key
// ecx : lookup cache index
ExternalReference cache_field_offsets
= ExternalReference::keyed_lookup_cache_field_offsets();
__ mov(edi,
Operand::StaticArray(ecx, times_pointer_size, cache_field_offsets));
__ movzx_b(ecx, FieldOperand(ebx, Map::kInObjectPropertiesOffset));
__ sub(edi, Operand(ecx));
__ j(above_equal, &property_array_property);
// Load in-object property.
__ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceSizeOffset));
__ add(ecx, Operand(edi));
__ mov(eax, FieldOperand(edx, ecx, times_pointer_size, 0));
__ IncrementCounter(&Counters::keyed_load_generic_lookup_cache, 1);
__ ret(0);
// Load property array property.
__ bind(&property_array_property);
__ mov(eax, FieldOperand(edx, JSObject::kPropertiesOffset));
__ mov(eax, FieldOperand(eax, edi, times_pointer_size,
FixedArray::kHeaderSize));
__ IncrementCounter(&Counters::keyed_load_generic_lookup_cache, 1);
__ ret(0);
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
__ mov(ecx, FieldOperand(edx, JSObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, ecx, &slow);
GenerateDictionaryLoad(masm, &slow, ebx, eax, ecx, edi, eax);
__ IncrementCounter(&Counters::keyed_load_generic_symbol, 1);
__ ret(0);
__ bind(&index_string);
__ IndexFromHash(ebx, eax);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key (index)
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Register receiver = edx;
Register index = eax;
Register scratch1 = ebx;
Register scratch2 = ecx;
Register result = eax;
StringCharAtGenerator char_at_generator(receiver,
index,
scratch1,
scratch2,
result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
STRING_INDEX_IS_ARRAY_INDEX);
char_at_generator.GenerateFast(masm);
__ ret(0);
ICRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, call_helper);
__ bind(&miss);
GenerateMiss(masm);
}
void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, failed_allocation;
// Check that the object isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow, not_taken);
// Check that the key is a smi.
__ test(eax, Immediate(kSmiTagMask));
__ j(not_zero, &slow, not_taken);
// Get the map of the receiver.
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to check this explicitly since this generic stub does not perform
// map checks.
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1 << Map::kIsAccessCheckNeeded);
__ j(not_zero, &slow, not_taken);
__ CmpInstanceType(ecx, JS_OBJECT_TYPE);
__ j(not_equal, &slow, not_taken);
// Check that the elements array is the appropriate type of
// ExternalArray.
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
Handle<Map> map(Heap::MapForExternalArrayType(array_type));
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(map));
__ j(not_equal, &slow, not_taken);
// eax: key, known to be a smi.
// edx: receiver, known to be a JSObject.
// ebx: elements object, known to be an external array.
// Check that the index is in range.
__ mov(ecx, eax);
__ SmiUntag(ecx); // Untag the index.
__ cmp(ecx, FieldOperand(ebx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
__ mov(ebx, FieldOperand(ebx, ExternalArray::kExternalPointerOffset));
// ebx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
__ movsx_b(ecx, Operand(ebx, ecx, times_1, 0));
break;
case kExternalUnsignedByteArray:
__ movzx_b(ecx, Operand(ebx, ecx, times_1, 0));
break;
case kExternalShortArray:
__ movsx_w(ecx, Operand(ebx, ecx, times_2, 0));
break;
case kExternalUnsignedShortArray:
__ movzx_w(ecx, Operand(ebx, ecx, times_2, 0));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ mov(ecx, Operand(ebx, ecx, times_4, 0));
break;
case kExternalFloatArray:
__ fld_s(Operand(ebx, ecx, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
// For integer array types:
// ecx: value
// For floating-point array type:
// FP(0): value
if (array_type == kExternalIntArray ||
array_type == kExternalUnsignedIntArray) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
if (array_type == kExternalIntArray) {
__ cmp(ecx, 0xC0000000);
__ j(sign, &box_int);
} else {
ASSERT_EQ(array_type, kExternalUnsignedIntArray);
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle either of the top two bits being set in the value.
