| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "bootstrapper.h" |
| #include "code-stubs.h" |
| #include "regexp-macro-assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define __ ACCESS_MASM(masm) |
| |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cond, |
| bool never_nan_nan); |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* lhs_not_nan, |
| Label* slow, |
| bool strict); |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond); |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| Register lhs, |
| Register rhs); |
| |
| |
| void ToNumberStub::Generate(MacroAssembler* masm) { |
| // The ToNumber stub takes one argument in eax. |
| Label check_heap_number, call_builtin; |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(ne, &check_heap_number); |
| __ Ret(); |
| |
| __ bind(&check_heap_number); |
| __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); |
| __ cmp(r1, ip); |
| __ b(ne, &call_builtin); |
| __ Ret(); |
| |
| __ bind(&call_builtin); |
| __ push(r0); |
| __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_JS); |
| } |
| |
| |
| void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| // Create a new closure from the given function info in new |
| // space. Set the context to the current context in cp. |
| Label gc; |
| |
| // Pop the function info from the stack. |
| __ pop(r3); |
| |
| // Attempt to allocate new JSFunction in new space. |
| __ AllocateInNewSpace(JSFunction::kSize, |
| r0, |
| r1, |
| r2, |
| &gc, |
| TAG_OBJECT); |
| |
| int map_index = strict_mode_ == kStrictMode |
| ? Context::STRICT_MODE_FUNCTION_MAP_INDEX |
| : Context::FUNCTION_MAP_INDEX; |
| |
| // Compute the function map in the current global context and set that |
| // as the map of the allocated object. |
| __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index))); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| |
| // Initialize the rest of the function. We don't have to update the |
| // write barrier because the allocated object is in new space. |
| __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); |
| __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); |
| __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); |
| __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset)); |
| __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); |
| __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset)); |
| __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); |
| __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset)); |
| |
| |
| // Initialize the code pointer in the function to be the one |
| // found in the shared function info object. |
| __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset)); |
| __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); |
| |
| // Return result. The argument function info has been popped already. |
| __ Ret(); |
| |
| // Create a new closure through the slower runtime call. |
| __ bind(&gc); |
| __ LoadRoot(r4, Heap::kFalseValueRootIndex); |
| __ Push(cp, r3, r4); |
| __ TailCallRuntime(Runtime::kNewClosure, 3, 1); |
| } |
| |
| |
| void FastNewContextStub::Generate(MacroAssembler* masm) { |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| |
| // Attempt to allocate the context in new space. |
| __ AllocateInNewSpace(FixedArray::SizeFor(length), |
| r0, |
| r1, |
| r2, |
| &gc, |
| TAG_OBJECT); |
| |
| // Load the function from the stack. |
| __ ldr(r3, MemOperand(sp, 0)); |
| |
| // Setup the object header. |
| __ LoadRoot(r2, Heap::kContextMapRootIndex); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ mov(r2, Operand(Smi::FromInt(length))); |
| __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
| |
| // Setup the fixed slots. |
| __ mov(r1, Operand(Smi::FromInt(0))); |
| __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX))); |
| |
| // Copy the global object from the surrounding context. |
| __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| |
| // Initialize the rest of the slots to undefined. |
| __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| __ str(r1, MemOperand(r0, Context::SlotOffset(i))); |
| } |
| |
| // Remove the on-stack argument and return. |
| __ mov(cp, r0); |
| __ pop(); |
| __ Ret(); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
| } |
| |
| |
| void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [sp]: constant elements. |
| // [sp + kPointerSize]: literal index. |
| // [sp + (2 * kPointerSize)]: literals array. |
| |
| // All sizes here are multiples of kPointerSize. |
| int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| int size = JSArray::kSize + elements_size; |
| |
| // Load boilerplate object into r3 and check if we need to create a |
| // boilerplate. |
| Label slow_case; |
| __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r3, ip); |
| __ b(eq, &slow_case); |
| |
| if (FLAG_debug_code) { |
| const char* message; |
| Heap::RootListIndex expected_map_index; |
| if (mode_ == CLONE_ELEMENTS) { |
| message = "Expected (writable) fixed array"; |
| expected_map_index = Heap::kFixedArrayMapRootIndex; |
| } else { |
| ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
| message = "Expected copy-on-write fixed array"; |
| expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
| } |
| __ push(r3); |
| __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); |
| __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, expected_map_index); |
| __ cmp(r3, ip); |
| __ Assert(eq, message); |
| __ pop(r3); |
| } |
| |
| // Allocate both the JS array and the elements array in one big |
| // allocation. This avoids multiple limit checks. |
| __ AllocateInNewSpace(size, |
| r0, |
| r1, |
| r2, |
| &slow_case, |
| TAG_OBJECT); |
| |
| // Copy the JS array part. |
| for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| __ ldr(r1, FieldMemOperand(r3, i)); |
| __ str(r1, FieldMemOperand(r0, i)); |
| } |
| } |
| |
| if (length_ > 0) { |
| // Get hold of the elements array of the boilerplate and setup the |
| // elements pointer in the resulting object. |
| __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); |
| __ add(r2, r0, Operand(JSArray::kSize)); |
| __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset)); |
| |
| // Copy the elements array. |
| __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize); |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&slow_case); |
| __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| } |
| |
| |
| // Takes a Smi and converts to an IEEE 64 bit floating point value in two |
| // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and |
| // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a |
| // scratch register. Destroys the source register. No GC occurs during this |
| // stub so you don't have to set up the frame. |
| class ConvertToDoubleStub : public CodeStub { |
| public: |
| ConvertToDoubleStub(Register result_reg_1, |
| Register result_reg_2, |
| Register source_reg, |
| Register scratch_reg) |
| : result1_(result_reg_1), |
| result2_(result_reg_2), |
| source_(source_reg), |
| zeros_(scratch_reg) { } |
| |
| private: |
| Register result1_; |
| Register result2_; |
| Register source_; |
| Register zeros_; |
| |
| // Minor key encoding in 16 bits. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 14> {}; |
| |
| Major MajorKey() { return ConvertToDouble; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return result1_.code() + |
| (result2_.code() << 4) + |
| (source_.code() << 8) + |
| (zeros_.code() << 12); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| |
| const char* GetName() { return "ConvertToDoubleStub"; } |
| |
| #ifdef DEBUG |
| void Print() { PrintF("ConvertToDoubleStub\n"); } |
| #endif |
| }; |
| |
| |
| void ConvertToDoubleStub::Generate(MacroAssembler* masm) { |
| Register exponent = result1_; |
| Register mantissa = result2_; |
| |
| Label not_special; |
| // Convert from Smi to integer. |
| __ mov(source_, Operand(source_, ASR, kSmiTagSize)); |
| // Move sign bit from source to destination. This works because the sign bit |
| // in the exponent word of the double has the same position and polarity as |
| // the 2's complement sign bit in a Smi. |
| STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); |
| // Subtract from 0 if source was negative. |
| __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne); |
| |
| // We have -1, 0 or 1, which we treat specially. Register source_ contains |
| // absolute value: it is either equal to 1 (special case of -1 and 1), |
| // greater than 1 (not a special case) or less than 1 (special case of 0). |
| __ cmp(source_, Operand(1)); |
| __ b(gt, ¬_special); |
| |
| // For 1 or -1 we need to or in the 0 exponent (biased to 1023). |
| static const uint32_t exponent_word_for_1 = |
| HeapNumber::kExponentBias << HeapNumber::kExponentShift; |
| __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq); |
| // 1, 0 and -1 all have 0 for the second word. |
| __ mov(mantissa, Operand(0, RelocInfo::NONE)); |
| __ Ret(); |
| |
| __ bind(¬_special); |
| // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5. |
| // Gets the wrong answer for 0, but we already checked for that case above. |
| __ CountLeadingZeros(zeros_, source_, mantissa); |
| // Compute exponent and or it into the exponent register. |
| // We use mantissa as a scratch register here. Use a fudge factor to |
| // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts |
| // that fit in the ARM's constant field. |
| int fudge = 0x400; |
| __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge)); |
| __ add(mantissa, mantissa, Operand(fudge)); |
| __ orr(exponent, |
| exponent, |
| Operand(mantissa, LSL, HeapNumber::kExponentShift)); |
| // Shift up the source chopping the top bit off. |
| __ add(zeros_, zeros_, Operand(1)); |
| // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. |
| __ mov(source_, Operand(source_, LSL, zeros_)); |
| // Compute lower part of fraction (last 12 bits). |
| __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); |
| // And the top (top 20 bits). |
| __ orr(exponent, |
| exponent, |
| Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); |
| __ Ret(); |
| } |
| |
| |
| class FloatingPointHelper : public AllStatic { |
| public: |
| |
| enum Destination { |
| kVFPRegisters, |
| kCoreRegisters |
| }; |
| |
| |
| // Loads smis from r0 and r1 (right and left in binary operations) into |
| // floating point registers. Depending on the destination the values ends up |
| // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is |
| // floating point registers VFP3 must be supported. If core registers are |
| // requested when VFP3 is supported d6 and d7 will be scratched. |
| static void LoadSmis(MacroAssembler* masm, |
| Destination destination, |
| Register scratch1, |
| Register scratch2); |
| |
| // Loads objects from r0 and r1 (right and left in binary operations) into |
| // floating point registers. Depending on the destination the values ends up |
| // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is |
| // floating point registers VFP3 must be supported. If core registers are |
| // requested when VFP3 is supported d6 and d7 will still be scratched. If |
| // either r0 or r1 is not a number (not smi and not heap number object) the |
| // not_number label is jumped to with r0 and r1 intact. |
| static void LoadOperands(MacroAssembler* masm, |
| FloatingPointHelper::Destination destination, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Label* not_number); |
| |
| // Convert the smi or heap number in object to an int32 using the rules |
| // for ToInt32 as described in ECMAScript 9.5.: the value is truncated |
| // and brought into the range -2^31 .. +2^31 - 1. |
| static void ConvertNumberToInt32(MacroAssembler* masm, |
| Register object, |
| Register dst, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| DwVfpRegister double_scratch, |
| Label* not_int32); |
| |
| // Load the number from object into double_dst in the double format. |
| // Control will jump to not_int32 if the value cannot be exactly represented |
| // by a 32-bit integer. |
| // Floating point value in the 32-bit integer range that are not exact integer |
| // won't be loaded. |
| static void LoadNumberAsInt32Double(MacroAssembler* masm, |
| Register object, |
| Destination destination, |
| DwVfpRegister double_dst, |
| Register dst1, |
| Register dst2, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| SwVfpRegister single_scratch, |
| Label* not_int32); |
| |
| // Loads the number from object into dst as a 32-bit integer. |
| // Control will jump to not_int32 if the object cannot be exactly represented |
| // by a 32-bit integer. |
| // Floating point value in the 32-bit integer range that are not exact integer |
| // won't be converted. |
| // scratch3 is not used when VFP3 is supported. |
| static void LoadNumberAsInt32(MacroAssembler* masm, |
| Register object, |
| Register dst, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| DwVfpRegister double_scratch, |
| Label* not_int32); |
| |
| // Generate non VFP3 code to check if a double can be exactly represented by a |
| // 32-bit integer. This does not check for 0 or -0, which need |
| // to be checked for separately. |
| // Control jumps to not_int32 if the value is not a 32-bit integer, and falls |
| // through otherwise. |
| // src1 and src2 will be cloberred. |
| // |
| // Expected input: |
| // - src1: higher (exponent) part of the double value. |
| // - src2: lower (mantissa) part of the double value. |
| // Output status: |
| // - dst: 32 higher bits of the mantissa. (mantissa[51:20]) |
| // - src2: contains 1. |
| // - other registers are clobbered. |
| static void DoubleIs32BitInteger(MacroAssembler* masm, |
| Register src1, |
| Register src2, |
| Register dst, |
| Register scratch, |
| Label* not_int32); |
| |
| // Generates code to call a C function to do a double operation using core |
| // registers. (Used when VFP3 is not supported.) |
| // This code never falls through, but returns with a heap number containing |
| // the result in r0. |
| // Register heapnumber_result must be a heap number in which the |
| // result of the operation will be stored. |
| // Requires the following layout on entry: |
| // r0: Left value (least significant part of mantissa). |
| // r1: Left value (sign, exponent, top of mantissa). |
| // r2: Right value (least significant part of mantissa). |
| // r3: Right value (sign, exponent, top of mantissa). |
| static void CallCCodeForDoubleOperation(MacroAssembler* masm, |
| Token::Value op, |
| Register heap_number_result, |
| Register scratch); |
| |
| private: |
| static void LoadNumber(MacroAssembler* masm, |
| FloatingPointHelper::Destination destination, |
| Register object, |
| DwVfpRegister dst, |
| Register dst1, |
| Register dst2, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Label* not_number); |
| }; |
| |
| |
| void FloatingPointHelper::LoadSmis(MacroAssembler* masm, |
| FloatingPointHelper::Destination destination, |
| Register scratch1, |
| Register scratch2) { |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ mov(scratch1, Operand(r0, ASR, kSmiTagSize)); |
| __ vmov(d7.high(), scratch1); |
| __ vcvt_f64_s32(d7, d7.high()); |
| __ mov(scratch1, Operand(r1, ASR, kSmiTagSize)); |
| __ vmov(d6.high(), scratch1); |
| __ vcvt_f64_s32(d6, d6.high()); |
| if (destination == kCoreRegisters) { |
| __ vmov(r2, r3, d7); |
| __ vmov(r0, r1, d6); |
| } |
| } else { |
| ASSERT(destination == kCoreRegisters); |
| // Write Smi from r0 to r3 and r2 in double format. |
| __ mov(scratch1, Operand(r0)); |
| ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2); |
| __ push(lr); |
| __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| // Write Smi from r1 to r1 and r0 in double format. |
| __ mov(scratch1, Operand(r1)); |
| ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2); |
| __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| } |
| |
| |
| void FloatingPointHelper::LoadOperands( |
| MacroAssembler* masm, |
| FloatingPointHelper::Destination destination, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Label* slow) { |
| |
| // Load right operand (r0) to d6 or r2/r3. |
| LoadNumber(masm, destination, |
| r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow); |
| |
| // Load left operand (r1) to d7 or r0/r1. |
| LoadNumber(masm, destination, |
| r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow); |
| } |
| |
| |
| void FloatingPointHelper::LoadNumber(MacroAssembler* masm, |
| Destination destination, |
| Register object, |
| DwVfpRegister dst, |
| Register dst1, |
| Register dst2, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Label* not_number) { |
| if (FLAG_debug_code) { |
| __ AbortIfNotRootValue(heap_number_map, |
| Heap::kHeapNumberMapRootIndex, |
| "HeapNumberMap register clobbered."); |
| } |
| |
| Label is_smi, done; |
| |
| __ JumpIfSmi(object, &is_smi); |
| __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); |
| |
| // Handle loading a double from a heap number. |
| if (CpuFeatures::IsSupported(VFP3) && |
| destination == kVFPRegisters) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from tagged HeapNumber to double register. |
| __ sub(scratch1, object, Operand(kHeapObjectTag)); |
| __ vldr(dst, scratch1, HeapNumber::kValueOffset); |
| } else { |
| ASSERT(destination == kCoreRegisters); |
| // Load the double from heap number to dst1 and dst2 in double format. |
| __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| } |
| __ jmp(&done); |
| |
| // Handle loading a double from a smi. |
| __ bind(&is_smi); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Convert smi to double using VFP instructions. |
| __ SmiUntag(scratch1, object); |
| __ vmov(dst.high(), scratch1); |
| __ vcvt_f64_s32(dst, dst.high()); |
| if (destination == kCoreRegisters) { |
| // Load the converted smi to dst1 and dst2 in double format. |
| __ vmov(dst1, dst2, dst); |
| } |
| } else { |
| ASSERT(destination == kCoreRegisters); |
| // Write smi to dst1 and dst2 double format. |
| __ mov(scratch1, Operand(object)); |
| ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2); |
| __ push(lr); |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm, |
| Register object, |
| Register dst, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| DwVfpRegister double_scratch, |
| Label* not_number) { |
| if (FLAG_debug_code) { |
| __ AbortIfNotRootValue(heap_number_map, |
| Heap::kHeapNumberMapRootIndex, |
| "HeapNumberMap register clobbered."); |
| } |
| Label is_smi; |
| Label done; |
| Label not_in_int32_range; |
| |
| __ JumpIfSmi(object, &is_smi); |
| __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset)); |
| __ cmp(scratch1, heap_number_map); |
| __ b(ne, not_number); |
| __ ConvertToInt32(object, |
| dst, |
| scratch1, |
| scratch2, |
| double_scratch, |
| ¬_in_int32_range); |
| __ jmp(&done); |
| |
| __ bind(¬_in_int32_range); |
| __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
| |
| __ EmitOutOfInt32RangeTruncate(dst, |
| scratch1, |
| scratch2, |
| scratch3); |
| __ jmp(&done); |
| |
| __ bind(&is_smi); |
| __ SmiUntag(dst, object); |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm, |
| Register object, |
| Destination destination, |
| DwVfpRegister double_dst, |
| Register dst1, |
| Register dst2, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| SwVfpRegister single_scratch, |
| Label* not_int32) { |
| ASSERT(!scratch1.is(object) && !scratch2.is(object)); |
| ASSERT(!scratch1.is(scratch2)); |
| ASSERT(!heap_number_map.is(object) && |
| !heap_number_map.is(scratch1) && |
| !heap_number_map.is(scratch2)); |
| |
| Label done, obj_is_not_smi; |
| |
| __ JumpIfNotSmi(object, &obj_is_not_smi); |
| __ SmiUntag(scratch1, object); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ vmov(single_scratch, scratch1); |
| __ vcvt_f64_s32(double_dst, single_scratch); |
| if (destination == kCoreRegisters) { |
| __ vmov(dst1, dst2, double_dst); |
| } |
| } else { |
| Label fewer_than_20_useful_bits; |
| // Expected output: |
| // | dst2 | dst1 | |
| // | s | exp | mantissa | |
| |
| // Check for zero. |
| __ cmp(scratch1, Operand(0)); |
| __ mov(dst2, scratch1); |
| __ mov(dst1, scratch1); |
| __ b(eq, &done); |
| |
| // Preload the sign of the value. |
| __ and_(dst2, scratch1, Operand(HeapNumber::kSignMask), SetCC); |
| // Get the absolute value of the object (as an unsigned integer). |
| __ rsb(scratch1, scratch1, Operand(0), SetCC, mi); |
| |
| // Get mantisssa[51:20]. |
| |
| // Get the position of the first set bit. |
| __ CountLeadingZeros(dst1, scratch1, scratch2); |
| __ rsb(dst1, dst1, Operand(31)); |
| |
| // Set the exponent. |
| __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias)); |
| __ Bfi(dst2, scratch2, scratch2, |
| HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
| |
| // Clear the first non null bit. |
| __ mov(scratch2, Operand(1)); |
| __ bic(scratch1, scratch1, Operand(scratch2, LSL, dst1)); |
| |
| __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); |
| // Get the number of bits to set in the lower part of the mantissa. |
| __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); |
| __ b(mi, &fewer_than_20_useful_bits); |
| // Set the higher 20 bits of the mantissa. |
| __ orr(dst2, dst2, Operand(scratch1, LSR, scratch2)); |
| __ rsb(scratch2, scratch2, Operand(32)); |
| __ mov(dst1, Operand(scratch1, LSL, scratch2)); |
| __ b(&done); |
| |
| __ bind(&fewer_than_20_useful_bits); |
| __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); |
| __ mov(scratch2, Operand(scratch1, LSL, scratch2)); |
| __ orr(dst2, dst2, scratch2); |
| // Set dst1 to 0. |
| __ mov(dst1, Operand(0)); |
| } |
| |
| __ b(&done); |
| |
| __ bind(&obj_is_not_smi); |
| if (FLAG_debug_code) { |
| __ AbortIfNotRootValue(heap_number_map, |
| Heap::kHeapNumberMapRootIndex, |
| "HeapNumberMap register clobbered."); |
| } |
| __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); |
| |
| // Load the number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double value. |
| __ sub(scratch1, object, Operand(kHeapObjectTag)); |
| __ vldr(double_dst, scratch1, HeapNumber::kValueOffset); |
| |
| __ EmitVFPTruncate(kRoundToZero, |
| single_scratch, |
| double_dst, |
| scratch1, |
| scratch2, |
| kCheckForInexactConversion); |
| |
| // Jump to not_int32 if the operation did not succeed. |
| __ b(ne, not_int32); |
| |
| if (destination == kCoreRegisters) { |
| __ vmov(dst1, dst2, double_dst); |
| } |
| |
| } else { |
| ASSERT(!scratch1.is(object) && !scratch2.is(object)); |
| // Load the double value in the destination registers.. |
| __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| |
| // Check for 0 and -0. |
| __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask)); |
| __ orr(scratch1, scratch1, Operand(dst2)); |
| __ cmp(scratch1, Operand(0)); |
| __ b(eq, &done); |
| |
| // Check that the value can be exactly represented by a 32-bit integer. |
| // Jump to not_int32 if that's not the case. |
| DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32); |
| |
| // dst1 and dst2 were trashed. Reload the double value. |
