blob: 7c669d30b7ed989dbad2113e4709c1b79b07e29c [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "disassembler.h"
#include "factory.h"
#include "arm/simulator-arm.h"
#include "arm/assembler-arm-inl.h"
#include "cctest.h"
using namespace v8::internal;
// Define these function prototypes to match JSEntryFunction in execution.cc.
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
static v8::Persistent<v8::Context> env;
// The test framework does not accept flags on the command line, so we set them
static void InitializeVM() {
// enable generation of comments
FLAG_debug_code = true;
if (env.IsEmpty()) {
env = v8::Context::New();
}
}
#define __ assm.
TEST(0) {
InitializeVM();
v8::HandleScope scope;
Assembler assm(NULL, 0);
__ add(r0, r0, Operand(r1));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(&desc);
Object* code = Heap::CreateCode(desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(Heap::undefined_value()));
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
F2 f = FUNCTION_CAST<F2>(Code::cast(code)->entry());
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 3, 4, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(7, res);
}
TEST(1) {
InitializeVM();
v8::HandleScope scope;
Assembler assm(NULL, 0);
Label L, C;
__ mov(r1, Operand(r0));
__ mov(r0, Operand(0, RelocInfo::NONE));
__ b(&C);
__ bind(&L);
__ add(r0, r0, Operand(r1));
__ sub(r1, r1, Operand(1));
__ bind(&C);
__ teq(r1, Operand(0, RelocInfo::NONE));
__ b(ne, &L);
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(&desc);
Object* code = Heap::CreateCode(desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(Heap::undefined_value()));
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 100, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(5050, res);
}
TEST(2) {
InitializeVM();
v8::HandleScope scope;
Assembler assm(NULL, 0);
Label L, C;
__ mov(r1, Operand(r0));
__ mov(r0, Operand(1));
__ b(&C);
__ bind(&L);
__ mul(r0, r1, r0);
__ sub(r1, r1, Operand(1));
__ bind(&C);
__ teq(r1, Operand(0, RelocInfo::NONE));
__ b(ne, &L);
__ mov(pc, Operand(lr));
// some relocated stuff here, not executed
__ RecordComment("dead code, just testing relocations");
__ mov(r0, Operand(Factory::true_value()));
__ RecordComment("dead code, just testing immediate operands");
__ mov(r0, Operand(-1));
__ mov(r0, Operand(0xFF000000));
__ mov(r0, Operand(0xF0F0F0F0));
__ mov(r0, Operand(0xFFF0FFFF));
CodeDesc desc;
assm.GetCode(&desc);
Object* code = Heap::CreateCode(desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(Heap::undefined_value()));
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 10, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(3628800, res);
}
TEST(3) {
InitializeVM();
v8::HandleScope scope;
typedef struct {
int i;
char c;
int16_t s;
} T;
T t;
Assembler assm(NULL, 0);
Label L, C;
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ mov(r4, Operand(r0));
__ ldr(r0, MemOperand(r4, OFFSET_OF(T, i)));
__ mov(r2, Operand(r0, ASR, 1));
__ str(r2, MemOperand(r4, OFFSET_OF(T, i)));
__ ldrsb(r2, MemOperand(r4, OFFSET_OF(T, c)));
__ add(r0, r2, Operand(r0));
__ mov(r2, Operand(r2, LSL, 2));
__ strb(r2, MemOperand(r4, OFFSET_OF(T, c)));
__ ldrsh(r2, MemOperand(r4, OFFSET_OF(T, s)));
__ add(r0, r2, Operand(r0));
__ mov(r2, Operand(r2, ASR, 3));
__ strh(r2, MemOperand(r4, OFFSET_OF(T, s)));
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(&desc);
Object* code = Heap::CreateCode(desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(Heap::undefined_value()));
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
F3 f = FUNCTION_CAST<F3>(Code::cast(code)->entry());
t.i = 100000;
t.c = 10;
t.s = 1000;
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(101010, res);
CHECK_EQ(100000/2, t.i);
CHECK_EQ(10*4, t.c);
CHECK_EQ(1000/8, t.s);
}
TEST(4) {
// Test the VFP floating point instructions.
InitializeVM();
v8::HandleScope scope;
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
int i;
float x;
float y;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles and floats.