__ test(ecx, Immediate(0xC0000000));
__ j(not_zero, &box_int);
}
__ mov(eax, ecx);
__ SmiTag(eax);
__ ret(0);
__ bind(&box_int);
// Allocate a HeapNumber for the int and perform int-to-double
// conversion.
if (array_type == kExternalIntArray) {
__ push(ecx);
__ fild_s(Operand(esp, 0));
__ pop(ecx);
} else {
ASSERT(array_type == kExternalUnsignedIntArray);
// Need to zero-extend the value.
// There's no fild variant for unsigned values, so zero-extend
// to a 64-bit int manually.
__ push(Immediate(0));
__ push(ecx);
__ fild_d(Operand(esp, 0));
__ pop(ecx);
__ pop(ecx);
}
// FP(0): value
__ AllocateHeapNumber(ecx, ebx, edi, &failed_allocation);
// Set the value.
__ mov(eax, ecx);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
} else if (array_type == kExternalFloatArray) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
__ AllocateHeapNumber(ecx, ebx, edi, &failed_allocation);
// Set the value.
__ mov(eax, ecx);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
} else {
__ mov(eax, ecx);
__ SmiTag(eax);
__ ret(0);
}
// If we fail allocation of the HeapNumber, we still have a value on
// top of the FPU stack. Remove it.
__ bind(&failed_allocation);
__ ffree();
__ fincstp();
// Fall through to slow case.
// Slow case: Jump to runtime.
__ bind(&slow);
__ IncrementCounter(&Counters::keyed_load_external_array_slow, 1);
GenerateRuntimeGetProperty(masm);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow;
// Check that the receiver isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow, not_taken);
// Check that the key is an array index, that is Uint32.
__ test(eax, Immediate(kSmiTagMask | kSmiSignMask));
__ j(not_zero, &slow, not_taken);
// Get the map of the receiver.
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
// Check that it has indexed interceptor and access checks
// are not enabled for this object.
__ movzx_b(ecx, FieldOperand(ecx, Map::kBitFieldOffset));
__ and_(Operand(ecx), Immediate(kSlowCaseBitFieldMask));
__ cmp(Operand(ecx), Immediate(1 << Map::kHasIndexedInterceptor));
__ j(not_zero, &slow, not_taken);
// Everything is fine, call runtime.
__ pop(ecx);
__ push(edx); // receiver
__ push(eax); // key
__ push(ecx); // return address
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(
IC_Utility(kKeyedLoadPropertyWithInterceptor));
__ TailCallExternalReference(ref, 2, 1);
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, fast, array, extra, check_pixel_array;
// Check that the object isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow, not_taken);
// Get the map from the receiver.
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ test_b(FieldOperand(edi, Map::kBitFieldOffset),
1 << Map::kIsAccessCheckNeeded);
__ j(not_zero, &slow, not_taken);
// Check that the key is a smi.
__ test(ecx, Immediate(kSmiTagMask));
__ j(not_zero, &slow, not_taken);
__ CmpInstanceType(edi, JS_ARRAY_TYPE);
__ j(equal, &array);
// Check that the object is some kind of JS object.
__ CmpInstanceType(edi, FIRST_JS_OBJECT_TYPE);
__ j(below, &slow, not_taken);
// Object case: Check key against length in the elements array.
// eax: value
// edx: JSObject
// ecx: key (a smi)
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
// Check that the object is in fast mode and writable.
__ CheckMap(edi, Factory::fixed_array_map(), &check_pixel_array, true);
__ cmp(ecx, FieldOperand(edi, FixedArray::kLengthOffset));
__ j(below, &fast, taken);
// Slow case: call runtime.
__ bind(&slow);
GenerateRuntimeSetProperty(masm);
// Check whether the elements is a pixel array.
__ bind(&check_pixel_array);
// eax: value
// ecx: key (a smi)
// edx: receiver
// edi: elements array
__ CheckMap(edi, Factory::pixel_array_map(), &slow, true);
// Check that the value is a smi. If a conversion is needed call into the
// runtime to convert and clamp.