| __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| } |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, |
| Register object, |
| Register dst, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| DwVfpRegister double_scratch, |
| Label* not_int32) { |
| ASSERT(!dst.is(object)); |
| ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object)); |
| ASSERT(!scratch1.is(scratch2) && |
| !scratch1.is(scratch3) && |
| !scratch2.is(scratch3)); |
| |
| Label done; |
| |
| // Untag the object into the destination register. |
| __ SmiUntag(dst, object); |
| // Just return if the object is a smi. |
| __ JumpIfSmi(object, &done); |
| |
| if (FLAG_debug_code) { |
| __ AbortIfNotRootValue(heap_number_map, |
| Heap::kHeapNumberMapRootIndex, |
| "HeapNumberMap register clobbered."); |
| } |
| __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); |
| |
| // Object is a heap number. |
| // Convert the floating point value to a 32-bit integer. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| SwVfpRegister single_scratch = double_scratch.low(); |
| // Load the double value. |
| __ sub(scratch1, object, Operand(kHeapObjectTag)); |
| __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset); |
| |
| __ EmitVFPTruncate(kRoundToZero, |
| single_scratch, |
| double_scratch, |
| scratch1, |
| scratch2, |
| kCheckForInexactConversion); |
| |
| // Jump to not_int32 if the operation did not succeed. |
| __ b(ne, not_int32); |
| // Get the result in the destination register. |
| __ vmov(dst, single_scratch); |
| |
| } else { |
| // Load the double value in the destination registers. |
| __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
| |
| // Check for 0 and -0. |
| __ bic(dst, scratch1, Operand(HeapNumber::kSignMask)); |
| __ orr(dst, scratch2, Operand(dst)); |
| __ cmp(dst, Operand(0)); |
| __ b(eq, &done); |
| |
| DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32); |
| |
| // Registers state after DoubleIs32BitInteger. |
| // dst: mantissa[51:20]. |
| // scratch2: 1 |
| |
| // Shift back the higher bits of the mantissa. |
| __ mov(dst, Operand(dst, LSR, scratch3)); |
| // Set the implicit first bit. |
| __ rsb(scratch3, scratch3, Operand(32)); |
| __ orr(dst, dst, Operand(scratch2, LSL, scratch3)); |
| // Set the sign. |
| __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| __ tst(scratch1, Operand(HeapNumber::kSignMask)); |
| __ rsb(dst, dst, Operand(0), LeaveCC, mi); |
| } |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm, |
| Register src1, |
| Register src2, |
| Register dst, |
| Register scratch, |
| Label* not_int32) { |
| // Get exponent alone in scratch. |
| __ Ubfx(scratch, |
| src1, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| |
| // Substract the bias from the exponent. |
| __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC); |
| |
| // src1: higher (exponent) part of the double value. |
| // src2: lower (mantissa) part of the double value. |
| // scratch: unbiased exponent. |
| |
| // Fast cases. Check for obvious non 32-bit integer values. |
| // Negative exponent cannot yield 32-bit integers. |
| __ b(mi, not_int32); |
| // Exponent greater than 31 cannot yield 32-bit integers. |
| // Also, a positive value with an exponent equal to 31 is outside of the |
| // signed 32-bit integer range. |
| // Another way to put it is that if (exponent - signbit) > 30 then the |
| // number cannot be represented as an int32. |
| Register tmp = dst; |
| __ sub(tmp, scratch, Operand(src1, LSR, 31)); |
| __ cmp(tmp, Operand(30)); |
| __ b(gt, not_int32); |
| // - Bits [21:0] in the mantissa are not null. |
| __ tst(src2, Operand(0x3fffff)); |
| __ b(ne, not_int32); |
| |
| // Otherwise the exponent needs to be big enough to shift left all the |
| // non zero bits left. So we need the (30 - exponent) last bits of the |
| // 31 higher bits of the mantissa to be null. |
| // Because bits [21:0] are null, we can check instead that the |
| // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null. |
| |
| // Get the 32 higher bits of the mantissa in dst. |
| __ Ubfx(dst, |
| src2, |
| HeapNumber::kMantissaBitsInTopWord, |
| 32 - HeapNumber::kMantissaBitsInTopWord); |
| __ orr(dst, |
| dst, |
| Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord)); |
| |
| // Create the mask and test the lower bits (of the higher bits). |
| __ rsb(scratch, scratch, Operand(32)); |
| __ mov(src2, Operand(1)); |
| __ mov(src1, Operand(src2, LSL, scratch)); |
| __ sub(src1, src1, Operand(1)); |
| __ tst(dst, src1); |
| __ b(ne, not_int32); |
| } |
| |
| |
| void FloatingPointHelper::CallCCodeForDoubleOperation( |
| MacroAssembler* masm, |
| Token::Value op, |
| Register heap_number_result, |
| Register scratch) { |
| // Using core registers: |
| // r0: Left value (least significant part of mantissa). |
| // r1: Left value (sign, exponent, top of mantissa). |
| // r2: Right value (least significant part of mantissa). |
| // r3: Right value (sign, exponent, top of mantissa). |
| |
| // Assert that heap_number_result is callee-saved. |
| // We currently always use r5 to pass it. |
| ASSERT(heap_number_result.is(r5)); |
| |
| // Push the current return address before the C call. Return will be |
| // through pop(pc) below. |
| __ push(lr); |
| __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments. |
| // Call C routine that may not cause GC or other trouble. |
| __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()), |
| 4); |
| // Store answer in the overwritable heap number. Double returned in |
| // registers r0 and r1. |
| __ Strd(r0, r1, FieldMemOperand(heap_number_result, |
| HeapNumber::kValueOffset)); |
| // Place heap_number_result in r0 and return to the pushed return address. |
| __ mov(r0, Operand(heap_number_result)); |
| __ pop(pc); |
| } |
| |
| |
| // See comment for class. |
| void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
| Label max_negative_int; |
| // the_int_ has the answer which is a signed int32 but not a Smi. |
| // We test for the special value that has a different exponent. This test |
| // has the neat side effect of setting the flags according to the sign. |
| STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ cmp(the_int_, Operand(0x80000000u)); |
| __ b(eq, &max_negative_int); |
| // Set up the correct exponent in scratch_. All non-Smi int32s have the same. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). |
| uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ mov(scratch_, Operand(non_smi_exponent)); |
| // Set the sign bit in scratch_ if the value was negative. |
| __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); |
| // Subtract from 0 if the value was negative. |
| __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs); |
| // We should be masking the implict first digit of the mantissa away here, |
| // but it just ends up combining harmlessly with the last digit of the |
| // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get |
| // the most significant 1 to hit the last bit of the 12 bit sign and exponent. |
| ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); |
| __ str(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kExponentOffset)); |
| __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); |
| __ str(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| |
| __ bind(&max_negative_int); |
| // The max negative int32 is stored as a positive number in the mantissa of |
| // a double because it uses a sign bit instead of using two's complement. |
| // The actual mantissa bits stored are all 0 because the implicit most |
| // significant 1 bit is not stored. |
| non_smi_exponent += 1 << HeapNumber::kExponentShift; |
| __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
| __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); |
| __ mov(ip, Operand(0, RelocInfo::NONE)); |
| __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| } |
| |
| |
| // Handle the case where the lhs and rhs are the same object. |
| // Equality is almost reflexive (everything but NaN), so this is a test |
| // for "identity and not NaN". |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cond, |
| bool never_nan_nan) { |
| Label not_identical; |
| Label heap_number, return_equal; |
| __ cmp(r0, r1); |
| __ b(ne, ¬_identical); |
| |
| // The two objects are identical. If we know that one of them isn't NaN then |
| // we now know they test equal. |
| if (cond != eq || !never_nan_nan) { |
| // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(), |
| // so we do the second best thing - test it ourselves. |
| // They are both equal and they are not both Smis so both of them are not |
| // Smis. If it's not a heap number, then return equal. |
| if (cond == lt || cond == gt) { |
| __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, slow); |
| } else { |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(eq, &heap_number); |
| // Comparing JS objects with <=, >= is complicated. |
| if (cond != eq) { |
| __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); |
| __ b(ge, slow); |
| // Normally here we fall through to return_equal, but undefined is |
| // special: (undefined == undefined) == true, but |
| // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
| if (cond == le || cond == ge) { |
| __ cmp(r4, Operand(ODDBALL_TYPE)); |
| __ b(ne, &return_equal); |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, r2); |
| __ b(ne, &return_equal); |
| if (cond == le) { |
| // undefined <= undefined should fail. |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| // undefined >= undefined should fail. |
| __ mov(r0, Operand(LESS)); |
| } |
| __ Ret(); |
| } |
| } |
| } |
| } |
| |
| __ bind(&return_equal); |
| if (cond == lt) { |
| __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. |
| } else if (cond == gt) { |
| __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. |
| } else { |
| __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. |
| } |
| __ Ret(); |
| |
| if (cond != eq || !never_nan_nan) { |
| // For less and greater we don't have to check for NaN since the result of |
| // x < x is false regardless. For the others here is some code to check |
| // for NaN. |
| if (cond != lt && cond != gt) { |
| __ bind(&heap_number); |
| // It is a heap number, so return non-equal if it's NaN and equal if it's |
| // not NaN. |
| |
| // The representation of NaN values has all exponent bits (52..62) set, |
| // and not all mantissa bits (0..51) clear. |
| // Read top bits of double representation (second word of value). |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| // Test that exponent bits are all set. |
| __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
| // NaNs have all-one exponents so they sign extend to -1. |
| __ cmp(r3, Operand(-1)); |
| __ b(ne, &return_equal); |
| |
| // Shift out flag and all exponent bits, retaining only mantissa. |
| __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); |
| // Or with all low-bits of mantissa. |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| __ orr(r0, r3, Operand(r2), SetCC); |
| // For equal we already have the right value in r0: Return zero (equal) |
| // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
| // not (it's a NaN). For <= and >= we need to load r0 with the failing |
| // value if it's a NaN. |
| if (cond != eq) { |
| // All-zero means Infinity means equal. |
| __ Ret(eq); |
| if (cond == le) { |
| __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. |
| } else { |
| __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. |
| } |
| } |
| __ Ret(); |
| } |
| // No fall through here. |
| } |
| |
| __ bind(¬_identical); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* lhs_not_nan, |
| Label* slow, |
| bool strict) { |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0))); |
| |
| Label rhs_is_smi; |
| __ tst(rhs, Operand(kSmiTagMask)); |
| __ b(eq, &rhs_is_smi); |
| |
| // Lhs is a Smi. Check whether the rhs is a heap number. |
| __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); |
| if (strict) { |
| // If rhs is not a number and lhs is a Smi then strict equality cannot |
| // succeed. Return non-equal |
| // If rhs is r0 then there is already a non zero value in it. |
| if (!rhs.is(r0)) { |
| __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); |
| } |
| __ Ret(ne); |
| } else { |
| // Smi compared non-strictly with a non-Smi non-heap-number. Call |
| // the runtime. |
| __ b(ne, slow); |
| } |
| |
| // Lhs is a smi, rhs is a number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert lhs to a double in d7. |
| CpuFeatures::Scope scope(VFP3); |
| __ SmiToDoubleVFPRegister(lhs, d7, r7, s15); |
| // Load the double from rhs, tagged HeapNumber r0, to d6. |
| __ sub(r7, rhs, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| } else { |
| __ push(lr); |
| // Convert lhs to a double in r2, r3. |
| __ mov(r7, Operand(lhs)); |
| ConvertToDoubleStub stub1(r3, r2, r7, r6); |
| __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| // Load rhs to a double in r0, r1. |
| __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| __ pop(lr); |
| } |
| |
| // We now have both loaded as doubles but we can skip the lhs nan check |
| // since it's a smi. |
| __ jmp(lhs_not_nan); |
| |
| __ bind(&rhs_is_smi); |
| // Rhs is a smi. Check whether the non-smi lhs is a heap number. |
| __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); |
| if (strict) { |
| // If lhs is not a number and rhs is a smi then strict equality cannot |
| // succeed. Return non-equal. |
| // If lhs is r0 then there is already a non zero value in it. |
| if (!lhs.is(r0)) { |
| __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); |
| } |
| __ Ret(ne); |
| } else { |
| // Smi compared non-strictly with a non-smi non-heap-number. Call |
| // the runtime. |
| __ b(ne, slow); |
| } |
| |
| // Rhs is a smi, lhs is a heap number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from lhs, tagged HeapNumber r1, to d7. |
| __ sub(r7, lhs, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| // Convert rhs to a double in d6 . |
| __ SmiToDoubleVFPRegister(rhs, d6, r7, s13); |
| } else { |
| __ push(lr); |
| // Load lhs to a double in r2, r3. |
| __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| // Convert rhs to a double in r0, r1. |
| __ mov(r7, Operand(rhs)); |
| ConvertToDoubleStub stub2(r1, r0, r7, r6); |
| __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| // Fall through to both_loaded_as_doubles. |
| } |
| |
| |
| void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| Register rhs_exponent = exp_first ? r0 : r1; |
| Register lhs_exponent = exp_first ? r2 : r3; |
| Register rhs_mantissa = exp_first ? r1 : r0; |
| Register lhs_mantissa = exp_first ? r3 : r2; |
| Label one_is_nan, neither_is_nan; |
| |
| __ Sbfx(r4, |
| lhs_exponent, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| // NaNs have all-one exponents so they sign extend to -1. |
| __ cmp(r4, Operand(-1)); |
| __ b(ne, lhs_not_nan); |
| __ mov(r4, |
| Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| SetCC); |
| __ b(ne, &one_is_nan); |
| __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE)); |
| __ b(ne, &one_is_nan); |
| |
| __ bind(lhs_not_nan); |
| __ Sbfx(r4, |
| rhs_exponent, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| // NaNs have all-one exponents so they sign extend to -1. |
| __ cmp(r4, Operand(-1)); |
| __ b(ne, &neither_is_nan); |
| __ mov(r4, |
| Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| SetCC); |
| __ b(ne, &one_is_nan); |
| __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &neither_is_nan); |
| |
| __ bind(&one_is_nan); |
| // NaN comparisons always fail. |
| // Load whatever we need in r0 to make the comparison fail. |
| if (cond == lt || cond == le) { |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| __ mov(r0, Operand(LESS)); |
| } |
| __ Ret(); |
| |
| __ bind(&neither_is_nan); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, |
| Condition cond) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| Register rhs_exponent = exp_first ? r0 : r1; |
| Register lhs_exponent = exp_first ? r2 : r3; |
| Register rhs_mantissa = exp_first ? r1 : r0; |
| Register lhs_mantissa = exp_first ? r3 : r2; |
| |
| // r0, r1, r2, r3 have the two doubles. Neither is a NaN. |
| if (cond == eq) { |
| // Doubles are not equal unless they have the same bit pattern. |
| // Exception: 0 and -0. |
| __ cmp(rhs_mantissa, Operand(lhs_mantissa)); |
| __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); |
| // Return non-zero if the numbers are unequal. |
| __ Ret(ne); |
| |
| __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); |
| // If exponents are equal then return 0. |
| __ Ret(eq); |
| |
| // Exponents are unequal. The only way we can return that the numbers |
| // are equal is if one is -0 and the other is 0. We already dealt |
| // with the case where both are -0 or both are 0. |
| // We start by seeing if the mantissas (that are equal) or the bottom |
| // 31 bits of the rhs exponent are non-zero. If so we return not |
| // equal. |
| __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); |
| __ mov(r0, Operand(r4), LeaveCC, ne); |
| __ Ret(ne); |
| // Now they are equal if and only if the lhs exponent is zero in its |
| // low 31 bits. |
| __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); |
| __ Ret(); |
| } else { |
| // Call a native function to do a comparison between two non-NaNs. |
| // Call C routine that may not cause GC or other trouble. |
| __ push(lr); |
| __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments. |
| __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4); |
| __ pop(pc); // Return. |
| } |
| } |
| |
| |
| // See comment at call site. |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| Register lhs, |
| Register rhs) { |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0))); |
| |
| // If either operand is a JSObject or an oddball value, then they are |
| // not equal since their pointers are different. |
| // There is no test for undetectability in strict equality. |
| STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| Label first_non_object; |
| // Get the type of the first operand into r2 and compare it with |
| // FIRST_JS_OBJECT_TYPE. |
| __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &first_non_object); |
| |
| // Return non-zero (r0 is not zero) |
| Label return_not_equal; |
| __ bind(&return_not_equal); |
| __ Ret(); |
| |
| __ bind(&first_non_object); |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(r2, Operand(ODDBALL_TYPE)); |
| __ b(eq, &return_not_equal); |
| |
| __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &return_not_equal); |
| |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(r3, Operand(ODDBALL_TYPE)); |
| __ b(eq, &return_not_equal); |
| |
| // Now that we have the types we might as well check for symbol-symbol. |
| // Ensure that no non-strings have the symbol bit set. |
| STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ and_(r2, r2, Operand(r3)); |
| __ tst(r2, Operand(kIsSymbolMask)); |
| __ b(ne, &return_not_equal); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* both_loaded_as_doubles, |
| Label* not_heap_numbers, |
| Label* slow) { |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0))); |
| |
| __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); |
| __ b(ne, not_heap_numbers); |
| __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| __ cmp(r2, r3); |
| __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. |
| |
| // Both are heap numbers. Load them up then jump to the code we have |
| // for that. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ sub(r7, rhs, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| __ sub(r7, lhs, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| } else { |
| __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| } |
| __ jmp(both_loaded_as_doubles); |
| } |
| |
| |
| // Fast negative check for symbol-to-symbol equality. |
| static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, |
| Register lhs, |
| Register rhs, |
| Label* possible_strings, |
| Label* not_both_strings) { |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0))); |
| |
| // r2 is object type of rhs. |
| // Ensure that no non-strings have the symbol bit set. |
| Label object_test; |
| STATIC_ASSERT(kSymbolTag != 0); |
| __ tst(r2, Operand(kIsNotStringMask)); |
| __ b(ne, &object_test); |
| __ tst(r2, Operand(kIsSymbolMask)); |
| __ b(eq, possible_strings); |
| __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); |
| __ b(ge, not_both_strings); |
| __ tst(r3, Operand(kIsSymbolMask)); |
| __ b(eq, possible_strings); |
| |
| // Both are symbols. We already checked they weren't the same pointer |
| // so they are not equal. |
| __ mov(r0, Operand(NOT_EQUAL)); |
| __ Ret(); |
| |
| __ bind(&object_test); |
| __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE)); |
| __ b(lt, not_both_strings); |
| __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, not_both_strings); |
| // If both objects are undetectable, they are equal. Otherwise, they |
| // are not equal, since they are different objects and an object is not |
| // equal to undefined. |
| __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); |
| __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); |
| __ and_(r0, r2, Operand(r3)); |
| __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); |
| __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); |
| __ Ret(); |
| } |
| |
| |
| void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| bool object_is_smi, |
| Label* not_found) { |
| // Use of registers. Register result is used as a temporary. |
| Register number_string_cache = result; |
| Register mask = scratch3; |
| |
| // Load the number string cache. |
| __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
| |
| // Make the hash mask from the length of the number string cache. It |
| // contains two elements (number and string) for each cache entry. |
| __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); |
| // Divide length by two (length is a smi). |
| __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1)); |
| __ sub(mask, mask, Operand(1)); // Make mask. |
| |
| // Calculate the entry in the number string cache. The hash value in the |
| // number string cache for smis is just the smi value, and the hash for |
| // doubles is the xor of the upper and lower words. See |
| // Heap::GetNumberStringCache. |
| Isolate* isolate = masm->isolate(); |
| Label is_smi; |
| Label load_result_from_cache; |
| if (!object_is_smi) { |
| __ JumpIfSmi(object, &is_smi); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ CheckMap(object, |
| scratch1, |
| Heap::kHeapNumberMapRootIndex, |
| not_found, |
| true); |
| |
| STATIC_ASSERT(8 == kDoubleSize); |
| __ add(scratch1, |
| object, |
| Operand(HeapNumber::kValueOffset - kHeapObjectTag)); |
| __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit()); |
| __ eor(scratch1, scratch1, Operand(scratch2)); |
| __ and_(scratch1, scratch1, Operand(mask)); |
| |
| // Calculate address of entry in string cache: each entry consists |
| // of two pointer sized fields. |
