blob: 315a34ed50835b6a4e113a6c98efb0b4a619d910 [file] [log] [blame]
// Copyright 2007-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "top.h"
#include "cctest.h"
using namespace v8::internal;
static Object* AllocateAfterFailures() {
static int attempts = 0;
if (++attempts < 3) return Failure::RetryAfterGC(0);
// New space.
NewSpace* new_space = Heap::new_space();
static const int kNewSpaceFillerSize = ByteArray::SizeFor(0);
while (new_space->Available() > kNewSpaceFillerSize) {
int available_before = new_space->Available();
CHECK(!Heap::AllocateByteArray(0)->IsFailure());
if (available_before == new_space->Available()) {
// It seems that we are avoiding new space allocations when
// allocation is forced, so no need to fill up new space
// in order to make the test harder.
break;
}
}
CHECK(!Heap::AllocateByteArray(100)->IsFailure());
CHECK(!Heap::AllocateFixedArray(100, NOT_TENURED)->IsFailure());
// Make sure we can allocate through optimized allocation functions
// for specific kinds.
CHECK(!Heap::AllocateFixedArray(100)->IsFailure());
CHECK(!Heap::AllocateHeapNumber(0.42)->IsFailure());
CHECK(!Heap::AllocateArgumentsObject(Smi::FromInt(87), 10)->IsFailure());
Object* object = Heap::AllocateJSObject(*Top::object_function());
CHECK(!Heap::CopyJSObject(JSObject::cast(object))->IsFailure());
// Old data space.
OldSpace* old_data_space = Heap::old_data_space();
static const int kOldDataSpaceFillerSize = ByteArray::SizeFor(0);
while (old_data_space->Available() > kOldDataSpaceFillerSize) {
CHECK(!Heap::AllocateByteArray(0, TENURED)->IsFailure());
}
CHECK(!Heap::AllocateRawAsciiString(100, TENURED)->IsFailure());
// Large object space.
while (!Heap::OldGenerationAllocationLimitReached()) {
CHECK(!Heap::AllocateFixedArray(10000, TENURED)->IsFailure());
}
CHECK(!Heap::AllocateFixedArray(10000, TENURED)->IsFailure());
// Map space.
MapSpace* map_space = Heap::map_space();
static const int kMapSpaceFillerSize = Map::kSize;
InstanceType instance_type = JS_OBJECT_TYPE;
int instance_size = JSObject::kHeaderSize;
while (map_space->Available() > kMapSpaceFillerSize) {
CHECK(!Heap::AllocateMap(instance_type, instance_size)->IsFailure());
}
CHECK(!Heap::AllocateMap(instance_type, instance_size)->IsFailure());
// Test that we can allocate in old pointer space and code space.
CHECK(!Heap::AllocateFixedArray(100, TENURED)->IsFailure());
CHECK(!Heap::CopyCode(Builtins::builtin(Builtins::Illegal))->IsFailure());
// Return success.
return Smi::FromInt(42);
}
static Handle<Object> Test() {
CALL_HEAP_FUNCTION(AllocateAfterFailures(), Object);
}
TEST(StressHandles) {
v8::Persistent<v8::Context> env = v8::Context::New();
v8::HandleScope scope;
env->Enter();
Handle<Object> o = Test();
CHECK(o->IsSmi() && Smi::cast(*o)->value() == 42);
env->Exit();
}
static Object* TestAccessorGet(Object* object, void*) {
return AllocateAfterFailures();
}
const AccessorDescriptor kDescriptor = {
TestAccessorGet,
0,
0
};
TEST(StressJS) {
v8::Persistent<v8::Context> env = v8::Context::New();
v8::HandleScope scope;
env->Enter();
Handle<JSFunction> function =
Factory::NewFunction(Factory::function_symbol(), Factory::null_value());
// Force the creation of an initial map and set the code to
// something empty.
Factory::NewJSObject(function);
function->set_code(Builtins::builtin(Builtins::EmptyFunction));
// Patch the map to have an accessor for "get".
Handle<Map> map(function->initial_map());
Handle<DescriptorArray> instance_descriptors(map->instance_descriptors());
Handle<Proxy> proxy = Factory::NewProxy(&kDescriptor);
instance_descriptors = Factory::CopyAppendProxyDescriptor(
instance_descriptors,
Factory::NewStringFromAscii(Vector<const char>("get", 3)),
proxy,
static_cast<PropertyAttributes>(0));
map->set_instance_descriptors(*instance_descriptors);
// Add the Foo constructor the global object.
env->Global()->Set(v8::String::New("Foo"), v8::Utils::ToLocal(function));
// Call the accessor through JavaScript.
v8::Handle<v8::Value> result =
v8::Script::Compile(v8::String::New("(new Foo).get"))->Run();
CHECK_EQ(42, result->Int32Value());
env->Exit();
}
// CodeRange test.
// Tests memory management in a CodeRange by allocating and freeing blocks,
// using a pseudorandom generator to choose block sizes geometrically
// distributed between 2 * Page::kPageSize and 2^5 + 1 * Page::kPageSize.
// Ensure that the freed chunks are collected and reused by allocating (in
// total) more than the size of the CodeRange.
// This pseudorandom generator does not need to be particularly good.
// Use the lower half of the V8::Random() generator.
unsigned int Pseudorandom() {
static uint32_t lo = 2345;
lo = 18273 * (lo & 0xFFFF) + (lo >> 16); // Provably not 0.
return lo & 0xFFFF;
}
// Plain old data class. Represents a block of allocated memory.
class Block {
public:
Block(void* base_arg, int size_arg)
: base(base_arg), size(size_arg) {}
void *base;
int size;
};
TEST(CodeRange) {
const int code_range_size = 16*MB;
CodeRange::Setup(code_range_size);
int current_allocated = 0;
int total_allocated = 0;
List<Block> blocks(1000);
while (total_allocated < 5 * code_range_size) {
if (current_allocated < code_range_size / 10) {
// Allocate a block.
// Geometrically distributed sizes, greater than Page::kPageSize.
size_t requested = (Page::kPageSize << (Pseudorandom() % 6)) +
Pseudorandom() % 5000 + 1;
size_t allocated = 0;
void* base = CodeRange::AllocateRawMemory(requested, &allocated);
blocks.Add(Block(base, static_cast<int>(allocated)));
current_allocated += static_cast<int>(allocated);
total_allocated += static_cast<int>(allocated);
} else {
// Free a block.
int index = Pseudorandom() % blocks.length();
CodeRange::FreeRawMemory(blocks[index].base, blocks[index].size);
current_allocated -= blocks[index].size;
if (index < blocks.length() - 1) {
blocks[index] = blocks.RemoveLast();
} else {
blocks.RemoveLast();
}
}
}
CodeRange::TearDown();
}