__ test(eax, Immediate(kSmiTagMask));
__ j(not_zero, &slow);
__ mov(ebx, ecx);
__ SmiUntag(ebx);
__ cmp(ebx, FieldOperand(edi, PixelArray::kLengthOffset));
__ j(above_equal, &slow);
__ mov(ecx, eax); // Save the value. Key is not longer needed.
__ SmiUntag(ecx);
{ // Clamp the value to [0..255].
Label done;
__ test(ecx, Immediate(0xFFFFFF00));
__ j(zero, &done);
__ setcc(negative, ecx); // 1 if negative, 0 if positive.
__ dec_b(ecx); // 0 if negative, 255 if positive.
__ bind(&done);
}
__ mov(edi, FieldOperand(edi, PixelArray::kExternalPointerOffset));
__ mov_b(Operand(edi, ebx, times_1, 0), ecx);
__ ret(0); // Return value in eax.
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// eax: value
// edx: receiver, a JSArray
// ecx: key, a smi.
// edi: receiver->elements, a FixedArray
// flags: compare (ecx, edx.length())
__ j(not_equal, &slow, not_taken); // do not leave holes in the array
__ cmp(ecx, FieldOperand(edi, FixedArray::kLengthOffset));
__ j(above_equal, &slow, not_taken);
// Add 1 to receiver->length, and go to fast array write.
__ add(FieldOperand(edx, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
__ jmp(&fast);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
// eax: value
// edx: receiver, a JSArray
// ecx: key, a smi.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ CheckMap(edi, Factory::fixed_array_map(), &check_pixel_array, true);
// Check the key against the length in the array, compute the
// address to store into and fall through to fast case.
__ cmp(ecx, FieldOperand(edx, JSArray::kLengthOffset)); // Compare smis.
__ j(above_equal, &extra, not_taken);
// Fast case: Do the store.
__ bind(&fast);
// eax: value
// ecx: key (a smi)
// edx: receiver
// edi: FixedArray receiver->elements
__ mov(CodeGenerator::FixedArrayElementOperand(edi, ecx), eax);
// Update write barrier for the elements array address.
__ mov(edx, Operand(eax));
__ RecordWrite(edi, 0, edx, ecx);
__ ret(0);
}
void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, check_heap_number;
// Check that the object isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow);
// Get the map from the receiver.
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ test_b(FieldOperand(edi, Map::kBitFieldOffset),
1 << Map::kIsAccessCheckNeeded);
__ j(not_zero, &slow);
// Check that the key is a smi.
__ test(ecx, Immediate(kSmiTagMask));
__ j(not_zero, &slow);
// Get the instance type from the map of the receiver.
__ CmpInstanceType(edi, JS_OBJECT_TYPE);
__ j(not_equal, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
// eax: value
// edx: receiver, a JSObject
// ecx: key, a smi
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ CheckMap(edi, Handle<Map>(Heap::MapForExternalArrayType(array_type)),
&slow, true);
// Check that the index is in range.
__ mov(ebx, ecx);
__ SmiUntag(ebx);
__ cmp(ebx, FieldOperand(edi, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// eax: value
// edx: receiver
// ecx: key
// edi: elements array
// ebx: untagged index
__ test(eax, Immediate(kSmiTagMask));
__ j(not_equal, &check_heap_number);
// smi case
__ mov(ecx, eax); // Preserve the value in eax. Key is no longer needed.
__ SmiUntag(ecx);
__ mov(edi, FieldOperand(edi, ExternalArray::kExternalPointerOffset));
// ecx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ mov_b(Operand(edi, ebx, times_1, 0), ecx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ mov_w(Operand(edi, ebx, times_2, 0), ecx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ mov(Operand(edi, ebx, times_4, 0), ecx);
break;
case kExternalFloatArray:
// Need to perform int-to-float conversion.