| __ add(scratch1, |
| number_string_cache, |
| Operand(scratch1, LSL, kPointerSizeLog2 + 1)); |
| |
| Register probe = mask; |
| __ ldr(probe, |
| FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
| __ JumpIfSmi(probe, not_found); |
| __ sub(scratch2, object, Operand(kHeapObjectTag)); |
| __ vldr(d0, scratch2, HeapNumber::kValueOffset); |
| __ sub(probe, probe, Operand(kHeapObjectTag)); |
| __ vldr(d1, probe, HeapNumber::kValueOffset); |
| __ VFPCompareAndSetFlags(d0, d1); |
| __ b(ne, not_found); // The cache did not contain this value. |
| __ b(&load_result_from_cache); |
| } else { |
| __ b(not_found); |
| } |
| } |
| |
| __ bind(&is_smi); |
| Register scratch = scratch1; |
| __ and_(scratch, mask, Operand(object, ASR, 1)); |
| // Calculate address of entry in string cache: each entry consists |
| // of two pointer sized fields. |
| __ add(scratch, |
| number_string_cache, |
| Operand(scratch, LSL, kPointerSizeLog2 + 1)); |
| |
| // Check if the entry is the smi we are looking for. |
| Register probe = mask; |
| __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| __ cmp(object, probe); |
| __ b(ne, not_found); |
| |
| // Get the result from the cache. |
| __ bind(&load_result_from_cache); |
| __ ldr(result, |
| FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
| __ IncrementCounter(isolate->counters()->number_to_string_native(), |
| 1, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void NumberToStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| __ ldr(r1, MemOperand(sp, 0)); |
| |
| // Generate code to lookup number in the number string cache. |
| GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime); |
| __ add(sp, sp, Operand(1 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&runtime); |
| // Handle number to string in the runtime system if not found in the cache. |
| __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
| } |
| |
| |
| // On entry lhs_ and rhs_ are the values to be compared. |
| // On exit r0 is 0, positive or negative to indicate the result of |
| // the comparison. |
| void CompareStub::Generate(MacroAssembler* masm) { |
| ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| (lhs_.is(r1) && rhs_.is(r0))); |
| |
| Label slow; // Call builtin. |
| Label not_smis, both_loaded_as_doubles, lhs_not_nan; |
| |
| if (include_smi_compare_) { |
| Label not_two_smis, smi_done; |
| __ orr(r2, r1, r0); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_two_smis); |
| __ mov(r1, Operand(r1, ASR, 1)); |
| __ sub(r0, r1, Operand(r0, ASR, 1)); |
| __ Ret(); |
| __ bind(¬_two_smis); |
| } else if (FLAG_debug_code) { |
| __ orr(r2, r1, r0); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ Assert(ne, "CompareStub: unexpected smi operands."); |
| } |
| |
| // NOTICE! This code is only reached after a smi-fast-case check, so |
| // it is certain that at least one operand isn't a smi. |
| |
| // Handle the case where the objects are identical. Either returns the answer |
| // or goes to slow. Only falls through if the objects were not identical. |
| EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
| |
| // If either is a Smi (we know that not both are), then they can only |
| // be strictly equal if the other is a HeapNumber. |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ and_(r2, lhs_, Operand(rhs_)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smis); |
| // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
| // 1) Return the answer. |
| // 2) Go to slow. |
| // 3) Fall through to both_loaded_as_doubles. |
| // 4) Jump to lhs_not_nan. |
| // In cases 3 and 4 we have found out we were dealing with a number-number |
| // comparison. If VFP3 is supported the double values of the numbers have |
| // been loaded into d7 and d6. Otherwise, the double values have been loaded |
| // into r0, r1, r2, and r3. |
| EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_); |
| |
| __ bind(&both_loaded_as_doubles); |
| // The arguments have been converted to doubles and stored in d6 and d7, if |
| // VFP3 is supported, or in r0, r1, r2, and r3. |
| Isolate* isolate = masm->isolate(); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ bind(&lhs_not_nan); |
| CpuFeatures::Scope scope(VFP3); |
| Label no_nan; |
| // ARMv7 VFP3 instructions to implement double precision comparison. |
| __ VFPCompareAndSetFlags(d7, d6); |
| Label nan; |
| __ b(vs, &nan); |
| __ mov(r0, Operand(EQUAL), LeaveCC, eq); |
| __ mov(r0, Operand(LESS), LeaveCC, lt); |
| __ mov(r0, Operand(GREATER), LeaveCC, gt); |
| __ Ret(); |
| |
| __ bind(&nan); |
| // If one of the sides was a NaN then the v flag is set. Load r0 with |
| // whatever it takes to make the comparison fail, since comparisons with NaN |
| // always fail. |
| if (cc_ == lt || cc_ == le) { |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| __ mov(r0, Operand(LESS)); |
| } |
| __ Ret(); |
| } else { |
| // Checks for NaN in the doubles we have loaded. Can return the answer or |
| // fall through if neither is a NaN. Also binds lhs_not_nan. |
| EmitNanCheck(masm, &lhs_not_nan, cc_); |
| // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the |
| // answer. Never falls through. |
| EmitTwoNonNanDoubleComparison(masm, cc_); |
| } |
| |
| __ bind(¬_smis); |
| // At this point we know we are dealing with two different objects, |
| // and neither of them is a Smi. The objects are in rhs_ and lhs_. |
| if (strict_) { |
| // This returns non-equal for some object types, or falls through if it |
| // was not lucky. |
| EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); |
| } |
| |
| Label check_for_symbols; |
| Label flat_string_check; |
| // Check for heap-number-heap-number comparison. Can jump to slow case, |
| // or load both doubles into r0, r1, r2, r3 and jump to the code that handles |
| // that case. If the inputs are not doubles then jumps to check_for_symbols. |
| // In this case r2 will contain the type of rhs_. Never falls through. |
| EmitCheckForTwoHeapNumbers(masm, |
| lhs_, |
| rhs_, |
| &both_loaded_as_doubles, |
| &check_for_symbols, |
| &flat_string_check); |
| |
| __ bind(&check_for_symbols); |
| // In the strict case the EmitStrictTwoHeapObjectCompare already took care of |
| // symbols. |
| if (cc_ == eq && !strict_) { |
| // Returns an answer for two symbols or two detectable objects. |
| // Otherwise jumps to string case or not both strings case. |
| // Assumes that r2 is the type of rhs_ on entry. |
| EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); |
| } |
| |
| // Check for both being sequential ASCII strings, and inline if that is the |
| // case. |
| __ bind(&flat_string_check); |
| |
| __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow); |
| |
| __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3); |
| StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| lhs_, |
| rhs_, |
| r2, |
| r3, |
| r4, |
| r5); |
| // Never falls through to here. |
| |
| __ bind(&slow); |
| |
| __ Push(lhs_, rhs_); |
| // Figure out which native to call and setup the arguments. |
| Builtins::JavaScript native; |
| if (cc_ == eq) { |
| native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| } else { |
| native = Builtins::COMPARE; |
| int ncr; // NaN compare result |
| if (cc_ == lt || cc_ == le) { |
| ncr = GREATER; |
| } else { |
| ASSERT(cc_ == gt || cc_ == ge); // remaining cases |
| ncr = LESS; |
| } |
| __ mov(r0, Operand(Smi::FromInt(ncr))); |
| __ push(r0); |
| } |
| |
| // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ InvokeBuiltin(native, JUMP_JS); |
| } |
| |
| |
| // This stub does not handle the inlined cases (Smis, Booleans, undefined). |
| // The stub returns zero for false, and a non-zero value for true. |
| void ToBooleanStub::Generate(MacroAssembler* masm) { |
| // This stub uses VFP3 instructions. |
| ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| |
| Label false_result; |
| Label not_heap_number; |
| Register scratch = r9.is(tos_) ? r7 : r9; |
| |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(tos_, ip); |
| __ b(eq, &false_result); |
| |
| // HeapNumber => false iff +0, -0, or NaN. |
| __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); |
| __ cmp(scratch, ip); |
| __ b(¬_heap_number, ne); |
| |
| __ sub(ip, tos_, Operand(kHeapObjectTag)); |
| __ vldr(d1, ip, HeapNumber::kValueOffset); |
| __ VFPCompareAndSetFlags(d1, 0.0); |
| // "tos_" is a register, and contains a non zero value by default. |
| // Hence we only need to overwrite "tos_" with zero to return false for |
| // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. |
| __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO |
| __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN |
| __ Ret(); |
| |
| __ bind(¬_heap_number); |
| |
| // Check if the value is 'null'. |
| // 'null' => false. |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(tos_, ip); |
| __ b(&false_result, eq); |
| |
| // It can be an undetectable object. |
| // Undetectable => false. |
| __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(ip, Map::kBitFieldOffset)); |
| __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
| __ b(&false_result, eq); |
| |
| // JavaScript object => true. |
| __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| __ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE)); |
| // "tos_" is a register and contains a non-zero value. |
| // Hence we implicitly return true if the greater than |
| // condition is satisfied. |
| __ Ret(gt); |
| |
| // Check for string |
| __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); |
| // "tos_" is a register and contains a non-zero value. |
| // Hence we implicitly return true if the greater than |
| // condition is satisfied. |
| __ Ret(gt); |
| |
| // String value => false iff empty, i.e., length is zero |
| __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset)); |
| // If length is zero, "tos_" contains zero ==> false. |
| // If length is not zero, "tos_" contains a non-zero value ==> true. |
| __ Ret(); |
| |
| // Return 0 in "tos_" for false . |
| __ bind(&false_result); |
| __ mov(tos_, Operand(0, RelocInfo::NONE)); |
| __ Ret(); |
| } |
| |
| |
| Handle<Code> GetTypeRecordingBinaryOpStub(int key, |
| TRBinaryOpIC::TypeInfo type_info, |
| TRBinaryOpIC::TypeInfo result_type_info) { |
| TypeRecordingBinaryOpStub stub(key, type_info, result_type_info); |
| return stub.GetCode(); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| Label get_result; |
| |
| __ Push(r1, r0); |
| |
| __ mov(r2, Operand(Smi::FromInt(MinorKey()))); |
| __ mov(r1, Operand(Smi::FromInt(op_))); |
| __ mov(r0, Operand(Smi::FromInt(operands_type_))); |
| __ Push(r2, r1, r0); |
| |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch), |
| masm->isolate()), |
| 5, |
| 1); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs( |
| MacroAssembler* masm) { |
| UNIMPLEMENTED(); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { |
| switch (operands_type_) { |
| case TRBinaryOpIC::UNINITIALIZED: |
| GenerateTypeTransition(masm); |
| break; |
| case TRBinaryOpIC::SMI: |
| GenerateSmiStub(masm); |
| break; |
| case TRBinaryOpIC::INT32: |
| GenerateInt32Stub(masm); |
| break; |
| case TRBinaryOpIC::HEAP_NUMBER: |
| GenerateHeapNumberStub(masm); |
| break; |
| case TRBinaryOpIC::ODDBALL: |
| GenerateOddballStub(masm); |
| break; |
| case TRBinaryOpIC::STRING: |
| GenerateStringStub(masm); |
| break; |
| case TRBinaryOpIC::GENERIC: |
| GenerateGeneric(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| const char* TypeRecordingBinaryOpStub::GetName() { |
| if (name_ != NULL) return name_; |
| const int kMaxNameLength = 100; |
| name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( |
| kMaxNameLength); |
| if (name_ == NULL) return "OOM"; |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| "TypeRecordingBinaryOpStub_%s_%s_%s", |
| op_name, |
| overwrite_name, |
| TRBinaryOpIC::GetName(operands_type_)); |
| return name_; |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation( |
| MacroAssembler* masm) { |
| Register left = r1; |
| Register right = r0; |
| Register scratch1 = r7; |
| Register scratch2 = r9; |
| |
| ASSERT(right.is(r0)); |
| STATIC_ASSERT(kSmiTag == 0); |
| |
| Label not_smi_result; |
| switch (op_) { |
| case Token::ADD: |
| __ add(right, left, Operand(right), SetCC); // Add optimistically. |
| __ Ret(vc); |
| __ sub(right, right, Operand(left)); // Revert optimistic add. |
| break; |
| case Token::SUB: |
| __ sub(right, left, Operand(right), SetCC); // Subtract optimistically. |
| __ Ret(vc); |
| __ sub(right, left, Operand(right)); // Revert optimistic subtract. |
| break; |
| case Token::MUL: |
| // Remove tag from one of the operands. This way the multiplication result |
| // will be a smi if it fits the smi range. |
| __ SmiUntag(ip, right); |
| // Do multiplication |
| // scratch1 = lower 32 bits of ip * left. |
| // scratch2 = higher 32 bits of ip * left. |
| __ smull(scratch1, scratch2, left, ip); |
| // Check for overflowing the smi range - no overflow if higher 33 bits of |
| // the result are identical. |
| __ mov(ip, Operand(scratch1, ASR, 31)); |
| __ cmp(ip, Operand(scratch2)); |
| __ b(ne, ¬_smi_result); |
| // Go slow on zero result to handle -0. |
| __ tst(scratch1, Operand(scratch1)); |
| __ mov(right, Operand(scratch1), LeaveCC, ne); |
| __ Ret(ne); |
| // We need -0 if we were multiplying a negative number with 0 to get 0. |
| // We know one of them was zero. |
| __ add(scratch2, right, Operand(left), SetCC); |
| __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl); |
| __ Ret(pl); // Return smi 0 if the non-zero one was positive. |
| // We fall through here if we multiplied a negative number with 0, because |
| // that would mean we should produce -0. |
| break; |
| case Token::DIV: |
| // Check for power of two on the right hand side. |
| __ JumpIfNotPowerOfTwoOrZero(right, scratch1, ¬_smi_result); |
| // Check for positive and no remainder (scratch1 contains right - 1). |
| __ orr(scratch2, scratch1, Operand(0x80000000u)); |
| __ tst(left, scratch2); |
| __ b(ne, ¬_smi_result); |
| |
| // Perform division by shifting. |
| __ CountLeadingZeros(scratch1, scratch1, scratch2); |
| __ rsb(scratch1, scratch1, Operand(31)); |
| __ mov(right, Operand(left, LSR, scratch1)); |
| __ Ret(); |
| break; |
| case Token::MOD: |
| // Check for two positive smis. |
| __ orr(scratch1, left, Operand(right)); |
| __ tst(scratch1, Operand(0x80000000u | kSmiTagMask)); |
| __ b(ne, ¬_smi_result); |
| |
| // Check for power of two on the right hand side. |
| __ JumpIfNotPowerOfTwoOrZero(right, scratch1, ¬_smi_result); |
| |
| // Perform modulus by masking. |
| __ and_(right, left, Operand(scratch1)); |
| __ Ret(); |
| break; |
| case Token::BIT_OR: |
| __ orr(right, left, Operand(right)); |
| __ Ret(); |
| break; |
| case Token::BIT_AND: |
| __ and_(right, left, Operand(right)); |
| __ Ret(); |
| break; |
| case Token::BIT_XOR: |
| __ eor(right, left, Operand(right)); |
| __ Ret(); |
| break; |
| case Token::SAR: |
| // Remove tags from right operand. |
| __ GetLeastBitsFromSmi(scratch1, right, 5); |
| __ mov(right, Operand(left, ASR, scratch1)); |
| // Smi tag result. |
| __ bic(right, right, Operand(kSmiTagMask)); |
| __ Ret(); |
| break; |
| case Token::SHR: |
| // Remove tags from operands. We can't do this on a 31 bit number |
| // because then the 0s get shifted into bit 30 instead of bit 31. |
| __ SmiUntag(scratch1, left); |
| __ GetLeastBitsFromSmi(scratch2, right, 5); |
| __ mov(scratch1, Operand(scratch1, LSR, scratch2)); |
| // Unsigned shift is not allowed to produce a negative number, so |
| // check the sign bit and the sign bit after Smi tagging. |
| __ tst(scratch1, Operand(0xc0000000)); |
| __ b(ne, ¬_smi_result); |
| // Smi tag result. |
| __ SmiTag(right, scratch1); |
| __ Ret(); |
| break; |
| case Token::SHL: |
| // Remove tags from operands. |
| __ SmiUntag(scratch1, left); |
| __ GetLeastBitsFromSmi(scratch2, right, 5); |
| __ mov(scratch1, Operand(scratch1, LSL, scratch2)); |
| // Check that the signed result fits in a Smi. |
| __ add(scratch2, scratch1, Operand(0x40000000), SetCC); |
| __ b(mi, ¬_smi_result); |
| __ SmiTag(right, scratch1); |
| __ Ret(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ bind(¬_smi_result); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
| bool smi_operands, |
| Label* not_numbers, |
| Label* gc_required) { |
| Register left = r1; |
| Register right = r0; |
| Register scratch1 = r7; |
| Register scratch2 = r9; |
| Register scratch3 = r4; |
| |
| ASSERT(smi_operands || (not_numbers != NULL)); |
| if (smi_operands && FLAG_debug_code) { |
| __ AbortIfNotSmi(left); |
| __ AbortIfNotSmi(right); |
| } |
| |
| Register heap_number_map = r6; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: { |
| // Load left and right operands into d6 and d7 or r0/r1 and r2/r3 |
| // depending on whether VFP3 is available or not. |
| FloatingPointHelper::Destination destination = |
| CpuFeatures::IsSupported(VFP3) && |
| op_ != Token::MOD ? |
| FloatingPointHelper::kVFPRegisters : |
| FloatingPointHelper::kCoreRegisters; |
| |
| // Allocate new heap number for result. |
| Register result = r5; |
| GenerateHeapResultAllocation( |
| masm, result, heap_number_map, scratch1, scratch2, gc_required); |
| |
| // Load the operands. |
| if (smi_operands) { |
| FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); |
| } else { |
| FloatingPointHelper::LoadOperands(masm, |
| destination, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| not_numbers); |
| } |
| |
| // Calculate the result. |
| if (destination == FloatingPointHelper::kVFPRegisters) { |
| // Using VFP registers: |
| // d6: Left value |
| // d7: Right value |
| CpuFeatures::Scope scope(VFP3); |
| switch (op_) { |
| case Token::ADD: |
| __ vadd(d5, d6, d7); |
| break; |
| case Token::SUB: |
| __ vsub(d5, d6, d7); |
| break; |
| case Token::MUL: |
| __ vmul(d5, d6, d7); |
| break; |
| case Token::DIV: |
| __ vdiv(d5, d6, d7); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| __ sub(r0, result, Operand(kHeapObjectTag)); |
| __ vstr(d5, r0, HeapNumber::kValueOffset); |
| __ add(r0, r0, Operand(kHeapObjectTag)); |
| __ Ret(); |
| } else { |
| // Call the C function to handle the double operation. |
| FloatingPointHelper::CallCCodeForDoubleOperation(masm, |
| op_, |
| result, |
| scratch1); |
| if (FLAG_debug_code) { |
| __ stop("Unreachable code."); |
| } |
| } |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::SAR: |
| case Token::SHR: |
| case Token::SHL: { |
| if (smi_operands) { |
| __ SmiUntag(r3, left); |
| __ SmiUntag(r2, right); |
| } else { |
| // Convert operands to 32-bit integers. Right in r2 and left in r3. |
| FloatingPointHelper::ConvertNumberToInt32(masm, |
| left, |
| r3, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| scratch3, |
| d0, |
| not_numbers); |
| FloatingPointHelper::ConvertNumberToInt32(masm, |
| right, |
| r2, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| scratch3, |
| d0, |
| not_numbers); |
| } |
| |
| Label result_not_a_smi; |
| switch (op_) { |
| case Token::BIT_OR: |
| __ orr(r2, r3, Operand(r2)); |
| break; |
| case Token::BIT_XOR: |
| __ eor(r2, r3, Operand(r2)); |
| break; |
| case Token::BIT_AND: |
| __ and_(r2, r3, Operand(r2)); |
| break; |
| case Token::SAR: |
| // Use only the 5 least significant bits of the shift count. |
| __ GetLeastBitsFromInt32(r2, r2, 5); |
| __ mov(r2, Operand(r3, ASR, r2)); |
| break; |
| case Token::SHR: |
| // Use only the 5 least significant bits of the shift count. |
| __ GetLeastBitsFromInt32(r2, r2, 5); |
| __ mov(r2, Operand(r3, LSR, r2), SetCC); |
| // SHR is special because it is required to produce a positive answer. |
| // The code below for writing into heap numbers isn't capable of |
| // writing the register as an unsigned int so we go to slow case if we |
| // hit this case. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ b(mi, &result_not_a_smi); |
| } else { |
| __ b(mi, not_numbers); |
| } |
| break; |
| case Token::SHL: |
| // Use only the 5 least significant bits of the shift count. |
| __ GetLeastBitsFromInt32(r2, r2, 5); |
| __ mov(r2, Operand(r3, LSL, r2)); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // Check that the *signed* result fits in a smi. |
| __ add(r3, r2, Operand(0x40000000), SetCC); |
| __ b(mi, &result_not_a_smi); |
| __ SmiTag(r0, r2); |
| __ Ret(); |
| |
| // Allocate new heap number for result. |
| __ bind(&result_not_a_smi); |
| Register result = r5; |
| if (smi_operands) { |
| __ AllocateHeapNumber( |
| result, scratch1, scratch2, heap_number_map, gc_required); |
| } else { |
| GenerateHeapResultAllocation( |
| masm, result, heap_number_map, scratch1, scratch2, gc_required); |
| } |
| |
| // r2: Answer as signed int32. |
| // r5: Heap number to write answer into. |
| |
| // Nothing can go wrong now, so move the heap number to r0, which is the |
| // result. |
| __ mov(r0, Operand(r5)); |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As |
| // mentioned above SHR needs to always produce a positive result. |
| CpuFeatures::Scope scope(VFP3); |
| __ vmov(s0, r2); |
| if (op_ == Token::SHR) { |
| __ vcvt_f64_u32(d0, s0); |
| } else { |
| __ vcvt_f64_s32(d0, s0); |
| } |
| __ sub(r3, r0, Operand(kHeapObjectTag)); |
| __ vstr(d0, r3, HeapNumber::kValueOffset); |
| __ Ret(); |
| } else { |
| // Tail call that writes the int32 in r2 to the heap number in r0, using |
| // r3 as scratch. r0 is preserved and returned. |
| WriteInt32ToHeapNumberStub stub(r2, r0, r3); |
| __ TailCallStub(&stub); |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| // Generate the smi code. If the operation on smis are successful this return is |
| // generated. If the result is not a smi and heap number allocation is not |
| // requested the code falls through. If number allocation is requested but a |
| // heap number cannot be allocated the code jumps to the lable gc_required. |
| void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, |
| Label* use_runtime, |
| Label* gc_required, |
| SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { |
| Label not_smis; |
| |
| Register left = r1; |
| Register right = r0; |
| Register scratch1 = r7; |
| Register scratch2 = r9; |
| |
| // Perform combined smi check on both operands. |
| __ orr(scratch1, left, Operand(right)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ tst(scratch1, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smis); |
| |
| // If the smi-smi operation results in a smi return is generated. |
| GenerateSmiSmiOperation(masm); |
| |
| // If heap number results are possible generate the result in an allocated |
| // heap number. |
| if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) { |
| GenerateFPOperation(masm, true, use_runtime, gc_required); |
| } |
| __ bind(¬_smis); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
| Label not_smis, call_runtime; |
| |
| if (result_type_ == TRBinaryOpIC::UNINITIALIZED || |
| result_type_ == TRBinaryOpIC::SMI) { |
| // Only allow smi results. |
| GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS); |
| } else { |
| // Allow heap number result and don't make a transition if a heap number |