Assembler assm(NULL, 0);
Label L, C;
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ mov(ip, Operand(sp));
__ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
__ sub(fp, ip, Operand(4));
__ mov(r4, Operand(r0));
__ vldr(d6, r4, OFFSET_OF(T, a));
__ vldr(d7, r4, OFFSET_OF(T, b));
__ vadd(d5, d6, d7);
__ vstr(d5, r4, OFFSET_OF(T, c));
__ vmov(r2, r3, d5);
__ vmov(d4, r2, r3);
__ vstr(d4, r4, OFFSET_OF(T, b));
// Load t.x and t.y, switch values, and store back to the struct.
__ vldr(s0, r4, OFFSET_OF(T, x));
__ vldr(s31, r4, OFFSET_OF(T, y));
__ vmov(s16, s0);
__ vmov(s0, s31);
__ vmov(s31, s16);
__ vstr(s0, r4, OFFSET_OF(T, x));
__ vstr(s31, r4, OFFSET_OF(T, y));
// Move a literal into a register that can be encoded in the instruction.
__ vmov(d4, 1.0);
__ vstr(d4, r4, OFFSET_OF(T, e));
// Move a literal into a register that requires 64 bits to encode.
// 0x3ff0000010000000 = 1.000000059604644775390625
__ vmov(d4, 1.000000059604644775390625);
__ vstr(d4, r4, OFFSET_OF(T, d));
// Convert from floating point to integer.
__ vmov(d4, 2.0);
__ vcvt_s32_f64(s31, d4);
__ vstr(s31, r4, OFFSET_OF(T, i));
// Convert from integer to floating point.
__ mov(lr, Operand(42));
__ vmov(s31, lr);
__ vcvt_f64_s32(d4, s31);
__ vstr(d4, r4, OFFSET_OF(T, f));
__ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
CodeDesc desc;
assm.GetCode(&desc);
Object* code = Heap::CreateCode(desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(Heap::undefined_value()));
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
F3 f = FUNCTION_CAST<F3>(Code::cast(code)->entry());
t.a = 1.5;
t.b = 2.75;
t.c = 17.17;
t.d = 0.0;
t.e = 0.0;
t.f = 0.0;
t.i = 0;
t.x = 4.5;
t.y = 9.0;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(4.5, t.y);
CHECK_EQ(9.0, t.x);
CHECK_EQ(2, t.i);
CHECK_EQ(42.0, t.f);
CHECK_EQ(1.0, t.e);
CHECK_EQ(1.000000059604644775390625, t.d);
CHECK_EQ(4.25, t.c);
CHECK_EQ(4.25, t.b);
CHECK_EQ(1.5, t.a);
}
}
TEST(5) {
// Test the ARMv7 bitfield instructions.
InitializeVM();
v8::HandleScope scope;
Assembler assm(NULL, 0);
if (CpuFeatures::IsSupported(ARMv7)) {
CpuFeatures::Scope scope(ARMv7);
// On entry, r0 = 0xAAAAAAAA = 0b10..10101010.
__ ubfx(r0, r0, 1, 12); // 0b00..010101010101 = 0x555
__ sbfx(r0, r0, 0, 5); // 0b11..111111110101 = -11
__ bfc(r0, 1, 3); // 0b11..111111110001 = -15
__ mov(r1, Operand(7));
__ bfi(r0, r1, 3, 3); // 0b11..111111111001 = -7
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(&desc);
Object* code = Heap::CreateCode(desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(Heap::undefined_value()));
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
int res = reinterpret_cast<int>(
CALL_GENERATED_CODE(f, 0xAAAAAAAA, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(-7, res);
}
}
TEST(6) {
// Test saturating instructions.
InitializeVM();
v8::HandleScope scope;
Assembler assm(NULL, 0);
if (CpuFeatures::IsSupported(ARMv7)) {
CpuFeatures::Scope scope(ARMv7);
__ usat(r1, 8, Operand(r0)); // Sat 0xFFFF to 0-255 = 0xFF.
__ usat(r2, 12, Operand(r0, ASR, 9)); // Sat (0xFFFF>>9) to 0-4095 = 0x7F.
__ usat(r3, 1, Operand(r0, LSL, 16)); // Sat (0xFFFF<<16) to 0-1 = 0x0.
__ add(r0, r1, Operand(r2));
__ add(r0, r0, Operand(r3));
__ mov(pc, Operand(lr));
CodeDesc desc;
assm.GetCode(&desc);
Object* code = Heap::CreateCode(desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(Heap::undefined_value()));
CHECK(code->IsCode());
#ifdef DEBUG
Code::cast(code)->Print();
#endif
F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
int res = reinterpret_cast<int>(
CALL_GENERATED_CODE(f, 0xFFFF, 0, 0, 0, 0));
::printf("f() = %d\n", res);
CHECK_EQ(382, res);
}
}
#undef __