__ push(ecx);
__ fild_s(Operand(esp, 0));
__ pop(ecx);
__ fstp_s(Operand(edi, ebx, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
__ ret(0); // Return the original value.
__ bind(&check_heap_number);
// eax: value
// edx: receiver
// ecx: key
// edi: elements array
// ebx: untagged index
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
Immediate(Factory::heap_number_map()));
__ j(not_equal, &slow);
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ mov(edi, FieldOperand(edi, ExternalArray::kExternalPointerOffset));
// ebx: untagged index
// edi: base pointer of external storage
// top of FPU stack: value
if (array_type == kExternalFloatArray) {
__ fstp_s(Operand(edi, ebx, times_4, 0));
__ ret(0);
} else {
// Need to perform float-to-int conversion.
// Test the top of the FP stack for NaN.
Label is_nan;
__ fucomi(0);
__ j(parity_even, &is_nan);
if (array_type != kExternalUnsignedIntArray) {
__ push(ecx); // Make room on stack
__ fistp_s(Operand(esp, 0));
__ pop(ecx);
} else {
// fistp stores values as signed integers.
// To represent the entire range, we need to store as a 64-bit
// int and discard the high 32 bits.
__ sub(Operand(esp), Immediate(2 * kPointerSize));
__ fistp_d(Operand(esp, 0));
__ pop(ecx);
__ add(Operand(esp), Immediate(kPointerSize));
}
// ecx: untagged integer value
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ mov_b(Operand(edi, ebx, times_1, 0), ecx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ mov_w(Operand(edi, ebx, times_2, 0), ecx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray: {
// We also need to explicitly check for +/-Infinity. These are
// converted to MIN_INT, but we need to be careful not to
// confuse with legal uses of MIN_INT.
Label not_infinity;
// This test would apparently detect both NaN and Infinity,
// but we've already checked for NaN using the FPU hardware
// above.
__ mov_w(edx, FieldOperand(eax, HeapNumber::kValueOffset + 6));
__ and_(edx, 0x7FF0);
__ cmp(edx, 0x7FF0);
__ j(not_equal, &not_infinity);
__ mov(ecx, 0);
__ bind(&not_infinity);
__ mov(Operand(edi, ebx, times_4, 0), ecx);
break;
}
default:
UNREACHABLE();
break;
}
__ ret(0); // Return original value.
__ bind(&is_nan);
__ ffree();
__ fincstp();
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ mov_b(Operand(edi, ebx, times_1, 0), 0);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ xor_(ecx, Operand(ecx));
__ mov_w(Operand(edi, ebx, times_2, 0), ecx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ mov(Operand(edi, ebx, times_4, 0), Immediate(0));
break;
default:
UNREACHABLE();
break;
}
__ ret(0); // Return the original value.
}
// Slow case: call runtime.
__ bind(&slow);
GenerateRuntimeSetProperty(masm);
}
// Defined in ic.cc.
Object* CallIC_Miss(Arguments args);
// The generated code does not accept smi keys.
// The generated code falls through if both probes miss.
static void GenerateMonomorphicCacheProbe(MacroAssembler* masm,
int argc,
Code::Kind kind) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -----------------------------------
Label number, non_number, non_string, boolean, probe, miss;
// Probe the stub cache.
Code::Flags flags =
Code::ComputeFlags(kind, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc);
StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, eax);
// If the stub cache probing failed, the receiver might be a value.
// For value objects, we use the map of the prototype objects for
// the corresponding JSValue for the cache and that is what we need
// to probe.
//
// Check for number.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &number, not_taken);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, ebx);
__ j(not_equal, &non_number, taken);
__ bind(&number);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::NUMBER_FUNCTION_INDEX, edx);
__ jmp(&probe);
// Check for string.
__ bind(&non_number);
__ CmpInstanceType(ebx, FIRST_NONSTRING_TYPE);
__ j(above_equal, &non_string, taken);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::STRING_FUNCTION_INDEX, edx);
__ jmp(&probe);
// Check for boolean.