| // cannot be allocated. |
| GenerateSmiCode(masm, |
| &call_runtime, |
| &call_runtime, |
| ALLOW_HEAPNUMBER_RESULTS); |
| } |
| |
| // Code falls through if the result is not returned as either a smi or heap |
| // number. |
| GenerateTypeTransition(masm); |
| |
| __ bind(&call_runtime); |
| GenerateCallRuntime(masm); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { |
| ASSERT(operands_type_ == TRBinaryOpIC::STRING); |
| ASSERT(op_ == Token::ADD); |
| // Try to add arguments as strings, otherwise, transition to the generic |
| // TRBinaryOpIC type. |
| GenerateAddStrings(masm); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
| ASSERT(operands_type_ == TRBinaryOpIC::INT32); |
| |
| Register left = r1; |
| Register right = r0; |
| Register scratch1 = r7; |
| Register scratch2 = r9; |
| DwVfpRegister double_scratch = d0; |
| SwVfpRegister single_scratch = s3; |
| |
| Register heap_number_result = no_reg; |
| Register heap_number_map = r6; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| Label call_runtime; |
| // Labels for type transition, used for wrong input or output types. |
| // Both label are currently actually bound to the same position. We use two |
| // different label to differentiate the cause leading to type transition. |
| Label transition; |
| |
| // Smi-smi fast case. |
| Label skip; |
| __ orr(scratch1, left, right); |
| __ JumpIfNotSmi(scratch1, &skip); |
| GenerateSmiSmiOperation(masm); |
| // Fall through if the result is not a smi. |
| __ bind(&skip); |
| |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: { |
| // Load both operands and check that they are 32-bit integer. |
| // Jump to type transition if they are not. The registers r0 and r1 (right |
| // and left) are preserved for the runtime call. |
| FloatingPointHelper::Destination destination = |
| CpuFeatures::IsSupported(VFP3) && |
| op_ != Token::MOD ? |
| FloatingPointHelper::kVFPRegisters : |
| FloatingPointHelper::kCoreRegisters; |
| |
| FloatingPointHelper::LoadNumberAsInt32Double(masm, |
| right, |
| destination, |
| d7, |
| r2, |
| r3, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| s0, |
| &transition); |
| FloatingPointHelper::LoadNumberAsInt32Double(masm, |
| left, |
| destination, |
| d6, |
| r4, |
| r5, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| s0, |
| &transition); |
| |
| if (destination == FloatingPointHelper::kVFPRegisters) { |
| CpuFeatures::Scope scope(VFP3); |
| Label return_heap_number; |
| switch (op_) { |
| case Token::ADD: |
| __ vadd(d5, d6, d7); |
| break; |
| case Token::SUB: |
| __ vsub(d5, d6, d7); |
| break; |
| case Token::MUL: |
| __ vmul(d5, d6, d7); |
| break; |
| case Token::DIV: |
| __ vdiv(d5, d6, d7); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (op_ != Token::DIV) { |
| // These operations produce an integer result. |
| // Try to return a smi if we can. |
| // Otherwise return a heap number if allowed, or jump to type |
| // transition. |
| |
| __ EmitVFPTruncate(kRoundToZero, |
| single_scratch, |
| d5, |
| scratch1, |
| scratch2); |
| |
| if (result_type_ <= TRBinaryOpIC::INT32) { |
| // If the ne condition is set, result does |
| // not fit in a 32-bit integer. |
| __ b(ne, &transition); |
| } |
| |
| // Check if the result fits in a smi. |
| __ vmov(scratch1, single_scratch); |
| __ add(scratch2, scratch1, Operand(0x40000000), SetCC); |
| // If not try to return a heap number. |
| __ b(mi, &return_heap_number); |
| // Check for minus zero. Return heap number for minus zero. |
| Label not_zero; |
| __ cmp(scratch1, Operand(0)); |
| __ b(ne, ¬_zero); |
| __ vmov(scratch2, d5.high()); |
| __ tst(scratch2, Operand(HeapNumber::kSignMask)); |
| __ b(ne, &return_heap_number); |
| __ bind(¬_zero); |
| |
| // Tag the result and return. |
| __ SmiTag(r0, scratch1); |
| __ Ret(); |
| } else { |
| // DIV just falls through to allocating a heap number. |
| } |
| |
| if (result_type_ >= (op_ == Token::DIV) ? TRBinaryOpIC::HEAP_NUMBER |
| : TRBinaryOpIC::INT32) { |
| __ bind(&return_heap_number); |
| // We are using vfp registers so r5 is available. |
| heap_number_result = r5; |
| GenerateHeapResultAllocation(masm, |
| heap_number_result, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| &call_runtime); |
| __ sub(r0, heap_number_result, Operand(kHeapObjectTag)); |
| __ vstr(d5, r0, HeapNumber::kValueOffset); |
| __ mov(r0, heap_number_result); |
| __ Ret(); |
| } |
| |
| // A DIV operation expecting an integer result falls through |
| // to type transition. |
| |
| } else { |
| // We preserved r0 and r1 to be able to call runtime. |
| // Save the left value on the stack. |
| __ Push(r5, r4); |
| |
| Label pop_and_call_runtime; |
| |
| // Allocate a heap number to store the result. |
| heap_number_result = r5; |
| GenerateHeapResultAllocation(masm, |
| heap_number_result, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| &pop_and_call_runtime); |
| |
| // Load the left value from the value saved on the stack. |
| __ Pop(r1, r0); |
| |
| // Call the C function to handle the double operation. |
| FloatingPointHelper::CallCCodeForDoubleOperation( |
| masm, op_, heap_number_result, scratch1); |
| if (FLAG_debug_code) { |
| __ stop("Unreachable code."); |
| } |
| |
| __ bind(&pop_and_call_runtime); |
| __ Drop(2); |
| __ b(&call_runtime); |
| } |
| |
| break; |
| } |
| |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::SAR: |
| case Token::SHR: |
| case Token::SHL: { |
| Label return_heap_number; |
| Register scratch3 = r5; |
| // Convert operands to 32-bit integers. Right in r2 and left in r3. The |
| // registers r0 and r1 (right and left) are preserved for the runtime |
| // call. |
| FloatingPointHelper::LoadNumberAsInt32(masm, |
| left, |
| r3, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| scratch3, |
| d0, |
| &transition); |
| FloatingPointHelper::LoadNumberAsInt32(masm, |
| right, |
| r2, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| scratch3, |
| d0, |
| &transition); |
| |
| // The ECMA-262 standard specifies that, for shift operations, only the |
| // 5 least significant bits of the shift value should be used. |
| switch (op_) { |
| case Token::BIT_OR: |
| __ orr(r2, r3, Operand(r2)); |
| break; |
| case Token::BIT_XOR: |
| __ eor(r2, r3, Operand(r2)); |
| break; |
| case Token::BIT_AND: |
| __ and_(r2, r3, Operand(r2)); |
| break; |
| case Token::SAR: |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, ASR, r2)); |
| break; |
| case Token::SHR: |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, LSR, r2), SetCC); |
| // SHR is special because it is required to produce a positive answer. |
| // We only get a negative result if the shift value (r2) is 0. |
| // This result cannot be respresented as a signed 32-bit integer, try |
| // to return a heap number if we can. |
| // The non vfp3 code does not support this special case, so jump to |
| // runtime if we don't support it. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ b(mi, |
| (result_type_ <= TRBinaryOpIC::INT32) ? &transition |
| : &return_heap_number); |
| } else { |
| __ b(mi, (result_type_ <= TRBinaryOpIC::INT32) ? &transition |
| : &call_runtime); |
| } |
| break; |
| case Token::SHL: |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, LSL, r2)); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // Check if the result fits in a smi. |
| __ add(scratch1, r2, Operand(0x40000000), SetCC); |
| // If not try to return a heap number. (We know the result is an int32.) |
| __ b(mi, &return_heap_number); |
| // Tag the result and return. |
| __ SmiTag(r0, r2); |
| __ Ret(); |
| |
| __ bind(&return_heap_number); |
| heap_number_result = r5; |
| GenerateHeapResultAllocation(masm, |
| heap_number_result, |
| heap_number_map, |
| scratch1, |
| scratch2, |
| &call_runtime); |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| if (op_ != Token::SHR) { |
| // Convert the result to a floating point value. |
| __ vmov(double_scratch.low(), r2); |
| __ vcvt_f64_s32(double_scratch, double_scratch.low()); |
| } else { |
| // The result must be interpreted as an unsigned 32-bit integer. |
| __ vmov(double_scratch.low(), r2); |
| __ vcvt_f64_u32(double_scratch, double_scratch.low()); |
| } |
| |
| // Store the result. |
| __ sub(r0, heap_number_result, Operand(kHeapObjectTag)); |
| __ vstr(double_scratch, r0, HeapNumber::kValueOffset); |
| __ mov(r0, heap_number_result); |
| __ Ret(); |
| } else { |
| // Tail call that writes the int32 in r2 to the heap number in r0, using |
| // r3 as scratch. r0 is preserved and returned. |
| __ mov(r0, r5); |
| WriteInt32ToHeapNumberStub stub(r2, r0, r3); |
| __ TailCallStub(&stub); |
| } |
| |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (transition.is_linked()) { |
| __ bind(&transition); |
| GenerateTypeTransition(masm); |
| } |
| |
| __ bind(&call_runtime); |
| GenerateCallRuntime(masm); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| if (op_ == Token::ADD) { |
| // Handle string addition here, because it is the only operation |
| // that does not do a ToNumber conversion on the operands. |
| GenerateAddStrings(masm); |
| } |
| |
| // Convert oddball arguments to numbers. |
| Label check, done; |
| __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); |
| __ b(ne, &check); |
| if (Token::IsBitOp(op_)) { |
| __ mov(r1, Operand(Smi::FromInt(0))); |
| } else { |
| __ LoadRoot(r1, Heap::kNanValueRootIndex); |
| } |
| __ jmp(&done); |
| __ bind(&check); |
| __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); |
| __ b(ne, &done); |
| if (Token::IsBitOp(op_)) { |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| } else { |
| __ LoadRoot(r0, Heap::kNanValueRootIndex); |
| } |
| __ bind(&done); |
| |
| GenerateHeapNumberStub(masm); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
| Label call_runtime; |
| GenerateFPOperation(masm, false, &call_runtime, &call_runtime); |
| |
| __ bind(&call_runtime); |
| GenerateCallRuntime(masm); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { |
| Label call_runtime, call_string_add_or_runtime; |
| |
| GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); |
| |
| GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime); |
| |
| __ bind(&call_string_add_or_runtime); |
| if (op_ == Token::ADD) { |
| GenerateAddStrings(masm); |
| } |
| |
| __ bind(&call_runtime); |
| GenerateCallRuntime(masm); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { |
| ASSERT(op_ == Token::ADD); |
| Label left_not_string, call_runtime; |
| |
| Register left = r1; |
| Register right = r0; |
| |
| // Check if left argument is a string. |
| __ JumpIfSmi(left, &left_not_string); |
| __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, &left_not_string); |
| |
| StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_left_stub); |
| |
| // Left operand is not a string, test right. |
| __ bind(&left_not_string); |
| __ JumpIfSmi(right, &call_runtime); |
| __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, &call_runtime); |
| |
| StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_right_stub); |
| |
| // At least one argument is not a string. |
| __ bind(&call_runtime); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { |
| GenerateRegisterArgsPush(masm); |
| switch (op_) { |
| case Token::ADD: |
| __ InvokeBuiltin(Builtins::ADD, JUMP_JS); |
| break; |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::SUB, JUMP_JS); |
| break; |
| case Token::MUL: |
| __ InvokeBuiltin(Builtins::MUL, JUMP_JS); |
| break; |
| case Token::DIV: |
| __ InvokeBuiltin(Builtins::DIV, JUMP_JS); |
| break; |
| case Token::MOD: |
| __ InvokeBuiltin(Builtins::MOD, JUMP_JS); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_JS); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_JS); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_JS); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( |
| MacroAssembler* masm, |
| Register result, |
| Register heap_number_map, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| |
| // Code below will scratch result if allocation fails. To keep both arguments |
| // intact for the runtime call result cannot be one of these. |
| ASSERT(!result.is(r0) && !result.is(r1)); |
| |
| if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) { |
| Label skip_allocation, allocated; |
| Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0; |
| // If the overwritable operand is already an object, we skip the |
| // allocation of a heap number. |
| __ JumpIfNotSmi(overwritable_operand, &skip_allocation); |
| // Allocate a heap number for the result. |
| __ AllocateHeapNumber( |
| result, scratch1, scratch2, heap_number_map, gc_required); |
| __ b(&allocated); |
| __ bind(&skip_allocation); |
| // Use object holding the overwritable operand for result. |
| __ mov(result, Operand(overwritable_operand)); |
| __ bind(&allocated); |
| } else { |
| ASSERT(mode_ == NO_OVERWRITE); |
| __ AllocateHeapNumber( |
| result, scratch1, scratch2, heap_number_map, gc_required); |
| } |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
| __ Push(r1, r0); |
| } |
| |
| |
| void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| // Untagged case: double input in d2, double result goes |
| // into d2. |
| // Tagged case: tagged input on top of stack and in r0, |
| // tagged result (heap number) goes into r0. |
| |
| Label input_not_smi; |
| Label loaded; |
| Label calculate; |
| Label invalid_cache; |
| const Register scratch0 = r9; |
| const Register scratch1 = r7; |
| const Register cache_entry = r0; |
| const bool tagged = (argument_type_ == TAGGED); |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| if (tagged) { |
| // Argument is a number and is on stack and in r0. |
| // Load argument and check if it is a smi. |
| __ JumpIfNotSmi(r0, &input_not_smi); |
| |
| // Input is a smi. Convert to double and load the low and high words |
| // of the double into r2, r3. |
| __ IntegerToDoubleConversionWithVFP3(r0, r3, r2); |
| __ b(&loaded); |
| |
| __ bind(&input_not_smi); |
| // Check if input is a HeapNumber. |
| __ CheckMap(r0, |
| r1, |
| Heap::kHeapNumberMapRootIndex, |
| &calculate, |
| true); |
| // Input is a HeapNumber. Load it to a double register and store the |
| // low and high words into r2, r3. |
| __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| __ vmov(r2, r3, d0); |
| } else { |
| // Input is untagged double in d2. Output goes to d2. |
| __ vmov(r2, r3, d2); |
| } |
| __ bind(&loaded); |
| // r2 = low 32 bits of double value |
| // r3 = high 32 bits of double value |
| // Compute hash (the shifts are arithmetic): |
| // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| __ eor(r1, r2, Operand(r3)); |
| __ eor(r1, r1, Operand(r1, ASR, 16)); |
| __ eor(r1, r1, Operand(r1, ASR, 8)); |
| ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); |
| __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1)); |
| |
| // r2 = low 32 bits of double value. |
| // r3 = high 32 bits of double value. |
| // r1 = TranscendentalCache::hash(double value). |
| Isolate* isolate = masm->isolate(); |
| ExternalReference cache_array = |
| ExternalReference::transcendental_cache_array_address(isolate); |
| __ mov(cache_entry, Operand(cache_array)); |
| // cache_entry points to cache array. |
| int cache_array_index |
| = type_ * sizeof(isolate->transcendental_cache()->caches_[0]); |
| __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index)); |
| // r0 points to the cache for the type type_. |
| // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| __ cmp(cache_entry, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &invalid_cache); |
| |
| #ifdef DEBUG |
| // Check that the layout of cache elements match expectations. |
| { TranscendentalCache::SubCache::Element test_elem[2]; |
| char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| CHECK_EQ(0, elem_in0 - elem_start); |
| CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| } |
| #endif |
| |
| // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12]. |
| __ add(r1, r1, Operand(r1, LSL, 1)); |
| __ add(cache_entry, cache_entry, Operand(r1, LSL, 2)); |
| // Check if cache matches: Double value is stored in uint32_t[2] array. |
| __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit()); |
| __ cmp(r2, r4); |
| __ b(ne, &calculate); |
| __ cmp(r3, r5); |
| __ b(ne, &calculate); |
| // Cache hit. Load result, cleanup and return. |
| if (tagged) { |
| // Pop input value from stack and load result into r0. |
| __ pop(); |
| __ mov(r0, Operand(r6)); |
| } else { |
| // Load result into d2. |
| __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset)); |
| } |
| __ Ret(); |
| } // if (CpuFeatures::IsSupported(VFP3)) |
| |
| __ bind(&calculate); |
| if (tagged) { |
| __ bind(&invalid_cache); |
| ExternalReference runtime_function = |
| ExternalReference(RuntimeFunction(), masm->isolate()); |
| __ TailCallExternalReference(runtime_function, 1, 1); |
| } else { |
| if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE(); |
| CpuFeatures::Scope scope(VFP3); |
| |
| Label no_update; |
| Label skip_cache; |
| const Register heap_number_map = r5; |
| |
| // Call C function to calculate the result and update the cache. |
| // Register r0 holds precalculated cache entry address; preserve |
| // it on the stack and pop it into register cache_entry after the |
| // call. |
| __ push(cache_entry); |
| GenerateCallCFunction(masm, scratch0); |
| __ GetCFunctionDoubleResult(d2); |
| |
| // Try to update the cache. If we cannot allocate a |
| // heap number, we return the result without updating. |
| __ pop(cache_entry); |
| __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update); |
| __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset)); |
| __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit()); |
| __ Ret(); |
| |
| __ bind(&invalid_cache); |
| // The cache is invalid. Call runtime which will recreate the |
| // cache. |
| __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache); |
| __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| __ EnterInternalFrame(); |
| __ push(r0); |
| __ CallRuntime(RuntimeFunction(), 1); |
| __ LeaveInternalFrame(); |
| __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| __ Ret(); |
| |
| __ bind(&skip_cache); |
| // Call C function to calculate the result and answer directly |
| // without updating the cache. |
| GenerateCallCFunction(masm, scratch0); |
| __ GetCFunctionDoubleResult(d2); |
| __ bind(&no_update); |
| |
| // We return the value in d2 without adding it to the cache, but |
| // we cause a scavenging GC so that future allocations will succeed. |
| __ EnterInternalFrame(); |
| |
| // Allocate an aligned object larger than a HeapNumber. |
| ASSERT(4 * kPointerSize >= HeapNumber::kSize); |
| __ mov(scratch0, Operand(4 * kPointerSize)); |
| __ push(scratch0); |
| __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); |
| __ LeaveInternalFrame(); |
| __ Ret(); |
| } |
| } |
| |
| |
| void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm, |
| Register scratch) { |
| Isolate* isolate = masm->isolate(); |
| |
| __ push(lr); |
| __ PrepareCallCFunction(2, scratch); |
| __ vmov(r0, r1, d2); |
| switch (type_) { |
| case TranscendentalCache::SIN: |
| __ CallCFunction(ExternalReference::math_sin_double_function(isolate), 2); |
| break; |
| case TranscendentalCache::COS: |
| __ CallCFunction(ExternalReference::math_cos_double_function(isolate), 2); |
| break; |
| case TranscendentalCache::LOG: |
| __ CallCFunction(ExternalReference::math_log_double_function(isolate), 2); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| __ pop(lr); |
| } |
| |
| |
| Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| switch (type_) { |
| // Add more cases when necessary. |
| case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| case TranscendentalCache::COS: return Runtime::kMath_cos; |
| case TranscendentalCache::LOG: return Runtime::kMath_log; |
| default: |
| UNIMPLEMENTED(); |
| return Runtime::kAbort; |
| } |
| } |
| |
| |
| void StackCheckStub::Generate(MacroAssembler* masm) { |
| __ TailCallRuntime(Runtime::kStackGuard, 0, 1); |
| } |
| |
| |
| void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| Label slow, done; |
| |
| Register heap_number_map = r6; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| if (op_ == Token::SUB) { |
| if (include_smi_code_) { |
| // Check whether the value is a smi. |
| Label try_float; |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(ne, &try_float); |
| |
| // Go slow case if the value of the expression is zero |
| // to make sure that we switch between 0 and -0. |
| if (negative_zero_ == kStrictNegativeZero) { |
| // If we have to check for zero, then we can check for the max negative |
| // smi while we are at it. |
| __ bic(ip, r0, Operand(0x80000000), SetCC); |
| __ b(eq, &slow); |
| __ rsb(r0, r0, Operand(0, RelocInfo::NONE)); |
| __ Ret(); |
| } else { |
| // The value of the expression is a smi and 0 is OK for -0. Try |
| // optimistic subtraction '0 - value'. |
| __ rsb(r0, r0, Operand(0, RelocInfo::NONE), SetCC); |
| __ Ret(vc); |
| // We don't have to reverse the optimistic neg since the only case |
| // where we fall through is the minimum negative Smi, which is the case |
| // where the neg leaves the register unchanged. |
| __ jmp(&slow); // Go slow on max negative Smi. |
| } |
| __ bind(&try_float); |
| } else if (FLAG_debug_code) { |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ Assert(ne, "Unexpected smi operand."); |
| } |
| |
| __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ cmp(r1, heap_number_map); |
| __ b(ne, &slow); |
| // r0 is a heap number. Get a new heap number in r1. |
| if (overwrite_ == UNARY_OVERWRITE) { |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| } else { |
| __ AllocateHeapNumber(r1, r2, r3, r6, &slow); |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset)); |
| __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset)); |
| __ mov(r0, Operand(r1)); |
| } |
| } else if (op_ == Token::BIT_NOT) { |
| if (include_smi_code_) { |
| Label non_smi; |
| __ JumpIfNotSmi(r0, &non_smi); |
| __ mvn(r0, Operand(r0)); |
| // Bit-clear inverted smi-tag. |
| __ bic(r0, r0, Operand(kSmiTagMask)); |
| __ Ret(); |
| __ bind(&non_smi); |
| } else if (FLAG_debug_code) { |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ Assert(ne, "Unexpected smi operand."); |
| } |
| |
| // Check if the operand is a heap number. |
| __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ cmp(r1, heap_number_map); |
| __ b(ne, &slow); |
| |
| // Convert the heap number is r0 to an untagged integer in r1. |
| __ ConvertToInt32(r0, r1, r2, r3, d0, &slow); |
| |
| // Do the bitwise operation (move negated) and check if the result |
| // fits in a smi. |
| Label try_float; |
| __ mvn(r1, Operand(r1)); |
| __ add(r2, r1, Operand(0x40000000), SetCC); |
| __ b(mi, &try_float); |
| __ mov(r0, Operand(r1, LSL, kSmiTagSize)); |
| __ b(&done); |
| |
| __ bind(&try_float); |
| if (!overwrite_ == UNARY_OVERWRITE) { |
| // Allocate a fresh heap number, but don't overwrite r0 until |
| // we're sure we can do it without going through the slow case |
| // that needs the value in r0. |
| __ AllocateHeapNumber(r2, r3, r4, r6, &slow); |
| __ mov(r0, Operand(r2)); |
| } |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert the int32 in r1 to the heap number in r0. r2 is corrupted. |
| CpuFeatures::Scope scope(VFP3); |
| __ vmov(s0, r1); |
| __ vcvt_f64_s32(d0, s0); |
| __ sub(r2, r0, Operand(kHeapObjectTag)); |
| __ vstr(d0, r2, HeapNumber::kValueOffset); |
| } else { |
| // WriteInt32ToHeapNumberStub does not trigger GC, so we do not |
| // have to set up a frame. |
| WriteInt32ToHeapNumberStub stub(r1, r0, r2); |
| __ push(lr); |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| |
| __ bind(&done); |
| __ Ret(); |
| |
| // Handle the slow case by jumping to the JavaScript builtin. |
| __ bind(&slow); |
| __ push(r0); |
| switch (op_) { |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS); |
| break; |
| case Token::BIT_NOT: |
| __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| |
| Label base_not_smi; |
| Label exponent_not_smi; |
| Label convert_exponent; |
| |
| const Register base = r0; |
| const Register exponent = r1; |
| const Register heapnumbermap = r5; |
| const Register heapnumber = r6; |
| const DoubleRegister double_base = d0; |
| const DoubleRegister double_exponent = d1; |
| const DoubleRegister double_result = d2; |
| const SwVfpRegister single_scratch = s0; |
| const Register scratch = r9; |
| const Register scratch2 = r7; |
| |
| __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); |
| __ ldr(base, MemOperand(sp, 1 * kPointerSize)); |
| __ ldr(exponent, MemOperand(sp, 0 * kPointerSize)); |
| |
| // Convert base to double value and store it in d0. |
| __ JumpIfNotSmi(base, &base_not_smi); |
| // Base is a Smi. Untag and convert it. |
| __ SmiUntag(base); |
| __ vmov(single_scratch, base); |
| __ vcvt_f64_s32(double_base, single_scratch); |
| __ b(&convert_exponent); |
| |
| __ bind(&base_not_smi); |
| __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset)); |
| __ cmp(scratch, heapnumbermap); |
| __ b(ne, &call_runtime); |
| // Base is a heapnumber. Load it into double register. |
| __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); |
| |
| __ bind(&convert_exponent); |
| __ JumpIfNotSmi(exponent, &exponent_not_smi); |
| __ SmiUntag(exponent); |
| |
| // The base is in a double register and the exponent is |
| // an untagged smi. Allocate a heap number and call a |
| // C function for integer exponents. The register containing |
| // the heap number is callee-saved. |
| __ AllocateHeapNumber(heapnumber, |
| scratch, |
| scratch2, |
| heapnumbermap, |
| &call_runtime); |
| __ push(lr); |
| __ PrepareCallCFunction(3, scratch); |
| __ mov(r2, exponent); |
| __ vmov(r0, r1, double_base); |
| __ CallCFunction( |
| ExternalReference::power_double_int_function(masm->isolate()), 3); |
| __ pop(lr); |
| __ GetCFunctionDoubleResult(double_result); |
| __ vstr(double_result, |
| FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); |
| __ mov(r0, heapnumber); |
| __ Ret(2 * kPointerSize); |
| |
| __ bind(&exponent_not_smi); |
| __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); |
| __ cmp(scratch, heapnumbermap); |
| __ b(ne, &call_runtime); |
| // Exponent is a heapnumber. Load it into double register. |
| __ vldr(double_exponent, |
| FieldMemOperand(exponent, HeapNumber::kValueOffset)); |
| |
| // The base and the exponent are in double registers. |
| // Allocate a heap number and call a C function for |
| // double exponents. The register containing |
| // the heap number is callee-saved. |
| __ AllocateHeapNumber(heapnumber, |
| scratch, |
| scratch2, |
| heapnumbermap, |
| &call_runtime); |
| __ push(lr); |
| __ PrepareCallCFunction(4, scratch); |
| __ vmov(r0, r1, double_base); |
| __ vmov(r2, r3, double_exponent); |
| __ CallCFunction( |
| ExternalReference::power_double_double_function(masm->isolate()), 4); |
| __ pop(lr); |
| __ GetCFunctionDoubleResult(double_result); |
| __ vstr(double_result, |
| FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); |
| __ mov(r0, heapnumber); |
| __ Ret(2 * kPointerSize); |
| } |
| |
| __ bind(&call_runtime); |
| __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
| } |
| |
| |
| bool CEntryStub::NeedsImmovableCode() { |
| return true; |
| } |
| |
| |
| void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| __ Throw(r0); |
| } |
| |
| |
| void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| UncatchableExceptionType type) { |
| __ ThrowUncatchable(type, r0); |
| } |
| |
| |
| void CEntryStub::GenerateCore(MacroAssembler* masm, |
| Label* throw_normal_exception, |
| Label* throw_termination_exception, |
| Label* throw_out_of_memory_exception, |
| bool do_gc, |
| bool always_allocate) { |
| // r0: result parameter for PerformGC, if any |
| // r4: number of arguments including receiver (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| // r6: pointer to the first argument (C callee-saved) |
| Isolate* isolate = masm->isolate(); |
| |
| if (do_gc) { |
| // Passing r0. |
| __ PrepareCallCFunction(1, r1); |
| __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1); |
| } |
| |
| ExternalReference scope_depth = |
| ExternalReference::heap_always_allocate_scope_depth(isolate); |
| if (always_allocate) { |
| __ mov(r0, Operand(scope_depth)); |
| __ ldr(r1, MemOperand(r0)); |
| __ add(r1, r1, Operand(1)); |
| __ str(r1, MemOperand(r0)); |
| } |
| |
| // Call C built-in. |
| // r0 = argc, r1 = argv |
| __ mov(r0, Operand(r4)); |
| __ mov(r1, Operand(r6)); |
| |
| #if defined(V8_HOST_ARCH_ARM) |
| int frame_alignment = MacroAssembler::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (FLAG_debug_code) { |
| if (frame_alignment > kPointerSize) { |
| Label alignment_as_expected; |
| ASSERT(IsPowerOf2(frame_alignment)); |
| __ tst(sp, Operand(frame_alignment_mask)); |
| __ b(eq, &alignment_as_expected); |
| // Don't use Check here, as it will call Runtime_Abort re-entering here. |
| __ stop("Unexpected alignment"); |
| __ bind(&alignment_as_expected); |
| } |
| } |
| #endif |
| |
| __ mov(r2, Operand(ExternalReference::isolate_address())); |
| |
| |
| // TODO(1242173): To let the GC traverse the return address of the exit |
| // frames, we need to know where the return address is. Right now, |
| // we store it on the stack to be able to find it again, but we never |
| // restore from it in case of changes, which makes it impossible to |
| // support moving the C entry code stub. This should be fixed, but currently |
| // this is OK because the CEntryStub gets generated so early in the V8 boot |
| // sequence that it is not moving ever. |
| |
| // Compute the return address in lr to return to after the jump below. Pc is |
| // already at '+ 8' from the current instruction but return is after three |
| // instructions so add another 4 to pc to get the return address. |
| masm->add(lr, pc, Operand(4)); |
| __ str(lr, MemOperand(sp, 0)); |
| masm->Jump(r5); |
| |
| if (always_allocate) { |
| // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 |
| // though (contain the result). |
| __ mov(r2, Operand(scope_depth)); |
| __ ldr(r3, MemOperand(r2)); |
| __ sub(r3, r3, Operand(1)); |
| __ str(r3, MemOperand(r2)); |
| } |
| |
| // check for failure result |
| Label failure_returned; |
| STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| // Lower 2 bits of r2 are 0 iff r0 has failure tag. |
| __ add(r2, r0, Operand(1)); |
| __ tst(r2, Operand(kFailureTagMask)); |
| __ b(eq, &failure_returned); |
| |
| // Exit C frame and return. |
| // r0:r1: result |
| // sp: stack pointer |
| // fp: frame pointer |
| // Callee-saved register r4 still holds argc. |
| __ LeaveExitFrame(save_doubles_, r4); |
| __ mov(pc, lr); |
| |
| // check if we should retry or throw exception |
| Label retry; |
| __ bind(&failure_returned); |
| STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| __ b(eq, &retry); |
| |
| // Special handling of out of memory exceptions. |
| Failure* out_of_memory = Failure::OutOfMemoryException(); |
| __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| __ b(eq, throw_out_of_memory_exception); |
| |
| // Retrieve the pending exception and clear the variable. |
| __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate))); |
| __ ldr(r3, MemOperand(ip)); |
| __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, |
| isolate))); |
| __ ldr(r0, MemOperand(ip)); |
| __ str(r3, MemOperand(ip)); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(r0, Operand(isolate->factory()->termination_exception())); |
| __ b(eq, throw_termination_exception); |
| |
| // Handle normal exception. |
| __ jmp(throw_normal_exception); |
| |
| __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // Called from JavaScript; parameters are on stack as if calling JS function |
| // r0: number of arguments including receiver |
| // r1: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| |
| // Result returned in r0 or r0+r1 by default. |
| |
| // NOTE: Invocations of builtins may return failure objects |
| // instead of a proper result. The builtin entry handles |
| // this by performing a garbage collection and retrying the |
| // builtin once. |
| |
| // Compute the argv pointer in a callee-saved register. |
| __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| __ sub(r6, r6, Operand(kPointerSize)); |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| __ EnterExitFrame(save_doubles_); |
| |
| // Setup argc and the builtin function in callee-saved registers. |
| __ mov(r4, Operand(r0)); |
| __ mov(r5, Operand(r1)); |
| |
| // r4: number of arguments (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| // r6: pointer to first argument (C callee-saved) |
| |
| Label throw_normal_exception; |
| Label throw_termination_exception; |
| Label throw_out_of_memory_exception; |
| |
| // Call into the runtime system. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| false, |
| false); |
| |
| // Do space-specific GC and retry runtime call. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| false); |
| |
| // Do full GC and retry runtime call one final time. |
| Failure* failure = Failure::InternalError(); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(failure))); |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| true); |
| |
| __ bind(&throw_out_of_memory_exception); |
| GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| |
| __ bind(&throw_termination_exception); |
| GenerateThrowUncatchable(masm, TERMINATION); |
| |
| __ bind(&throw_normal_exception); |
| GenerateThrowTOS(masm); |
| } |
| |
| |
| void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // [sp+0]: argv |
| |
| Label invoke, exit; |
| |
| // Called from C, so do not pop argc and args on exit (preserve sp) |
| // No need to save register-passed args |
| // Save callee-saved registers (incl. cp and fp), sp, and lr |
| __ stm(db_w, sp, kCalleeSaved | lr.bit()); |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Save callee-saved vfp registers. |
| __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); |
| } |
| |
| // Get address of argv, see stm above. |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| |
| // Setup argv in r4. |
| int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; |
| if (CpuFeatures::IsSupported(VFP3)) { |
| offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize; |
| } |
| __ ldr(r4, MemOperand(sp, offset_to_argv)); |
| |
| // Push a frame with special values setup to mark it as an entry frame. |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| Isolate* isolate = masm->isolate(); |
| __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| __ mov(r7, Operand(Smi::FromInt(marker))); |
| __ mov(r6, Operand(Smi::FromInt(marker))); |
| __ mov(r5, |
| Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate))); |
| __ ldr(r5, MemOperand(r5)); |
| __ Push(r8, r7, r6, r5); |
| |
| // Setup frame pointer for the frame to be pushed. |
| __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| // If this is the outermost JS call, set js_entry_sp value. |
| Label non_outermost_js; |
| ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address, isolate); |
| __ mov(r5, Operand(ExternalReference(js_entry_sp))); |
| __ ldr(r6, MemOperand(r5)); |
| __ cmp(r6, Operand(0)); |
| __ b(ne, &non_outermost_js); |
| __ str(fp, MemOperand(r5)); |
| __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
| Label cont; |
| __ b(&cont); |
| __ bind(&non_outermost_js); |
| __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); |
| __ bind(&cont); |
| __ push(ip); |
| #endif |
| |
| // Call a faked try-block that does the invoke. |
| __ bl(&invoke); |
| |
| // Caught exception: Store result (exception) in the pending |
| // exception field in the JSEnv and return a failure sentinel. |
| // Coming in here the fp will be invalid because the PushTryHandler below |
| // sets it to 0 to signal the existence of the JSEntry frame. |
| __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, |
| isolate))); |
| __ str(r0, MemOperand(ip)); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
| __ b(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| // Must preserve r0-r4, r5-r7 are available. |
| __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the bl(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| |
| // Clear any pending exceptions. |
| __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate))); |
| __ ldr(r5, MemOperand(ip)); |
| __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address, |
| isolate))); |
| __ str(r5, MemOperand(ip)); |
| |
| // Invoke the function by calling through JS entry trampoline builtin. |
| // Notice that we cannot store a reference to the trampoline code directly in |
| // this stub, because runtime stubs are not traversed when doing GC. |
| |
| // Expected registers by Builtins::JSEntryTrampoline |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| if (is_construct) { |
| ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, |
| isolate); |
| __ mov(ip, Operand(construct_entry)); |
| } else { |
| ExternalReference entry(Builtins::kJSEntryTrampoline, isolate); |
| __ mov(ip, Operand(entry)); |
| } |
| __ ldr(ip, MemOperand(ip)); // deref address |
| |
| // Branch and link to JSEntryTrampoline. We don't use the double underscore |
| // macro for the add instruction because we don't want the coverage tool |
| // inserting instructions here after we read the pc. |
| __ mov(lr, Operand(pc)); |
| masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Unlink this frame from the handler chain. |
| __ PopTryHandler(); |
| |
| __ bind(&exit); // r0 holds result |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| // Check if the current stack frame is marked as the outermost JS frame. |
| Label non_outermost_js_2; |
| __ pop(r5); |
| __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); |
| __ b(ne, &non_outermost_js_2); |
| __ mov(r6, Operand(0)); |
| __ mov(r5, Operand(ExternalReference(js_entry_sp))); |
| __ str(r6, MemOperand(r5)); |
| __ bind(&non_outermost_js_2); |
| #endif |
| |
| // Restore the top frame descriptors from the stack. |
| __ pop(r3); |
| __ mov(ip, |
| Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate))); |
| __ str(r3, MemOperand(ip)); |
| |
| // Reset the stack to the callee saved registers. |
| __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Restore callee-saved registers and return. |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Restore callee-saved vfp registers. |
| __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); |
| } |
| |
| __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); |
| } |
| |
| |
| // Uses registers r0 to r4. |
| // Expected input (depending on whether args are in registers or on the stack): |
| // * object: r0 or at sp + 1 * kPointerSize. |
| // * function: r1 or at sp. |
| // |
| // An inlined call site may have been generated before calling this stub. |
| // In this case the offset to the inline site to patch is passed on the stack, |
| // in the safepoint slot for register r4. |
| // (See LCodeGen::DoInstanceOfKnownGlobal) |
| void InstanceofStub::Generate(MacroAssembler* masm) { |
| // Call site inlining and patching implies arguments in registers. |
| ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); |
| // ReturnTrueFalse is only implemented for inlined call sites. |
| ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); |
| |
| // Fixed register usage throughout the stub: |
| const Register object = r0; // Object (lhs). |
| Register map = r3; // Map of the object. |
| const Register function = r1; // Function (rhs). |
| const Register prototype = r4; // Prototype of the function. |
| const Register inline_site = r9; |
| const Register scratch = r2; |
| |
| const int32_t kDeltaToLoadBoolResult = 3 * kPointerSize; |
| |
| Label slow, loop, is_instance, is_not_instance, not_js_object; |
| |
| if (!HasArgsInRegisters()) { |
| __ ldr(object, MemOperand(sp, 1 * kPointerSize)); |
| __ ldr(function, MemOperand(sp, 0)); |
| } |
| |
| // Check that the left hand is a JS object and load map. |
| __ JumpIfSmi(object, ¬_js_object); |
| __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); |
| |
| // If there is a call site cache don't look in the global cache, but do the |
| // real lookup and update the call site cache. |
| if (!HasCallSiteInlineCheck()) { |
| Label miss; |
| __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex); |
| __ cmp(function, ip); |
| __ b(ne, &miss); |
| __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex); |
| __ cmp(map, ip); |
| __ b(ne, &miss); |
| __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| __ Ret(HasArgsInRegisters() ? 0 : 2); |
| |
| __ bind(&miss); |
| } |
| |
| // Get the prototype of the function. |
| __ TryGetFunctionPrototype(function, prototype, scratch, &slow); |
| |
| // Check that the function prototype is a JS object. |
| __ JumpIfSmi(prototype, &slow); |
| __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); |
| |
| // Update the global instanceof or call site inlined cache with the current |
| // map and function. The cached answer will be set when it is known below. |
| if (!HasCallSiteInlineCheck()) { |
| __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
| __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); |
| } else { |
| ASSERT(HasArgsInRegisters()); |
| // Patch the (relocated) inlined map check. |
| |
| // The offset was stored in r4 safepoint slot. |
| // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal) |
| __ LoadFromSafepointRegisterSlot(scratch, r4); |
| __ sub(inline_site, lr, scratch); |
| // Get the map location in scratch and patch it. |
| __ GetRelocatedValueLocation(inline_site, scratch); |
| __ str(map, MemOperand(scratch)); |
| } |
| |
| // Register mapping: r3 is object map and r4 is function prototype. |
| // Get prototype of object into r2. |
| __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); |
| |
| // We don't need map any more. Use it as a scratch register. |
| Register scratch2 = map; |
| map = no_reg; |
| |
| // Loop through the prototype chain looking for the function prototype. |
| __ LoadRoot(scratch2, Heap::kNullValueRootIndex); |
| __ bind(&loop); |
| __ cmp(scratch, Operand(prototype)); |
| __ b(eq, &is_instance); |
| __ cmp(scratch, scratch2); |
| __ b(eq, &is_not_instance); |
| __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
| __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); |
| __ jmp(&loop); |
| |
| __ bind(&is_instance); |
| if (!HasCallSiteInlineCheck()) { |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| } else { |
| // Patch the call site to return true. |
| __ LoadRoot(r0, Heap::kTrueValueRootIndex); |
| __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); |
| // Get the boolean result location in scratch and patch it. |
| __ GetRelocatedValueLocation(inline_site, scratch); |
| __ str(r0, MemOperand(scratch)); |
| |
| if (!ReturnTrueFalseObject()) { |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| } |
| } |
| __ Ret(HasArgsInRegisters() ? 0 : 2); |
| |
| __ bind(&is_not_instance); |
| if (!HasCallSiteInlineCheck()) { |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| } else { |
| // Patch the call site to return false. |
| __ LoadRoot(r0, Heap::kFalseValueRootIndex); |
| __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); |
| // Get the boolean result location in scratch and patch it. |
| __ GetRelocatedValueLocation(inline_site, scratch); |
| __ str(r0, MemOperand(scratch)); |
| |
| if (!ReturnTrueFalseObject()) { |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| } |
| } |
| __ Ret(HasArgsInRegisters() ? 0 : 2); |
| |
| Label object_not_null, object_not_null_or_smi; |
| __ bind(¬_js_object); |
| // Before null, smi and string value checks, check that the rhs is a function |
| // as for a non-function rhs an exception needs to be thrown. |
| __ JumpIfSmi(function, &slow); |
| __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE); |
| __ b(ne, &slow); |
| |
| // Null is not instance of anything. |
| __ cmp(scratch, Operand(FACTORY->null_value())); |
| __ b(ne, &object_not_null); |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| __ Ret(HasArgsInRegisters() ? 0 : 2); |
| |
| __ bind(&object_not_null); |
| // Smi values are not instances of anything. |
| __ JumpIfNotSmi(object, &object_not_null_or_smi); |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| __ Ret(HasArgsInRegisters() ? 0 : 2); |
| |
| __ bind(&object_not_null_or_smi); |
| // String values are not instances of anything. |
| __ IsObjectJSStringType(object, scratch, &slow); |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| __ Ret(HasArgsInRegisters() ? 0 : 2); |
| |
| // Slow-case. Tail call builtin. |
| __ bind(&slow); |
| if (!ReturnTrueFalseObject()) { |
| if (HasArgsInRegisters()) { |
| __ Push(r0, r1); |
| } |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS); |
| } else { |
| __ EnterInternalFrame(); |
| __ Push(r0, r1); |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_JS); |
| __ LeaveInternalFrame(); |
| __ cmp(r0, Operand(0)); |
| __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq); |
| __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne); |
| __ Ret(HasArgsInRegisters() ? 0 : 2); |
| } |
| } |
| |
| |
| Register InstanceofStub::left() { return r0; } |
| |
| |
| Register InstanceofStub::right() { return r1; } |
| |
| |
| void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| // The displacement is the offset of the last parameter (if any) |
| // relative to the frame pointer. |
| static const int kDisplacement = |
| StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| |
| // Check that the key is a smi. |
| Label slow; |
| __ JumpIfNotSmi(r1, &slow); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor); |
| |
| // Check index against formal parameters count limit passed in |
| // through register r0. Use unsigned comparison to get negative |
| // check for free. |
| __ cmp(r1, r0); |
| __ b(hs, &slow); |
| |
| // Read the argument from the stack and return it. |
| __ sub(r3, r0, r1); |
| __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(r0, MemOperand(r3, kDisplacement)); |
| __ Jump(lr); |