__ bind(&non_string);
__ cmp(edx, Factory::true_value());
__ j(equal, &boolean, not_taken);
__ cmp(edx, Factory::false_value());
__ j(not_equal, &miss, taken);
__ bind(&boolean);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::BOOLEAN_FUNCTION_INDEX, edx);
// Probe the stub cache for the value object.
__ bind(&probe);
StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, no_reg);
__ bind(&miss);
}
static void GenerateFunctionTailCall(MacroAssembler* masm,
int argc,
Label* miss) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edi : function
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Check that the result is not a smi.
__ test(edi, Immediate(kSmiTagMask));
__ j(zero, miss, not_taken);
// Check that the value is a JavaScript function, fetching its map into eax.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, eax);
__ j(not_equal, miss, not_taken);
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(edi, actual, JUMP_FUNCTION);
}
// The generated code falls through if the call should be handled by runtime.
static void GenerateCallNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
GenerateStringDictionaryReceiverCheck(masm, edx, eax, ebx, &miss);
// eax: elements
// Search the dictionary placing the result in edi.
GenerateDictionaryLoad(masm, &miss, eax, ecx, edi, ebx, edi);
GenerateFunctionTailCall(masm, argc, &miss);
__ bind(&miss);
}
static void GenerateCallMiss(MacroAssembler* masm, int argc, IC::UtilityId id) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (id == IC::kCallIC_Miss) {
__ IncrementCounter(&Counters::call_miss, 1);
} else {
__ IncrementCounter(&Counters::keyed_call_miss, 1);
}
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Enter an internal frame.
__ EnterInternalFrame();
// Push the receiver and the name of the function.
__ push(edx);
__ push(ecx);
// Call the entry.
CEntryStub stub(1);
__ mov(eax, Immediate(2));
__ mov(ebx, Immediate(ExternalReference(IC_Utility(id))));
__ CallStub(&stub);
// Move result to edi and exit the internal frame.
__ mov(edi, eax);
__ LeaveInternalFrame();
// Check if the receiver is a global object of some sort.
// This can happen only for regular CallIC but not KeyedCallIC.
if (id == IC::kCallIC_Miss) {
Label invoke, global;
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // receiver
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &invoke, not_taken);
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ cmp(ebx, JS_GLOBAL_OBJECT_TYPE);
__ j(equal, &global);
__ cmp(ebx, JS_BUILTINS_OBJECT_TYPE);
__ j(not_equal, &invoke);
// Patch the receiver on the stack.
__ bind(&global);
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
__ bind(&invoke);
}
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(edi, actual, JUMP_FUNCTION);
}
void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC);
GenerateMiss(masm, argc);
}
void CallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
GenerateCallNormal(masm, argc);
GenerateMiss(masm, argc);
}
void CallIC::GenerateMiss(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
GenerateCallMiss(masm, argc, IC::kCallIC_Miss);
}
void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
Label do_call, slow_call, slow_load, slow_reload_receiver;
Label check_number_dictionary, check_string, lookup_monomorphic_cache;
Label index_smi, index_string;
// Check that the key is a smi.
__ test(ecx, Immediate(kSmiTagMask));
__ j(not_zero, &check_string, not_taken);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, edx, eax, Map::kHasIndexedInterceptor, &slow_call);
GenerateFastArrayLoad(
masm, edx, ecx, eax, edi, &check_number_dictionary, &slow_load);
__ IncrementCounter(&Counters::keyed_call_generic_smi_fast, 1);
__ bind(&do_call);
// receiver in edx is not used after this point.
// ecx: key
// edi: function
GenerateFunctionTailCall(masm, argc, &slow_call);
__ bind(&check_number_dictionary);
// eax: elements
// ecx: smi key
// Check whether the elements is a number dictionary.
__ CheckMap(eax, Factory::hash_table_map(), &slow_load, true);
__ mov(ebx, ecx);
__ SmiUntag(ebx);
// ebx: untagged index
// Receiver in edx will be clobbered, need to reload it on miss.