| |
| // Arguments adaptor case: Check index against actual arguments |
| // limit found in the arguments adaptor frame. Use unsigned |
| // comparison to get negative check for free. |
| __ bind(&adaptor); |
| __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ cmp(r1, r0); |
| __ b(cs, &slow); |
| |
| // Read the argument from the adaptor frame and return it. |
| __ sub(r3, r0, r1); |
| __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(r0, MemOperand(r3, kDisplacement)); |
| __ Jump(lr); |
| |
| // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| // by calling the runtime system. |
| __ bind(&slow); |
| __ push(r1); |
| __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| // sp[0] : number of parameters |
| // sp[4] : receiver displacement |
| // sp[8] : function |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor_frame, try_allocate, runtime; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor_frame); |
| |
| // Get the length from the frame. |
| __ ldr(r1, MemOperand(sp, 0)); |
| __ b(&try_allocate); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ str(r1, MemOperand(sp, 0)); |
| __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); |
| __ str(r3, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Try the new space allocation. Start out with computing the size |
| // of the arguments object and the elements array in words. |
| Label add_arguments_object; |
| __ bind(&try_allocate); |
| __ cmp(r1, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &add_arguments_object); |
| __ mov(r1, Operand(r1, LSR, kSmiTagSize)); |
| __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); |
| __ bind(&add_arguments_object); |
| __ add(r1, r1, Operand(GetArgumentsObjectSize() / kPointerSize)); |
| |
| // Do the allocation of both objects in one go. |
| __ AllocateInNewSpace( |
| r1, |
| r0, |
| r2, |
| r3, |
| &runtime, |
| static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| |
| // Get the arguments boilerplate from the current (global) context. |
| __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r4, MemOperand(r4, |
| Context::SlotOffset(GetArgumentsBoilerplateIndex()))); |
| |
| // Copy the JS object part. |
| __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize); |
| |
| if (type_ == NEW_NON_STRICT) { |
| // Setup the callee in-object property. |
| STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
| __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| const int kCalleeOffset = JSObject::kHeaderSize + |
| Heap::kArgumentsCalleeIndex * kPointerSize; |
| __ str(r3, FieldMemOperand(r0, kCalleeOffset)); |
| } |
| |
| // Get the length (smi tagged) and set that as an in-object property too. |
| STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); |
| __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + |
| Heap::kArgumentsLengthIndex * kPointerSize)); |
| |
| // If there are no actual arguments, we're done. |
| Label done; |
| __ cmp(r1, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &done); |
| |
| // Get the parameters pointer from the stack. |
| __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Setup the elements pointer in the allocated arguments object and |
| // initialize the header in the elements fixed array. |
| __ add(r4, r0, Operand(GetArgumentsObjectSize())); |
| __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); |
| __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); |
| __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); |
| __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop. |
| |
| // Copy the fixed array slots. |
| Label loop; |
| // Setup r4 to point to the first array slot. |
| __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| // Pre-decrement r2 with kPointerSize on each iteration. |
| // Pre-decrement in order to skip receiver. |
| __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); |
| // Post-increment r4 with kPointerSize on each iteration. |
| __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); |
| __ sub(r1, r1, Operand(1)); |
| __ cmp(r1, Operand(0, RelocInfo::NONE)); |
| __ b(ne, &loop); |
| |
| // Return and remove the on-stack parameters. |
| __ bind(&done); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| } |
| |
| |
| void RegExpExecStub::Generate(MacroAssembler* masm) { |
| // Just jump directly to runtime if native RegExp is not selected at compile |
| // time or if regexp entry in generated code is turned off runtime switch or |
| // at compilation. |
| #ifdef V8_INTERPRETED_REGEXP |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #else // V8_INTERPRETED_REGEXP |
| if (!FLAG_regexp_entry_native) { |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| return; |
| } |
| |
| // Stack frame on entry. |
| // sp[0]: last_match_info (expected JSArray) |
| // sp[4]: previous index |
| // sp[8]: subject string |
| // sp[12]: JSRegExp object |
| |
| static const int kLastMatchInfoOffset = 0 * kPointerSize; |
| static const int kPreviousIndexOffset = 1 * kPointerSize; |
| static const int kSubjectOffset = 2 * kPointerSize; |
| static const int kJSRegExpOffset = 3 * kPointerSize; |
| |
| Label runtime, invoke_regexp; |
| |
| // Allocation of registers for this function. These are in callee save |
| // registers and will be preserved by the call to the native RegExp code, as |
| // this code is called using the normal C calling convention. When calling |
| // directly from generated code the native RegExp code will not do a GC and |
| // therefore the content of these registers are safe to use after the call. |
| Register subject = r4; |
| Register regexp_data = r5; |
| Register last_match_info_elements = r6; |
| |
| // Ensure that a RegExp stack is allocated. |
| Isolate* isolate = masm->isolate(); |
| ExternalReference address_of_regexp_stack_memory_address = |
| ExternalReference::address_of_regexp_stack_memory_address(isolate); |
| ExternalReference address_of_regexp_stack_memory_size = |
| ExternalReference::address_of_regexp_stack_memory_size(isolate); |
| __ mov(r0, Operand(address_of_regexp_stack_memory_size)); |
| __ ldr(r0, MemOperand(r0, 0)); |
| __ tst(r0, Operand(r0)); |
| __ b(eq, &runtime); |
| |
| // Check that the first argument is a JSRegExp object. |
| __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); |
| __ b(ne, &runtime); |
| |
| // Check that the RegExp has been compiled (data contains a fixed array). |
| __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); |
| if (FLAG_debug_code) { |
| __ tst(regexp_data, Operand(kSmiTagMask)); |
| __ Check(ne, "Unexpected type for RegExp data, FixedArray expected"); |
| __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); |
| __ Check(eq, "Unexpected type for RegExp data, FixedArray expected"); |
| } |
| |
| // regexp_data: RegExp data (FixedArray) |
| // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
| __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); |
| __ b(ne, &runtime); |
| |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the number of captures fit in the static offsets vector buffer. |
| __ ldr(r2, |
| FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| // uses the asumption that smis are 2 * their untagged value. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(r2, r2, Operand(2)); // r2 was a smi. |
| // Check that the static offsets vector buffer is large enough. |
| __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); |
| __ b(hi, &runtime); |
| |
| // r2: Number of capture registers |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the second argument is a string. |
| __ ldr(subject, MemOperand(sp, kSubjectOffset)); |
| __ tst(subject, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| Condition is_string = masm->IsObjectStringType(subject, r0); |
| __ b(NegateCondition(is_string), &runtime); |
| // Get the length of the string to r3. |
| __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset)); |
| |
| // r2: Number of capture registers |
| // r3: Length of subject string as a smi |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the third argument is a positive smi less than the subject |
| // string length. A negative value will be greater (unsigned comparison). |
| __ ldr(r0, MemOperand(sp, kPreviousIndexOffset)); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(ne, &runtime); |
| __ cmp(r3, Operand(r0)); |
| __ b(ls, &runtime); |
| |
| // r2: Number of capture registers |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the fourth object is a JSArray object. |
| __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); |
| __ b(ne, &runtime); |
| // Check that the JSArray is in fast case. |
| __ ldr(last_match_info_elements, |
| FieldMemOperand(r0, JSArray::kElementsOffset)); |
| __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(r0, ip); |
| __ b(ne, &runtime); |
| // Check that the last match info has space for the capture registers and the |
| // additional information. |
| __ ldr(r0, |
| FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); |
| __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead)); |
| __ cmp(r2, Operand(r0, ASR, kSmiTagSize)); |
| __ b(gt, &runtime); |
| |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check the representation and encoding of the subject string. |
| Label seq_string; |
| __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); |
| // First check for flat string. |
| __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask)); |
| STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
| __ b(eq, &seq_string); |
| |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check for flat cons string. |
| // A flat cons string is a cons string where the second part is the empty |
| // string. In that case the subject string is just the first part of the cons |
| // string. Also in this case the first part of the cons string is known to be |
| // a sequential string or an external string. |
| STATIC_ASSERT(kExternalStringTag !=0); |
| STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
| __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag)); |
| __ b(ne, &runtime); |
| __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); |
| __ LoadRoot(r1, Heap::kEmptyStringRootIndex); |
| __ cmp(r0, r1); |
| __ b(ne, &runtime); |
| __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
| __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); |
| // Is first part a flat string? |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ tst(r0, Operand(kStringRepresentationMask)); |
| __ b(ne, &runtime); |
| |
| __ bind(&seq_string); |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // r0: Instance type of subject string |
| STATIC_ASSERT(4 == kAsciiStringTag); |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| // Find the code object based on the assumptions above. |
| __ and_(r0, r0, Operand(kStringEncodingMask)); |
| __ mov(r3, Operand(r0, ASR, 2), SetCC); |
| __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); |
| __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); |
| |
| // Check that the irregexp code has been generated for the actual string |
| // encoding. If it has, the field contains a code object otherwise it contains |
| // the hole. |
| __ CompareObjectType(r7, r0, r0, CODE_TYPE); |
| __ b(ne, &runtime); |
| |
| // r3: encoding of subject string (1 if ASCII, 0 if two_byte); |
| // r7: code |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Load used arguments before starting to push arguments for call to native |
| // RegExp code to avoid handling changing stack height. |
| __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); |
| __ mov(r1, Operand(r1, ASR, kSmiTagSize)); |
| |
| // r1: previous index |
| // r3: encoding of subject string (1 if ASCII, 0 if two_byte); |
| // r7: code |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // All checks done. Now push arguments for native regexp code. |
| __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2); |
| |
| // Isolates: note we add an additional parameter here (isolate pointer). |
| static const int kRegExpExecuteArguments = 8; |
| static const int kParameterRegisters = 4; |
| __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); |
| |
| // Stack pointer now points to cell where return address is to be written. |
| // Arguments are before that on the stack or in registers. |
| |
| // Argument 8 (sp[16]): Pass current isolate address. |
| __ mov(r0, Operand(ExternalReference::isolate_address())); |
| __ str(r0, MemOperand(sp, 4 * kPointerSize)); |
| |
| // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript. |
| __ mov(r0, Operand(1)); |
| __ str(r0, MemOperand(sp, 3 * kPointerSize)); |
| |
| // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area. |
| __ mov(r0, Operand(address_of_regexp_stack_memory_address)); |
| __ ldr(r0, MemOperand(r0, 0)); |
| __ mov(r2, Operand(address_of_regexp_stack_memory_size)); |
| __ ldr(r2, MemOperand(r2, 0)); |
| __ add(r0, r0, Operand(r2)); |
| __ str(r0, MemOperand(sp, 2 * kPointerSize)); |
| |
| // Argument 5 (sp[4]): static offsets vector buffer. |
| __ mov(r0, |
| Operand(ExternalReference::address_of_static_offsets_vector(isolate))); |
| __ str(r0, MemOperand(sp, 1 * kPointerSize)); |
| |
| // For arguments 4 and 3 get string length, calculate start of string data and |
| // calculate the shift of the index (0 for ASCII and 1 for two byte). |
| __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset)); |
| __ mov(r0, Operand(r0, ASR, kSmiTagSize)); |
| STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); |
| __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ eor(r3, r3, Operand(1)); |
| // Argument 4 (r3): End of string data |
| // Argument 3 (r2): Start of string data |
| __ add(r2, r9, Operand(r1, LSL, r3)); |
| __ add(r3, r9, Operand(r0, LSL, r3)); |
| |
| // Argument 2 (r1): Previous index. |
| // Already there |
| |
| // Argument 1 (r0): Subject string. |
| __ mov(r0, subject); |
| |
| // Locate the code entry and call it. |
| __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| DirectCEntryStub stub; |
| stub.GenerateCall(masm, r7); |
| |
| __ LeaveExitFrame(false, no_reg); |
| |
| // r0: result |
| // subject: subject string (callee saved) |
| // regexp_data: RegExp data (callee saved) |
| // last_match_info_elements: Last match info elements (callee saved) |
| |
| // Check the result. |
| Label success; |
| |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS)); |
| __ b(eq, &success); |
| Label failure; |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); |
| __ b(eq, &failure); |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); |
| // If not exception it can only be retry. Handle that in the runtime system. |
| __ b(ne, &runtime); |
| // Result must now be exception. If there is no pending exception already a |
| // stack overflow (on the backtrack stack) was detected in RegExp code but |
| // haven't created the exception yet. Handle that in the runtime system. |
| // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| __ mov(r1, Operand(ExternalReference::the_hole_value_location(isolate))); |
| __ ldr(r1, MemOperand(r1, 0)); |
| __ mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address, |
| isolate))); |
| __ ldr(r0, MemOperand(r2, 0)); |
| __ cmp(r0, r1); |
| __ b(eq, &runtime); |
| |
| __ str(r1, MemOperand(r2, 0)); // Clear pending exception. |
| |
| // Check if the exception is a termination. If so, throw as uncatchable. |
| __ LoadRoot(ip, Heap::kTerminationExceptionRootIndex); |
| __ cmp(r0, ip); |
| Label termination_exception; |
| __ b(eq, &termination_exception); |
| |
| __ Throw(r0); // Expects thrown value in r0. |
| |
| __ bind(&termination_exception); |
| __ ThrowUncatchable(TERMINATION, r0); // Expects thrown value in r0. |
| |
| __ bind(&failure); |
| // For failure and exception return null. |
| __ mov(r0, Operand(FACTORY->null_value())); |
| __ add(sp, sp, Operand(4 * kPointerSize)); |
| __ Ret(); |
| |
| // Process the result from the native regexp code. |
| __ bind(&success); |
| __ ldr(r1, |
| FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(r1, r1, Operand(2)); // r1 was a smi. |
| |
| // r1: number of capture registers |
| // r4: subject string |
| // Store the capture count. |
| __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi. |
| __ str(r2, FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastCaptureCountOffset)); |
| // Store last subject and last input. |
| __ mov(r3, last_match_info_elements); // Moved up to reduce latency. |
| __ str(subject, |
| FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastSubjectOffset)); |
| __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7); |
| __ str(subject, |
| FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastInputOffset)); |
| __ mov(r3, last_match_info_elements); |
| __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7); |
| |
| // Get the static offsets vector filled by the native regexp code. |
| ExternalReference address_of_static_offsets_vector = |
| ExternalReference::address_of_static_offsets_vector(isolate); |
| __ mov(r2, Operand(address_of_static_offsets_vector)); |
| |
| // r1: number of capture registers |
| // r2: offsets vector |
| Label next_capture, done; |
| // Capture register counter starts from number of capture registers and |
| // counts down until wraping after zero. |
| __ add(r0, |
| last_match_info_elements, |
| Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); |
| __ bind(&next_capture); |
| __ sub(r1, r1, Operand(1), SetCC); |
| __ b(mi, &done); |
| // Read the value from the static offsets vector buffer. |
| __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); |
| // Store the smi value in the last match info. |
| __ mov(r3, Operand(r3, LSL, kSmiTagSize)); |
| __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); |
| __ jmp(&next_capture); |
| __ bind(&done); |
| |
| // Return last match info. |
| __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); |
| __ add(sp, sp, Operand(4 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to execute the regexp. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #endif // V8_INTERPRETED_REGEXP |
| } |
| |
| |
| void RegExpConstructResultStub::Generate(MacroAssembler* masm) { |
| const int kMaxInlineLength = 100; |
| Label slowcase; |
| Label done; |
| __ ldr(r1, MemOperand(sp, kPointerSize * 2)); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(ne, &slowcase); |
| __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength))); |
| __ b(hi, &slowcase); |
| // Smi-tagging is equivalent to multiplying by 2. |
| // Allocate RegExpResult followed by FixedArray with size in ebx. |
| // JSArray: [Map][empty properties][Elements][Length-smi][index][input] |
| // Elements: [Map][Length][..elements..] |
| // Size of JSArray with two in-object properties and the header of a |
| // FixedArray. |
| int objects_size = |
| (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize; |
| __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize)); |
| __ add(r2, r5, Operand(objects_size)); |
| __ AllocateInNewSpace( |
| r2, // In: Size, in words. |
| r0, // Out: Start of allocation (tagged). |
| r3, // Scratch register. |
| r4, // Scratch register. |
| &slowcase, |
| static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| // r0: Start of allocated area, object-tagged. |
| // r1: Number of elements in array, as smi. |
| // r5: Number of elements, untagged. |
| |
| // Set JSArray map to global.regexp_result_map(). |
| // Set empty properties FixedArray. |
| // Set elements to point to FixedArray allocated right after the JSArray. |
| // Interleave operations for better latency. |
| __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ add(r3, r0, Operand(JSRegExpResult::kSize)); |
| __ mov(r4, Operand(FACTORY->empty_fixed_array())); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); |
| __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX)); |
| __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset)); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| |
| // Set input, index and length fields from arguments. |
| __ ldr(r1, MemOperand(sp, kPointerSize * 0)); |
| __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset)); |
| __ ldr(r1, MemOperand(sp, kPointerSize * 1)); |
| __ str(r1, FieldMemOperand(r0, JSRegExpResult::kIndexOffset)); |
| __ ldr(r1, MemOperand(sp, kPointerSize * 2)); |
| __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset)); |
| |
| // Fill out the elements FixedArray. |
| // r0: JSArray, tagged. |
| // r3: FixedArray, tagged. |
| // r5: Number of elements in array, untagged. |
| |
| // Set map. |
| __ mov(r2, Operand(FACTORY->fixed_array_map())); |
| __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| // Set FixedArray length. |
| __ mov(r6, Operand(r5, LSL, kSmiTagSize)); |
| __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset)); |
| // Fill contents of fixed-array with the-hole. |
| __ mov(r2, Operand(FACTORY->the_hole_value())); |
| __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| // Fill fixed array elements with hole. |
| // r0: JSArray, tagged. |
| // r2: the hole. |
| // r3: Start of elements in FixedArray. |
| // r5: Number of elements to fill. |
| Label loop; |
| __ tst(r5, Operand(r5)); |
| __ bind(&loop); |
| __ b(le, &done); // Jump if r1 is negative or zero. |
| __ sub(r5, r5, Operand(1), SetCC); |
| __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2)); |
| __ jmp(&loop); |
| |
| __ bind(&done); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&slowcase); |
| __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); |
| } |
| |
| |
| void CallFunctionStub::Generate(MacroAssembler* masm) { |
| Label slow; |
| |
| // If the receiver might be a value (string, number or boolean) check for this |
| // and box it if it is. |
| if (ReceiverMightBeValue()) { |
| // Get the receiver from the stack. |
| // function, receiver [, arguments] |
| Label receiver_is_value, receiver_is_js_object; |
| __ ldr(r1, MemOperand(sp, argc_ * kPointerSize)); |
| |
| // Check if receiver is a smi (which is a number value). |
| __ JumpIfSmi(r1, &receiver_is_value); |
| |
| // Check if the receiver is a valid JS object. |
| __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &receiver_is_js_object); |
| |
| // Call the runtime to box the value. |
| __ bind(&receiver_is_value); |
| __ EnterInternalFrame(); |
| __ push(r1); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); |
| __ LeaveInternalFrame(); |
| __ str(r0, MemOperand(sp, argc_ * kPointerSize)); |
| |
| __ bind(&receiver_is_js_object); |
| } |
| |
| // Get the function to call from the stack. |
| // function, receiver [, arguments] |
| __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize)); |
| |
| // Check that the function is really a JavaScript function. |
| // r1: pushed function (to be verified) |
| __ JumpIfSmi(r1, &slow); |
| // Get the map of the function object. |
| __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); |
| __ b(ne, &slow); |
| |
| // Fast-case: Invoke the function now. |
| // r1: pushed function |
| ParameterCount actual(argc_); |
| __ InvokeFunction(r1, actual, JUMP_FUNCTION); |
| |
| // Slow-case: Non-function called. |
| __ bind(&slow); |
| // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| // of the original receiver from the call site). |
| __ str(r1, MemOperand(sp, argc_ * kPointerSize)); |
| __ mov(r0, Operand(argc_)); // Setup the number of arguments. |
| __ mov(r2, Operand(0, RelocInfo::NONE)); |
| __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); |
| __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| |
| // Unfortunately you have to run without snapshots to see most of these |
| // names in the profile since most compare stubs end up in the snapshot. |
| const char* CompareStub::GetName() { |
| ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| (lhs_.is(r1) && rhs_.is(r0))); |
| |
| if (name_ != NULL) return name_; |
| const int kMaxNameLength = 100; |
| name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( |
| kMaxNameLength); |
| if (name_ == NULL) return "OOM"; |
| |
| const char* cc_name; |
| switch (cc_) { |
| case lt: cc_name = "LT"; break; |
| case gt: cc_name = "GT"; break; |
| case le: cc_name = "LE"; break; |
| case ge: cc_name = "GE"; break; |
| case eq: cc_name = "EQ"; break; |
| case ne: cc_name = "NE"; break; |
| default: cc_name = "UnknownCondition"; break; |
| } |
| |
| const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1"; |
| const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1"; |
| |
| const char* strict_name = ""; |
| if (strict_ && (cc_ == eq || cc_ == ne)) { |
| strict_name = "_STRICT"; |
| } |
| |
| const char* never_nan_nan_name = ""; |
| if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) { |
| never_nan_nan_name = "_NO_NAN"; |
| } |
| |
| const char* include_number_compare_name = ""; |
| if (!include_number_compare_) { |
| include_number_compare_name = "_NO_NUMBER"; |
| } |
| |
| const char* include_smi_compare_name = ""; |
| if (!include_smi_compare_) { |
| include_smi_compare_name = "_NO_SMI"; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| "CompareStub_%s%s%s%s%s%s", |
| cc_name, |
| lhs_name, |
| rhs_name, |
| strict_name, |
| never_nan_nan_name, |
| include_number_compare_name, |
| include_smi_compare_name); |
| return name_; |
| } |
| |
| |
| int CompareStub::MinorKey() { |
| // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
| // stubs the never NaN NaN condition is only taken into account if the |
| // condition is equals. |
| ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12)); |
| ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| (lhs_.is(r1) && rhs_.is(r0))); |
| return ConditionField::encode(static_cast<unsigned>(cc_) >> 28) |
| | RegisterField::encode(lhs_.is(r0)) |
| | StrictField::encode(strict_) |
| | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) |
| | IncludeNumberCompareField::encode(include_number_compare_) |
| | IncludeSmiCompareField::encode(include_smi_compare_); |
| } |
| |
| |
| // StringCharCodeAtGenerator |
| void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| Label flat_string; |
| Label ascii_string; |
| Label got_char_code; |
| |
| // If the receiver is a smi trigger the non-string case. |
| __ JumpIfSmi(object_, receiver_not_string_); |
| |
| // Fetch the instance type of the receiver into result register. |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| // If the receiver is not a string trigger the non-string case. |
| __ tst(result_, Operand(kIsNotStringMask)); |
| __ b(ne, receiver_not_string_); |
| |
| // If the index is non-smi trigger the non-smi case. |
| __ JumpIfNotSmi(index_, &index_not_smi_); |
| |
| // Put smi-tagged index into scratch register. |
| __ mov(scratch_, index_); |
| __ bind(&got_smi_index_); |
| |
| // Check for index out of range. |
| __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); |
| __ cmp(ip, Operand(scratch_)); |
| __ b(ls, index_out_of_range_); |
| |
| // We need special handling for non-flat strings. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ tst(result_, Operand(kStringRepresentationMask)); |
| __ b(eq, &flat_string); |
| |
| // Handle non-flat strings. |
| __ tst(result_, Operand(kIsConsStringMask)); |
| __ b(eq, &call_runtime_); |
| |
| // ConsString. |
| // Check whether the right hand side is the empty string (i.e. if |
| // this is really a flat string in a cons string). If that is not |
| // the case we would rather go to the runtime system now to flatten |
| // the string. |
| __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset)); |
| __ LoadRoot(ip, Heap::kEmptyStringRootIndex); |
| __ cmp(result_, Operand(ip)); |
| __ b(ne, &call_runtime_); |
| // Get the first of the two strings and load its instance type. |
| __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset)); |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| // If the first cons component is also non-flat, then go to runtime. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ tst(result_, Operand(kStringRepresentationMask)); |
| __ b(ne, &call_runtime_); |
| |
| // Check for 1-byte or 2-byte string. |
| __ bind(&flat_string); |
| STATIC_ASSERT(kAsciiStringTag != 0); |
| __ tst(result_, Operand(kStringEncodingMask)); |
| __ b(ne, &ascii_string); |
| |
| // 2-byte string. |
| // Load the 2-byte character code into the result register. We can |
| // add without shifting since the smi tag size is the log2 of the |
| // number of bytes in a two-byte character. |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); |
| __ add(scratch_, object_, Operand(scratch_)); |
| __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); |
| __ jmp(&got_char_code); |
| |
| // ASCII string. |
| // Load the byte into the result register. |
| __ bind(&ascii_string); |
| __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize)); |
| __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize)); |
| |
| __ bind(&got_char_code); |
| __ mov(result_, Operand(result_, LSL, kSmiTagSize)); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharCodeAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| |
| // Index is not a smi. |
| __ bind(&index_not_smi_); |
| // If index is a heap number, try converting it to an integer. |
| __ CheckMap(index_, |
| scratch_, |
| Heap::kHeapNumberMapRootIndex, |
| index_not_number_, |
| true); |
| call_helper.BeforeCall(masm); |
| __ Push(object_, index_); |
| __ push(index_); // Consumed by runtime conversion function. |
| if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| } else { |
| ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| // NumberToSmi discards numbers that are not exact integers. |
| __ CallRuntime(Runtime::kNumberToSmi, 1); |
| } |
| // Save the conversion result before the pop instructions below |
| // have a chance to overwrite it. |
| __ Move(scratch_, r0); |
| __ pop(index_); |
| __ pop(object_); |
| // Reload the instance type. |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| call_helper.AfterCall(masm); |
| // If index is still not a smi, it must be out of range. |
| __ JumpIfNotSmi(scratch_, index_out_of_range_); |
| // Otherwise, return to the fast path. |
| __ jmp(&got_smi_index_); |
| |
| // Call runtime. We get here when the receiver is a string and the |
| // index is a number, but the code of getting the actual character |
| // is too complex (e.g., when the string needs to be flattened). |
| __ bind(&call_runtime_); |
| call_helper.BeforeCall(masm); |
| __ Push(object_, index_); |
| __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| __ Move(result_, r0); |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharFromCodeGenerator |
| |
| void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
| __ tst(code_, |
| Operand(kSmiTagMask | |
| ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
| __ b(ne, &slow_case_); |
| |
| __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
| // At this point code register contains smi tagged ASCII char code. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(result_, Operand(ip)); |
| __ b(eq, &slow_case_); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharFromCodeGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| |
| __ bind(&slow_case_); |
| call_helper.BeforeCall(masm); |
| __ push(code_); |
| __ CallRuntime(Runtime::kCharFromCode, 1); |
| __ Move(result_, r0); |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharAtGenerator |
| |
| void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| char_code_at_generator_.GenerateFast(masm); |
| char_from_code_generator_.GenerateFast(masm); |
| } |
| |
| |
| void StringCharAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| char_code_at_generator_.GenerateSlow(masm, call_helper); |
| char_from_code_generator_.GenerateSlow(masm, call_helper); |
| } |
| |
| |
| class StringHelper : public AllStatic { |
| public: |
| // Generate code for copying characters using a simple loop. This should only |
| // be used in places where the number of characters is small and the |
| // additional setup and checking in GenerateCopyCharactersLong adds too much |
| // overhead. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| static void GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii); |
| |
| // Generate code for copying a large number of characters. This function |
| // is allowed to spend extra time setting up conditions to make copying |
| // faster. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| static void GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags); |
| |
| |
| // Probe the symbol table for a two character string. If the string is |
| // not found by probing a jump to the label not_found is performed. This jump |
| // does not guarantee that the string is not in the symbol table. If the |
| // string is found the code falls through with the string in register r0. |
| // Contents of both c1 and c2 registers are modified. At the exit c1 is |
| // guaranteed to contain halfword with low and high bytes equal to |
| // initial contents of c1 and c2 respectively. |
| static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| Label* not_found); |
| |
| // Generate string hash. |
| static void GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character); |
| |
| static void GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character); |
| |
| static void GenerateHashGetHash(MacroAssembler* masm, |
| Register hash); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); |
| }; |
| |
| |
| void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| Label loop; |
| Label done; |
| // This loop just copies one character at a time, as it is only used for very |
| // short strings. |
| if (!ascii) { |
| __ add(count, count, Operand(count), SetCC); |
| } else { |
| __ cmp(count, Operand(0, RelocInfo::NONE)); |
| } |
| __ b(eq, &done); |
| |
| __ bind(&loop); |
| __ ldrb(scratch, MemOperand(src, 1, PostIndex)); |
| // Perform sub between load and dependent store to get the load time to |
| // complete. |
| __ sub(count, count, Operand(1), SetCC); |
| __ strb(scratch, MemOperand(dest, 1, PostIndex)); |
| // last iteration. |
| __ b(gt, &loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| enum CopyCharactersFlags { |
| COPY_ASCII = 1, |
| DEST_ALWAYS_ALIGNED = 2 |
| }; |
| |
| |
| void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags) { |
| bool ascii = (flags & COPY_ASCII) != 0; |
| bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; |
| |
| if (dest_always_aligned && FLAG_debug_code) { |
| // Check that destination is actually word aligned if the flag says |
| // that it is. |
| __ tst(dest, Operand(kPointerAlignmentMask)); |
| __ Check(eq, "Destination of copy not aligned."); |
| } |
| |
| const int kReadAlignment = 4; |
| const int kReadAlignmentMask = kReadAlignment - 1; |
| // Ensure that reading an entire aligned word containing the last character |
| // of a string will not read outside the allocated area (because we pad up |
| // to kObjectAlignment). |
| STATIC_ASSERT(kObjectAlignment >= kReadAlignment); |
| // Assumes word reads and writes are little endian. |
| // Nothing to do for zero characters. |
| Label done; |
| if (!ascii) { |
| __ add(count, count, Operand(count), SetCC); |
| } else { |
| __ cmp(count, Operand(0, RelocInfo::NONE)); |
| } |
| __ b(eq, &done); |
| |
| // Assume that you cannot read (or write) unaligned. |
| Label byte_loop; |
| // Must copy at least eight bytes, otherwise just do it one byte at a time. |
| __ cmp(count, Operand(8)); |
| __ add(count, dest, Operand(count)); |
| Register limit = count; // Read until src equals this. |
| __ b(lt, &byte_loop); |
| |
| if (!dest_always_aligned) { |
| // Align dest by byte copying. Copies between zero and three bytes. |
| __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC); |
| Label dest_aligned; |
| __ b(eq, &dest_aligned); |
| __ cmp(scratch4, Operand(2)); |
| __ ldrb(scratch1, MemOperand(src, 1, PostIndex)); |
| __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le); |
| __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ strb(scratch2, MemOperand(dest, 1, PostIndex), le); |
| __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt); |
| __ bind(&dest_aligned); |
| } |
| |
| Label simple_loop; |
| |
| __ sub(scratch4, dest, Operand(src)); |
| __ and_(scratch4, scratch4, Operand(0x03), SetCC); |
| __ b(eq, &simple_loop); |
| // Shift register is number of bits in a source word that |
| // must be combined with bits in the next source word in order |
| // to create a destination word. |
| |
| // Complex loop for src/dst that are not aligned the same way. |
| { |
| Label loop; |
| __ mov(scratch4, Operand(scratch4, LSL, 3)); |
| Register left_shift = scratch4; |
| __ and_(src, src, Operand(~3)); // Round down to load previous word. |
| __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| // Store the "shift" most significant bits of scratch in the least |
| // signficant bits (i.e., shift down by (32-shift)). |
| __ rsb(scratch2, left_shift, Operand(32)); |
| Register right_shift = scratch2; |
| __ mov(scratch1, Operand(scratch1, LSR, right_shift)); |
| |
| __ bind(&loop); |
| __ ldr(scratch3, MemOperand(src, 4, PostIndex)); |
| __ sub(scratch5, limit, Operand(dest)); |
| __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); |
| __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| __ mov(scratch1, Operand(scratch3, LSR, right_shift)); |
| // Loop if four or more bytes left to copy. |
| // Compare to eight, because we did the subtract before increasing dst. |
| __ sub(scratch5, scratch5, Operand(8), SetCC); |
| __ b(ge, &loop); |
| } |
| // There is now between zero and three bytes left to copy (negative that |
| // number is in scratch5), and between one and three bytes already read into |
| // scratch1 (eight times that number in scratch4). We may have read past |
| // the end of the string, but because objects are aligned, we have not read |
| // past the end of the object. |
| // Find the minimum of remaining characters to move and preloaded characters |
| // and write those as bytes. |
| __ add(scratch5, scratch5, Operand(4), SetCC); |
| __ b(eq, &done); |
| __ cmp(scratch4, Operand(scratch5, LSL, 3), ne); |
| // Move minimum of bytes read and bytes left to copy to scratch4. |
| __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); |
| // Between one and three (value in scratch5) characters already read into |
| // scratch ready to write. |
| __ cmp(scratch5, Operand(2)); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); |
| __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt); |
| // Copy any remaining bytes. |
| __ b(&byte_loop); |
| |
| // Simple loop. |
| // Copy words from src to dst, until less than four bytes left. |
| // Both src and dest are word aligned. |
| __ bind(&simple_loop); |
| { |
| Label loop; |
| __ bind(&loop); |
| __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| __ sub(scratch3, limit, Operand(dest)); |
| __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| // Compare to 8, not 4, because we do the substraction before increasing |
| // dest. |
| __ cmp(scratch3, Operand(8)); |
| __ b(ge, &loop); |
| } |
| |
| // Copy bytes from src to dst until dst hits limit. |
| __ bind(&byte_loop); |
| __ cmp(dest, Operand(limit)); |
| __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt); |
| __ b(ge, &done); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ b(&byte_loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| Label* not_found) { |
| // Register scratch3 is the general scratch register in this function. |
| Register scratch = scratch3; |
| |
| // Make sure that both characters are not digits as such strings has a |
| // different hash algorithm. Don't try to look for these in the symbol table. |
| Label not_array_index; |
| __ sub(scratch, c1, Operand(static_cast<int>('0'))); |
| __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); |
| __ b(hi, ¬_array_index); |
| __ sub(scratch, c2, Operand(static_cast<int>('0'))); |
| __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); |
| |
| // If check failed combine both characters into single halfword. |
| // This is required by the contract of the method: code at the |
| // not_found branch expects this combination in c1 register |
| __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls); |
| __ b(ls, not_found); |
| |
| __ bind(¬_array_index); |
| // Calculate the two character string hash. |
| Register hash = scratch1; |
| StringHelper::GenerateHashInit(masm, hash, c1); |
| StringHelper::GenerateHashAddCharacter(masm, hash, c2); |
| StringHelper::GenerateHashGetHash(masm, hash); |
| |
| // Collect the two characters in a register. |
| Register chars = c1; |
| __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte)); |
| |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string. |
| |
| // Load symbol table |
| // Load address of first element of the symbol table. |
| Register symbol_table = c2; |
| __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
| |
| Register undefined = scratch4; |
| __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
| |
| // Calculate capacity mask from the symbol table capacity. |
| Register mask = scratch2; |
| __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| __ mov(mask, Operand(mask, ASR, 1)); |
| __ sub(mask, mask, Operand(1)); |
| |
| // Calculate untagged address of the first element of the symbol table. |
| Register first_symbol_table_element = symbol_table; |
| __ add(first_symbol_table_element, symbol_table, |
| Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); |
| |
| // Registers |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string |
| // mask: capacity mask |
| // first_symbol_table_element: address of the first element of |
| // the symbol table |
| // undefined: the undefined object |
| // scratch: - |
| |
| // Perform a number of probes in the symbol table. |
| static const int kProbes = 4; |
| Label found_in_symbol_table; |
| Label next_probe[kProbes]; |
| for (int i = 0; i < kProbes; i++) { |
| Register candidate = scratch5; // Scratch register contains candidate. |
| |
| // Calculate entry in symbol table. |
| if (i > 0) { |
| __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); |
| } else { |
| __ mov(candidate, hash); |
| } |
| |
| __ and_(candidate, candidate, Operand(mask)); |
| |
| // Load the entry from the symble table. |
| STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
| __ ldr(candidate, |
| MemOperand(first_symbol_table_element, |
| candidate, |
| LSL, |
| kPointerSizeLog2)); |
| |
| // If entry is undefined no string with this hash can be found. |
| Label is_string; |
| __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE); |
| __ b(ne, &is_string); |
| |
| __ cmp(undefined, candidate); |
| __ b(eq, not_found); |
| // Must be null (deleted entry). |
| if (FLAG_debug_code) { |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(ip, candidate); |
| __ Assert(eq, "oddball in symbol table is not undefined or null"); |
| } |
| __ jmp(&next_probe[i]); |
| |
| __ bind(&is_string); |
| |
| // Check that the candidate is a non-external ASCII string. The instance |
| // type is still in the scratch register from the CompareObjectType |
| // operation. |
| __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]); |
| |
| // If length is not 2 the string is not a candidate. |
| __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset)); |
| __ cmp(scratch, Operand(Smi::FromInt(2))); |
| __ b(ne, &next_probe[i]); |
| |
| // Check if the two characters match. |
| // Assumes that word load is little endian. |
| __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); |
| __ cmp(chars, scratch); |
| __ b(eq, &found_in_symbol_table); |
| __ bind(&next_probe[i]); |
| } |
| |
| // No matching 2 character string found by probing. |
| __ jmp(not_found); |
| |
| // Scratch register contains result when we fall through to here. |
| Register result = scratch; |
| __ bind(&found_in_symbol_table); |
| __ Move(r0, result); |
| } |
| |
| |
| void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character) { |
| // hash = character + (character << 10); |
| __ add(hash, character, Operand(character, LSL, 10)); |
| // hash ^= hash >> 6; |
| __ eor(hash, hash, Operand(hash, ASR, 6)); |
| } |
| |
| |
| void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character) { |
| // hash += character; |
| __ add(hash, hash, Operand(character)); |
| // hash += hash << 10; |
| __ add(hash, hash, Operand(hash, LSL, 10)); |
| // hash ^= hash >> 6; |
| __ eor(hash, hash, Operand(hash, ASR, 6)); |
| } |
| |
| |
| void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| Register hash) { |
| // hash += hash << 3; |
| __ add(hash, hash, Operand(hash, LSL, 3)); |
| // hash ^= hash >> 11; |
| __ eor(hash, hash, Operand(hash, ASR, 11)); |
| // hash += hash << 15; |
| __ add(hash, hash, Operand(hash, LSL, 15), SetCC); |
| |
| // if (hash == 0) hash = 27; |
| __ mov(hash, Operand(27), LeaveCC, ne); |
| } |
| |
| |
| void SubStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // lr: return address |
| // sp[0]: to |
| // sp[4]: from |
| // sp[8]: string |
| |
| // This stub is called from the native-call %_SubString(...), so |
| // nothing can be assumed about the arguments. It is tested that: |
| // "string" is a sequential string, |
| // both "from" and "to" are smis, and |
| // 0 <= from <= to <= string.length. |
| // If any of these assumptions fail, we call the runtime system. |
| |
| static const int kToOffset = 0 * kPointerSize; |
| static const int kFromOffset = 1 * kPointerSize; |
| static const int kStringOffset = 2 * kPointerSize; |
| |
| // Check bounds and smi-ness. |
| Register to = r6; |
| Register from = r7; |
| __ Ldrd(to, from, MemOperand(sp, kToOffset)); |
| STATIC_ASSERT(kFromOffset == kToOffset + 4); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| // I.e., arithmetic shift right by one un-smi-tags. |
| __ mov(r2, Operand(to, ASR, 1), SetCC); |
| __ mov(r3, Operand(from, ASR, 1), SetCC, cc); |
| // If either to or from had the smi tag bit set, then carry is set now. |
| __ b(cs, &runtime); // Either "from" or "to" is not a smi. |
| __ b(mi, &runtime); // From is negative. |
| |