GenerateNumberDictionaryLoad(
masm, &slow_reload_receiver, eax, ecx, ebx, edx, edi, edi);
__ IncrementCounter(&Counters::keyed_call_generic_smi_dict, 1);
__ jmp(&do_call);
__ bind(&slow_reload_receiver);
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
__ bind(&slow_load);
// This branch is taken when calling KeyedCallIC_Miss is neither required
// nor beneficial.
__ IncrementCounter(&Counters::keyed_call_generic_slow_load, 1);
__ EnterInternalFrame();
__ push(ecx); // save the key
__ push(edx); // pass the receiver
__ push(ecx); // pass the key
__ CallRuntime(Runtime::kKeyedGetProperty, 2);
__ pop(ecx); // restore the key
__ LeaveInternalFrame();
__ mov(edi, eax);
__ jmp(&do_call);
__ bind(&check_string);
GenerateKeyStringCheck(masm, ecx, eax, ebx, &index_string, &slow_call);
// The key is known to be a symbol.
// If the receiver is a regular JS object with slow properties then do
// a quick inline probe of the receiver's dictionary.
// Otherwise do the monomorphic cache probe.
GenerateKeyedLoadReceiverCheck(
masm, edx, eax, Map::kHasNamedInterceptor, &lookup_monomorphic_cache);
__ mov(ebx, FieldOperand(edx, JSObject::kPropertiesOffset));
__ CheckMap(ebx, Factory::hash_table_map(), &lookup_monomorphic_cache, true);
GenerateDictionaryLoad(masm, &slow_load, ebx, ecx, eax, edi, edi);
__ IncrementCounter(&Counters::keyed_call_generic_lookup_dict, 1);
__ jmp(&do_call);
__ bind(&lookup_monomorphic_cache);
__ IncrementCounter(&Counters::keyed_call_generic_lookup_cache, 1);
GenerateMonomorphicCacheProbe(masm, argc, Code::KEYED_CALL_IC);
// Fall through on miss.
__ bind(&slow_call);
// This branch is taken if:
// - the receiver requires boxing or access check,
// - the key is neither smi nor symbol,
// - the value loaded is not a function,
// - there is hope that the runtime will create a monomorphic call stub
// that will get fetched next time.
__ IncrementCounter(&Counters::keyed_call_generic_slow, 1);
GenerateMiss(masm, argc);
__ bind(&index_string);
__ IndexFromHash(ebx, ecx);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
GenerateCallNormal(masm, argc);
GenerateMiss(masm, argc);
}
void KeyedCallIC::GenerateMiss(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
GenerateCallMiss(masm, argc, IC::kKeyedCallIC_Miss);
}
// Defined in ic.cc.
Object* LoadIC_Miss(Arguments args);
void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC,
NOT_IN_LOOP,
MONOMORPHIC);
StubCache::GenerateProbe(masm, flags, eax, ecx, ebx, edx);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
GenerateStringDictionaryReceiverCheck(masm, eax, edx, ebx, &miss);
// edx: elements
// Search the dictionary placing the result in eax.
GenerateDictionaryLoad(masm, &miss, edx, ecx, edi, ebx, eax);
__ ret(0);
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
__ IncrementCounter(&Counters::load_miss, 1);
__ pop(ebx);
__ push(eax); // receiver
__ push(ecx); // name
__ push(ebx); // return address
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss));
__ TailCallExternalReference(ref, 2, 1);
}
// One byte opcode for test eax,0xXXXXXXXX.
static const byte kTestEaxByte = 0xA9;
bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test eax, nothing
// was inlined.
if (*test_instruction_address != kTestEaxByte) return false;
Address delta_address = test_instruction_address + 1;
// The delta to the start of the map check instruction.
int delta = *reinterpret_cast<int*>(delta_address);
// The map address is the last 4 bytes of the 7-byte
// operand-immediate compare instruction, so we add 3 to get the
// offset to the last 4 bytes.
Address map_address = test_instruction_address + delta + 3;
*(reinterpret_cast<Object**>(map_address)) = map;
// The offset is in the last 4 bytes of a six byte
// memory-to-register move instruction, so we add 2 to get the
// offset to the last 4 bytes.
Address offset_address =
test_instruction_address + delta + kOffsetToLoadInstruction + 2;
*reinterpret_cast<int*>(offset_address) = offset - kHeapObjectTag;
return true;
}
// One byte opcode for mov ecx,0xXXXXXXXX.
// Marks inlined contextual loads using all kinds of cells. Generated
// code has the hole check:
// mov reg, <cell>
// mov reg, (<cell>, value offset)
// cmp reg, <the hole>
// je slow
// ;; use reg
static const byte kMovEcxByte = 0xB9;
// One byte opcode for mov edx,0xXXXXXXXX.
// Marks inlined contextual loads using only "don't delete"
// cells. Generated code doesn't have the hole check:
// mov reg, <cell>
// mov reg, (<cell>, value offset)
// ;; use reg
static const byte kMovEdxByte = 0xBA;
bool LoadIC::PatchInlinedContextualLoad(Address address,
Object* map,
Object* cell,
bool is_dont_delete) {
// The address of the instruction following the call.
Address mov_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a mov ecx/edx,
// nothing was inlined.
byte b = *mov_instruction_address;
if (b != kMovEcxByte && b != kMovEdxByte) return false;
// If we don't have the hole check generated, we can only support
// "don't delete" cells.
if (b == kMovEdxByte && !is_dont_delete) return false;
Address delta_address = mov_instruction_address + 1;
// The delta to the start of the map check instruction.
int delta = *reinterpret_cast<int*>(delta_address);
// The map address is the last 4 bytes of the 7-byte
// operand-immediate compare instruction, so we add 3 to get the
// offset to the last 4 bytes.
Address map_address = mov_instruction_address + delta + 3;
*(reinterpret_cast<Object**>(map_address)) = map;
// The cell is in the last 4 bytes of a five byte mov reg, imm32
// instruction, so we add 1 to get the offset to the last 4 bytes.
Address offset_address =
mov_instruction_address + delta + kOffsetToLoadInstruction + 1;
*reinterpret_cast<Object**>(offset_address) = cell;
return true;
}
bool StoreIC::PatchInlinedStore(Address address, Object* map, int offset) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test eax, nothing
// was inlined.
if (*test_instruction_address != kTestEaxByte) return false;
// Extract the encoded deltas from the test eax instruction.
Address encoded_offsets_address = test_instruction_address + 1;
int encoded_offsets = *reinterpret_cast<int*>(encoded_offsets_address);
int delta_to_map_check = -(encoded_offsets & 0xFFFF);
int delta_to_record_write = encoded_offsets >> 16;
// Patch the map to check. The map address is the last 4 bytes of
// the 7-byte operand-immediate compare instruction.
Address map_check_address = test_instruction_address + delta_to_map_check;
Address map_address = map_check_address + 3;
*(reinterpret_cast<Object**>(map_address)) = map;
// Patch the offset in the store instruction. The offset is in the
// last 4 bytes of a six byte register-to-memory move instruction.
Address offset_address =
map_check_address + StoreIC::kOffsetToStoreInstruction + 2;
// The offset should have initial value (kMaxInt - 1), cleared value
// (-1) or we should be clearing the inlined version.
ASSERT(*reinterpret_cast<int*>(offset_address) == kMaxInt - 1 ||
*reinterpret_cast<int*>(offset_address) == -1 ||
(offset == 0 && map == Heap::null_value()));
*reinterpret_cast<int*>(offset_address) = offset - kHeapObjectTag;
// Patch the offset in the write-barrier code. The offset is the
// last 4 bytes of a six byte lea instruction.
offset_address = map_check_address + delta_to_record_write + 2;
// The offset should have initial value (kMaxInt), cleared value
// (-1) or we should be clearing the inlined version.
ASSERT(*reinterpret_cast<int*>(offset_address) == kMaxInt ||
*reinterpret_cast<int*>(offset_address) == -1 ||
(offset == 0 && map == Heap::null_value()));
*reinterpret_cast<int*>(offset_address) = offset - kHeapObjectTag;
return true;
}
static bool PatchInlinedMapCheck(Address address, Object* map) {
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// The keyed load has a fast inlined case if the IC call instruction
// is immediately followed by a test instruction.
if (*test_instruction_address != kTestEaxByte) return false;
// Fetch the offset from the test instruction to the map cmp
// instruction. This offset is stored in the last 4 bytes of the 5
// byte test instruction.
Address delta_address = test_instruction_address + 1;
int delta = *reinterpret_cast<int*>(delta_address);
// Compute the map address. The map address is in the last 4 bytes
// of the 7-byte operand-immediate compare instruction, so we add 3
// to the offset to get the map address.
Address map_address = test_instruction_address + delta + 3;
// Patch the map check.
*(reinterpret_cast<Object**>(map_address)) = map;
return true;
}
bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) {
return PatchInlinedMapCheck(address, map);
}
bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) {
return PatchInlinedMapCheck(address, map);
}
// Defined in ic.cc.
Object* KeyedLoadIC_Miss(Arguments args);
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ IncrementCounter(&Counters::keyed_load_miss, 1);
__ pop(ebx);
__ push(edx); // receiver
__ push(eax); // name
__ push(ebx); // return address
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss));
__ TailCallExternalReference(ref, 2, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx); // receiver
__ push(eax); // name
__ push(ebx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Code::Flags flags = Code::ComputeFlags(Code::STORE_IC,
NOT_IN_LOOP,
MONOMORPHIC);
StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, no_reg);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(ebx);
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss));
__ TailCallExternalReference(ref, 3, 1);
}
// The offset from the inlined patch site to the start of the inlined
// store instruction. It is 7 bytes (test reg, imm) plus 6 bytes (jne
// slow_label).
const int StoreIC::kOffsetToStoreInstruction = 13;
void StoreIC::GenerateArrayLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
//
// This accepts as a receiver anything JSObject::SetElementsLength accepts
// (currently anything except for external and pixel arrays which means
// anything with elements of FixedArray type.), but currently is restricted
// to JSArray.
// Value must be a number, but only smis are accepted as the most common case.
Label miss;
Register receiver = edx;
Register value = eax;
Register scratch = ebx;
// Check that the receiver isn't a smi.
__ test(receiver, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, &miss, not_taken);
// Check that elements are FixedArray.
// We rely on StoreIC_ArrayLength below to deal with all types of
// fast elements (including COW).
__ mov(scratch, FieldOperand(receiver, JSArray::kElementsOffset));
__ CmpObjectType(scratch, FIXED_ARRAY_TYPE, scratch);
__ j(not_equal, &miss, not_taken);
// Check that value is a smi.
__ test(value, Immediate(kSmiTagMask));
__ j(not_zero, &miss, not_taken);
// Prepare tail call to StoreIC_ArrayLength.
__ pop(scratch);
__ push(receiver);
__ push(value);
__ push(scratch); // return address
ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength));
__ TailCallExternalReference(ref, 2, 1);
__ bind(&miss);
GenerateMiss(masm);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss, restore_miss;
GenerateStringDictionaryReceiverCheck(masm, edx, ebx, edi, &miss);
// A lot of registers are needed for storing to slow case
// objects. Push and restore receiver but rely on
// GenerateDictionaryStore preserving the value and name.
__ push(edx);
GenerateDictionaryStore(masm, &restore_miss, ebx, ecx, eax, edx, edi);
__ Drop(1);
__ IncrementCounter(&Counters::store_normal_hit, 1);
__ ret(0);
__ bind(&restore_miss);
__ pop(edx);
__ bind(&miss);
__ IncrementCounter(&Counters::store_normal_miss, 1);
GenerateMiss(masm);
}
// Defined in ic.cc.
Object* KeyedStoreIC_Miss(Arguments args);
void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(ebx);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 3, 1);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(ebx);
// Do tail-call to runtime routine.
ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss));
__ TailCallExternalReference(ref, 3, 1);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32