| // Both to and from are smis. |
| |
| __ sub(r2, r2, Operand(r3), SetCC); |
| __ b(mi, &runtime); // Fail if from > to. |
| // Special handling of sub-strings of length 1 and 2. One character strings |
| // are handled in the runtime system (looked up in the single character |
| // cache). Two character strings are looked for in the symbol cache. |
| __ cmp(r2, Operand(2)); |
| __ b(lt, &runtime); |
| |
| // r2: length |
| // r3: from index (untaged smi) |
| // r6 (a.k.a. to): to (smi) |
| // r7 (a.k.a. from): from offset (smi) |
| |
| // Make sure first argument is a sequential (or flat) string. |
| __ ldr(r5, MemOperand(sp, kStringOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ tst(r5, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| Condition is_string = masm->IsObjectStringType(r5, r1); |
| __ b(NegateCondition(is_string), &runtime); |
| |
| // r1: instance type |
| // r2: length |
| // r3: from index (untagged smi) |
| // r5: string |
| // r6 (a.k.a. to): to (smi) |
| // r7 (a.k.a. from): from offset (smi) |
| Label seq_string; |
| __ and_(r4, r1, Operand(kStringRepresentationMask)); |
| STATIC_ASSERT(kSeqStringTag < kConsStringTag); |
| STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
| __ cmp(r4, Operand(kConsStringTag)); |
| __ b(gt, &runtime); // External strings go to runtime. |
| __ b(lt, &seq_string); // Sequential strings are handled directly. |
| |
| // Cons string. Try to recurse (once) on the first substring. |
| // (This adds a little more generality than necessary to handle flattened |
| // cons strings, but not much). |
| __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset)); |
| __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); |
| __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ tst(r1, Operand(kStringRepresentationMask)); |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ b(ne, &runtime); // Cons and External strings go to runtime. |
| |
| // Definitly a sequential string. |
| __ bind(&seq_string); |
| |
| // r1: instance type. |
| // r2: length |
| // r3: from index (untaged smi) |
| // r5: string |
| // r6 (a.k.a. to): to (smi) |
| // r7 (a.k.a. from): from offset (smi) |
| __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset)); |
| __ cmp(r4, Operand(to)); |
| __ b(lt, &runtime); // Fail if to > length. |
| to = no_reg; |
| |
| // r1: instance type. |
| // r2: result string length. |
| // r3: from index (untaged smi) |
| // r5: string. |
| // r7 (a.k.a. from): from offset (smi) |
| // Check for flat ASCII string. |
| Label non_ascii_flat; |
| __ tst(r1, Operand(kStringEncodingMask)); |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| __ b(eq, &non_ascii_flat); |
| |
| Label result_longer_than_two; |
| __ cmp(r2, Operand(2)); |
| __ b(gt, &result_longer_than_two); |
| |
| // Sub string of length 2 requested. |
| // Get the two characters forming the sub string. |
| __ add(r5, r5, Operand(r3)); |
| __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize)); |
| __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1)); |
| |
| // Try to lookup two character string in symbol table. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string); |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // r2: result string length. |
| // r3: two characters combined into halfword in little endian byte order. |
| __ bind(&make_two_character_string); |
| __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime); |
| __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&result_longer_than_two); |
| |
| // Allocate the result. |
| __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime); |
| |
| // r0: result string. |
| // r2: result string length. |
| // r5: string. |
| // r7 (a.k.a. from): from offset (smi) |
| // Locate first character of result. |
| __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate 'from' character of string. |
| __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ add(r5, r5, Operand(from, ASR, 1)); |
| |
| // r0: result string. |
| // r1: first character of result string. |
| // r2: result string length. |
| // r5: first character of sub string to copy. |
| STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, |
| COPY_ASCII | DEST_ALWAYS_ALIGNED); |
| __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_flat); |
| // r2: result string length. |
| // r5: string. |
| // r7 (a.k.a. from): from offset (smi) |
| // Check for flat two byte string. |
| |
| // Allocate the result. |
| __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime); |
| |
| // r0: result string. |
| // r2: result string length. |
| // r5: string. |
| // Locate first character of result. |
| __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate 'from' character of string. |
| __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // As "from" is a smi it is 2 times the value which matches the size of a two |
| // byte character. |
| __ add(r5, r5, Operand(from)); |
| from = no_reg; |
| |
| // r0: result string. |
| // r1: first character of result. |
| // r2: result length. |
| // r5: first character of string to copy. |
| STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| StringHelper::GenerateCopyCharactersLong( |
| masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED); |
| __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to create the sub string. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| } |
| |
| |
| void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4) { |
| Label compare_lengths; |
| // Find minimum length and length difference. |
| __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
| __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
| __ sub(scratch3, scratch1, Operand(scratch2), SetCC); |
| Register length_delta = scratch3; |
| __ mov(scratch1, scratch2, LeaveCC, gt); |
| Register min_length = scratch1; |
| STATIC_ASSERT(kSmiTag == 0); |
| __ tst(min_length, Operand(min_length)); |
| __ b(eq, &compare_lengths); |
| |
| // Untag smi. |
| __ mov(min_length, Operand(min_length, ASR, kSmiTagSize)); |
| |
| // Setup registers so that we only need to increment one register |
| // in the loop. |
| __ add(scratch2, min_length, |
| Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ add(left, left, Operand(scratch2)); |
| __ add(right, right, Operand(scratch2)); |
| // Registers left and right points to the min_length character of strings. |
| __ rsb(min_length, min_length, Operand(-1)); |
| Register index = min_length; |
| // Index starts at -min_length. |
| |
| { |
| // Compare loop. |
| Label loop; |
| __ bind(&loop); |
| // Compare characters. |
| __ add(index, index, Operand(1), SetCC); |
| __ ldrb(scratch2, MemOperand(left, index), ne); |
| __ ldrb(scratch4, MemOperand(right, index), ne); |
| // Skip to compare lengths with eq condition true. |
| __ b(eq, &compare_lengths); |
| __ cmp(scratch2, scratch4); |
| __ b(eq, &loop); |
| // Fallthrough with eq condition false. |
| } |
| // Compare lengths - strings up to min-length are equal. |
| __ bind(&compare_lengths); |
| ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
| // Use zero length_delta as result. |
| __ mov(r0, Operand(length_delta), SetCC, eq); |
| // Fall through to here if characters compare not-equal. |
| __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); |
| __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); |
| __ Ret(); |
| } |
| |
| |
| void StringCompareStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| Counters* counters = masm->isolate()->counters(); |
| |
| // Stack frame on entry. |
| // sp[0]: right string |
| // sp[4]: left string |
| __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. |
| |
| Label not_same; |
| __ cmp(r0, r1); |
| __ b(ne, ¬_same); |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ mov(r0, Operand(Smi::FromInt(EQUAL))); |
| __ IncrementCounter(counters->string_compare_native(), 1, r1, r2); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(¬_same); |
| |
| // Check that both objects are sequential ASCII strings. |
| __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime); |
| |
| // Compare flat ASCII strings natively. Remove arguments from stack first. |
| __ IncrementCounter(counters->string_compare_native(), 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5); |
| |
| // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| } |
| |
| |
| void StringAddStub::Generate(MacroAssembler* masm) { |
| Label string_add_runtime, call_builtin; |
| Builtins::JavaScript builtin_id = Builtins::ADD; |
| |
| Counters* counters = masm->isolate()->counters(); |
| |
| // Stack on entry: |
| // sp[0]: second argument (right). |
| // sp[4]: first argument (left). |
| |
| // Load the two arguments. |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument. |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument. |
| |
| // Make sure that both arguments are strings if not known in advance. |
| if (flags_ == NO_STRING_ADD_FLAGS) { |
| __ JumpIfEitherSmi(r0, r1, &string_add_runtime); |
| // Load instance types. |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kStringTag == 0); |
| // If either is not a string, go to runtime. |
| __ tst(r4, Operand(kIsNotStringMask)); |
| __ tst(r5, Operand(kIsNotStringMask), eq); |
| __ b(ne, &string_add_runtime); |
| } else { |
| // Here at least one of the arguments is definitely a string. |
| // We convert the one that is not known to be a string. |
| if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { |
| ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); |
| GenerateConvertArgument( |
| masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin); |
| builtin_id = Builtins::STRING_ADD_RIGHT; |
| } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { |
| ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); |
| GenerateConvertArgument( |
| masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin); |
| builtin_id = Builtins::STRING_ADD_LEFT; |
| } |
| } |
| |
| // Both arguments are strings. |
| // r0: first string |
| // r1: second string |
| // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| { |
| Label strings_not_empty; |
| // Check if either of the strings are empty. In that case return the other. |
| __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); |
| __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty. |
| __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. |
| STATIC_ASSERT(kSmiTag == 0); |
| // Else test if second string is empty. |
| __ cmp(r3, Operand(Smi::FromInt(0)), ne); |
| __ b(ne, &strings_not_empty); // If either string was empty, return r0. |
| |
| __ IncrementCounter(counters->string_add_native(), 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&strings_not_empty); |
| } |
| |
| __ mov(r2, Operand(r2, ASR, kSmiTagSize)); |
| __ mov(r3, Operand(r3, ASR, kSmiTagSize)); |
| // Both strings are non-empty. |
| // r0: first string |
| // r1: second string |
| // r2: length of first string |
| // r3: length of second string |
| // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // Look at the length of the result of adding the two strings. |
| Label string_add_flat_result, longer_than_two; |
| // Adding two lengths can't overflow. |
| STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); |
| __ add(r6, r2, Operand(r3)); |
| // Use the symbol table when adding two one character strings, as it |
| // helps later optimizations to return a symbol here. |
| __ cmp(r6, Operand(2)); |
| __ b(ne, &longer_than_two); |
| |
| // Check that both strings are non-external ASCII strings. |
| if (flags_ != NO_STRING_ADD_FLAGS) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7, |
| &string_add_runtime); |
| |
| // Get the two characters forming the sub string. |
| __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize)); |
| |
| // Try to lookup two character string in symbol table. If it is not found |
| // just allocate a new one. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string); |
| __ IncrementCounter(counters->string_add_native(), 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&make_two_character_string); |
| // Resulting string has length 2 and first chars of two strings |
| // are combined into single halfword in r2 register. |
| // So we can fill resulting string without two loops by a single |
| // halfword store instruction (which assumes that processor is |
| // in a little endian mode) |
| __ mov(r6, Operand(2)); |
| __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime); |
| __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ IncrementCounter(counters->string_add_native(), 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&longer_than_two); |
| // Check if resulting string will be flat. |
| __ cmp(r6, Operand(String::kMinNonFlatLength)); |
| __ b(lt, &string_add_flat_result); |
| // Handle exceptionally long strings in the runtime system. |
| STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); |
| ASSERT(IsPowerOf2(String::kMaxLength + 1)); |
| // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. |
| __ cmp(r6, Operand(String::kMaxLength + 1)); |
| __ b(hs, &string_add_runtime); |
| |
| // If result is not supposed to be flat, allocate a cons string object. |
| // If both strings are ASCII the result is an ASCII cons string. |
| if (flags_ != NO_STRING_ADD_FLAGS) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| Label non_ascii, allocated, ascii_data; |
| STATIC_ASSERT(kTwoByteStringTag == 0); |
| __ tst(r4, Operand(kStringEncodingMask)); |
| __ tst(r5, Operand(kStringEncodingMask), ne); |
| __ b(eq, &non_ascii); |
| |
| // Allocate an ASCII cons string. |
| __ bind(&ascii_data); |
| __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime); |
| __ bind(&allocated); |
| // Fill the fields of the cons string. |
| __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); |
| __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(counters->string_add_native(), 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii); |
| // At least one of the strings is two-byte. Check whether it happens |
| // to contain only ASCII characters. |
| // r4: first instance type. |
| // r5: second instance type. |
| __ tst(r4, Operand(kAsciiDataHintMask)); |
| __ tst(r5, Operand(kAsciiDataHintMask), ne); |
| __ b(ne, &ascii_data); |
| __ eor(r4, r4, Operand(r5)); |
| STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
| __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
| __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
| __ b(eq, &ascii_data); |
| |
| // Allocate a two byte cons string. |
| __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime); |
| __ jmp(&allocated); |
| |
| // Handle creating a flat result. First check that both strings are |
| // sequential and that they have the same encoding. |
| // r0: first string |
| // r1: second string |
| // r2: length of first string |
| // r3: length of second string |
| // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
| // r6: sum of lengths. |
| __ bind(&string_add_flat_result); |
| if (flags_ != NO_STRING_ADD_FLAGS) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| // Check that both strings are sequential. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ tst(r4, Operand(kStringRepresentationMask)); |
| __ tst(r5, Operand(kStringRepresentationMask), eq); |
| __ b(ne, &string_add_runtime); |
| // Now check if both strings have the same encoding (ASCII/Two-byte). |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: sum of lengths.. |
| Label non_ascii_string_add_flat_result; |
| ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. |
| __ eor(r7, r4, Operand(r5)); |
| __ tst(r7, Operand(kStringEncodingMask)); |
| __ b(ne, &string_add_runtime); |
| // And see if it's ASCII or two-byte. |
| __ tst(r4, Operand(kStringEncodingMask)); |
| __ b(eq, &non_ascii_string_add_flat_result); |
| |
| // Both strings are sequential ASCII strings. We also know that they are |
| // short (since the sum of the lengths is less than kMinNonFlatLength). |
| // r6: length of resulting flat string |
| __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime); |
| // Locate first character of result. |
| __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // r0: first character of first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: first character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true); |
| |
| // Load second argument and locate first character. |
| __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // r1: first character of second string. |
| // r3: length of second string. |
| // r6: next character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true); |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(counters->string_add_native(), 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_string_add_flat_result); |
| // Both strings are sequential two byte strings. |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: sum of length of strings. |
| __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime); |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r7: result string. |
| |
| // Locate first character of result. |
| __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // r0: first character of first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: first character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false); |
| |
| // Locate first character of second argument. |
| __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // r1: first character of second string. |
| // r3: length of second string. |
| // r6: next character of result (after copy of first string). |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false); |
| |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(counters->string_add_native(), 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to add the two strings. |
| __ bind(&string_add_runtime); |
| __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| |
| if (call_builtin.is_linked()) { |
| __ bind(&call_builtin); |
| __ InvokeBuiltin(builtin_id, JUMP_JS); |
| } |
| } |
| |
| |
| void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, |
| int stack_offset, |
| Register arg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Label* slow) { |
| // First check if the argument is already a string. |
| Label not_string, done; |
| __ JumpIfSmi(arg, ¬_string); |
| __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE); |
| __ b(lt, &done); |
| |
| // Check the number to string cache. |
| Label not_cached; |
| __ bind(¬_string); |
| // Puts the cached result into scratch1. |
| NumberToStringStub::GenerateLookupNumberStringCache(masm, |
| arg, |
| scratch1, |
| scratch2, |
| scratch3, |
| scratch4, |
| false, |
| ¬_cached); |
| __ mov(arg, scratch1); |
| __ str(arg, MemOperand(sp, stack_offset)); |
| __ jmp(&done); |
| |
| // Check if the argument is a safe string wrapper. |
| __ bind(¬_cached); |
| __ JumpIfSmi(arg, slow); |
| __ CompareObjectType( |
| arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1. |
| __ b(ne, slow); |
| __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset)); |
| __ and_(scratch2, |
| scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); |
| __ cmp(scratch2, |
| Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); |
| __ b(ne, slow); |
| __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset)); |
| __ str(arg, MemOperand(sp, stack_offset)); |
| |
| __ bind(&done); |
| } |
| |
| |
| void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::SMIS); |
| Label miss; |
| __ orr(r2, r1, r0); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, &miss); |
| |
| if (GetCondition() == eq) { |
| // For equality we do not care about the sign of the result. |
| __ sub(r0, r0, r1, SetCC); |
| } else { |
| // Untag before subtracting to avoid handling overflow. |
| __ SmiUntag(r1); |
| __ sub(r0, r1, SmiUntagOperand(r0)); |
| } |
| __ Ret(); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::HEAP_NUMBERS); |
| |
| Label generic_stub; |
| Label unordered; |
| Label miss; |
| __ and_(r2, r1, Operand(r0)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(eq, &generic_stub); |
| |
| __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE); |
| __ b(ne, &miss); |
| __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); |
| __ b(ne, &miss); |
| |
| // Inlining the double comparison and falling back to the general compare |
| // stub if NaN is involved or VFP3 is unsupported. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| |
| // Load left and right operand |
| __ sub(r2, r1, Operand(kHeapObjectTag)); |
| __ vldr(d0, r2, HeapNumber::kValueOffset); |
| __ sub(r2, r0, Operand(kHeapObjectTag)); |
| __ vldr(d1, r2, HeapNumber::kValueOffset); |
| |
| // Compare operands |
| __ VFPCompareAndSetFlags(d0, d1); |
| |
| // Don't base result on status bits when a NaN is involved. |
| __ b(vs, &unordered); |
| |
| // Return a result of -1, 0, or 1, based on status bits. |
| __ mov(r0, Operand(EQUAL), LeaveCC, eq); |
| __ mov(r0, Operand(LESS), LeaveCC, lt); |
| __ mov(r0, Operand(GREATER), LeaveCC, gt); |
| __ Ret(); |
| |
| __ bind(&unordered); |
| } |
| |
| CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0); |
| __ bind(&generic_stub); |
| __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::OBJECTS); |
| Label miss; |
| __ and_(r2, r1, Operand(r0)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(eq, &miss); |
| |
| __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE); |
| __ b(ne, &miss); |
| __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE); |
| __ b(ne, &miss); |
| |
| ASSERT(GetCondition() == eq); |
| __ sub(r0, r0, Operand(r1)); |
| __ Ret(); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
| __ Push(r1, r0); |
| __ push(lr); |
| |
| // Call the runtime system in a fresh internal frame. |
| ExternalReference miss = |
| ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); |
| __ EnterInternalFrame(); |
| __ Push(r1, r0); |
| __ mov(ip, Operand(Smi::FromInt(op_))); |
| __ push(ip); |
| __ CallExternalReference(miss, 3); |
| __ LeaveInternalFrame(); |
| // Compute the entry point of the rewritten stub. |
| __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| // Restore registers. |
| __ pop(lr); |
| __ pop(r0); |
| __ pop(r1); |
| __ Jump(r2); |
| } |
| |
| |
| void DirectCEntryStub::Generate(MacroAssembler* masm) { |
| __ ldr(pc, MemOperand(sp, 0)); |
| } |
| |
| |
| void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
| ExternalReference function) { |
| __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()), |
| RelocInfo::CODE_TARGET)); |
| __ mov(r2, Operand(function)); |
| // Push return address (accessible to GC through exit frame pc). |
| __ str(pc, MemOperand(sp, 0)); |
| __ Jump(r2); // Call the api function. |
| } |
| |
| |
| void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
| Register target) { |
| __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()), |
| RelocInfo::CODE_TARGET)); |
| // Push return address (accessible to GC through exit frame pc). |
| __ str(pc, MemOperand(sp, 0)); |
| __ Jump(target); // Call the C++ function. |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |