blob: 9385f2fda7af2fe9c6c03e393b91bddfd00deaa5 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_MIPS)
#include "bootstrapper.h"
#include "code-stubs.h"
#include "codegen.h"
#include "regexp-macro-assembler.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Label* slow,
Condition cc,
bool never_nan_nan);
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* rhs_not_nan,
Label* slow,
bool strict);
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register lhs,
Register rhs);
// Check if the operand is a heap number.
static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
Register scratch1, Register scratch2,
Label* not_a_heap_number) {
__ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
__ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
__ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2));
}
void ToNumberStub::Generate(MacroAssembler* masm) {
// The ToNumber stub takes one argument in a0.
Label check_heap_number, call_builtin;
__ JumpIfNotSmi(a0, &check_heap_number);
__ mov(v0, a0);
__ Ret();
__ bind(&check_heap_number);
EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin);
__ mov(v0, a0);
__ Ret();
__ bind(&call_builtin);
__ push(a0);
__ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
}
void FastNewClosureStub::Generate(MacroAssembler* masm) {
// Create a new closure from the given function info in new
// space. Set the context to the current context in cp.
Label gc;
// Pop the function info from the stack.
__ pop(a3);
// Attempt to allocate new JSFunction in new space.
__ AllocateInNewSpace(JSFunction::kSize,
v0,
a1,
a2,
&gc,
TAG_OBJECT);
int map_index = strict_mode_ == kStrictMode
? Context::STRICT_MODE_FUNCTION_MAP_INDEX
: Context::FUNCTION_MAP_INDEX;
// Compute the function map in the current global context and set that
// as the map of the allocated object.
__ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
__ lw(a2, MemOperand(a2, Context::SlotOffset(map_index)));
__ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
// Initialize the rest of the function. We don't have to update the
// write barrier because the allocated object is in new space.
__ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
__ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
__ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset));
__ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset));
__ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
__ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset));
__ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset));
__ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset));
// Initialize the code pointer in the function to be the one
// found in the shared function info object.
__ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset));
__ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag));
__ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset));
// Return result. The argument function info has been popped already.
__ Ret();
// Create a new closure through the slower runtime call.
__ bind(&gc);
__ LoadRoot(t0, Heap::kFalseValueRootIndex);
__ Push(cp, a3, t0);
__ TailCallRuntime(Runtime::kNewClosure, 3, 1);
}
void FastNewContextStub::Generate(MacroAssembler* masm) {
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
// Attempt to allocate the context in new space.
__ AllocateInNewSpace(FixedArray::SizeFor(length),
v0,
a1,
a2,
&gc,
TAG_OBJECT);
// Load the function from the stack.
__ lw(a3, MemOperand(sp, 0));
// Setup the object header.
__ LoadRoot(a2, Heap::kFunctionContextMapRootIndex);
__ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
__ li(a2, Operand(Smi::FromInt(length)));
__ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
// Setup the fixed slots.
__ li(a1, Operand(Smi::FromInt(0)));
__ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX)));
__ sw(cp, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
__ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX)));
// Copy the global object from the previous context.
__ lw(a1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ sw(a1, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Initialize the rest of the slots to undefined.
__ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
__ sw(a1, MemOperand(v0, Context::SlotOffset(i)));
}
// Remove the on-stack argument and return.
__ mov(cp, v0);
__ Pop();
__ Ret();
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
}
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
// [sp]: constant elements.
// [sp + kPointerSize]: literal index.
// [sp + (2 * kPointerSize)]: literals array.
// All sizes here are multiples of kPointerSize.
int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
int size = JSArray::kSize + elements_size;
// Load boilerplate object into r3 and check if we need to create a
// boilerplate.
Label slow_case;
__ lw(a3, MemOperand(sp, 2 * kPointerSize));
__ lw(a0, MemOperand(sp, 1 * kPointerSize));
__ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
__ Addu(t0, a3, t0);
__ lw(a3, MemOperand(t0));
__ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
__ Branch(&slow_case, eq, a3, Operand(t1));
if (FLAG_debug_code) {
const char* message;
Heap::RootListIndex expected_map_index;
if (mode_ == CLONE_ELEMENTS) {
message = "Expected (writable) fixed array";
expected_map_index = Heap::kFixedArrayMapRootIndex;
} else {
ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
message = "Expected copy-on-write fixed array";
expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
}
__ push(a3);
__ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
__ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset));
__ LoadRoot(at, expected_map_index);
__ Assert(eq, message, a3, Operand(at));
__ pop(a3);
}
// Allocate both the JS array and the elements array in one big
// allocation. This avoids multiple limit checks.
// Return new object in v0.
__ AllocateInNewSpace(size,
v0,
a1,
a2,
&slow_case,
TAG_OBJECT);
// Copy the JS array part.
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
__ lw(a1, FieldMemOperand(a3, i));
__ sw(a1, FieldMemOperand(v0, i));
}
}
if (length_ > 0) {
// Get hold of the elements array of the boilerplate and setup the
// elements pointer in the resulting object.
__ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
__ Addu(a2, v0, Operand(JSArray::kSize));
__ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset));
// Copy the elements array.
__ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize);
}
// Return and remove the on-stack parameters.
__ Addu(sp, sp, Operand(3 * kPointerSize));
__ Ret();
__ bind(&slow_case);
__ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}
// Takes a Smi and converts to an IEEE 64 bit floating point value in two
// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
// scratch register. Destroys the source register. No GC occurs during this
// stub so you don't have to set up the frame.
class ConvertToDoubleStub : public CodeStub {
public:
ConvertToDoubleStub(Register result_reg_1,
Register result_reg_2,
Register source_reg,
Register scratch_reg)
: result1_(result_reg_1),
result2_(result_reg_2),
source_(source_reg),
zeros_(scratch_reg) { }
private:
Register result1_;
Register result2_;
Register source_;
Register zeros_;
// Minor key encoding in 16 bits.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 14> {};
Major MajorKey() { return ConvertToDouble; }
int MinorKey() {
// Encode the parameters in a unique 16 bit value.
return result1_.code() +
(result2_.code() << 4) +
(source_.code() << 8) +
(zeros_.code() << 12);
}
void Generate(MacroAssembler* masm);
};
void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
#ifndef BIG_ENDIAN_FLOATING_POINT
Register exponent = result1_;
Register mantissa = result2_;
#else
Register exponent = result2_;
Register mantissa = result1_;
#endif
Label not_special;
// Convert from Smi to integer.
__ sra(source_, source_, kSmiTagSize);
// Move sign bit from source to destination. This works because the sign bit
// in the exponent word of the double has the same position and polarity as
// the 2's complement sign bit in a Smi.
STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
__ And(exponent, source_, Operand(HeapNumber::kSignMask));
// Subtract from 0 if source was negative.
__ subu(at, zero_reg, source_);
__ movn(source_, at, exponent);
// We have -1, 0 or 1, which we treat specially. Register source_ contains
// absolute value: it is either equal to 1 (special case of -1 and 1),
// greater than 1 (not a special case) or less than 1 (special case of 0).
__ Branch(&not_special, gt, source_, Operand(1));
// For 1 or -1 we need to or in the 0 exponent (biased to 1023).
static const uint32_t exponent_word_for_1 =
HeapNumber::kExponentBias << HeapNumber::kExponentShift;
// Safe to use 'at' as dest reg here.
__ Or(at, exponent, Operand(exponent_word_for_1));
__ movn(exponent, at, source_); // Write exp when source not 0.
// 1, 0 and -1 all have 0 for the second word.
__ mov(mantissa, zero_reg);
__ Ret();
__ bind(&not_special);
// Count leading zeros.
// Gets the wrong answer for 0, but we already checked for that case above.
__ clz(zeros_, source_);
// Compute exponent and or it into the exponent register.
// We use mantissa as a scratch register here.
__ li(mantissa, Operand(31 + HeapNumber::kExponentBias));
__ subu(mantissa, mantissa, zeros_);
__ sll(mantissa, mantissa, HeapNumber::kExponentShift);
__ Or(exponent, exponent, mantissa);
// Shift up the source chopping the top bit off.
__ Addu(zeros_, zeros_, Operand(1));
// This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
__ sllv(source_, source_, zeros_);
// Compute lower part of fraction (last 12 bits).
__ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord);
// And the top (top 20 bits).
__ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord);
__ or_(exponent, exponent, source_);
__ Ret();
}
void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
FloatingPointHelper::Destination destination,
Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ sra(scratch1, a0, kSmiTagSize);
__ mtc1(scratch1, f14);
__ cvt_d_w(f14, f14);
__ sra(scratch1, a1, kSmiTagSize);
__ mtc1(scratch1, f12);
__ cvt_d_w(f12, f12);
if (destination == kCoreRegisters) {
__ Move(a2, a3, f14);
__ Move(a0, a1, f12);
}
} else {
ASSERT(destination == kCoreRegisters);
// Write Smi from a0 to a3 and a2 in double format.
__ mov(scratch1, a0);
ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2);
__ push(ra);
__ Call(stub1.GetCode());
// Write Smi from a1 to a1 and a0 in double format.
__ mov(scratch1, a1);
ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2);
__ Call(stub2.GetCode());
__ pop(ra);
}
}
void FloatingPointHelper::LoadOperands(
MacroAssembler* masm,
FloatingPointHelper::Destination destination,
Register heap_number_map,
Register scratch1,
Register scratch2,
Label* slow) {
// Load right operand (a0) to f12 or a2/a3.
LoadNumber(masm, destination,
a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow);
// Load left operand (a1) to f14 or a0/a1.
LoadNumber(masm, destination,
a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow);
}
void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
Destination destination,
Register object,
FPURegister dst,
Register dst1,
Register dst2,
Register heap_number_map,
Register scratch1,
Register scratch2,
Label* not_number) {
if (FLAG_debug_code) {
__ AbortIfNotRootValue(heap_number_map,
Heap::kHeapNumberMapRootIndex,
"HeapNumberMap register clobbered.");
}
Label is_smi, done;
__ JumpIfSmi(object, &is_smi);
__ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
// Handle loading a double from a heap number.
if (CpuFeatures::IsSupported(FPU) &&
destination == kFPURegisters) {
CpuFeatures::Scope scope(FPU);
// Load the double from tagged HeapNumber to double register.
// ARM uses a workaround here because of the unaligned HeapNumber
// kValueOffset. On MIPS this workaround is built into ldc1 so there's no
// point in generating even more instructions.
__ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset));
} else {
ASSERT(destination == kCoreRegisters);
// Load the double from heap number to dst1 and dst2 in double format.
__ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset));
__ lw(dst2, FieldMemOperand(object,
HeapNumber::kValueOffset + kPointerSize));
}
__ Branch(&done);
// Handle loading a double from a smi.
__ bind(&is_smi);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// Convert smi to double using FPU instructions.
__ SmiUntag(scratch1, object);
__ mtc1(scratch1, dst);
__ cvt_d_w(dst, dst);
if (destination == kCoreRegisters) {
// Load the converted smi to dst1 and dst2 in double format.
__ Move(dst1, dst2, dst);
}
} else {
ASSERT(destination == kCoreRegisters);
// Write smi to dst1 and dst2 double format.
__ mov(scratch1, object);
ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
__ push(ra);
__ Call(stub.GetCode());
__ pop(ra);
}
__ bind(&done);
}
void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
Register object,
Register dst,
Register heap_number_map,
Register scratch1,
Register scratch2,
Register scratch3,
FPURegister double_scratch,
Label* not_number) {
if (FLAG_debug_code) {
__ AbortIfNotRootValue(heap_number_map,
Heap::kHeapNumberMapRootIndex,
"HeapNumberMap register clobbered.");
}
Label is_smi;
Label done;
Label not_in_int32_range;
__ JumpIfSmi(object, &is_smi);
__ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
__ Branch(not_number, ne, scratch1, Operand(heap_number_map));
__ ConvertToInt32(object,
dst,
scratch1,
scratch2,
double_scratch,
&not_in_int32_range);
__ jmp(&done);
__ bind(&not_in_int32_range);
__ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
__ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
__ EmitOutOfInt32RangeTruncate(dst,
scratch1,
scratch2,
scratch3);
__ jmp(&done);
__ bind(&is_smi);
__ SmiUntag(dst, object);
__ bind(&done);
}
void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
Register int_scratch,
Destination destination,
FPURegister double_dst,
Register dst1,
Register dst2,
Register scratch2,
FPURegister single_scratch) {
ASSERT(!int_scratch.is(scratch2));
ASSERT(!int_scratch.is(dst1));
ASSERT(!int_scratch.is(dst2));
Label done;
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ mtc1(int_scratch, single_scratch);
__ cvt_d_w(double_dst, single_scratch);
if (destination == kCoreRegisters) {
__ Move(dst1, dst2, double_dst);
}
} else {
Label fewer_than_20_useful_bits;
// Expected output:
// | dst2 | dst1 |
// | s | exp | mantissa |
// Check for zero.
__ mov(dst2, int_scratch);
__ mov(dst1, int_scratch);
__ Branch(&done, eq, int_scratch, Operand(zero_reg));
// Preload the sign of the value.
__ And(dst2, int_scratch, Operand(HeapNumber::kSignMask));
// Get the absolute value of the object (as an unsigned integer).
Label skip_sub;
__ Branch(&skip_sub, ge, dst2, Operand(zero_reg));
__ Subu(int_scratch, zero_reg, int_scratch);
__ bind(&skip_sub);
// Get mantisssa[51:20].
// Get the position of the first set bit.
__ clz(dst1, int_scratch);
__ li(scratch2, 31);
__ Subu(dst1, scratch2, dst1);
// Set the exponent.
__ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias));
__ Ins(dst2, scratch2,
HeapNumber::kExponentShift, HeapNumber::kExponentBits);
// Clear the first non null bit.
__ li(scratch2, Operand(1));
__ sllv(scratch2, scratch2, dst1);
__ li(at, -1);
__ Xor(scratch2, scratch2, at);
__ And(int_scratch, int_scratch, scratch2);
// Get the number of bits to set in the lower part of the mantissa.
__ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
__ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg));
// Set the higher 20 bits of the mantissa.
__ srlv(at, int_scratch, scratch2);
__ or_(dst2, dst2, at);
__ li(at, 32);
__ subu(scratch2, at, scratch2);
__ sllv(dst1, int_scratch, scratch2);
__ Branch(&done);
__ bind(&fewer_than_20_useful_bits);
__ li(at, HeapNumber::kMantissaBitsInTopWord);
__ subu(scratch2, at, dst1);
__ sllv(scratch2, int_scratch, scratch2);
__ Or(dst2, dst2, scratch2);
// Set dst1 to 0.
__ mov(dst1, zero_reg);
}
__ bind(&done);
}
void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
Register object,
Destination destination,
FPURegister double_dst,
Register dst1,
Register dst2,
Register heap_number_map,
Register scratch1,
Register scratch2,
FPURegister single_scratch,
Label* not_int32) {
ASSERT(!scratch1.is(object) && !scratch2.is(object));
ASSERT(!scratch1.is(scratch2));
ASSERT(!heap_number_map.is(object) &&
!heap_number_map.is(scratch1) &&
!heap_number_map.is(scratch2));
Label done, obj_is_not_smi;
__ JumpIfNotSmi(object, &obj_is_not_smi);
__ SmiUntag(scratch1, object);
ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
scratch2, single_scratch);
__ Branch(&done);
__ bind(&obj_is_not_smi);
if (FLAG_debug_code) {
__ AbortIfNotRootValue(heap_number_map,
Heap::kHeapNumberMapRootIndex,
"HeapNumberMap register clobbered.");
}
__ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
// Load the number.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// Load the double value.
__ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset));
// NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
// On MIPS a lot of things cannot be implemented the same way so right
// now it makes a lot more sense to just do things manually.
// Save FCSR.
__ cfc1(scratch1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ trunc_w_d(single_scratch, double_dst);
// Retrieve FCSR.
__ cfc1(scratch2, FCSR);
// Restore FCSR.
__ ctc1(scratch1, FCSR);
// Check for inexact conversion or exception.
__ And(scratch2, scratch2, kFCSRFlagMask);
// Jump to not_int32 if the operation did not succeed.
__ Branch(not_int32, ne, scratch2, Operand(zero_reg));
if (destination == kCoreRegisters) {
__ Move(dst1, dst2, double_dst);
}
} else {
ASSERT(!scratch1.is(object) && !scratch2.is(object));
// Load the double value in the destination registers.
__ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
__ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
// Check for 0 and -0.
__ And(scratch1, dst1, Operand(~HeapNumber::kSignMask));
__ Or(scratch1, scratch1, Operand(dst2));
__ Branch(&done, eq, scratch1, Operand(zero_reg));
// Check that the value can be exactly represented by a 32-bit integer.
// Jump to not_int32 if that's not the case.
DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
// dst1 and dst2 were trashed. Reload the double value.
__ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
__ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
}
__ bind(&done);
}
void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
Register object,
Register dst,
Register heap_number_map,
Register scratch1,
Register scratch2,
Register scratch3,
FPURegister double_scratch,
Label* not_int32) {
ASSERT(!dst.is(object));
ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
ASSERT(!scratch1.is(scratch2) &&
!scratch1.is(scratch3) &&
!scratch2.is(scratch3));
Label done;
// Untag the object into the destination register.
__ SmiUntag(dst, object);
// Just return if the object is a smi.
__ JumpIfSmi(object, &done);
if (FLAG_debug_code) {
__ AbortIfNotRootValue(heap_number_map,
Heap::kHeapNumberMapRootIndex,
"HeapNumberMap register clobbered.");
}
__ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
// Object is a heap number.
// Convert the floating point value to a 32-bit integer.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// Load the double value.
__ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
// NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
// On MIPS a lot of things cannot be implemented the same way so right
// now it makes a lot more sense to just do things manually.
// Save FCSR.
__ cfc1(scratch1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ trunc_w_d(double_scratch, double_scratch);
// Retrieve FCSR.
__ cfc1(scratch2, FCSR);
// Restore FCSR.
__ ctc1(scratch1, FCSR);
// Check for inexact conversion or exception.
__ And(scratch2, scratch2, kFCSRFlagMask);
// Jump to not_int32 if the operation did not succeed.
__ Branch(not_int32, ne, scratch2, Operand(zero_reg));
// Get the result in the destination register.
__ mfc1(dst, double_scratch);
} else {
// Load the double value in the destination registers.
__ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset));
__ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
// Check for 0 and -0.
__ And(dst, scratch1, Operand(~HeapNumber::kSignMask));
__ Or(dst, scratch2, Operand(dst));
__ Branch(&done, eq, dst, Operand(zero_reg));
DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
// Registers state after DoubleIs32BitInteger.
// dst: mantissa[51:20].
// scratch2: 1
// Shift back the higher bits of the mantissa.
__ srlv(dst, dst, scratch3);
// Set the implicit first bit.
__ li(at, 32);
__ subu(scratch3, at, scratch3);
__ sllv(scratch2, scratch2, scratch3);
__ Or(dst, dst, scratch2);
// Set the sign.
__ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
__ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
Label skip_sub;
__ Branch(&skip_sub, ge, scratch1, Operand(zero_reg));
__ Subu(dst, zero_reg, dst);
__ bind(&skip_sub);
}
__ bind(&done);
}
void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
Register src1,
Register src2,
Register dst,
Register scratch,
Label* not_int32) {
// Get exponent alone in scratch.
__ Ext(scratch,
src1,
HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// Substract the bias from the exponent.
__ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias));
// src1: higher (exponent) part of the double value.
// src2: lower (mantissa) part of the double value.
// scratch: unbiased exponent.
// Fast cases. Check for obvious non 32-bit integer values.
// Negative exponent cannot yield 32-bit integers.
__ Branch(not_int32, lt, scratch, Operand(zero_reg));
// Exponent greater than 31 cannot yield 32-bit integers.
// Also, a positive value with an exponent equal to 31 is outside of the
// signed 32-bit integer range.
// Another way to put it is that if (exponent - signbit) > 30 then the
// number cannot be represented as an int32.
Register tmp = dst;
__ srl(at, src1, 31);
__ subu(tmp, scratch, at);
__ Branch(not_int32, gt, tmp, Operand(30));
// - Bits [21:0] in the mantissa are not null.
__ And(tmp, src2, 0x3fffff);
__ Branch(not_int32, ne, tmp, Operand(zero_reg));
// Otherwise the exponent needs to be big enough to shift left all the
// non zero bits left. So we need the (30 - exponent) last bits of the
// 31 higher bits of the mantissa to be null.
// Because bits [21:0] are null, we can check instead that the
// (32 - exponent) last bits of the 32 higher bits of the mantisssa are null.
// Get the 32 higher bits of the mantissa in dst.
__ Ext(dst,
src2,
HeapNumber::kMantissaBitsInTopWord,
32 - HeapNumber::kMantissaBitsInTopWord);
__ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord);
__ or_(dst, dst, at);
// Create the mask and test the lower bits (of the higher bits).
__ li(at, 32);
__ subu(scratch, at, scratch);
__ li(src2, 1);
__ sllv(src1, src2, scratch);
__ Subu(src1, src1, Operand(1));
__ And(src1, dst, src1);
__ Branch(not_int32, ne, src1, Operand(zero_reg));
}
void FloatingPointHelper::CallCCodeForDoubleOperation(
MacroAssembler* masm,
Token::Value op,
Register heap_number_result,
Register scratch) {
// Using core registers:
// a0: Left value (least significant part of mantissa).
// a1: Left value (sign, exponent, top of mantissa).
// a2: Right value (least significant part of mantissa).
// a3: Right value (sign, exponent, top of mantissa).
// Assert that heap_number_result is saved.
// We currently always use s0 to pass it.
ASSERT(heap_number_result.is(s0));
// Push the current return address before the C call.
__ push(ra);
__ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments.
if (!IsMipsSoftFloatABI) {
CpuFeatures::Scope scope(FPU);
// We are not using MIPS FPU instructions, and parameters for the runtime
// function call are prepaired in a0-a3 registers, but function we are
// calling is compiled with hard-float flag and expecting hard float ABI
// (parameters in f12/f14 registers). We need to copy parameters from
// a0-a3 registers to f12/f14 register pairs.
__ Move(f12, a0, a1);
__ Move(f14, a2, a3);
}
// Call C routine that may not cause GC or other trouble.
__ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()),
4);
// Store answer in the overwritable heap number.
if (!IsMipsSoftFloatABI) {
CpuFeatures::Scope scope(FPU);
// Double returned in register f0.
__ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
} else {
// Double returned in registers v0 and v1.
__ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset));
__ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset));
}
// Place heap_number_result in v0 and return to the pushed return address.
__ mov(v0, heap_number_result);
__ pop(ra);
__ Ret();
}
// See comment for class, this does NOT work for int32's that are in Smi range.
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
Label max_negative_int;
// the_int_ has the answer which is a signed int32 but not a Smi.
// We test for the special value that has a different exponent.
STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
// Test sign, and save for later conditionals.
__ And(sign_, the_int_, Operand(0x80000000u));
__ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u));
// Set up the correct exponent in scratch_. All non-Smi int32s have the same.
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
__ li(scratch_, Operand(non_smi_exponent));
// Set the sign bit in scratch_ if the value was negative.
__ or_(scratch_, scratch_, sign_);
// Subtract from 0 if the value was negative.
__ subu(at, zero_reg, the_int_);
__ movn(the_int_, at, sign_);
// We should be masking the implict first digit of the mantissa away here,
// but it just ends up combining harmlessly with the last digit of the
// exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
// the most significant 1 to hit the last bit of the 12 bit sign and exponent.
ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
__ srl(at, the_int_, shift_distance);
__ or_(scratch_, scratch_, at);
__ sw(scratch_, FieldMemOperand(the_heap_number_,
HeapNumber::kExponentOffset));
__ sll(scratch_, the_int_, 32 - shift_distance);
__ sw(scratch_, FieldMemOperand(the_heap_number_,
HeapNumber::kMantissaOffset));
__ Ret();
__ bind(&max_negative_int);
// The max negative int32 is stored as a positive number in the mantissa of
// a double because it uses a sign bit instead of using two's complement.
// The actual mantissa bits stored are all 0 because the implicit most
// significant 1 bit is not stored.
non_smi_exponent += 1 << HeapNumber::kExponentShift;
__ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent));
__ sw(scratch_,
FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
__ mov(scratch_, zero_reg);
__ sw(scratch_,
FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
__ Ret();
}
// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Label* slow,
Condition cc,
bool never_nan_nan) {
Label not_identical;
Label heap_number, return_equal;
Register exp_mask_reg = t5;
__ Branch(&not_identical, ne, a0, Operand(a1));
// The two objects are identical. If we know that one of them isn't NaN then
// we now know they test equal.
if (cc != eq || !never_nan_nan) {
__ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
// Test for NaN. Sadly, we can't just compare to factory->nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
if (cc == less || cc == greater) {
__ GetObjectType(a0, t4, t4);
__ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
} else {
__ GetObjectType(a0, t4, t4);
__ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
// Comparing JS objects with <=, >= is complicated.
if (cc != eq) {
__ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if (cc == less_equal || cc == greater_equal) {
__ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
__ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
__ Branch(&return_equal, ne, a0, Operand(t2));
if (cc == le) {
// undefined <= undefined should fail.
__ li(v0, Operand(GREATER));
} else {
// undefined >= undefined should fail.
__ li(v0, Operand(LESS));
}
__ Ret();
}
}
}
}
__ bind(&return_equal);
if (cc == less) {
__ li(v0, Operand(GREATER)); // Things aren't less than themselves.
} else if (cc == greater) {
__ li(v0, Operand(LESS)); // Things aren't greater than themselves.
} else {
__ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
}
__ Ret();
if (cc != eq || !never_nan_nan) {
// For less and greater we don't have to check for NaN since the result of
// x < x is false regardless. For the others here is some code to check
// for NaN.
if (cc != lt && cc != gt) {
__ bind(&heap_number);
// It is a heap number, so return non-equal if it's NaN and equal if it's
// not NaN.
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// Read top bits of double representation (second word of value).
__ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
// Test that exponent bits are all set.
__ And(t3, t2, Operand(exp_mask_reg));
// If all bits not set (ne cond), then not a NaN, objects are equal.
__ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
// Shift out flag and all exponent bits, retaining only mantissa.
__ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
// Or with all low-bits of mantissa.
__ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
__ Or(v0, t3, Operand(t2));
// For equal we already have the right value in v0: Return zero (equal)
// if all bits in mantissa are zero (it's an Infinity) and non-zero if
// not (it's a NaN). For <= and >= we need to load v0 with the failing
// value if it's a NaN.
if (cc != eq) {
// All-zero means Infinity means equal.
__ Ret(eq, v0, Operand(zero_reg));
if (cc == le) {
__ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
} else {
__ li(v0, Operand(LESS)); // NaN >= NaN should fail.
}
}
__ Ret();
}
// No fall through here.
}
__ bind(&not_identical);
}
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* both_loaded_as_doubles,
Label* slow,
bool strict) {
ASSERT((lhs.is(a0) && rhs.is(a1)) ||
(lhs.is(a1) && rhs.is(a0)));
Label lhs_is_smi;
__ And(t0, lhs, Operand(kSmiTagMask));
__ Branch(&lhs_is_smi, eq, t0, Operand(zero_reg));
// Rhs is a Smi.
// Check whether the non-smi is a heap number.
__ GetObjectType(lhs, t4, t4);
if (strict) {
// If lhs was not a number and rhs was a Smi then strict equality cannot
// succeed. Return non-equal (lhs is already not zero).
__ mov(v0, lhs);
__ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE));
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
}
// Rhs is a smi, lhs is a number.
// Convert smi rhs to double.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ sra(at, rhs, kSmiTagSize);
__ mtc1(at, f14);
__ cvt_d_w(f14, f14);
__ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
} else {
// Load lhs to a double in a2, a3.
__ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
__ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
// Write Smi from rhs to a1 and a0 in double format. t5 is scratch.
__ mov(t6, rhs);
ConvertToDoubleStub stub1(a1, a0, t6, t5);
__ push(ra);
__ Call(stub1.GetCode());
__ pop(ra);
}
// We now have both loaded as doubles.
__ jmp(both_loaded_as_doubles);
__ bind(&lhs_is_smi);
// Lhs is a Smi. Check whether the non-smi is a heap number.
__ GetObjectType(rhs, t4, t4);
if (strict) {
// If lhs was not a number and rhs was a Smi then strict equality cannot
// succeed. Return non-equal.
__ li(v0, Operand(1));
__ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE));
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
}
// Lhs is a smi, rhs is a number.
// Convert smi lhs to double.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ sra(at, lhs, kSmiTagSize);
__ mtc1(at, f12);
__ cvt_d_w(f12, f12);
__ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
} else {
// Convert lhs to a double format. t5 is scratch.
__ mov(t6, lhs);
ConvertToDoubleStub stub2(a3, a2, t6, t5);
__ push(ra);
__ Call(stub2.GetCode());
__ pop(ra);
// Load rhs to a double in a1, a0.
if (rhs.is(a0)) {
__ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
__ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
} else {
__ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
__ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
}
}
// Fall through to both_loaded_as_doubles.
}
void EmitNanCheck(MacroAssembler* masm, Condition cc) {
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// Lhs and rhs are already loaded to f12 and f14 register pairs.
__ Move(t0, t1, f14);
__ Move(t2, t3, f12);
} else {
// Lhs and rhs are already loaded to GP registers.
__ mov(t0, a0); // a0 has LS 32 bits of rhs.
__ mov(t1, a1); // a1 has MS 32 bits of rhs.
__ mov(t2, a2); // a2 has LS 32 bits of lhs.
__ mov(t3, a3); // a3 has MS 32 bits of lhs.
}
Register rhs_exponent = exp_first ? t0 : t1;
Register lhs_exponent = exp_first ? t2 : t3;
Register rhs_mantissa = exp_first ? t1 : t0;
Register lhs_mantissa = exp_first ? t3 : t2;
Label one_is_nan, neither_is_nan;
Label lhs_not_nan_exp_mask_is_loaded;
Register exp_mask_reg = t4;
__ li(exp_mask_reg, HeapNumber::kExponentMask);
__ and_(t5, lhs_exponent, exp_mask_reg);
__ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg));
__ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
__ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
__ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg));
__ li(exp_mask_reg, HeapNumber::kExponentMask);
__ bind(&lhs_not_nan_exp_mask_is_loaded);
__ and_(t5, rhs_exponent, exp_mask_reg);
__ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg));
__ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
__ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
__ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg));
__ bind(&one_is_nan);
// NaN comparisons always fail.
// Load whatever we need in v0 to make the comparison fail.
if (cc == lt || cc == le) {
__ li(v0, Operand(GREATER));
} else {
__ li(v0, Operand(LESS));
}
__ Ret(); // Return.
__ bind(&neither_is_nan);
}
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
// f12 and f14 have the two doubles. Neither is a NaN.
// Call a native function to do a comparison between two non-NaNs.
// Call C routine that may not cause GC or other trouble.
// We use a call_was and return manually because we need arguments slots to
// be freed.
Label return_result_not_equal, return_result_equal;
if (cc == eq) {
// Doubles are not equal unless they have the same bit pattern.
// Exception: 0 and -0.
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// Lhs and rhs are already loaded to f12 and f14 register pairs.
__ Move(t0, t1, f14);
__ Move(t2, t3, f12);
} else {
// Lhs and rhs are already loaded to GP registers.
__ mov(t0, a0); // a0 has LS 32 bits of rhs.
__ mov(t1, a1); // a1 has MS 32 bits of rhs.
__ mov(t2, a2); // a2 has LS 32 bits of lhs.
__ mov(t3, a3); // a3 has MS 32 bits of lhs.
}
Register rhs_exponent = exp_first ? t0 : t1;
Register lhs_exponent = exp_first ? t2 : t3;
Register rhs_mantissa = exp_first ? t1 : t0;
Register lhs_mantissa = exp_first ? t3 : t2;
__ xor_(v0, rhs_mantissa, lhs_mantissa);
__ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg));
__ subu(v0, rhs_exponent, lhs_exponent);
__ Branch(&return_result_equal, eq, v0, Operand(zero_reg));
// 0, -0 case.
__ sll(rhs_exponent, rhs_exponent, kSmiTagSize);
__ sll(lhs_exponent, lhs_exponent, kSmiTagSize);
__ or_(t4, rhs_exponent, lhs_exponent);
__ or_(t4, t4, rhs_mantissa);
__ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg));
__ bind(&return_result_equal);
__ li(v0, Operand(EQUAL));
__ Ret();
}
__ bind(&return_result_not_equal);
if (!CpuFeatures::IsSupported(FPU)) {
__ push(ra);
__ PrepareCallCFunction(4, t4); // Two doubles count as 4 arguments.
if (!IsMipsSoftFloatABI) {
// We are not using MIPS FPU instructions, and parameters for the runtime
// function call are prepaired in a0-a3 registers, but function we are
// calling is compiled with hard-float flag and expecting hard float ABI
// (parameters in f12/f14 registers). We need to copy parameters from
// a0-a3 registers to f12/f14 register pairs.
__ Move(f12, a0, a1);
__ Move(f14, a2, a3);
}
__ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4);
__ pop(ra); // Because this function returns int, result is in v0.
__ Ret();
} else {
CpuFeatures::Scope scope(FPU);
Label equal, less_than;
__ c(EQ, D, f12, f14);
__ bc1t(&equal);
__ nop();
__ c(OLT, D, f12, f14);
__ bc1t(&less_than);
__ nop();
// Not equal, not less, not NaN, must be greater.
__ li(v0, Operand(GREATER));
__ Ret();
__ bind(&equal);
__ li(v0, Operand(EQUAL));
__ Ret();
__ bind(&less_than);
__ li(v0, Operand(LESS));
__ Ret();
}
}
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register lhs,
Register rhs) {
// If either operand is a JS object or an oddball value, then they are
// not equal since their pointers are different.
// There is no test for undetectability in strict equality.
STATIC_ASSERT(LAST_TYPE == LAST_CALLABLE_SPEC_OBJECT_TYPE);
Label first_non_object;
// Get the type of the first operand into a2 and compare it with
// FIRST_SPEC_OBJECT_TYPE.
__ GetObjectType(lhs, a2, a2);
__ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
// Return non-zero.
Label return_not_equal;
__ bind(&return_not_equal);
__ li(v0, Operand(1));
__ Ret();
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
__ GetObjectType(rhs, a3, a3);
__ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
// Check for oddballs: true, false, null, undefined.
__ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
// Now that we have the types we might as well check for symbol-symbol.
// Ensure that no non-strings have the symbol bit set.
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
STATIC_ASSERT(kSymbolTag != 0);
__ And(t2, a2, Operand(a3));
__ And(t0, t2, Operand(kIsSymbolMask));
__ Branch(&return_not_equal, ne, t0, Operand(zero_reg));
}
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* both_loaded_as_doubles,
Label* not_heap_numbers,
Label* slow) {
__ GetObjectType(lhs, a3, a2);
__ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
__ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
// If first was a heap number & second wasn't, go to slow case.
__ Branch(slow, ne, a3, Operand(a2));
// Both are heap numbers. Load them up then jump to the code we have
// for that.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
} else {
__ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
if (rhs.is(a0)) {
__ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
__ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
} else {
__ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
__ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
}
}
__ jmp(both_loaded_as_doubles);
}
// Fast negative check for symbol-to-symbol equality.
static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
Register lhs,
Register rhs,
Label* possible_strings,
Label* not_both_strings) {
ASSERT((lhs.is(a0) && rhs.is(a1)) ||
(lhs.is(a1) && rhs.is(a0)));
// a2 is object type of lhs.
// Ensure that no non-strings have the symbol bit set.
Label object_test;
STATIC_ASSERT(kSymbolTag != 0);
__ And(at, a2, Operand(kIsNotStringMask));
__ Branch(&object_test, ne, at, Operand(zero_reg));
__ And(at, a2, Operand(kIsSymbolMask));
__ Branch(possible_strings, eq, at, Operand(zero_reg));
__ GetObjectType(rhs, a3, a3);
__ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
__ And(at, a3, Operand(kIsSymbolMask));
__ Branch(possible_strings, eq, at, Operand(zero_reg));
// Both are symbols. We already checked they weren't the same pointer
// so they are not equal.
__ li(v0, Operand(1)); // Non-zero indicates not equal.
__ Ret();
__ bind(&object_test);
__ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
__ GetObjectType(rhs, a2, a3);
__ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
// If both objects are undetectable, they are equal. Otherwise, they
// are not equal, since they are different objects and an object is not
// equal to undefined.
__ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
__ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
__ and_(a0, a2, a3);
__ And(a0, a0, Operand(1 << Map::kIsUndetectable));
__ Xor(v0, a0, Operand(1 << Map::kIsUndetectable));
__ Ret();
}
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
bool object_is_smi,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch3;
// Load the number string cache.
__ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
__ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
// Divide length by two (length is a smi).
__ sra(mask, mask, kSmiTagSize + 1);
__ Addu(mask, mask, -1); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Isolate* isolate = masm->isolate();
Label is_smi;
Label load_result_from_cache;
if (!object_is_smi) {
__ JumpIfSmi(object, &is_smi);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ CheckMap(object,
scratch1,
Heap::kHeapNumberMapRootIndex,
not_found,
DONT_DO_SMI_CHECK);
STATIC_ASSERT(8 == kDoubleSize);
__ Addu(scratch1,
object,
Operand(HeapNumber::kValueOffset - kHeapObjectTag));
__ lw(scratch2, MemOperand(scratch1, kPointerSize));
__ lw(scratch1, MemOperand(scratch1, 0));
__ Xor(scratch1, scratch1, Operand(scratch2));
__ And(scratch1, scratch1, Operand(mask));
// Calculate address of entry in string cache: each entry consists
// of two pointer sized fields.
__ sll(scratch1, scratch1, kPointerSizeLog2 + 1);
__ Addu(scratch1, number_string_cache, scratch1);
Register probe = mask;
__ lw(probe,
FieldMemOperand(scratch1, FixedArray::kHeaderSize));
__ JumpIfSmi(probe, not_found);
__ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
__ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
__ c(EQ, D, f12, f14);
__ bc1t(&load_result_from_cache);
__ nop(); // bc1t() requires explicit fill of branch delay slot.
__ Branch(not_found);
} else {
// Note that there is no cache check for non-FPU case, even though
// it seems there could be. May be a tiny opimization for non-FPU
// cores.
__ Branch(not_found);
}
}
__ bind(&is_smi);
Register scratch = scratch1;
__ sra(scratch, object, 1); // Shift away the tag.
__ And(scratch, mask, Operand(scratch));
// Calculate address of entry in string cache: each entry consists
// of two pointer sized fields.
__ sll(scratch, scratch, kPointerSizeLog2 + 1);
__ Addu(scratch, number_string_cache, scratch);
// Check if the entry is the smi we are looking for.
Register probe = mask;
__ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
__ Branch(not_found, ne, object, Operand(probe));
// Get the result from the cache.
__ bind(&load_result_from_cache);
__ lw(result,
FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
__ IncrementCounter(isolate->counters()->number_to_string_native(),
1,
scratch1,
scratch2);
}
void NumberToStringStub::Generate(MacroAssembler* masm) {
Label runtime;
__ lw(a1, MemOperand(sp, 0));
// Generate code to lookup number in the number string cache.
GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime);
__ Addu(sp, sp, Operand(1 * kPointerSize));
__ Ret();
__ bind(&runtime);
// Handle number to string in the runtime system if not found in the cache.
__ TailCallRuntime(Runtime::kNumberToString, 1, 1);
}
// On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared.
// On exit, v0 is 0, positive, or negative (smi) to indicate the result
// of the comparison.
void CompareStub::Generate(MacroAssembler* masm) {
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles;
if (include_smi_compare_) {
Label not_two_smis, smi_done;
__ Or(a2, a1, a0);
__ JumpIfNotSmi(a2, &not_two_smis);
__ sra(a1, a1, 1);
__ sra(a0, a0, 1);
__ Subu(v0, a1, a0);
__ Ret();
__ bind(&not_two_smis);
} else if (FLAG_debug_code) {
__ Or(a2, a1, a0);
__ And(a2, a2, kSmiTagMask);
__ Assert(ne, "CompareStub: unexpected smi operands.",
a2, Operand(zero_reg));
}
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
// If either is a Smi (we know that not both are), then they can only
// be strictly equal if the other is a HeapNumber.
STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(0, Smi::FromInt(0));
__ And(t2, lhs_, Operand(rhs_));
__ JumpIfNotSmi(t2, &not_smis, t0);
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
// 1) Return the answer.
// 2) Go to slow.
// 3) Fall through to both_loaded_as_doubles.
// 4) Jump to rhs_not_nan.
// In cases 3 and 4 we have found out we were dealing with a number-number
// comparison and the numbers have been loaded into f12 and f14 as doubles,
// or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
EmitSmiNonsmiComparison(masm, lhs_, rhs_,
&both_loaded_as_doubles, &slow, strict_);
__ bind(&both_loaded_as_doubles);
// f12, f14 are the double representations of the left hand side
// and the right hand side if we have FPU. Otherwise a2, a3 represent
// left hand side and a0, a1 represent right hand side.
Isolate* isolate = masm->isolate();
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
Label nan;
__ li(t0, Operand(LESS));
__ li(t1, Operand(GREATER));
__ li(t2, Operand(EQUAL));
// Check if either rhs or lhs is NaN.
__ c(UN, D, f12, f14);
__ bc1t(&nan);
__ nop();
// Check if LESS condition is satisfied. If true, move conditionally
// result to v0.
__ c(OLT, D, f12, f14);
__ movt(v0, t0);
// Use previous check to store conditionally to v0 oposite condition
// (GREATER). If rhs is equal to lhs, this will be corrected in next
// check.
__ movf(v0, t1);
// Check if EQUAL condition is satisfied. If true, move conditionally
// result to v0.
__ c(EQ, D, f12, f14);
__ movt(v0, t2);
__ Ret();
__ bind(&nan);
// NaN comparisons always fail.
// Load whatever we need in v0 to make the comparison fail.
if (cc_ == lt || cc_ == le) {
__ li(v0, Operand(GREATER));
} else {
__ li(v0, Operand(LESS));
}
__ Ret();
} else {
// Checks for NaN in the doubles we have loaded. Can return the answer or
// fall through if neither is a NaN. Also binds rhs_not_nan.
EmitNanCheck(masm, cc_);
// Compares two doubles that are not NaNs. Returns the answer.
// Never falls through.
EmitTwoNonNanDoubleComparison(masm, cc_);
}
__ bind(&not_smis);
// At this point we know we are dealing with two different objects,
// and neither of them is a Smi. The objects are in lhs_ and rhs_.
if (strict_) {
// This returns non-equal for some object types, or falls through if it
// was not lucky.
EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
}
Label check_for_symbols;
Label flat_string_check;
// Check for heap-number-heap-number comparison. Can jump to slow case,
// or load both doubles and jump to the code that handles
// that case. If the inputs are not doubles then jumps to check_for_symbols.
// In this case a2 will contain the type of lhs_.
EmitCheckForTwoHeapNumbers(masm,
lhs_,
rhs_,
&both_loaded_as_doubles,
&check_for_symbols,
&flat_string_check);
__ bind(&check_for_symbols);
if (cc_ == eq && !strict_) {
// Returns an answer for two symbols or two detectable objects.
// Otherwise jumps to string case or not both strings case.
// Assumes that a2 is the type of lhs_ on entry.
EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
}
// Check for both being sequential ASCII strings, and inline if that is the
// case.
__ bind(&flat_string_check);
__ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow);
__ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3);
if (cc_ == eq) {
StringCompareStub::GenerateFlatAsciiStringEquals(masm,
lhs_,
rhs_,
a2,
a3,
t0);
} else {
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
lhs_,
rhs_,
a2,
a3,
t0,
t1);
}
// Never falls through to here.
__ bind(&slow);
// Prepare for call to builtin. Push object pointers, a0 (lhs) first,
// a1 (rhs) second.
__ Push(lhs_, rhs_);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript native;
if (cc_ == eq) {
native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
native = Builtins::COMPARE;
int ncr; // NaN compare result.
if (cc_ == lt || cc_ == le) {
ncr = GREATER;
} else {
ASSERT(cc_ == gt || cc_ == ge); // Remaining cases.
ncr = LESS;
}
__ li(a0, Operand(Smi::FromInt(ncr)));
__ push(a0);
}
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(native, JUMP_FUNCTION);
}
// The stub returns zero for false, and a non-zero value for true.
void ToBooleanStub::Generate(MacroAssembler* masm) {
// This stub uses FPU instructions.
CpuFeatures::Scope scope(FPU);
Label false_result;
Label not_heap_number;
Register scratch0 = t5.is(tos_) ? t3 : t5;
// undefined -> false
__ LoadRoot(scratch0, Heap::kUndefinedValueRootIndex);
__ Branch(&false_result, eq, tos_, Operand(scratch0));
// Boolean -> its value
__ LoadRoot(scratch0, Heap::kFalseValueRootIndex);
__ Branch(&false_result, eq, tos_, Operand(scratch0));
__ LoadRoot(scratch0, Heap::kTrueValueRootIndex);
// "tos_" is a register and contains a non-zero value. Hence we implicitly
// return true if the equal condition is satisfied.
__ Ret(eq, tos_, Operand(scratch0));
// Smis: 0 -> false, all other -> true
__ And(scratch0, tos_, tos_);
__ Branch(&false_result, eq, scratch0, Operand(zero_reg));
__ And(scratch0, tos_, Operand(kSmiTagMask));
// "tos_" is a register and contains a non-zero value. Hence we implicitly
// return true if the not equal condition is satisfied.
__ Ret(eq, scratch0, Operand(zero_reg));
// 'null' -> false
__ LoadRoot(scratch0, Heap::kNullValueRootIndex);
__ Branch(&false_result, eq, tos_, Operand(scratch0));
// HeapNumber => false if +0, -0, or NaN.
__ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&not_heap_number, ne, scratch0, Operand(at));
__ ldc1(f12, FieldMemOperand(tos_, HeapNumber::kValueOffset));
__ fcmp(f12, 0.0, UEQ);
// "tos_" is a register, and contains a non zero value by default.
// Hence we only need to overwrite "tos_" with zero to return false for
// FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
__ movt(tos_, zero_reg);
__ Ret();
__ bind(&not_heap_number);
// It can be an undetectable object.
// Undetectable => false.
__ lw(at, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ lbu(scratch0, FieldMemOperand(at, Map::kBitFieldOffset));
__ And(scratch0, scratch0, Operand(1 << Map::kIsUndetectable));
__ Branch(&false_result, eq, scratch0, Operand(1 << Map::kIsUndetectable));
// JavaScript object => true.
__ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
// "tos_" is a register and contains a non-zero value.
// Hence we implicitly return true if the greater than
// condition is satisfied.
__ Ret(ge, scratch0, Operand(FIRST_SPEC_OBJECT_TYPE));
// Check for string.
__ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
// "tos_" is a register and contains a non-zero value.
// Hence we implicitly return true if the greater than
// condition is satisfied.
__ Ret(ge, scratch0, Operand(FIRST_NONSTRING_TYPE));
// String value => false iff empty, i.e., length is zero.
__ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset));
// If length is zero, "tos_" contains zero ==> false.
// If length is not zero, "tos_" contains a non-zero value ==> true.
__ Ret();
// Return 0 in "tos_" for false.
__ bind(&false_result);
__ mov(tos_, zero_reg);
__ Ret();
}
void UnaryOpStub::PrintName(StringStream* stream) {
const char* op_name = Token::Name(op_);
const char* overwrite_name = NULL; // Make g++ happy.
switch (mode_) {
case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
}
stream->Add("UnaryOpStub_%s_%s_%s",
op_name,
overwrite_name,
UnaryOpIC::GetName(operand_type_));
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::Generate(MacroAssembler* masm) {
switch (operand_type_) {
case UnaryOpIC::UNINITIALIZED:
GenerateTypeTransition(masm);
break;
case UnaryOpIC::SMI:
GenerateSmiStub(masm);
break;
case UnaryOpIC::HEAP_NUMBER:
GenerateHeapNumberStub(masm);
break;
case UnaryOpIC::GENERIC:
GenerateGenericStub(masm);
break;
}
}
void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
// Argument is in a0 and v0 at this point, so we can overwrite a0.
__ li(a2, Operand(Smi::FromInt(op_)));
__ li(a1, Operand(Smi::FromInt(mode_)));
__ li(a0, Operand(Smi::FromInt(operand_type_)));
__ Push(v0, a2, a1, a0);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateSmiStubSub(masm);
break;
case Token::BIT_NOT:
GenerateSmiStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeSub(masm, &non_smi, &slow);
__ bind(&non_smi);
__ bind(&slow);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
Label non_smi;
GenerateSmiCodeBitNot(masm, &non_smi);
__ bind(&non_smi);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
Label* non_smi,
Label* slow) {
__ JumpIfNotSmi(a0, non_smi);
// The result of negating zero or the smallest negative smi is not a smi.
__ And(t0, a0, ~0x80000000);
__ Branch(slow, eq, t0, Operand(zero_reg));
// Return '0 - value'.
__ Subu(v0, zero_reg, a0);
__ Ret();
}
void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
Label* non_smi) {
__ JumpIfNotSmi(a0, non_smi);
// Flip bits and revert inverted smi-tag.
__ Neg(v0, a0);
__ And(v0, v0, ~kSmiTagMask);
__ Ret();
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateHeapNumberStubSub(masm);
break;
case Token::BIT_NOT:
GenerateHeapNumberStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
Label non_smi, slow, call_builtin;
GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
__ bind(&non_smi);
GenerateHeapNumberCodeSub(masm, &slow);
__ bind(&slow);
GenerateTypeTransition(masm);
__ bind(&call_builtin);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeBitNot(masm, &non_smi);
__ bind(&non_smi);
GenerateHeapNumberCodeBitNot(masm, &slow);
__ bind(&slow);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
Label* slow) {
EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
// a0 is a heap number. Get a new heap number in a1.
if (mode_ == UNARY_OVERWRITE) {
__ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
__ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign.
__ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
} else {
Label slow_allocate_heapnumber, heapnumber_allocated;
__ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
__ EnterInternalFrame();
__ push(a0);
__ CallRuntime(Runtime::kNumberAlloc, 0);
__ mov(a1, v0);
__ pop(a0);
__ LeaveInternalFrame();
__ bind(&heapnumber_allocated);
__ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
__ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
__ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset));
__ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign.
__ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset));
__ mov(v0, a1);
}
__ Ret();
}
void UnaryOpStub::GenerateHeapNumberCodeBitNot(
MacroAssembler* masm,
Label* slow) {
Label impossible;
EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
// Convert the heap number in a0 to an untagged integer in a1.
__ ConvertToInt32(a0, a1, a2, a3, f0, slow);
// Do the bitwise operation and check if the result fits in a smi.
Label try_float;
__ Neg(a1, a1);
__ Addu(a2, a1, Operand(0x40000000));
__ Branch(&try_float, lt, a2, Operand(zero_reg));
// Tag the result as a smi and we're done.
__ SmiTag(v0, a1);
__ Ret();
// Try to store the result in a heap number.
__ bind(&try_float);
if (mode_ == UNARY_NO_OVERWRITE) {
Label slow_allocate_heapnumber, heapnumber_allocated;
// Allocate a new heap number without zapping v0, which we need if it fails.
__ AllocateHeapNumber(a2, a3, t0, t2, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
__ EnterInternalFrame();
__ push(v0); // Push the heap number, not the untagged int32.
__ CallRuntime(Runtime::kNumberAlloc, 0);
__ mov(a2, v0); // Move the new heap number into a2.
// Get the heap number into v0, now that the new heap number is in a2.
__ pop(v0);
__ LeaveInternalFrame();
// Convert the heap number in v0 to an untagged integer in a1.
// This can't go slow-case because it's the same number we already
// converted once again.
__ ConvertToInt32(v0, a1, a3, t0, f0, &impossible);
// Negate the result.
__ Xor(a1, a1, -1);
__ bind(&heapnumber_allocated);
__ mov(v0, a2); // Move newly allocated heap number to v0.
}
if (CpuFeatures::IsSupported(FPU)) {
// Convert the int32 in a1 to the heap number in v0. a2 is corrupted.
CpuFeatures::Scope scope(FPU);
__ mtc1(a1, f0);
__ cvt_d_w(f0, f0);
__ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
__ Ret();
} else {
// WriteInt32ToHeapNumberStub does not trigger GC, so we do not
// have to set up a frame.
WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
__ bind(&impossible);
if (FLAG_debug_code) {
__ stop("Incorrect assumption in bit-not stub");
}
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateGenericStubSub(masm);
break;
case Token::BIT_NOT:
GenerateGenericStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeSub(masm, &non_smi, &slow);
__ bind(&non_smi);
GenerateHeapNumberCodeSub(masm, &slow);
__ bind(&slow);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeBitNot(masm, &non_smi);
__ bind(&non_smi);
GenerateHeapNumberCodeBitNot(masm, &slow);
__ bind(&slow);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateGenericCodeFallback(
MacroAssembler* masm) {
// Handle the slow case by jumping to the JavaScript builtin.
__ push(a0);
switch (op_) {
case Token::SUB:
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
break;
case Token::BIT_NOT:
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Label get_result;
__ Push(a1, a0);
__ li(a2, Operand(Smi::FromInt(MinorKey())));
__ li(a1, Operand(Smi::FromInt(op_)));
__ li(a0, Operand(Smi::FromInt(operands_type_)));
__ Push(a2, a1, a0);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
masm->isolate()),
5,
1);
}
void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
MacroAssembler* masm) {
UNIMPLEMENTED();
}
void BinaryOpStub::Generate(MacroAssembler* masm) {
switch (operands_type_) {
case BinaryOpIC::UNINITIALIZED:
GenerateTypeTransition(masm);
break;
case BinaryOpIC::SMI:
GenerateSmiStub(masm);
break;
case BinaryOpIC::INT32:
GenerateInt32Stub(masm);
break;
case BinaryOpIC::HEAP_NUMBER:
GenerateHeapNumberStub(masm);
break;
case BinaryOpIC::ODDBALL:
GenerateOddballStub(masm);
break;
case BinaryOpIC::BOTH_STRING:
GenerateBothStringStub(masm);
break;
case BinaryOpIC::STRING:
GenerateStringStub(masm);
break;
case BinaryOpIC::GENERIC:
GenerateGeneric(masm);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::PrintName(StringStream* stream) {
const char* op_name = Token::Name(op_);
const char* overwrite_name;
switch (mode_) {
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
default: overwrite_name = "UnknownOverwrite"; break;
}
stream->Add("BinaryOpStub_%s_%s_%s",
op_name,
overwrite_name,
BinaryOpIC::GetName(operands_type_));
}
void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
Register left = a1;
Register right = a0;
Register scratch1 = t0;
Register scratch2 = t1;
ASSERT(right.is(a0));
STATIC_ASSERT(kSmiTag == 0);
Label not_smi_result;
switch (op_) {
case Token::ADD:
__ AdduAndCheckForOverflow(v0, left, right, scratch1);
__ RetOnNoOverflow(scratch1);
// No need to revert anything - right and left are intact.
break;
case Token::SUB:
__ SubuAndCheckForOverflow(v0, left, right, scratch1);
__ RetOnNoOverflow(scratch1);
// No need to revert anything - right and left are intact.
break;
case Token::MUL: {
// Remove tag from one of the operands. This way the multiplication result
// will be a smi if it fits the smi range.
__ SmiUntag(scratch1, right);
// Do multiplication.
// lo = lower 32 bits of scratch1 * left.
// hi = higher 32 bits of scratch1 * left.
__ Mult(left, scratch1);
// Check for overflowing the smi range - no overflow if higher 33 bits of
// the result are identical.
__ mflo(scratch1);
__ mfhi(scratch2);
__ sra(scratch1, scratch1, 31);
__ Branch(&not_smi_result, ne, scratch1, Operand(scratch2));
// Go slow on zero result to handle -0.
__ mflo(v0);
__ Ret(ne, v0, Operand(zero_reg));
// We need -0 if we were multiplying a negative number with 0 to get 0.
// We know one of them was zero.
__ Addu(scratch2, right, left);
Label skip;
// ARM uses the 'pl' condition, which is 'ge'.
// Negating it results in 'lt'.
__ Branch(&skip, lt, scratch2, Operand(zero_reg));
ASSERT(Smi::FromInt(0) == 0);
__ mov(v0, zero_reg);
__ Ret(); // Return smi 0 if the non-zero one was positive.
__ bind(&skip);
// We fall through here if we multiplied a negative number with 0, because
// that would mean we should produce -0.
}
break;
case Token::DIV: {
Label done;
__ SmiUntag(scratch2, right);
__ SmiUntag(scratch1, left);
__ Div(scratch1, scratch2);
// A minor optimization: div may be calculated asynchronously, so we check
// for division by zero before getting the result.
__ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
// If the result is 0, we need to make sure the dividsor (right) is
// positive, otherwise it is a -0 case.
// Quotient is in 'lo', remainder is in 'hi'.
// Check for no remainder first.
__ mfhi(scratch1);
__ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
__ mflo(scratch1);
__ Branch(&done, ne, scratch1, Operand(zero_reg));
__ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
__ bind(&done);
// Check that the signed result fits in a Smi.
__ Addu(scratch2, scratch1, Operand(0x40000000));
__ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
__ SmiTag(v0, scratch1);
__ Ret();
}
break;
case Token::MOD: {
Label done;
__ SmiUntag(scratch2, right);
__ SmiUntag(scratch1, left);
__ Div(scratch1, scratch2);
// A minor optimization: div may be calculated asynchronously, so we check
// for division by 0 before calling mfhi.
// Check for zero on the right hand side.
__ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
// If the result is 0, we need to make sure the dividend (left) is
// positive (or 0), otherwise it is a -0 case.
// Remainder is in 'hi'.
__ mfhi(scratch2);
__ Branch(&done, ne, scratch2, Operand(zero_reg));
__ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
__ bind(&done);
// Check that the signed result fits in a Smi.
__ Addu(scratch1, scratch2, Operand(0x40000000));
__ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
__ SmiTag(v0, scratch2);
__ Ret();
}
break;
case Token::BIT_OR:
__ Or(v0, left, Operand(right));
__ Ret();
break;
case Token::BIT_AND:
__ And(v0, left, Operand(right));
__ Ret();
break;
case Token::BIT_XOR:
__ Xor(v0, left, Operand(right));
__ Ret();
break;
case Token::SAR:
// Remove tags from right operand.
__ GetLeastBitsFromSmi(scratch1, right, 5);
__ srav(scratch1, left, scratch1);
// Smi tag result.
__ And(v0, scratch1, Operand(~kSmiTagMask));
__ Ret();
break;
case Token::SHR:
// Remove tags from operands. We can't do this on a 31 bit number
// because then the 0s get shifted into bit 30 instead of bit 31.
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ srlv(v0, scratch1, scratch2);
// Unsigned shift is not allowed to produce a negative number, so
// check the sign bit and the sign bit after Smi tagging.
__ And(scratch1, v0, Operand(0xc0000000));
__ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
// Smi tag result.
__ SmiTag(v0);
__ Ret();
break;
case Token::SHL:
// Remove tags from operands.
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ sllv(scratch1, scratch1, scratch2);
// Check that the signed result fits in a Smi.
__ Addu(scratch2, scratch1, Operand(0x40000000));
__ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
__ SmiTag(v0, scratch1);
__ Ret();
break;
default:
UNREACHABLE();
}
__ bind(&not_smi_result);
}
void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
bool smi_operands,
Label* not_numbers,
Label* gc_required) {
Register left = a1;
Register right = a0;
Register scratch1 = t3;
Register scratch2 = t5;
Register scratch3 = t0;
ASSERT(smi_operands || (not_numbers != NULL));
if (smi_operands && FLAG_debug_code) {
__ AbortIfNotSmi(left);
__ AbortIfNotSmi(right);
}
Register heap_number_map = t2;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD: {
// Load left and right operands into f12 and f14 or a0/a1 and a2/a3
// depending on whether FPU is available or not.
FloatingPointHelper::Destination destination =
CpuFeatures::IsSupported(FPU) &&
op_ != Token::MOD ?
FloatingPointHelper::kFPURegisters :
FloatingPointHelper::kCoreRegisters;
// Allocate new heap number for result.
Register result = s0;
GenerateHeapResultAllocation(
masm, result, heap_number_map, scratch1, scratch2, gc_required);
// Load the operands.
if (smi_operands) {
FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
} else {
FloatingPointHelper::LoadOperands(masm,
destination,
heap_number_map,
scratch1,
scratch2,
not_numbers);
}
// Calculate the result.
if (destination == FloatingPointHelper::kFPURegisters) {
// Using FPU registers:
// f12: Left value.
// f14: Right value.
CpuFeatures::Scope scope(FPU);
switch (op_) {
case Token::ADD:
__ add_d(f10, f12, f14);
break;
case Token::SUB:
__ sub_d(f10, f12, f14);
break;
case Token::MUL:
__ mul_d(f10, f12, f14);
break;
case Token::DIV:
__ div_d(f10, f12, f14);
break;
default:
UNREACHABLE();
}
// ARM uses a workaround here because of the unaligned HeapNumber
// kValueOffset. On MIPS this workaround is built into sdc1 so
// there's no point in generating even more instructions.
__ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset));
__ mov(v0, result);
__ Ret();
} else {
// Call the C function to handle the double operation.
FloatingPointHelper::CallCCodeForDoubleOperation(masm,
op_,
result,
scratch1);
if (FLAG_debug_code) {
__ stop("Unreachable code.");
}
}
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SAR:
case Token::SHR:
case Token::SHL: {
if (smi_operands) {
__ SmiUntag(a3, left);
__ SmiUntag(a2, right);
} else {
// Convert operands to 32-bit integers. Right in a2 and left in a3.
FloatingPointHelper::ConvertNumberToInt32(masm,
left,
a3,
heap_number_map,
scratch1,
scratch2,
scratch3,
f0,
not_numbers);
FloatingPointHelper::ConvertNumberToInt32(masm,
right,
a2,
heap_number_map,
scratch1,
scratch2,
scratch3,
f0,
not_numbers);
}
Label result_not_a_smi;
switch (op_) {
case Token::BIT_OR:
__ Or(a2, a3, Operand(a2));
break;
case Token::BIT_XOR:
__ Xor(a2, a3, Operand(a2));
break;
case Token::BIT_AND:
__ And(a2, a3, Operand(a2));
break;
case Token::SAR:
// Use only the 5 least significant bits of the shift count.
__ GetLeastBitsFromInt32(a2, a2, 5);
__ srav(a2, a3, a2);
break;
case Token::SHR:
// Use only the 5 least significant bits of the shift count.
__ GetLeastBitsFromInt32(a2, a2, 5);
__ srlv(a2, a3, a2);
// SHR is special because it is required to produce a positive answer.
// The code below for writing into heap numbers isn't capable of
// writing the register as an unsigned int so we go to slow case if we
// hit this case.
if (CpuFeatures::IsSupported(FPU)) {
__ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg));
} else {
__ Branch(not_numbers, lt, a2, Operand(zero_reg));
}
break;
case Token::SHL:
// Use only the 5 least significant bits of the shift count.
__ GetLeastBitsFromInt32(a2, a2, 5);
__ sllv(a2, a3, a2);
break;
default:
UNREACHABLE();
}
// Check that the *signed* result fits in a smi.
__ Addu(a3, a2, Operand(0x40000000));
__ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg));
__ SmiTag(v0, a2);
__ Ret();
// Allocate new heap number for result.
__ bind(&result_not_a_smi);
Register result = t1;
if (smi_operands) {
__ AllocateHeapNumber(
result, scratch1, scratch2, heap_number_map, gc_required);
} else {
GenerateHeapResultAllocation(
masm, result, heap_number_map, scratch1, scratch2, gc_required);
}
// a2: Answer as signed int32.
// t1: Heap number to write answer into.
// Nothing can go wrong now, so move the heap number to v0, which is the
// result.
__ mov(v0, t1);
if (CpuFeatures::IsSupported(FPU)) {
// Convert the int32 in a2 to the heap number in a0. As
// mentioned above SHR needs to always produce a positive result.
CpuFeatures::Scope scope(FPU);
__ mtc1(a2, f0);
if (op_ == Token::SHR) {
__ Cvt_d_uw(f0, f0, f22);
} else {
__ cvt_d_w(f0, f0);
}
// ARM uses a workaround here because of the unaligned HeapNumber
// kValueOffset. On MIPS this workaround is built into sdc1 so
// there's no point in generating even more instructions.
__ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
__ Ret();
} else {
// Tail call that writes the int32 in a2 to the heap number in v0, using
// a3 and a0 as scratch. v0 is preserved and returned.
WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
__ TailCallStub(&stub);
}
break;
}
default:
UNREACHABLE();
}
}
// Generate the smi code. If the operation on smis are successful this return is
// generated. If the result is not a smi and heap number allocation is not
// requested the code falls through. If number allocation is requested but a
// heap number cannot be allocated the code jumps to the lable gc_required.
void BinaryOpStub::GenerateSmiCode(
MacroAssembler* masm,
Label* use_runtime,
Label* gc_required,
SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
Label not_smis;
Register left = a1;
Register right = a0;
Register scratch1 = t3;
Register scratch2 = t5;
// Perform combined smi check on both operands.
__ Or(scratch1, left, Operand(right));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(scratch1, &not_smis);
// If the smi-smi operation results in a smi return is generated.
GenerateSmiSmiOperation(masm);
// If heap number results are possible generate the result in an allocated
// heap number.
if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
GenerateFPOperation(masm, true, use_runtime, gc_required);
}
__ bind(&not_smis);
}
void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Label not_smis, call_runtime;
if (result_type_ == BinaryOpIC::UNINITIALIZED ||
result_type_ == BinaryOpIC::SMI) {
// Only allow smi results.
GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
} else {
// Allow heap number result and don't make a transition if a heap number
// cannot be allocated.
GenerateSmiCode(masm,
&call_runtime,
&call_runtime,
ALLOW_HEAPNUMBER_RESULTS);
}
// Code falls through if the result is not returned as either a smi or heap
// number.
GenerateTypeTransition(masm);
__ bind(&call_runtime);
GenerateCallRuntime(masm);
}
void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
ASSERT(operands_type_ == BinaryOpIC::STRING);
// Try to add arguments as strings, otherwise, transition to the generic
// BinaryOpIC type.
GenerateAddStrings(masm);
GenerateTypeTransition(masm);
}
void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
Label call_runtime;
ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
ASSERT(op_ == Token::ADD);
// If both arguments are strings, call the string add stub.
// Otherwise, do a transition.
// Registers containing left and right operands respectively.
Register left = a1;
Register right = a0;
// Test if left operand is a string.
__ JumpIfSmi(left, &call_runtime);
__ GetObjectType(left, a2, a2);
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
// Test if right operand is a string.
__ JumpIfSmi(right, &call_runtime);
__ GetObjectType(right, a2, a2);
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_stub);
__ bind(&call_runtime);
GenerateTypeTransition(masm);
}
void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
ASSERT(operands_type_ == BinaryOpIC::INT32);
Register left = a1;
Register right = a0;
Register scratch1 = t3;
Register scratch2 = t5;
FPURegister double_scratch = f0;
FPURegister single_scratch = f6;
Register heap_number_result = no_reg;
Register heap_number_map = t2;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
Label call_runtime;
// Labels for type transition, used for wrong input or output types.
// Both label are currently actually bound to the same position. We use two
// different label to differentiate the cause leading to type transition.
Label transition;
// Smi-smi fast case.
Label skip;
__ Or(scratch1, left, right);
__ JumpIfNotSmi(scratch1, &skip);
GenerateSmiSmiOperation(masm);
// Fall through if the result is not a smi.
__ bind(&skip);
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD: {
// Load both operands and check that they are 32-bit integer.
// Jump to type transition if they are not. The registers a0 and a1 (right
// and left) are preserved for the runtime call.
FloatingPointHelper::Destination destination =
(CpuFeatures::IsSupported(FPU) && op_ != Token::MOD)
? FloatingPointHelper::kFPURegisters
: FloatingPointHelper::kCoreRegisters;
FloatingPointHelper::LoadNumberAsInt32Double(masm,
right,
destination,
f14,
a2,
a3,
heap_number_map,
scratch1,
scratch2,
f2,
&transition);
FloatingPointHelper::LoadNumberAsInt32Double(masm,
left,
destination,
f12,
t0,
t1,
heap_number_map,
scratch1,
scratch2,
f2,
&transition);
if (destination == FloatingPointHelper::kFPURegisters) {
CpuFeatures::Scope scope(FPU);
Label return_heap_number;
switch (op_) {
case Token::ADD:
__ add_d(f10, f12, f14);
break;
case Token::SUB:
__ sub_d(f10, f12, f14);
break;
case Token::MUL:
__ mul_d(f10, f12, f14);
break;
case Token::DIV:
__ div_d(f10, f12, f14);
break;
default:
UNREACHABLE();
}
if (op_ != Token::DIV) {
// These operations produce an integer result.
// Try to return a smi if we can.
// Otherwise return a heap number if allowed, or jump to type
// transition.
// NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
// On MIPS a lot of things cannot be implemented the same way so right
// now it makes a lot more sense to just do things manually.
// Save FCSR.
__ cfc1(scratch1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ trunc_w_d(single_scratch, f10);
// Retrieve FCSR.
__ cfc1(scratch2, FCSR);
// Restore FCSR.
__ ctc1(scratch1, FCSR);
// Check for inexact conversion or exception.
__ And(scratch2, scratch2, kFCSRFlagMask);
if (result_type_ <= BinaryOpIC::INT32) {
// If scratch2 != 0, result does not fit in a 32-bit integer.
__ Branch(&transition, ne, scratch2, Operand(zero_reg));
}
// Check if the result fits in a smi.
__ mfc1(scratch1, single_scratch);
__ Addu(scratch2, scratch1, Operand(0x40000000));
// If not try to return a heap number.
__ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg));
// Check for minus zero. Return heap number for minus zero.
Label not_zero;
__ Branch(&not_zero, ne, scratch1, Operand(zero_reg));
__ mfc1(scratch2, f11);
__ And(scratch2, scratch2, HeapNumber::kSignMask);
__ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg));
__ bind(&not_zero);
// Tag the result and return.
__ SmiTag(v0, scratch1);
__ Ret();
} else {
// DIV just falls through to allocating a heap number.
}
__ bind(&return_heap_number);
// Return a heap number, or fall through to type transition or runtime
// call if we can't.
if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
: BinaryOpIC::INT32)) {
// We are using FPU registers so s0 is available.
heap_number_result = s0;
GenerateHeapResultAllocation(masm,
heap_number_result,
heap_number_map,
scratch1,
scratch2,
&call_runtime);
__ mov(v0, heap_number_result);
__ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset));
__ Ret();
}
// A DIV operation expecting an integer result falls through
// to type transition.
} else {
// We preserved a0 and a1 to be able to call runtime.
// Save the left value on the stack.
__ Push(t1, t0);
Label pop_and_call_runtime;
// Allocate a heap number to store the result.
heap_number_result = s0;
GenerateHeapResultAllocation(masm,
heap_number_result,
heap_number_map,
scratch1,
scratch2,
&pop_and_call_runtime);
// Load the left value from the value saved on the stack.
__ Pop(a1, a0);
// Call the C function to handle the double operation.
FloatingPointHelper::CallCCodeForDoubleOperation(
masm, op_, heap_number_result, scratch1);
if (FLAG_debug_code) {
__ stop("Unreachable code.");
}
__ bind(&pop_and_call_runtime);
__ Drop(2);
__ Branch(&call_runtime);
}
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SAR:
case Token::SHR:
case Token::SHL: {
Label return_heap_number;
Register scratch3 = t1;
// Convert operands to 32-bit integers. Right in a2 and left in a3. The
// registers a0 and a1 (right and left) are preserved for the runtime
// call.
FloatingPointHelper::LoadNumberAsInt32(masm,
left,
a3,
heap_number_map,
scratch1,
scratch2,
scratch3,
f0,
&transition);
FloatingPointHelper::LoadNumberAsInt32(masm,
right,
a2,
heap_number_map,
scratch1,
scratch2,
scratch3,
f0,
&transition);
// The ECMA-262 standard specifies that, for shift operations, only the
// 5 least significant bits of the shift value should be used.
switch (op_) {
case Token::BIT_OR:
__ Or(a2, a3, Operand(a2));
break;
case Token::BIT_XOR:
__ Xor(a2, a3, Operand(a2));
break;
case Token::BIT_AND:
__ And(a2, a3, Operand(a2));
break;
case Token::SAR:
__ And(a2, a2, Operand(0x1f));
__ srav(a2, a3, a2);
break;
case Token::SHR:
__ And(a2, a2, Operand(0x1f));
__ srlv(a2, a3, a2);
// SHR is special because it is required to produce a positive answer.
// We only get a negative result if the shift value (a2) is 0.
// This result cannot be respresented as a signed 32-bit integer, try
// to return a heap number if we can.
// The non FPU code does not support this special case, so jump to
// runtime if we don't support it.
if (CpuFeatures::IsSupported(FPU)) {
__ Branch((result_type_ <= BinaryOpIC::INT32)
? &transition
: &return_heap_number,
lt,
a2,
Operand(zero_reg));
} else {
__ Branch((result_type_ <= BinaryOpIC::INT32)
? &transition
: &call_runtime,
lt,
a2,
Operand(zero_reg));
}
break;
case Token::SHL:
__ And(a2, a2, Operand(0x1f));
__ sllv(a2, a3, a2);
break;
default:
UNREACHABLE();
}
// Check if the result fits in a smi.
__ Addu(scratch1, a2, Operand(0x40000000));
// If not try to return a heap number. (We know the result is an int32.)
__ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg));
// Tag the result and return.
__ SmiTag(v0, a2);
__ Ret();
__ bind(&return_heap_number);
heap_number_result = t1;
GenerateHeapResultAllocation(masm,
heap_number_result,
heap_number_map,
scratch1,
scratch2,
&call_runtime);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
if (op_ != Token::SHR) {
// Convert the result to a floating point value.
__ mtc1(a2, double_scratch);
__ cvt_d_w(double_scratch, double_scratch);
} else {
// The result must be interpreted as an unsigned 32-bit integer.
__ mtc1(a2, double_scratch);
__ Cvt_d_uw(double_scratch, double_scratch, single_scratch);
}
// Store the result.
__ mov(v0, heap_number_result);
__ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset));
__ Ret();
} else {
// Tail call that writes the int32 in a2 to the heap number in v0, using
// a3 and a1 as scratch. v0 is preserved and returned.
__ mov(a0, t1);
WriteInt32ToHeapNumberStub stub(a2, v0, a3, a1);
__ TailCallStub(&stub);
}
break;
}
default:
UNREACHABLE();
}
// We never expect DIV to yield an integer result, so we always generate
// type transition code for DIV operations expecting an integer result: the
// code will fall through to this type transition.
if (transition.is_linked() ||
((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
__ bind(&transition);
GenerateTypeTransition(masm);
}
__ bind(&call_runtime);
GenerateCallRuntime(masm);
}
void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
Label call_runtime;
if (op_ == Token::ADD) {
// Handle string addition here, because it is the only operation
// that does not do a ToNumber conversion on the operands.
GenerateAddStrings(masm);
}
// Convert oddball arguments to numbers.
Label check, done;
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ Branch(&check, ne, a1, Operand(t0));
if (Token::IsBitOp(op_)) {
__ li(a1, Operand(Smi::FromInt(0)));
} else {
__ LoadRoot(a1, Heap::kNanValueRootIndex);
}
__ jmp(&done);
__ bind(&check);
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ Branch(&done, ne, a0, Operand(t0));
if (Token::IsBitOp(op_)) {
__ li(a0, Operand(Smi::FromInt(0)));
} else {
__ LoadRoot(a0, Heap::kNanValueRootIndex);
}
__ bind(&done);
GenerateHeapNumberStub(masm);
}
void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Label call_runtime;
GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
__ bind(&call_runtime);
GenerateCallRuntime(masm);
}
void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Label call_runtime, call_string_add_or_runtime;
GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
__ bind(&call_string_add_or_runtime);
if (op_ == Token::ADD) {
GenerateAddStrings(masm);
}
__ bind(&call_runtime);
GenerateCallRuntime(masm);
}
void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
ASSERT(op_ == Token::ADD);
Label left_not_string, call_runtime;
Register left = a1;
Register right = a0;
// Check if left argument is a string.
__ JumpIfSmi(left, &left_not_string);
__ GetObjectType(left, a2, a2);
__ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE));
StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_left_stub);
// Left operand is not a string, test right.
__ bind(&left_not_string);
__ JumpIfSmi(right, &call_runtime);
__ GetObjectType(right, a2, a2);
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_right_stub);
// At least one argument is not a string.
__ bind(&call_runtime);
}
void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
GenerateRegisterArgsPush(masm);
switch (op_) {
case Token::ADD:
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
case Token::SUB:
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::GenerateHeapResultAllocation(
MacroAssembler* masm,
Register result,
Register heap_number_map,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Code below will scratch result if allocation fails. To keep both arguments
// intact for the runtime call result cannot be one of these.
ASSERT(!result.is(a0) && !result.is(a1));
if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
Label skip_allocation, allocated;
Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0;
// If the overwritable operand is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(overwritable_operand, &skip_allocation);
// Allocate a heap number for the result.
__ AllocateHeapNumber(
result, scratch1, scratch2, heap_number_map, gc_required);
__ Branch(&allocated);
__ bind(&skip_allocation);
// Use object holding the overwritable operand for result.
__ mov(result, overwritable_operand);
__ bind(&allocated);
} else {
ASSERT(mode_ == NO_OVERWRITE);
__ AllocateHeapNumber(
result, scratch1, scratch2, heap_number_map, gc_required);
}
}
void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
__ Push(a1, a0);
}
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// Untagged case: double input in f4, double result goes
// into f4.
// Tagged case: tagged input on top of stack and in a0,
// tagged result (heap number) goes into v0.
Label input_not_smi;
Label loaded;
Label calculate;
Label invalid_cache;
const Register scratch0 = t5;
const Register scratch1 = t3;
const Register cache_entry = a0;
const bool tagged = (argument_type_ == TAGGED);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
if (tagged) {
// Argument is a number and is on stack and in a0.
// Load argument and check if it is a smi.
__ JumpIfNotSmi(a0, &input_not_smi);
// Input is a smi. Convert to double and load the low and high words
// of the double into a2, a3.
__ sra(t0, a0, kSmiTagSize);
__ mtc1(t0, f4);
__ cvt_d_w(f4, f4);
__ Move(a2, a3, f4);
__ Branch(&loaded);
__ bind(&input_not_smi);
// Check if input is a HeapNumber.
__ CheckMap(a0,
a1,
Heap::kHeapNumberMapRootIndex,
&calculate,
DONT_DO_SMI_CHECK);
// Input is a HeapNumber. Store the
// low and high words into a2, a3.
__ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset));
__ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4));
} else {
// Input is untagged double in f4. Output goes to f4.
__ Move(a2, a3, f4);
}
__ bind(&loaded);
// a2 = low 32 bits of double value.
// a3 = high 32 bits of double value.
// Compute hash (the shifts are arithmetic):
// h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
__ Xor(a1, a2, a3);
__ sra(t0, a1, 16);
__ Xor(a1, a1, t0);
__ sra(t0, a1, 8);
__ Xor(a1, a1, t0);
ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
__ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
// a2 = low 32 bits of double value.
// a3 = high 32 bits of double value.
// a1 = TranscendentalCache::hash(double value).
__ li(cache_entry, Operand(
ExternalReference::transcendental_cache_array_address(
masm->isolate())));
// a0 points to cache array.
__ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof(
Isolate::Current()->transcendental_cache()->caches_[0])));
// a0 points to the cache for the type type_.
// If NULL, the cache hasn't been initialized yet, so go through runtime.
__ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg));
#ifdef DEBUG
// Check that the layout of cache elements match expectations.
{ TranscendentalCache::SubCache::Element test_elem[2];
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
CHECK_EQ(0, elem_in0 - elem_start);
CHECK_EQ(kIntSize, elem_in1 - elem_start);
CHECK_EQ(2 * kIntSize, elem_out - elem_start);
}
#endif
// Find the address of the a1'st entry in the cache, i.e., &a0[a1*12].
__ sll(t0, a1, 1);
__ Addu(a1, a1, t0);
__ sll(t0, a1, 2);
__ Addu(cache_entry, cache_entry, t0);
// Check if cache matches: Double value is stored in uint32_t[2] array.
__ lw(t0, MemOperand(cache_entry, 0));
__ lw(t1, MemOperand(cache_entry, 4));
__ lw(t2, MemOperand(cache_entry, 8));
__ Addu(cache_entry, cache_entry, 12);
__ Branch(&calculate, ne, a2, Operand(t0));
__ Branch(&calculate, ne, a3, Operand(t1));
// Cache hit. Load result, cleanup and return.
if (tagged) {
// Pop input value from stack and load result into v0.
__ Drop(1);
__ mov(v0, t2);
} else {
// Load result into f4.
__ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
}
__ Ret();
} // if (CpuFeatures::IsSupported(FPU))
__ bind(&calculate);
if (tagged) {
__ bind(&invalid_cache);
__ TailCallExternalReference(ExternalReference(RuntimeFunction(),
masm->isolate()),
1,
1);
} else {
if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE();
CpuFeatures::Scope scope(FPU);
Label no_update;
Label skip_cache;
const Register heap_number_map = t2;
// Call C function to calculate the result and update the cache.
// Register a0 holds precalculated cache entry address; preserve
// it on the stack and pop it into register cache_entry after the
// call.
__ push(cache_entry);
GenerateCallCFunction(masm, scratch0);
__ GetCFunctionDoubleResult(f4);
// Try to update the cache. If we cannot allocate a
// heap number, we return the result without updating.
__ pop(cache_entry);
__ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update);
__ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
__ sw(a2, MemOperand(cache_entry, 0 * kPointerSize));
__ sw(a3, MemOperand(cache_entry, 1 * kPointerSize));
__ sw(t2, MemOperand(cache_entry, 2 * kPointerSize));
__ mov(v0, cache_entry);
__ Ret();
__ bind(&invalid_cache);
// The cache is invalid. Call runtime which will recreate the
// cache.
__ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache);
__ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset));
__ EnterInternalFrame();
__ push(a0);
__ CallRuntime(RuntimeFunction(), 1);
__ LeaveInternalFrame();
__ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset));
__ Ret();
__ bind(&skip_cache);
// Call C function to calculate the result and answer directly
// without updating the cache.
GenerateCallCFunction(masm, scratch0);
__ GetCFunctionDoubleResult(f4);
__ bind(&no_update);
// We return the value in f4 without adding it to the cache, but
// we cause a scavenging GC so that future allocations will succeed.
__ EnterInternalFrame();
// Allocate an aligned object larger than a HeapNumber.
ASSERT(4 * kPointerSize >= HeapNumber::kSize);
__ li(scratch0, Operand(4 * kPointerSize));
__ push(scratch0);
__ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
__ LeaveInternalFrame();
__ Ret();
}
}
void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
Register scratch) {
__ push(ra);
__ PrepareCallCFunction(2, scratch);
if (IsMipsSoftFloatABI) {
__ Move(v0, v1, f4);
} else {
__ mov_d(f12, f4);
}
switch (type_) {
case TranscendentalCache::SIN:
__ CallCFunction(
ExternalReference::math_sin_double_function(masm->isolate()), 2);
break;
case TranscendentalCache::COS:
__ CallCFunction(
ExternalReference::math_cos_double_function(masm->isolate()), 2);
break;
case TranscendentalCache::LOG:
__ CallCFunction(
ExternalReference::math_log_double_function(masm->isolate()), 2);
break;
default:
UNIMPLEMENTED();
break;
}
__ pop(ra);
}
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
switch (type_) {
// Add more cases when necessary.
case TranscendentalCache::SIN: return Runtime::kMath_sin;
case TranscendentalCache::COS: return Runtime::kMath_cos;
case TranscendentalCache::LOG: return Runtime::kMath_log;
default:
UNIMPLEMENTED();
return Runtime::kAbort;
}
}
void StackCheckStub::Generate(MacroAssembler* masm) {
__ TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
void MathPowStub::Generate(MacroAssembler* masm) {
Label call_runtime;
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
Label base_not_smi;
Label exponent_not_smi;
Label convert_exponent;
const Register base = a0;
const Register exponent = a2;
const Register heapnumbermap = t1;
const Register heapnumber = s0; // Callee-saved register.
const Register scratch = t2;
const Register scratch2 = t3;
// Alocate FP values in the ABI-parameter-passing regs.
const DoubleRegister double_base = f12;
const DoubleRegister double_exponent = f14;
const DoubleRegister double_result = f0;
const DoubleRegister double_scratch = f2;
__ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
__ lw(base, MemOperand(sp, 1 * kPointerSize));
__ lw(exponent, MemOperand(sp, 0 * kPointerSize));
// Convert base to double value and store it in f0.
__ JumpIfNotSmi(base, &base_not_smi);
// Base is a Smi. Untag and convert it.
__ SmiUntag(base);
__ mtc1(base, double_scratch);
__ cvt_d_w(double_base, double_scratch);
__ Branch(&convert_exponent);
__ bind(&base_not_smi);
__ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset));
__ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
// Base is a heapnumber. Load it into double register.
__ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
__ bind(&convert_exponent);
__ JumpIfNotSmi(exponent, &exponent_not_smi);
__ SmiUntag(exponent);
// The base is in a double register and the exponent is
// an untagged smi. Allocate a heap number and call a
// C function for integer exponents. The register containing
// the heap number is callee-saved.
__ AllocateHeapNumber(heapnumber,
scratch,
scratch2,
heapnumbermap,
&call_runtime);
__ push(ra);
__ PrepareCallCFunction(3, scratch);
__ SetCallCDoubleArguments(double_base, exponent);
__ CallCFunction(
ExternalReference::power_double_int_function(masm->isolate()), 3);
__ pop(ra);
__ GetCFunctionDoubleResult(double_result);
__ sdc1(double_result,
FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
__ mov(v0, heapnumber);
__ DropAndRet(2 * kPointerSize);
__ bind(&exponent_not_smi);
__ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
__ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
// Exponent is a heapnumber. Load it into double register.
__ ldc1(double_exponent,
FieldMemOperand(exponent, HeapNumber::kValueOffset));
// The base and the exponent are in double registers.
// Allocate a heap number and call a C function for
// double exponents. The register containing
// the heap number is callee-saved.
__ AllocateHeapNumber(heapnumber,
scratch,
scratch2,
heapnumbermap,
&call_runtime);
__ push(ra);
__ PrepareCallCFunction(4, scratch);
// ABI (o32) for func(double a, double b): a in f12, b in f14.
ASSERT(double_base.is(f12));
ASSERT(double_exponent.is(f14));
__ SetCallCDoubleArguments(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(masm->isolate()), 4);
__ pop(ra);
__ GetCFunctionDoubleResult(double_result);
__ sdc1(double_result,
FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
__ mov(v0, heapnumber);
__ DropAndRet(2 * kPointerSize);
}
__ bind(&call_runtime);
__ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
}
bool CEntryStub::NeedsImmovableCode() {
return true;
}
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
__ Throw(v0);
}
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) {
__ ThrowUncatchable(type, v0);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
bool do_gc,
bool always_allocate) {
// v0: result parameter for PerformGC, if any
// s0: number of arguments including receiver (C callee-saved)
// s1: pointer to the first argument (C callee-saved)
// s2: pointer to builtin function (C callee-saved)
if (do_gc) {
// Move result passed in v0 into a0 to call PerformGC.
__ mov(a0, v0);
__ PrepareCallCFunction(1, a1);
__ CallCFunction(
ExternalReference::perform_gc_function(masm->isolate()), 1);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
if (always_allocate) {
__ li(a0, Operand(scope_depth));
__ lw(a1, MemOperand(a0));
__ Addu(a1, a1, Operand(1));
__ sw(a1, MemOperand(a0));
}
// Prepare arguments for C routine: a0 = argc, a1 = argv
__ mov(a0, s0);
__ mov(a1, s1);
// We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
// also need to reserve the 4 argument slots on the stack.
__ AssertStackIsAligned();
__ li(a2, Operand(ExternalReference::isolate_address()));
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
{ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
// This branch-and-link sequence is needed to find the current PC on mips,
// saved to the ra register.
// Use masm-> here instead of the double-underscore macro since extra
// coverage code can interfere with the proper calculation of ra.
Label find_ra;
masm->bal(&find_ra); // bal exposes branch delay slot.
masm->nop(); // Branch delay slot nop.
masm->bind(&find_ra);
// Adjust the value in ra to point to the correct return location, 2nd
// instruction past the real call into C code (the jalr(t9)), and push it.
// This is the return address of the exit frame.
const int kNumInstructionsToJump = 6;
masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize);
masm->sw(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame.
masm->Subu(sp, sp, StandardFrameConstants::kCArgsSlotsSize);
// Stack is still aligned.
// Call the C routine.
masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
masm->jalr(t9);
masm->nop(); // Branch delay slot nop.
// Make sure the stored 'ra' points to this position.
ASSERT_EQ(kNumInstructionsToJump,
masm->InstructionsGeneratedSince(&find_ra));
}
// Restore stack (remove arg slots).
__ Addu(sp, sp, StandardFrameConstants::kCArgsSlotsSize);
if (always_allocate) {
// It's okay to clobber a2 and a3 here. v0 & v1 contain result.
__ li(a2, Operand(scope_depth));
__ lw(a3, MemOperand(a2));
__ Subu(a3, a3, Operand(1));
__ sw(a3, MemOperand(a2));
}
// Check for failure result.
Label failure_returned;
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
__ addiu(a2, v0, 1);
__ andi(t0, a2, kFailureTagMask);
__ Branch(&failure_returned, eq, t0, Operand(zero_reg));
// Exit C frame and return.
// v0:v1: result
// sp: stack pointer
// fp: frame pointer
__ LeaveExitFrame(save_doubles_, s0);
__ Ret();
// Check if we should retry or throw exception.
Label retry;
__ bind(&failure_returned);
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
__ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize);
__ Branch(&retry, eq, t0, Operand(zero_reg));
// Special handling of out of memory exceptions.
Failure* out_of_memory = Failure::OutOfMemoryException();
__ Branch(throw_out_of_memory_exception, eq,
v0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
// Retrieve the pending exception and clear the variable.
__ li(t0,
Operand(ExternalReference::the_hole_value_location(masm->isolate())));
__ lw(a3, MemOperand(t0));
__ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address,
masm->isolate())));
__ lw(v0, MemOperand(t0));
__ sw(a3, MemOperand(t0));
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ Branch(throw_termination_exception, eq,
v0, Operand(masm->isolate()->factory()->termination_exception()));
// Handle normal exception.
__ jmp(throw_normal_exception);
__ bind(&retry);
// Last failure (v0) will be moved to (a0) for parameter when retrying.
}
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function
// a0: number of arguments including receiver
// a1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
// Compute the argv pointer in a callee-saved register.
__ sll(s1, a0, kPointerSizeLog2);
__ Addu(s1, sp, s1);
__ Subu(s1, s1, Operand(kPointerSize));
// Enter the exit frame that transitions from JavaScript to C++.
__ EnterExitFrame(save_doubles_);
// Setup argc and the builtin function in callee-saved registers.
__ mov(s0, a0);
__ mov(s2, a1);
// s0: number of arguments (C callee-saved)
// s1: pointer to first argument (C callee-saved)
// s2: pointer to builtin function (C callee-saved)
Label throw_normal_exception;
Label throw_termination_exception;
Label throw_out_of_memory_exception;
// Call into the runtime system.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
false,
false);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
false);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ li(v0, Operand(reinterpret_cast<int32_t>(failure)));
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
true);
__ bind(&throw_out_of_memory_exception);
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
__ bind(&throw_termination_exception);
GenerateThrowUncatchable(masm, TERMINATION);
__ bind(&throw_normal_exception);
GenerateThrowTOS(masm);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Label invoke, exit;
// Registers:
// a0: entry address
// a1: function
// a2: reveiver
// a3: argc
//
// Stack:
// 4 args slots
// args
// Save callee saved registers on the stack.
__ MultiPush(kCalleeSaved | ra.bit());
// Load argv in s0 register.
__ lw(s0, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize +
StandardFrameConstants::kCArgsSlotsSize));
// We build an EntryFrame.
__ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
__ li(t2, Operand(Smi::FromInt(marker)));
__ li(t1, Operand(Smi::FromInt(marker)));
__ li(t0, Operand(ExternalReference(Isolate::k_c_entry_fp_address,
masm->isolate())));
__ lw(t0, MemOperand(t0));
__ Push(t3, t2, t1, t0);
// Setup frame pointer for the frame to be pushed.
__ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
// Registers:
// a0: entry_address
// a1: function
// a2: reveiver_pointer
// a3: argc
// s0: argv
//
// Stack:
// caller fp |
// function slot | entry frame
// context slot |
// bad fp (0xff...f) |
// callee saved registers + ra
// 4 args slots
// args
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address,
masm->isolate());
__ li(t1, Operand(ExternalReference(js_entry_sp)));
__ lw(t2, MemOperand(t1));
__ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
__ sw(fp, MemOperand(t1));
__ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
Label cont;
__ b(&cont);
__ nop(); // Branch delay slot nop.
__ bind(&non_outermost_js);
__ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
__ bind(&cont);
__ push(t0);
// Call a faked try-block that does the invoke.
__ bal(&invoke); // bal exposes branch delay slot.
__ nop(); // Branch delay slot nop.
// Caught exception: Store result (exception) in the pending
// exception field in the JSEnv and return a failure sentinel.
// Coming in here the fp will be invalid because the PushTryHandler below
// sets it to 0 to signal the existence of the JSEntry frame.
__ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address,
masm->isolate())));
__ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0.
__ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
__ b(&exit); // b exposes branch delay slot.
__ nop(); // Branch delay slot nop.
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bal(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Clear any pending exceptions.
__ li(t0,
Operand(ExternalReference::the_hole_value_location(masm->isolate())));
__ lw(t1, MemOperand(t0));
__ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address,
masm->isolate())));
__ sw(t1, MemOperand(t0));
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Registers:
// a0: entry_address
// a1: function
// a2: reveiver_pointer
// a3: argc
// s0: argv
//
// Stack:
// handler frame
// entry frame
// callee saved registers + ra
// 4 args slots
// args
if (is_construct) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
masm->isolate());
__ li(t0, Operand(construct_entry));
} else {
ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
__ li(t0, Operand(entry));
}
__ lw(t9, MemOperand(t0)); // Deref address.
// Call JSEntryTrampoline.
__ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
__ Call(t9);
// Unlink this frame from the handler chain.
__ PopTryHandler();
__ bind(&exit); // v0 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(t1);
__ Branch(&non_outermost_js_2, ne, t1,
Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
__ li(t1, Operand(ExternalReference(js_entry_sp)));
__ sw(zero_reg, MemOperand(t1));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(t1);
__ li(t0, Operand(ExternalReference(Isolate::k_c_entry_fp_address,
masm->isolate())));
__ sw(t1, MemOperand(t0));
// Reset the stack to the callee saved registers.
__ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
// Restore callee saved registers from the stack.
__ MultiPop(kCalleeSaved | ra.bit());
// Return.
__ Jump(ra);
}
// Uses registers a0 to t0.
// Expected input (depending on whether args are in registers or on the stack):
// * object: a0 or at sp + 1 * kPointerSize.
// * function: a1 or at sp.
//
// Inlined call site patching is a crankshaft-specific feature that is not
// implemented on MIPS.
void InstanceofStub::Generate(MacroAssembler* masm) {
// This is a crankshaft-specific feature that has not been implemented yet.
ASSERT(!HasCallSiteInlineCheck());
// Call site inlining and patching implies arguments in registers.
ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
// ReturnTrueFalse is only implemented for inlined call sites.
ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
// Fixed register usage throughout the stub:
const Register object = a0; // Object (lhs).
Register map = a3; // Map of the object.
const Register function = a1; // Function (rhs).
const Register prototype = t0; // Prototype of the function.
const Register inline_site = t5;
const Register scratch = a2;
Label slow, loop, is_instance, is_not_instance, not_js_object;
if (!HasArgsInRegisters()) {
__ lw(object, MemOperand(sp, 1 * kPointerSize));
__ lw(function, MemOperand(sp, 0));
}
// Check that the left hand is a JS object and load map.
__ JumpIfSmi(object, &not_js_object);
__ IsObjectJSObjectType(object, map, scratch, &not_js_object);
// If there is a call site cache don't look in the global cache, but do the
// real lookup and update the call site cache.
if (!HasCallSiteInlineCheck()) {
Label miss;
__ LoadRoot(t1, Heap::kInstanceofCacheFunctionRootIndex);
__ Branch(&miss, ne, function, Operand(t1));
__ LoadRoot(t1, Heap::kInstanceofCacheMapRootIndex);
__ Branch(&miss, ne, map, Operand(t1));
__ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
__ bind(&miss);
}
// Get the prototype of the function.
__ TryGetFunctionPrototype(function, prototype, scratch, &slow);
// Check that the function prototype is a JS object.
__ JumpIfSmi(prototype, &slow);
__ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
// Update the global instanceof or call site inlined cache with the current
// map and function. The cached answer will be set when it is known below.
if (!HasCallSiteInlineCheck()) {
__ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
} else {
UNIMPLEMENTED_MIPS();
}
// Register mapping: a3 is object map and t0 is function prototype.
// Get prototype of object into a2.
__ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
// We don't need map any more. Use it as a scratch register.
Register scratch2 = map;
map = no_reg;
// Loop through the prototype chain looking for the function prototype.
__ LoadRoot(scratch2, Heap::kNullValueRootIndex);
__ bind(&loop);
__ Branch(&is_instance, eq, scratch, Operand(prototype));
__ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
__ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
__ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
__ Branch(&loop);
__ bind(&is_instance);
ASSERT(Smi::FromInt(0) == 0);
if (!HasCallSiteInlineCheck()) {
__ mov(v0, zero_reg);
__ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
} else {
UNIMPLEMENTED_MIPS();
}
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
__ bind(&is_not_instance);
if (!HasCallSiteInlineCheck()) {
__ li(v0, Operand(Smi::FromInt(1)));
__ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
} else {
UNIMPLEMENTED_MIPS();
}
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
Label object_not_null, object_not_null_or_smi;
__ bind(&not_js_object);
// Before null, smi and string value checks, check that the rhs is a function
// as for a non-function rhs an exception needs to be thrown.
__ JumpIfSmi(function, &slow);
__ GetObjectType(function, scratch2, scratch);
__ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
// Null is not instance of anything.
__ Branch(&object_not_null, ne, scratch,
Operand(masm->isolate()->factory()->null_value()));
__ li(v0, Operand(Smi::FromInt(1)));
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
__ bind(&object_not_null);
// Smi values are not instances of anything.
__ JumpIfNotSmi(object, &object_not_null_or_smi);
__ li(v0, Operand(Smi::FromInt(1)));
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
__ bind(&object_not_null_or_smi);
// String values are not instances of anything.
__ IsObjectJSStringType(object, scratch, &slow);
__ li(v0, Operand(Smi::FromInt(1)));
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
// Slow-case. Tail call builtin.
__ bind(&slow);
if (!ReturnTrueFalseObject()) {
if (HasArgsInRegisters()) {
__ Push(a0, a1);
}
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
} else {
__ EnterInternalFrame();
__ Push(a0, a1);
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
__ LeaveInternalFrame();
__ mov(a0, v0);
__ LoadRoot(v0, Heap::kTrueValueRootIndex);
__ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
__ LoadRoot(v0, Heap::kFalseValueRootIndex);
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
}
}
Register InstanceofStub::left() { return a0; }
Register InstanceofStub::right() { return a1; }
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The displacement is the offset of the last parameter (if any)
// relative to the frame pointer.
static const int kDisplacement =
StandardFrameConstants::kCallerSPOffset - kPointerSize;
// Check that the key is a smiGenerateReadElement.
Label slow;
__ JumpIfNotSmi(a1, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
__ Branch(&adaptor,
eq,
a3,
Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Check index (a1) against formal parameters count limit passed in
// through register a0. Use unsigned comparison to get negative
// check for free.
__ Branch(&slow, hs, a1, Operand(a0));
// Read the argument from the stack and return it.
__ subu(a3, a0, a1);
__ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
__ Addu(a3, fp, Operand(t3));
__ lw(v0, MemOperand(a3, kDisplacement));
__ Ret();
// Arguments adaptor case: Check index (a1) against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Branch(&slow, Ugreater_equal, a1, Operand(a0));
// Read the argument from the adaptor frame and return it.
__ subu(a3, a0, a1);
__ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
__ Addu(a3, a2, Operand(t3));
__ lw(v0, MemOperand(a3, kDisplacement));
__ Ret();
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ push(a1);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
// sp[0] : number of parameters
// sp[4] : receiver displacement
// sp[8] : function
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
__ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
__ Branch(&runtime, ne,
a2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Patch the arguments.length and the parameters pointer in the current frame.
__ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ sw(a2, MemOperand(sp, 0 * kPointerSize));
__ sll(t3, a2, 1);
__ Addu(a3, a3, Operand(t3));
__ addiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
__ sw(a3, MemOperand(sp, 1 * kPointerSize));
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
// Stack layout:
// sp[0] : number of parameters (tagged)
// sp[4] : address of receiver argument
// sp[8] : function
// Registers used over whole function:
// t2 : allocated object (tagged)
// t5 : mapped parameter count (tagged)
__ lw(a1, MemOperand(sp, 0 * kPointerSize));
// a1 = parameter count (tagged)
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
Label adaptor_frame, try_allocate;
__ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
__ Branch(&adaptor_frame, eq, a2,
Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// No adaptor, parameter count = argument count.
__ mov(a2, a1);
__ b(&try_allocate);
__ nop(); // Branch delay slot nop.
// We have an adaptor frame. Patch the parameters pointer.
__ bind(&adaptor_frame);
__ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ sll(t6, a2, 1);
__ Addu(a3, a3, Operand(t6));
__ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
__ sw(a3, MemOperand(sp, 1 * kPointerSize));
// a1 = parameter count (tagged)
// a2 = argument count (tagged)
// Compute the mapped parameter count = min(a1, a2) in a1.
Label skip_min;
__ Branch(&skip_min, lt, a1, Operand(a2));
__ mov(a1, a2);
__ bind(&skip_min);
__ bind(&try_allocate);
// Compute the sizes of backing store, parameter map, and arguments object.
// 1. Parameter map, has 2 extra words containing context and backing store.
const int kParameterMapHeaderSize =
FixedArray::kHeaderSize + 2 * kPointerSize;
// If there are no mapped parameters, we do not need the parameter_map.
Label param_map_size;
ASSERT_EQ(0, Smi::FromInt(0));
__ Branch(USE_DELAY_SLOT, &param_map_size, eq, a1, Operand(zero_reg));
__ mov(t5, zero_reg); // In delay slot: param map size = 0 when a1 == 0.
__ sll(t5, a1, 1);
__ addiu(t5, t5, kParameterMapHeaderSize);
__ bind(&param_map_size);
// 2. Backing store.
__ sll(t6, a2, 1);
__ Addu(t5, t5, Operand(t6));
__ Addu(t5, t5, Operand(FixedArray::kHeaderSize));
// 3. Arguments object.
__ Addu(t5, t5, Operand(Heap::kArgumentsObjectSize));
// Do the allocation of all three objects in one go.
__ AllocateInNewSpace(t5, v0, a3, t0, &runtime, TAG_OBJECT);
// v0 = address of new object(s) (tagged)
// a2 = argument count (tagged)
// Get the arguments boilerplate from the current (global) context into t0.
const int kNormalOffset =
Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
const int kAliasedOffset =
Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
__ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
Label skip2_ne, skip2_eq;
__ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
__ lw(t0, MemOperand(t0, kNormalOffset));
__ bind(&skip2_ne);
__ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
__ lw(t0, MemOperand(t0, kAliasedOffset));
__ bind(&skip2_eq);
// v0 = address of new object (tagged)
// a1 = mapped parameter count (tagged)
// a2 = argument count (tagged)
// t0 = address of boilerplate object (tagged)
// Copy the JS object part.
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
__ lw(a3, FieldMemOperand(t0, i));
__ sw(a3, FieldMemOperand(v0, i));
}
// Setup the callee in-object property.
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
__ lw(a3, MemOperand(sp, 2 * kPointerSize));
const int kCalleeOffset = JSObject::kHeaderSize +
Heap::kArgumentsCalleeIndex * kPointerSize;
__ sw(a3, FieldMemOperand(v0, kCalleeOffset));
// Use the length (smi tagged) and set that as an in-object property too.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
const int kLengthOffset = JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize;
__ sw(a2, FieldMemOperand(v0, kLengthOffset));
// Setup the elements pointer in the allocated arguments object.
// If we allocated a parameter map, t0 will point there, otherwise
// it will point to the backing store.
__ Addu(t0, v0, Operand(Heap::kArgumentsObjectSize));
__ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
// v0 = address of new object (tagged)
// a1 = mapped parameter count (tagged)
// a2 = argument count (tagged)
// t0 = address of parameter map or backing store (tagged)
// Initialize parameter map. If there are no mapped arguments, we're done.
Label skip_parameter_map;
Label skip3;
__ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
// Move backing store address to a3, because it is
// expected there when filling in the unmapped arguments.
__ mov(a3, t0);
__ bind(&skip3);
__ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
__ LoadRoot(t2, Heap::kNonStrictArgumentsElementsMapRootIndex);
__ sw(t2, FieldMemOperand(t0, FixedArray::kMapOffset));
__ Addu(t2, a1, Operand(Smi::FromInt(2)));
__ sw(t2, FieldMemOperand(t0, FixedArray::kLengthOffset));
__ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize));
__ sll(t6, a1, 1);
__ Addu(t2, t0, Operand(t6));
__ Addu(t2, t2, Operand(kParameterMapHeaderSize));
__ sw(t2, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize));
// Copy the parameter slots and the holes in the arguments.
// We need to fill in mapped_parameter_count slots. They index the context,
// where parameters are stored in reverse order, at
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
// The mapped parameter thus need to get indices
// MIN_CONTEXT_SLOTS+parameter_count-1 ..
// MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
// We loop from right to left.
Label parameters_loop, parameters_test;
__ mov(t2, a1);
__ lw(t5, MemOperand(sp, 0 * kPointerSize));
__ Addu(t5, t5, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
__ Subu(t5, t5, Operand(a1));
__ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
__ sll(t6, t2, 1);
__ Addu(a3, t0, Operand(t6));
__ Addu(a3, a3, Operand(kParameterMapHeaderSize));
// t2 = loop variable (tagged)
// a1 = mapping index (tagged)
// a3 = address of backing store (tagged)
// t0 = address of parameter map (tagged)
// t1 = temporary scratch (a.o., for address calculation)
// t3 = the hole value
__ jmp(&parameters_test);
__ bind(&parameters_loop);
__ Subu(t2, t2, Operand(Smi::FromInt(1)));
__ sll(t1, t2, 1);
__ Addu(t1, t1, Operand(kParameterMapHeaderSize - kHeapObjectTag));
__ Addu(t6, t0, t1);
__ sw(t5, MemOperand(t6));
__ Subu(t1, t1, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
__ Addu(t6, a3, t1);
__ sw(t3, MemOperand(t6));
__ Addu(t5, t5, Operand(Smi::FromInt(1)));
__ bind(&parameters_test);
__ Branch(&parameters_loop, ne, t2, Operand(Smi::FromInt(0)));
__ bind(&skip_parameter_map);
// a2 = argument count (tagged)
// a3 = address of backing store (tagged)
// t1 = scratch
// Copy arguments header and remaining slots (if there are any).
__ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
__ sw(t1, FieldMemOperand(a3, FixedArray::kMapOffset));
__ sw(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
Label arguments_loop, arguments_test;
__ mov(t5, a1);
__ lw(t0, MemOperand(sp, 1 * kPointerSize));
__ sll(t6, t5, 1);
__ Subu(t0, t0, Operand(t6));
__ jmp(&arguments_test);
__ bind(&arguments_loop);
__ Subu(t0, t0, Operand(kPointerSize));
__ lw(t2, MemOperand(t0, 0));
__ sll(t6, t5, 1);
__ Addu(t1, a3, Operand(t6));
__ sw(t2, FieldMemOperand(t1, FixedArray::kHeaderSize));
__ Addu(t5, t5, Operand(Smi::FromInt(1)));
__ bind(&arguments_test);
__ Branch(&arguments_loop, lt, t5, Operand(a2));
// Return and remove the on-stack parameters.
__ Addu(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Do the runtime call to allocate the arguments object.
// a2 = argument count (taggged)
__ bind(&runtime);
__ sw(a2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
// sp[0] : number of parameters
// sp[4] : receiver displacement
// sp[8] : function
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
__ Branch(&adaptor_frame,
eq,
a3,
Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Get the length from the frame.
__ lw(a1, MemOperand(sp, 0));
__ Branch(&try_allocate);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
__ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ sw(a1, MemOperand(sp, 0));
__ sll(at, a1, kPointerSizeLog2 - kSmiTagSize);
__ Addu(a3, a2, Operand(at));
__ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
__ sw(a3, MemOperand(sp, 1 * kPointerSize));
// Try the new space allocation. Start out with computing the size
// of the arguments object and the elements array in words.
Label add_arguments_object;
__ bind(&try_allocate);
__ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
__ srl(a1, a1, kSmiTagSize);
__ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
__ bind(&add_arguments_object);
__ Addu(a1, a1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
// Do the allocation of both objects in one go.
__ AllocateInNewSpace(a1,
v0,
a2,
a3,
&runtime,
static_cast<AllocationFlags>(TAG_OBJECT |
SIZE_IN_WORDS));
// Get the arguments boilerplate from the current (global) context.
__ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
__ lw(t0, MemOperand(t0, Context::SlotOffset(
Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
// Copy the JS object part.
__ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize);
// Get the length (smi tagged) and set that as an in-object property too.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
__ lw(a1, MemOperand(sp, 0 * kPointerSize));
__ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize));
Label done;
__ Branch(&done, eq, a1, Operand(zero_reg));
// Get the parameters pointer from the stack.
__ lw(a2, MemOperand(sp, 1 * kPointerSize));
// Setup the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
__ Addu(t0, v0, Operand(Heap::kArgumentsObjectSizeStrict));
__ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
__ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
__ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset));
__ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset));
// Untag the length for the loop.
__ srl(a1, a1, kSmiTagSize);
// Copy the fixed array slots.
Label loop;
// Setup t0 to point to the first array slot.
__ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
// Pre-decrement a2 with kPointerSize on each iteration.
// Pre-decrement in order to skip receiver.
__ Addu(a2, a2, Operand(-kPointerSize));
__ lw(a3, MemOperand(a2));
// Post-increment t0 with kPointerSize on each iteration.
__ sw(a3, MemOperand(t0));
__ Addu(t0, t0, Operand(kPointerSize));
__ Subu(a1, a1, Operand(1));
__ Branch(&loop, ne, a1, Operand(zero_reg));
// Return and remove the on-stack parameters.
__ bind(&done);
__ Addu(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#else // V8_INTERPRETED_REGEXP
if (!FLAG_regexp_entry_native) {
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
return;
}
// Stack frame on entry.
// sp[0]: last_match_info (expected JSArray)
// sp[4]: previous index
// sp[8]: subject string
// sp[12]: JSRegExp object
static const int kLastMatchInfoOffset = 0 * kPointerSize;
static const int kPreviousIndexOffset = 1 * kPointerSize;
static const int kSubjectOffset = 2 * kPointerSize;
static const int kJSRegExpOffset = 3 * kPointerSize;
Label runtime, invoke_regexp;
// Allocation of registers for this function. These are in callee save
// registers and will be preserved by the call to the native RegExp code, as
// this code is called using the normal C calling convention. When calling
// directly from generated code the native RegExp code will not do a GC and
// therefore the content of these registers are safe to use after the call.
// MIPS - using s0..s2, since we are not using CEntry Stub.
Register subject = s0;
Register regexp_data = s1;
Register last_match_info_elements = s2;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(
masm->isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(masm->isolate());
__ li(a0, Operand(address_of_regexp_stack_memory_size));
__ lw(a0, MemOperand(a0, 0));
__ Branch(&runtime, eq, a0, Operand(zero_reg));
// Check that the first argument is a JSRegExp object.
__ lw(a0, MemOperand(sp, kJSRegExpOffset));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(a0, &runtime);
__ GetObjectType(a0, a1, a1);
__ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
// Check that the RegExp has been compiled (data contains a fixed array).
__ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
__ And(t0, regexp_data, Operand(kSmiTagMask));
__ Check(nz,
"Unexpected type for RegExp data, FixedArray expected",
t0,
Operand(zero_reg));
__ GetObjectType(regexp_data, a0, a0);
__ Check(eq,
"Unexpected type for RegExp data, FixedArray expected",
a0,
Operand(FIXED_ARRAY_TYPE));
}
// regexp_data: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
__ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
// regexp_data: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ lw(a2,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2. This
// uses the asumption that smis are 2 * their untagged value.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ Addu(a2, a2, Operand(2)); // a2 was a smi.
// Check that the static offsets vector buffer is large enough.
__ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
// a2: Number of capture registers
// regexp_data: RegExp data (FixedArray)
// Check that the second argument is a string.
__ lw(subject, MemOperand(sp, kSubjectOffset));
__ JumpIfSmi(subject, &runtime);
__ GetObjectType(subject, a0, a0);
__ And(a0, a0, Operand(kIsNotStringMask));
STATIC_ASSERT(kStringTag == 0);
__ Branch(&runtime, ne, a0, Operand(zero_reg));
// Get the length of the string to r3.
__ lw(a3, FieldMemOperand(subject, String::kLengthOffset));
// a2: Number of capture registers
// a3: Length of subject string as a smi
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Check that the third argument is a positive smi less than the subject
// string length. A negative value will be greater (unsigned comparison).
__ lw(a0, MemOperand(sp, kPreviousIndexOffset));
__ And(at, a0, Operand(kSmiTagMask));
__ Branch(&runtime, ne, at, Operand(zero_reg));
__ Branch(&runtime, ls, a3, Operand(a0));
// a2: Number of capture registers
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Check that the fourth object is a JSArray object.
__ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
__ JumpIfSmi(a0, &runtime);
__ GetObjectType(a0, a1, a1);
__ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE));
// Check that the JSArray is in fast case.
__ lw(last_match_info_elements,
FieldMemOperand(a0, JSArray::kElementsOffset));
__ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
__ Branch(&runtime, ne, a0, Operand(
masm->isolate()->factory()->fixed_array_map()));
// Check that the last match info has space for the capture registers and the
// additional information.
__ lw(a0,
FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
__ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead));
__ sra(at, a0, kSmiTagSize); // Untag length for comparison.
__ Branch(&runtime, gt, a2, Operand(at));
// Reset offset for possibly sliced string.
__ mov(t0, zero_reg);
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Check the representation and encoding of the subject string.
Label seq_string;
__ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
// First check for flat string.
__ And(a1, a0, Operand(kIsNotStringMask | kStringRepresentationMask));
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
__ Branch(&seq_string, eq, a1, Operand(zero_reg));
// subject: Subject string
// a0: instance type if Subject string
// regexp_data: RegExp data (FixedArray)
// Check for flat cons string or sliced string.
// A flat cons string is a cons string where the second part is the empty
// string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string.
// In the case of a sliced string its offset has to be taken into account.
Label cons_string, check_encoding;
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
__ Branch(&cons_string, lt, a1, Operand(kExternalStringTag));
__ Branch(&runtime, eq, a1, Operand(kExternalStringTag));
// String is sliced.
__ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
__ sra(t0, t0, kSmiTagSize);
__ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
// t5: offset of sliced string, smi-tagged.
__ jmp(&check_encoding);
// String is a cons string, check whether it is flat.
__ bind(&cons_string);
__ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
__ LoadRoot(a1, Heap::kEmptyStringRootIndex);
__ Branch(&runtime, ne, a0, Operand(a1));
__ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
// Is first part of cons or parent of slice a flat string?
__ bind(&check_encoding);
__ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSeqStringTag == 0);
__ And(at, a0, Operand(kStringRepresentationMask));
__ Branch(&runtime, ne, at, Operand(zero_reg));
__ bind(&seq_string);
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// a0: Instance type of subject string
STATIC_ASSERT(kStringEncodingMask == 4);
STATIC_ASSERT(kAsciiStringTag == 4);
STATIC_ASSERT(kTwoByteStringTag == 0);
// Find the code object based on the assumptions above.
__ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for ascii.
__ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset));
__ sra(a3, a0, 2); // a3 is 1 for ascii, 0 for UC16 (usyed below).
__ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
__ movz(t9, t1, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(t9, &runtime);
// a3: encoding of subject string (1 if ASCII, 0 if two_byte);
// t9: code
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Load used arguments before starting to push arguments for call to native
// RegExp code to avoid handling changing stack height.
__ lw(a1, MemOperand(sp, kPreviousIndexOffset));
__ sra(a1, a1, kSmiTagSize); // Untag the Smi.
// a1: previous index
// a3: encoding of subject string (1 if ASCII, 0 if two_byte);
// t9: code
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(masm->isolate()->counters()->regexp_entry_native(),
1, a0, a2);
// Isolates: note we add an additional parameter here (isolate pointer).
static const int kRegExpExecuteArguments = 8;
static const int kParameterRegisters = 4;
__ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
// Stack pointer now points to cell where return address is to be written.
// Arguments are before that on the stack or in registers, meaning we
// treat the return address as argument 5. Thus every argument after that
// needs to be shifted back by 1. Since DirectCEntryStub will handle
// allocating space for the c argument slots, we don't need to calculate
// that into the argument positions on the stack. This is how the stack will
// look (sp meaning the value of sp at this moment):
// [sp + 4] - Argument 8
// [sp + 3] - Argument 7
// [sp + 2] - Argument 6
// [sp + 1] - Argument 5
// [sp + 0] - saved ra
// Argument 8: Pass current isolate address.
// CFunctionArgumentOperand handles MIPS stack argument slots.
__ li(a0, Operand(ExternalReference::isolate_address()));
__ sw(a0, MemOperand(sp, 4 * kPointerSize));
// Argument 7: Indicate that this is a direct call from JavaScript.
__ li(a0, Operand(1));
__ sw(a0, MemOperand(sp, 3 * kPointerSize));
// Argument 6: Start (high end) of backtracking stack memory area.
__ li(a0, Operand(address_of_regexp_stack_memory_address));
__ lw(a0, MemOperand(a0, 0));
__ li(a2, Operand(address_of_regexp_stack_memory_size));
__ lw(a2, MemOperand(a2, 0));
__ addu(a0, a0, a2);
__ sw(a0, MemOperand(sp, 2 * kPointerSize));
// Argument 5: static offsets vector buffer.
__ li(a0, Operand(
ExternalReference::address_of_static_offsets_vector(masm->isolate())));
__ sw(a0, MemOperand(sp, 1 * kPointerSize));
// For arguments 4 and 3 get string length, calculate start of string data
// and calculate the shift of the index (0 for ASCII and 1 for two byte).
STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
__ Addu(t2, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
// Load the length from the original subject string from the previous stack
// frame. Therefore we have to use fp, which points exactly to two pointer
// sizes below the previous sp. (Because creating a new stack frame pushes
// the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
__ lw(a0, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
// If slice offset is not 0, load the length from the original sliced string.
// Argument 4, a3: End of string data
// Argument 3, a2: Start of string data
// Prepare start and end index of the input.
__ sllv(t1, t0, a3);
__ addu(t0, t2, t1);
__ sllv(t1, a1, a3);
__ addu(a2, t0, t1);
__ lw(t2, FieldMemOperand(a0, String::kLengthOffset));
__ sra(t2, t2, kSmiTagSize);
__ sllv(t1, t2, a3);
__ addu(a3, t0, t1);
// Argument 2 (a1): Previous index.
// Already there
// Argument 1 (a0): Subject string.
// Already there
// Locate the code entry and call it.
__ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
DirectCEntryStub stub;
stub.GenerateCall(masm, t9);
__ LeaveExitFrame(false, no_reg);
// v0: result
// subject: subject string (callee saved)
// regexp_data: RegExp data (callee saved)
// last_match_info_elements: Last match info elements (callee saved)
// Check the result.
Label success;
__ Branch(&success, eq,
subject, Operand(NativeRegExpMacroAssembler::SUCCESS));
Label failure;
__ Branch(&failure, eq,
subject, Operand(NativeRegExpMacroAssembler::FAILURE));
// If not exception it can only be retry. Handle that in the runtime system.
__ Branch(&runtime, ne,
subject, Operand(NativeRegExpMacroAssembler::EXCEPTION));
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
__ li(a1, Operand(
ExternalReference::the_hole_value_location(masm->isolate())));
__ lw(a1, MemOperand(a1, 0));
__ li(a2, Operand(ExternalReference(Isolate::k_pending_exception_address,
masm->isolate())));
__ lw(v0, MemOperand(a2, 0));
__ Branch(&runtime, eq, subject, Operand(a1));
__ sw(a1, MemOperand(a2, 0)); // Clear pending exception.
// Check if the exception is a termination. If so, throw as uncatchable.
__ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
Label termination_exception;
__ Branch(&termination_exception, eq, subject, Operand(a0));
__ Throw(subject); // Expects thrown value in v0.
__ bind(&termination_exception);
__ ThrowUncatchable(TERMINATION, v0); // Expects thrown value in v0.
__ bind(&failure);
// For failure and exception return null.
__ li(v0, Operand(masm->isolate()->factory()->null_value()));
__ Addu(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Process the result from the native regexp code.
__ bind(&success);
__ lw(a1,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ Addu(a1, a1, Operand(2)); // a1 was a smi.
// a1: number of capture registers
// subject: subject string
// Store the capture count.
__ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi.
__ sw(a2, FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastCaptureCountOffset));
// Store last subject and last input.
__ mov(a3, last_match_info_elements); // Moved up to reduce latency.
__ sw(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastSubjectOffset));
__ RecordWrite(a3, Operand(RegExpImpl::kLastSubjectOffset), a2, t0);
__ sw(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastInputOffset));
__ mov(a3, last_match_info_elements);
__ RecordWrite(a3, Operand(RegExpImpl::kLastInputOffset), a2, t0);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(masm->isolate());
__ li(a2, Operand(address_of_static_offsets_vector));
// a1: number of capture registers
// a2: offsets vector
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wrapping after zero.
__ Addu(a0,
last_match_info_elements,
Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
__ bind(&next_capture);
__ Subu(a1, a1, Operand(1));
__ Branch(&done, lt, a1, Operand(zero_reg));
// Read the value from the static offsets vector buffer.
__ lw(a3, MemOperand(a2, 0));
__ addiu(a2, a2, kPointerSize);
// Store the smi value in the last match info.
__ sll(a3, a3, kSmiTagSize); // Convert to Smi.
__ sw(a3, MemOperand(a0, 0));
__ Branch(&next_capture, USE_DELAY_SLOT);
__ addiu(a0, a0, kPointerSize); // In branch delay slot.
__ bind(&done);
// Return last match info.
__ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
__ Addu(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#endif // V8_INTERPRETED_REGEXP
}
void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
const int kMaxInlineLength = 100;
Label slowcase;
Label done;
__ lw(a1, MemOperand(sp, kPointerSize * 2));
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
__ JumpIfNotSmi(a1, &slowcase);
__ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength)));
// Smi-tagging is equivalent to multiplying by 2.
// Allocate RegExpResult followed by FixedArray with size in ebx.
// JSArray: [Map][empty properties][Elements][Length-smi][index][input]
// Elements: [Map][Length][..elements..]
// Size of JSArray with two in-object properties and the header of a
// FixedArray.
int objects_size =
(JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
__ srl(t1, a1, kSmiTagSize + kSmiShiftSize);
__ Addu(a2, t1, Operand(objects_size));
__ AllocateInNewSpace(
a2, // In: Size, in words.
v0, // Out: Start of allocation (tagged).
a3, // Scratch register.
t0, // Scratch register.
&slowcase,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// v0: Start of allocated area, object-tagged.
// a1: Number of elements in array, as smi.
// t1: Number of elements, untagged.
// Set JSArray map to global.regexp_result_map().
// Set empty properties FixedArray.
// Set elements to point to FixedArray allocated right after the JSArray.
// Interleave operations for better latency.
__ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
__ Addu(a3, v0, Operand(JSRegExpResult::kSize));
__ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array()));
__ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
__ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
__ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX));
__ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset));
__ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
// Set input, index and length fields from arguments.
__ lw(a1, MemOperand(sp, kPointerSize * 0));
__ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset));
__ lw(a1, MemOperand(sp, kPointerSize * 1));
__ sw(a1, FieldMemOperand(v0, JSRegExpResult::kIndexOffset));
__ lw(a1, MemOperand(sp, kPointerSize * 2));
__ sw(a1, FieldMemOperand(v0, JSArray::kLengthOffset));
// Fill out the elements FixedArray.
// v0: JSArray, tagged.
// a3: FixedArray, tagged.
// t1: Number of elements in array, untagged.
// Set map.
__ li(a2, Operand(masm->isolate()->factory()->fixed_array_map()));
__ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset));
// Set FixedArray length.
__ sll(t2, t1, kSmiTagSize);
__ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset));
// Fill contents of fixed-array with the-hole.
__ li(a2, Operand(masm->isolate()->factory()->the_hole_value()));
__ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// Fill fixed array elements with hole.
// v0: JSArray, tagged.
// a2: the hole.
// a3: Start of elements in FixedArray.
// t1: Number of elements to fill.
Label loop;
__ sll(t1, t1, kPointerSizeLog2); // Convert num elements to num bytes.
__ addu(t1, t1, a3); // Point past last element to store.
__ bind(&loop);
__ Branch(&done, ge, a3, Operand(t1)); // Break when a3 past end of elem.
__ sw(a2, MemOperand(a3));
__ Branch(&loop, USE_DELAY_SLOT);
__ addiu(a3, a3, kPointerSize); // In branch delay slot.
__ bind(&done);
__ Addu(sp, sp, Operand(3 * kPointerSize));
__ Ret();
__ bind(&slowcase);
__ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
// The receiver might implicitly be the global object. This is
// indicated by passing the hole as the receiver to the call
// function stub.
if (ReceiverMightBeImplicit()) {
Label call;
// Get the receiver from the stack.
// function, receiver [, arguments]
__ lw(t0, MemOperand(sp, argc_ * kPointerSize));
// Call as function is indicated with the hole.
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(&call, ne, t0, Operand(at));
// Patch the receiver on the stack with the global receiver object.
__ lw(a1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
__ sw(a1, MemOperand(sp, argc_ * kPointerSize));
__ bind(&call);
}
// Get the function to call from the stack.
// function, receiver [, arguments]
__ lw(a1, MemOperand(sp, (argc_ + 1) * kPointerSize));
// Check that the function is really a JavaScript function.
// a1: pushed function (to be verified)
__ JumpIfSmi(a1, &slow);
// Get the map of the function object.
__ GetObjectType(a1, a2, a2);
__ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
// Fast-case: Invoke the function now.
// a1: pushed function
ParameterCount actual(argc_);
if (ReceiverMightBeImplicit()) {
Label call_as_function;
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(&call_as_function, eq, t0, Operand(at));
__ InvokeFunction(a1,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
CALL_AS_METHOD);
__ bind(&call_as_function);
}
__ InvokeFunction(a1,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
CALL_AS_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ sw(a1, MemOperand(sp, argc_ * kPointerSize));
__ li(a0, Operand(argc_)); // Setup the number of arguments.
__ mov(a2, zero_reg);
__ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
__ SetCallKind(t1, CALL_AS_METHOD);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
void CompareStub::PrintName(StringStream* stream) {
ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
(lhs_.is(a1) && rhs_.is(a0)));
const char* cc_name;
switch (cc_) {
case lt: cc_name = "LT"; break;
case gt: cc_name = "GT"; break;
case le: cc_name = "LE"; break;
case ge: cc_name = "GE"; break;
case eq: cc_name = "EQ"; break;
case ne: cc_name = "NE"; break;
default: cc_name = "UnknownCondition"; break;
}
bool is_equality = cc_ == eq || cc_ == ne;
stream->Add("CompareStub_%s", cc_name);
stream->Add(lhs_.is(a0) ? "_a0" : "_a1");
stream->Add(rhs_.is(a0) ? "_a0" : "_a1");
if (strict_ && is_equality) stream->Add("_STRICT");
if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
if (!include_number_compare_) stream->Add("_NO_NUMBER");
if (!include_smi_compare_) stream->Add("_NO_SMI");
}
int CompareStub::MinorKey() {
// Encode the two parameters in a unique 16 bit value.
ASSERT(static_cast<unsigned>(cc_) < (1 << 14));
ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
(lhs_.is(a1) && rhs_.is(a0)));
return ConditionField::encode(static_cast<unsigned>(cc_))
| RegisterField::encode(lhs_.is(a0))
| StrictField::encode(strict_)
| NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
| IncludeSmiCompareField::encode(include_smi_compare_);
}
// StringCharCodeAtGenerator.
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
Label flat_string;
Label ascii_string;
Label got_char_code;
Label sliced_string;
ASSERT(!t0.is(scratch_));
ASSERT(!t0.is(index_));
ASSERT(!t0.is(result_));
ASSERT(!t0.is(object_));
// If the receiver is a smi trigger the non-string case.
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ And(t0, result_, Operand(kIsNotStringMask));
__ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
// Put smi-tagged index into scratch register.
__ mov(scratch_, index_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
__ Branch(index_out_of_range_, ls, t0, Operand(scratch_));
// We need special handling for non-flat strings.
STATIC_ASSERT(kSeqStringTag == 0);
__ And(t0, result_, Operand(kStringRepresentationMask));
__ Branch(&flat_string, eq, t0, Operand(zero_reg));
// Handle non-flat strings.
__ And(result_, result_, Operand(kStringRepresentationMask));
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
__ Branch(&sliced_string, gt, result_, Operand(kExternalStringTag));
__ Branch(&call_runtime_, eq, result_, Operand(kExternalStringTag));
// ConsString.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
Label assure_seq_string;
__ lw(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
__ LoadRoot(t0, Heap::kEmptyStringRootIndex);
__ Branch(&call_runtime_, ne, result_, Operand(t0));
// Get the first of the two strings and load its instance type.
__ lw(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
__ jmp(&assure_seq_string);
// SlicedString, unpack and add offset.
__ bind(&sliced_string);
__ lw(result_, FieldMemOperand(object_, SlicedString::kOffsetOffset));
__ addu(scratch_, scratch_, result_);
__ lw(object_, FieldMemOperand(object_, SlicedString::kParentOffset));
// Assure that we are dealing with a sequential string. Go to runtime if not.
__ bind(&assure_seq_string);
__ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// Check that parent is not an external string. Go to runtime otherwise.
STATIC_ASSERT(kSeqStringTag == 0);
__ And(t0, result_, Operand(kStringRepresentationMask));
__ Branch(&call_runtime_, ne, t0, Operand(zero_reg));
// Check for 1-byte or 2-byte string.
__ bind(&flat_string);
STATIC_ASSERT(kAsciiStringTag != 0);
__ And(t0, result_, Operand(kStringEncodingMask));
__ Branch(&ascii_string, ne, t0, Operand(zero_reg));
// 2-byte string.
// Load the 2-byte character code into the result register. We can
// add without shifting since the smi tag size is the log2 of the
// number of bytes in a two-byte character.
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
__ Addu(scratch_, object_, Operand(scratch_));
__ lhu(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
__ Branch(&got_char_code);
// ASCII string.
// Load the byte into the result register.
__ bind(&ascii_string);
__ srl(t0, scratch_, kSmiTagSize);
__ Addu(scratch_, object_, t0);
__ lbu(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
__ bind(&got_char_code);
__ sll(result_, result_, kSmiTagSize);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharCodeAt slow case");
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
scratch_,
Heap::kHeapNumberMapRootIndex,
index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
// Consumed by runtime conversion function:
__ Push(object_, index_, index_);
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
} else {
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
// NumberToSmi discards numbers that are not exact integers.
__ CallRuntime(Runtime::kNumberToSmi, 1);
}
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ Move(scratch_, v0);
__ pop(index_);
__ pop(object_);
// Reload the instance type.
__ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(scratch_, index_out_of_range_);
// Otherwise, return to the fast path.
__ Branch(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ Push(object_, index_);
__ CallRuntime(Runtime::kStringCharCodeAt, 2);
__ Move(result_, v0);
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharCodeAt slow case");
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
ASSERT(!t0.is(result_));
ASSERT(!t0.is(code_));
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiShiftSize == 0);
ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
__ And(t0,
code_,
Operand(kSmiTagMask |
((~String::kMaxAsciiCharCode) << kSmiTagSize)));
__ Branch(&slow_case_, ne, t0, Operand(zero_reg));
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
// At this point code register contains smi tagged ASCII char code.
STATIC_ASSERT(kSmiTag == 0);
__ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize);
__ Addu(result_, result_, t0);
__ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ Branch(&slow_case_, eq, result_, Operand(t0));
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharFromCode slow case");
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
__ Move(result_, v0);
call_helper.AfterCall(masm);
__ Branch(&exit_);
__ Abort("Unexpected fallthrough from CharFromCode slow case");
}
// -------------------------------------------------------------------------
// StringCharAtGenerator
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
char_code_at_generator_.GenerateFast(masm);
char_from_code_generator_.GenerateFast(masm);
}
void StringCharAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
char_code_at_generator_.GenerateSlow(masm, call_helper);
char_from_code_generator_.GenerateSlow(masm, call_helper);
}
class StringHelper : public AllStatic {
public:
// Generate code for copying characters using a simple loop. This should only
// be used in places where the number of characters is small and the
// additional setup and checking in GenerateCopyCharactersLong adds too much
// overhead. Copying of overlapping regions is not supported.
// Dest register ends at the position after the last character written.
static void GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii);
// Generate code for copying a large number of characters. This function
// is allowed to spend extra time setting up conditions to make copying
// faster. Copying of overlapping regions is not supported.
// Dest register ends at the position after the last character written.
static void GenerateCopyCharactersLong(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
int flags);
// Probe the symbol table for a two character string. If the string is
// not found by probing a jump to the label not_found is performed. This jump
// does not guarantee that the string is not in the symbol table. If the
// string is found the code falls through with the string in register r0.
// Contents of both c1 and c2 registers are modified. At the exit c1 is
// guaranteed to contain halfword with low and high bytes equal to
// initial contents of c1 and c2 respectively.
static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
Label* not_found);
// Generate string hash.
static void GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character);
static void GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character);
static void GenerateHashGetHash(MacroAssembler* masm,
Register hash);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii) {
Label loop;
Label done;
// This loop just copies one character at a time, as it is only used for
// very short strings.
if (!ascii) {
__ addu(count, count, count);
}
__ Branch(&done, eq, count, Operand(zero_reg));
__ addu(count, dest, count); // Count now points to the last dest byte.
__ bind(&loop);
__ lbu(scratch, MemOperand(src));
__ addiu(src, src, 1);
__ sb(scratch, MemOperand(dest));
__ addiu(dest, dest, 1);
__ Branch(&loop, lt, dest, Operand(count));
__ bind(&done);
}
enum CopyCharactersFlags {
COPY_ASCII = 1,
DEST_ALWAYS_ALIGNED = 2
};
void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
int flags) {
bool ascii = (flags & COPY_ASCII) != 0;
bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
if (dest_always_aligned && FLAG_debug_code) {
// Check that destination is actually word aligned if the flag says
// that it is.
__ And(scratch4, dest, Operand(kPointerAlignmentMask));
__ Check(eq,
"Destination of copy not aligned.",
scratch4,
Operand(zero_reg));
}
const int kReadAlignment = 4;
const int kReadAlignmentMask = kReadAlignment - 1;
// Ensure that reading an entire aligned word containing the last character
// of a string will not read outside the allocated area (because we pad up
// to kObjectAlignment).
STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
// Assumes word reads and writes are little endian.
// Nothing to do for zero characters.
Label done;
if (!ascii) {
__ addu(count, count, count);
}
__ Branch(&done, eq, count, Operand(zero_reg));
Label byte_loop;
// Must copy at least eight bytes, otherwise just do it one byte at a time.
__ Subu(scratch1, count, Operand(8));
__ Addu(count, dest, Operand(count));
Register limit = count; // Read until src equals this.
__ Branch(&byte_loop, lt, scratch1, Operand(zero_reg));
if (!dest_always_aligned) {
// Align dest by byte copying. Copies between zero and three bytes.
__ And(scratch4, dest, Operand(kReadAlignmentMask));
Label dest_aligned;
__ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg));
Label aligned_loop;
__ bind(&aligned_loop);
__ lbu(scratch1, MemOperand(src));
__ addiu(src, src, 1);
__ sb(scratch1, MemOperand(dest));
__ addiu(dest, dest, 1);
__ addiu(scratch4, scratch4, 1);
__ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask));
__ bind(&dest_aligned);
}
Label simple_loop;
__ And(scratch4, src, Operand(kReadAlignmentMask));
__ Branch(&simple_loop, eq, scratch4, Operand(zero_reg));
// Loop for src/dst that are not aligned the same way.
// This loop uses lwl and lwr instructions. These instructions
// depend on the endianness, and the implementation assumes little-endian.
{
Label loop;
__ bind(&loop);
__ lwr(scratch1, MemOperand(src));
__ Addu(src, src, Operand(kReadAlignment));
__ lwl(scratch1, MemOperand(src, -1));
__ sw(scratch1, MemOperand(dest));
__ Addu(dest, dest, Operand(kReadAlignment));
__ Subu(scratch2, limit, dest);
__ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
}
__ Branch(&byte_loop);
// Simple loop.
// Copy words from src to dest, until less than four bytes left.
// Both src and dest are word aligned.
__ bind(&simple_loop);
{
Label loop;
__ bind(&loop);
__ lw(scratch1, MemOperand(src));
__ Addu(src, src, Operand(kReadAlignment));
__ sw(scratch1, MemOperand(dest));
__ Addu(dest, dest, Operand(kReadAlignment));
__ Subu(scratch2, limit, dest);
__ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
}
// Copy bytes from src to dest until dest hits limit.
__ bind(&byte_loop);
// Test if dest has already reached the limit.
__ Branch(&done, ge, dest, Operand(limit));
__ lbu(scratch1, MemOperand(src));
__ addiu(src, src, 1);
__ sb(scratch1, MemOperand(dest));
__ addiu(dest, dest, 1);
__ Branch(&byte_loop);
__ bind(&done);
}
void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
Label* not_found) {
// Register scratch3 is the general scratch register in this function.
Register scratch = scratch3;
// Make sure that both characters are not digits as such strings has a
// different hash algorithm. Don't try to look for these in the symbol table.
Label not_array_index;
__ Subu(scratch, c1, Operand(static_cast<int>('0')));
__ Branch(&not_array_index,
Ugreater,
scratch,
Operand(static_cast<int>('9' - '0')));
__ Subu(scratch, c2, Operand(static_cast<int>('0')));
// If check failed combine both characters into single halfword.
// This is required by the contract of the method: code at the
// not_found branch expects this combination in c1 register.
Label tmp;
__ sll(scratch1, c2, kBitsPerByte);
__ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0')));
__ Or(c1, c1, scratch1);
__ bind(&tmp);
__ Branch(not_found,
Uless_equal,
scratch,
Operand(static_cast<int>('9' - '0')));
__ bind(&not_array_index);
// Calculate the two character string hash.
Register hash = scratch1;
StringHelper::GenerateHashInit(masm, hash, c1);
StringHelper::GenerateHashAddCharacter(masm, hash, c2);
StringHelper::GenerateHashGetHash(masm, hash);
// Collect the two characters in a register.
Register chars = c1;
__ sll(scratch, c2, kBitsPerByte);
__ Or(chars, chars, scratch);
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string.
// Load symbol table.
// Load address of first element of the symbol table.
Register symbol_table = c2;
__ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
Register undefined = scratch4;
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
// Calculate capacity mask from the symbol table capacity.
Register mask = scratch2;
__ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
__ sra(mask, mask, 1);
__ Addu(mask, mask, -1);
// Calculate untagged address of the first element of the symbol table.
Register first_symbol_table_element = symbol_table;
__ Addu(first_symbol_table_element, symbol_table,
Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
// Registers.
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string
// mask: capacity mask
// first_symbol_table_element: address of the first element of
// the symbol table
// undefined: the undefined object
// scratch: -
// Perform a number of probes in the symbol table.
static const int kProbes = 4;
Label found_in_symbol_table;
Label next_probe[kProbes];
Register candidate = scratch5; // Scratch register contains candidate.
for (int i = 0; i < kProbes; i++) {
// Calculate entry in symbol table.
if (i > 0) {
__ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
} else {
__ mov(candidate, hash);
}
__ And(candidate, candidate, Operand(mask));
// Load the entry from the symble table.
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
__ sll(scratch, candidate, kPointerSizeLog2);
__ Addu(scratch, scratch, first_symbol_table_element);
__ lw(candidate, MemOperand(scratch));
// If entry is undefined no string with this hash can be found.
Label is_string;
__ GetObjectType(candidate, scratch, scratch);
__ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE));
__ Branch(not_found, eq, undefined, Operand(candidate));
// Must be null (deleted entry).
if (FLAG_debug_code) {
__ LoadRoot(scratch, Heap::kNullValueRootIndex);
__ Assert(eq, "oddball in symbol table is not undefined or null",
scratch, Operand(candidate));
}
__ jmp(&next_probe[i]);
__ bind(&is_string);
// Check that the candidate is a non-external ASCII string. The instance
// type is still in the scratch register from the CompareObjectType
// operation.
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
// If length is not 2 the string is not a candidate.
__ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset));
__ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2)));
// Check if the two characters match.
// Assumes that word load is little endian.
__ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
__ Branch(&found_in_symbol_table, eq, chars, Operand(scratch));
__ bind(&next_probe[i]);
}
// No matching 2 character string found by probing.
__ jmp(not_found);
// Scratch register contains result when we fall through to here.
Register result = candidate;
__ bind(&found_in_symbol_table);
__ mov(v0, result);
}
void StringHelper::GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character) {
// hash = character + (character << 10);
__ sll(hash, character, 10);
__ addu(hash, hash, character);
// hash ^= hash >> 6;
__ sra(at, hash, 6);
__ xor_(hash, hash, at);
}
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character) {
// hash += character;
__ addu(hash, hash, character);
// hash += hash << 10;
__ sll(at, hash, 10);
__ addu(hash, hash, at);
// hash ^= hash >> 6;
__ sra(at, hash, 6);
__ xor_(hash, hash, at);
}
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
Register hash) {
// hash += hash << 3;
__ sll(at, hash, 3);
__ addu(hash, hash, at);
// hash ^= hash >> 11;
__ sra(at, hash, 11);
__ xor_(hash, hash, at);
// hash += hash << 15;
__ sll(at, hash, 15);
__ addu(hash, hash, at);
// if (hash == 0) hash = 27;
__ ori(at, zero_reg, 27);
__ movz(hash, at, hash);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label sub_string_runtime;
// Stack frame on entry.
// ra: return address
// sp[0]: to
// sp[4]: from
// sp[8]: string
// This stub is called from the native-call %_SubString(...), so
// nothing can be assumed about the arguments. It is tested that:
// "string" is a sequential string,
// both "from" and "to" are smis, and
// 0 <= from <= to <= string.length.
// If any of these assumptions fail, we call the runtime system.
static const int kToOffset = 0 * kPointerSize;
static const int kFromOffset = 1 * kPointerSize;
static const int kStringOffset = 2 * kPointerSize;
Register to = t2;
Register from = t3;
if (FLAG_string_slices) {
__ nop(); // Jumping as first instruction would crash the code generation.
__ jmp(&sub_string_runtime);
}
// Check bounds and smi-ness.
__ lw(to, MemOperand(sp, kToOffset));
__ lw(from, MemOperand(sp, kFromOffset));
STATIC_ASSERT(kFromOffset == kToOffset + 4);
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ JumpIfNotSmi(from, &sub_string_runtime);
__ JumpIfNotSmi(to, &sub_string_runtime);
__ sra(a3, from, kSmiTagSize); // Remove smi tag.
__ sra(t5, to, kSmiTagSize); // Remove smi tag.
// a3: from index (untagged smi)
// t5: to index (untagged smi)
__ Branch(&sub_string_runtime, lt, a3, Operand(zero_reg)); // From < 0.
__ subu(a2, t5, a3);
__ Branch(&sub_string_runtime, gt, a3, Operand(t5)); // Fail if from > to.
// Special handling of sub-strings of length 1 and 2. One character strings
// are handled in the runtime system (looked up in the single character
// cache). Two character strings are looked for in the symbol cache.
__ Branch(&sub_string_runtime, lt, a2, Operand(2));
// Both to and from are smis.
// a2: result string length
// a3: from index (untagged smi)
// t2: (a.k.a. to): to (smi)
// t3: (a.k.a. from): from offset (smi)
// t5: to index (untagged smi)
// Make sure first argument is a sequential (or flat) string.
__ lw(t1, MemOperand(sp, kStringOffset));
__ Branch(&sub_string_runtime, eq, t1, Operand(kSmiTagMask));
__ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
__ And(t4, a1, Operand(kIsNotStringMask));
__ Branch(&sub_string_runtime, ne, t4, Operand(zero_reg));
// a1: instance type
// a2: result string length
// a3: from index (untagged smi)
// t1: string
// t2: (a.k.a. to): to (smi)
// t3: (a.k.a. from): from offset (smi)
// t5: to index (untagged smi)
Label seq_string;
__ And(t0, a1, Operand(kStringRepresentationMask));
STATIC_ASSERT(kSeqStringTag < kConsStringTag);
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
// External strings go to runtime.
__ Branch(&sub_string_runtime, gt, t0, Operand(kConsStringTag));
// Sequential strings are handled directly.
__ Branch(&seq_string, lt, t0, Operand(kConsStringTag));
// Cons string. Try to recurse (once) on the first substring.
// (This adds a little more generality than necessary to handle flattened
// cons strings, but not much).
__ lw(t1, FieldMemOperand(t1, ConsString::kFirstOffset));
__ lw(t0, FieldMemOperand(t1, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(t0, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSeqStringTag == 0);
// Cons and External strings go to runtime.
__ Branch(&sub_string_runtime, ne, a1, Operand(kStringRepresentationMask));
// Definitly a sequential string.
__ bind(&seq_string);
// a1: instance type
// a2: result string length
// a3: from index (untagged smi)
// t1: string
// t2: (a.k.a. to): to (smi)
// t3: (a.k.a. from): from offset (smi)
// t5: to index (untagged smi)
__ lw(t0, FieldMemOperand(t1, String::kLengthOffset));
__ Branch(&sub_string_runtime, lt, t0, Operand(to)); // Fail if to > length.
to = no_reg;
// a1: instance type
// a2: result string length
// a3: from index (untagged smi)
// t1: string
// t3: (a.k.a. from): from offset (smi)
// t5: to index (untagged smi)
// Check for flat ASCII string.
Label non_ascii_flat;
STATIC_ASSERT(kTwoByteStringTag == 0);
__ And(t4, a1, Operand(kStringEncodingMask));
__ Branch(&non_ascii_flat, eq, t4, Operand(zero_reg));
Label result_longer_than_two;
__ Branch(&result_longer_than_two, gt, a2, Operand(2));
// Sub string of length 2 requested.
// Get the two characters forming the sub string.
__ Addu(t1, t1, Operand(a3));
__ lbu(a3, FieldMemOperand(t1, SeqAsciiString::kHeaderSize));
__ lbu(t0, FieldMemOperand(t1, SeqAsciiString::kHeaderSize + 1));
// Try to lookup two character string in symbol table.
Label make_two_character_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, a3, t0, a1, t1, t2, t3, t4, &make_two_character_string);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
__ Addu(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// a2: result string length.
// a3: two characters combined into halfword in little endian byte order.
__ bind(&make_two_character_string);
__ AllocateAsciiString(v0, a2, t0, t1, t4, &sub_string_runtime);
__ sh(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
__ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
__ Addu(sp, sp, Operand(3 * kPointerSize));
__ Ret();
__ bind(&result_longer_than_two);
// Allocate the result.
__ AllocateAsciiString(v0, a2, t4, t0, a1, &sub_string_runtime);
// v0: result string.
// a2: result string length.
// a3: from index (untagged smi)
// t1: string.
// t3: (a.k.a. from): from offset (smi)
// Locate first character of result.
__ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Locate 'from' character of string.
__ Addu(t1, t1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ Addu(t1, t1, Operand(a3));
// v0: result string.
// a1: first character of result string.
// a2: result string length.
// t1: first character of sub string to copy.
STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharactersLong(
masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED);
__ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
__ Addu(sp, sp, Operand(3 * kPointerSize));
__ Ret();
__ bind(&non_ascii_flat);
// a2: result string length.
// t1: string.
// t3: (a.k.a. from): from offset (smi)
// Check for flat two byte string.
// Allocate the result.
__ AllocateTwoByteString(v0, a2, a1, a3, t0, &sub_string_runtime);
// v0: result string.
// a2: result string length.
// t1: string.
// Locate first character of result.
__ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Locate 'from' character of string.
__ Addu(t1, t1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// As "from" is a smi it is 2 times the value which matches the size of a two
// byte character.
__ Addu(t1, t1, Operand(from));
from = no_reg;
// v0: result string.
// a1: first character of result.
// a2: result length.
// t1: first character of string to copy.
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharactersLong(
masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED);
__ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
__ Addu(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Just jump to runtime to create the sub string.
__ bind(&sub_string_runtime);
__ TailCallRuntime(Runtime::kSubString, 3, 1);
}
void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3) {
Register length = scratch1;
// Compare lengths.
Label strings_not_equal, check_zero_length;
__ lw(length, FieldMemOperand(left, String::kLengthOffset));
__ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ Branch(&check_zero_length, eq, length, Operand(scratch2));
__ bind(&strings_not_equal);
__ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
__ Ret();
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ Branch(&compare_chars, ne, length, Operand(zero_reg));
__ li(v0, Operand(Smi::FromInt(EQUAL)));
__ Ret();
// Compare characters.
__ bind(&compare_chars);
GenerateAsciiCharsCompareLoop(masm,
left, right, length, scratch2, scratch3, v0,
&strings_not_equal);
// Characters are equal.
__ li(v0, Operand(Smi::FromInt(EQUAL)));
__ Ret();
}
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
Label result_not_equal, compare_lengths;
// Find minimum length and length difference.
__ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
__ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ Subu(scratch3, scratch1, Operand(scratch2));
Register length_delta = scratch3;
__ slt(scratch4, scratch2, scratch1);
__ movn(scratch1, scratch2, scratch4);
Register min_length = scratch1;
STATIC_ASSERT(kSmiTag == 0);
__ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
// Compare loop.
GenerateAsciiCharsCompareLoop(masm,
left, right, min_length, scratch2, scratch4, v0,
&result_not_equal);
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use length_delta as result if it's zero.
__ mov(scratch2, length_delta);
__ mov(scratch4, zero_reg);
__ mov(v0, zero_reg);
__ bind(&result_not_equal);
// Conditionally update the result based either on length_delta or
// the last comparion performed in the loop above.
Label ret;
__ Branch(&ret, eq, scratch2, Operand(scratch4));
__ li(v0, Operand(Smi::FromInt(GREATER)));
__ Branch(&ret, gt, scratch2, Operand(scratch4));
__ li(v0, Operand(Smi::FromInt(LESS)));
__ bind(&ret);
__ Ret();
}
void StringCompareStub::GenerateAsciiCharsCompareLoop(
MacroAssembler* masm,
Register left,
Register right,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* chars_not_equal) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
__ Addu(scratch1, length,
Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ Addu(left, left, Operand(scratch1));
__ Addu(right, right, Operand(scratch1));
__ Subu(length, zero_reg, length);
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
__ Addu(scratch3, left, index);
__ lbu(scratch1, MemOperand(scratch3));
__ Addu(scratch3, right, index);
__ lbu(scratch2, MemOperand(scratch3));
__ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
__ Addu(index, index, 1);
__ Branch(&loop, ne, index, Operand(zero_reg));
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
Counters* counters = masm->isolate()->counters();
// Stack frame on entry.
// sp[0]: right string
// sp[4]: left string
__ lw(a1, MemOperand(sp, 1 * kPointerSize)); // Left.
__ lw(a0, MemOperand(sp, 0 * kPointerSize)); // Right.
Label not_same;
__ Branch(&not_same, ne, a0, Operand(a1));
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ li(v0, Operand(Smi::FromInt(EQUAL)));
__ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
__ Addu(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&not_same);
// Check that both objects are sequential ASCII strings.
__ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime);
// Compare flat ASCII strings natively. Remove arguments from stack first.
__ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
__ Addu(sp, sp, Operand(2 * kPointerSize));
GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1);
__ bind(&runtime);
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
void StringAddStub::Generate(MacroAssembler* masm) {
Label string_add_runtime, call_builtin;
Builtins::JavaScript builtin_id = Builtins::ADD;
Counters* counters = masm->isolate()->counters();
// Stack on entry:
// sp[0]: second argument (right).
// sp[4]: first argument (left).
// Load the two arguments.
__ lw(a0, MemOperand(sp, 1 * kPointerSize)); // First argument.
__ lw(a1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
// Make sure that both arguments are strings if not known in advance.
if (flags_ == NO_STRING_ADD_FLAGS) {
__ JumpIfEitherSmi(a0, a1, &string_add_runtime);
// Load instance types.
__ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
__ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
__ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
STATIC_ASSERT(kStringTag == 0);
// If either is not a string, go to runtime.
__ Or(t4, t0, Operand(t1));
__ And(t4, t4, Operand(kIsNotStringMask));
__ Branch(&string_add_runtime, ne, t4, Operand(zero_reg));
} else {
// Here at least one of the arguments is definitely a string.
// We convert the one that is not known to be a string.
if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
GenerateConvertArgument(
masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin);
builtin_id = Builtins::STRING_ADD_RIGHT;
} else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
GenerateConvertArgument(
masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin);
builtin_id = Builtins::STRING_ADD_LEFT;
}
}
// Both arguments are strings.
// a0: first string
// a1: second string
// t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
// t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
{
Label strings_not_empty;
// Check if either of the strings are empty. In that case return the other.
// These tests use zero-length check on string-length whch is an Smi.
// Assert that Smi::FromInt(0) is really 0.
STATIC_ASSERT(kSmiTag == 0);
ASSERT(Smi::FromInt(0) == 0);
__ lw(a2, FieldMemOperand(a0, String::kLengthOffset));
__ lw(a3, FieldMemOperand(a1, String::kLengthOffset));
__ mov(v0, a0); // Assume we'll return first string (from a0).
__ movz(v0, a1, a2); // If first is empty, return second (from a1).
__ slt(t4, zero_reg, a2); // if (a2 > 0) t4 = 1.
__ slt(t5, zero_reg, a3); // if (a3 > 0) t5 = 1.
__ and_(t4, t4, t5); // Branch if both strings were non-empty.
__ Branch(&strings_not_empty, ne, t4, Operand(zero_reg));
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
__ Addu(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&strings_not_empty);
}
// Untag both string-lengths.
__ sra(a2, a2, kSmiTagSize);
__ sra(a3, a3, kSmiTagSize);
// Both strings are non-empty.
// a0: first string
// a1: second string
// a2: length of first string
// a3: length of second string
// t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
// t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
// Look at the length of the result of adding the two strings.
Label string_add_flat_result, longer_than_two;
// Adding two lengths can't overflow.
STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
__ Addu(t2, a2, Operand(a3));
// Use the symbol table when adding two one character strings, as it
// helps later optimizations to return a symbol here.
__ Branch(&longer_than_two, ne, t2, Operand(2));
// Check that both strings are non-external ASCII strings.
if (flags_ != NO_STRING_ADD_FLAGS) {
__ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
__ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
__ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
}
__ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3,
&string_add_runtime);
// Get the two characters forming the sub string.
__ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize));
__ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize));
// Try to lookup two character string in symbol table. If it is not found
// just allocate a new one.
Label make_two_character_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, a2, a3, t2, t3, t0, t1, t4, &make_two_character_string);
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
__ Addu(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&make_two_character_string);
// Resulting string has length 2 and first chars of two strings
// are combined into single halfword in a2 register.
// So we can fill resulting string without two loops by a single
// halfword store instruction (which assumes that processor is
// in a little endian mode).
__ li(t2, Operand(2));
__ AllocateAsciiString(v0, t2, t0, t1, t4, &string_add_runtime);
__ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
__ Addu(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&longer_than_two);
// Check if resulting string will be flat.
__ Branch(&string_add_flat_result, lt, t2,
Operand(String::kMinNonFlatLength));
// Handle exceptionally long strings in the runtime system.
STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
ASSERT(IsPowerOf2(String::kMaxLength + 1));
// kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
__ Branch(&string_add_runtime, hs, t2, Operand(String::kMaxLength + 1));
// If result is not supposed to be flat, allocate a cons string object.
// If both strings are ASCII the result is an ASCII cons string.
if (flags_ != NO_STRING_ADD_FLAGS) {
__ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
__ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
__ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
}
Label non_ascii, allocated, ascii_data;
STATIC_ASSERT(kTwoByteStringTag == 0);
// Branch to non_ascii if either string-encoding field is zero (non-ascii).
__ And(t4, t0, Operand(t1));
__ And(t4, t4, Operand(kStringEncodingMask));
__ Branch(&non_ascii, eq, t4, Operand(zero_reg));
// Allocate an ASCII cons string.
__ bind(&ascii_data);
__ AllocateAsciiConsString(t3, t2, t0, t1, &string_add_runtime);
__ bind(&allocated);
// Fill the fields of the cons string.
__ sw(a0, FieldMemOperand(t3, ConsString::kFirstOffset));
__ sw(a1, FieldMemOperand(t3, ConsString::kSecondOffset));
__ mov(v0, t3);
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
__ Addu(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&non_ascii);
// At least one of the strings is two-byte. Check whether it happens
// to contain only ASCII characters.
// t0: first instance type.
// t1: second instance type.
// Branch to if _both_ instances have kAsciiDataHintMask set.
__ And(at, t0, Operand(kAsciiDataHintMask));
__ and_(at, at, t1);
__ Branch(&ascii_data, ne, at, Operand(zero_reg));
__ xor_(t0, t0, t1);
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
__ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
__ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
// Allocate a two byte cons string.
__ AllocateTwoByteConsString(t3, t2, t0, t1, &string_add_runtime);
__ Branch(&allocated);
// Handle creating a flat result. First check that both strings are
// sequential and that they have the same encoding.
// a0: first string
// a1: second string
// a2: length of first string
// a3: length of second string
// t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
// t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
// t2: sum of lengths.
__ bind(&string_add_flat_result);
if (flags_ != NO_STRING_ADD_FLAGS) {
__ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
__ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
__ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
}
// Check that both strings are sequential, meaning that we
// branch to runtime if either string tag is non-zero.
STATIC_ASSERT(kSeqStringTag == 0);
__ Or(t4, t0, Operand(t1));
__ And(t4, t4, Operand(kStringRepresentationMask));
__ Branch(&string_add_runtime, ne, t4, Operand(zero_reg));
// Now check if both strings have the same encoding (ASCII/Two-byte).
// a0: first string
// a1: second string
// a2: length of first string
// a3: length of second string
// t0: first string instance type
// t1: second string instance type
// t2: sum of lengths.
Label non_ascii_string_add_flat_result;
ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
__ xor_(t3, t1, t0);
__ And(t3, t3, Operand(kStringEncodingMask));
__ Branch(&string_add_runtime, ne, t3, Operand(zero_reg));
// And see if it's ASCII (0) or two-byte (1).
__ And(t3, t0, Operand(kStringEncodingMask));
__ Branch(&non_ascii_string_add_flat_result, eq, t3, Operand(zero_reg));
// Both strings are sequential ASCII strings. We also know that they are
// short (since the sum of the lengths is less than kMinNonFlatLength).
// t2: length of resulting flat string
__ AllocateAsciiString(t3, t2, t0, t1, t4, &string_add_runtime);
// Locate first character of result.
__ Addu(t2, t3, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument.
__ Addu(a0, a0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// a0: first character of first string.
// a1: second string.
// a2: length of first string.
// a3: length of second string.
// t2: first character of result.
// t3: result string.
StringHelper::GenerateCopyCharacters(masm, t2, a0, a2, t0, true);
// Load second argument and locate first character.
__ Addu(a1, a1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// a1: first character of second string.
// a3: length of second string.
// t2: next character of result.
// t3: result string.
StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true);
__ mov(v0, t3);
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
__ Addu(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&non_ascii_string_add_flat_result);
// Both strings are sequential two byte strings.
// a0: first string.
// a1: second string.
// a2: length of first string.
// a3: length of second string.
// t2: sum of length of strings.
__ AllocateTwoByteString(t3, t2, t0, t1, t4, &string_add_runtime);
// a0: first string.
// a1: second string.
// a2: length of first string.
// a3: length of second string.
// t3: result string.
// Locate first character of result.
__ Addu(t2, t3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument.
__ Addu(a0, a0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// a0: first character of first string.
// a1: second string.
// a2: length of first string.
// a3: length of second string.
// t2: first character of result.
// t3: result string.
StringHelper::GenerateCopyCharacters(masm, t2, a0, a2, t0, false);
// Locate first character of second argument.
__ Addu(a1, a1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// a1: first character of second string.
// a3: length of second string.
// t2: next character of result (after copy of first string).
// t3: result string.
StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false);
__ mov(v0, t3);
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
__ Addu(sp, sp, Operand(2 * kPointerSize));
__ Ret();
// Just jump to runtime to add the two strings.
__ bind(&string_add_runtime);
__ TailCallRuntime(Runtime::kStringAdd, 2, 1);
if (call_builtin.is_linked()) {
__ bind(&call_builtin);
__ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
}
}
void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
int stack_offset,
Register arg,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* slow) {
// First check if the argument is already a string.
Label not_string, done;
__ JumpIfSmi(arg, &not_string);
__ GetObjectType(arg, scratch1, scratch1);
__ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE));
// Check the number to string cache.
Label not_cached;
__ bind(&not_string);
// Puts the cached result into scratch1.
NumberToStringStub::GenerateLookupNumberStringCache(masm,
arg,
scratch1,
scratch2,
scratch3,
scratch4,
false,
&not_cached);
__ mov(arg, scratch1);
__ sw(arg, MemOperand(sp, stack_offset));
__ jmp(&done);
// Check if the argument is a safe string wrapper.
__ bind(&not_cached);
__ JumpIfSmi(arg, slow);
__ GetObjectType(arg, scratch1, scratch2); // map -> scratch1.
__ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE));
__ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
__ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf);
__ And(scratch2, scratch2, scratch4);
__ Branch(slow, ne, scratch2, Operand(scratch4));
__ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset));
__ sw(arg, MemOperand(sp, stack_offset));
__ bind(&done);
}
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::SMIS);
Label miss;
__ Or(a2, a1, a0);
__ JumpIfNotSmi(a2, &miss);
if (GetCondition() == eq) {
// For equality we do not care about the sign of the result.
__ Subu(v0, a0, a1);
} else {
// Untag before subtracting to avoid handling overflow.
__ SmiUntag(a1);
__ SmiUntag(a0);
__ Subu(v0, a1, a0);
}
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::HEAP_NUMBERS);
Label generic_stub;
Label unordered;
Label miss;
__ And(a2, a1, Operand(a0));
__ JumpIfSmi(a2, &generic_stub);
__ GetObjectType(a0, a2, a2);
__ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE));
__ GetObjectType(a1, a2, a2);
__ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE));
// Inlining the double comparison and falling back to the general compare
// stub if NaN is involved or FPU is unsupported.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// Load left and right operand.
__ Subu(a2, a1, Operand(kHeapObjectTag));
__ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
__ Subu(a2, a0, Operand(kHeapObjectTag));
__ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
Label fpu_eq, fpu_lt, fpu_gt;
// Compare operands (test if unordered).
__ c(UN, D, f0, f2);
// Don't base result on status bits when a NaN is involved.
__ bc1t(&unordered);
__ nop();
// Test if equal.
__ c(EQ, D, f0, f2);
__ bc1t(&fpu_eq);
__ nop();
// Test if unordered or less (unordered case is already handled).
__ c(ULT, D, f0, f2);
__ bc1t(&fpu_lt);
__ nop();
// Otherwise it's greater.
__ bc1f(&fpu_gt);
__ nop();
// Return a result of -1, 0, or 1.
__ bind(&fpu_eq);
__ li(v0, Operand(EQUAL));
__ Ret();
__ bind(&fpu_lt);
__ li(v0, Operand(LESS));
__ Ret();
__ bind(&fpu_gt);
__ li(v0, Operand(GREATER));
__ Ret();
__ bind(&unordered);
}
CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0);
__ bind(&generic_stub);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::SYMBOLS);
Label miss;
// Registers containing left and right operands respectively.
Register left = a1;
Register right = a0;
Register tmp1 = a2;
Register tmp2 = a3;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are symbols.
__ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
__ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
__ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSymbolTag != 0);
__ And(tmp1, tmp1, Operand(tmp2));
__ And(tmp1, tmp1, kIsSymbolMask);
__ Branch(&miss, eq, tmp1, Operand(zero_reg));
// Make sure a0 is non-zero. At this point input operands are
// guaranteed to be non-zero.
ASSERT(right.is(a0));
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ mov(v0, right);
// Symbols are compared by identity.
__ Ret(ne, left, Operand(right));
__ li(v0, Operand(Smi::FromInt(EQUAL)));
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::STRINGS);
Label miss;
// Registers containing left and right operands respectively.
Register left = a1;
Register right = a0;
Register tmp1 = a2;
Register tmp2 = a3;
Register tmp3 = t0;
Register tmp4 = t1;
Register tmp5 = t2;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are strings. This leaves the instance
// types loaded in tmp1 and tmp2.
__ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
__ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
__ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ Or(tmp3, tmp1, tmp2);
__ And(tmp5, tmp3, Operand(kIsNotStringMask));
__ Branch(&miss, ne, tmp5, Operand(zero_reg));
// Fast check for identical strings.
Label left_ne_right;
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Branch(&left_ne_right, ne, left, Operand(right), USE_DELAY_SLOT);
__ mov(v0, zero_reg); // In the delay slot.
__ Ret();
__ bind(&left_ne_right);
// Handle not identical strings.
// Check that both strings are symbols. If they are, we're done
// because we already know they are not identical.
ASSERT(GetCondition() == eq);
STATIC_ASSERT(kSymbolTag != 0);
__ And(tmp3, tmp1, Operand(tmp2));
__ And(tmp5, tmp3, Operand(kIsSymbolMask));
Label is_symbol;
__ Branch(&is_symbol, eq, tmp5, Operand(zero_reg), USE_DELAY_SLOT);
__ mov(v0, a0); // In the delay slot.
// Make sure a0 is non-zero. At this point input operands are
// guaranteed to be non-zero.
ASSERT(right.is(a0));
__ Ret();
__ bind(&is_symbol);
// Check that both strings are sequential ASCII.
Label runtime;
__ JumpIfBothInstanceTypesAreNotSequentialAscii(tmp1, tmp2, tmp3, tmp4,
&runtime);
// Compare flat ASCII strings. Returns when done.
StringCompareStub::GenerateFlatAsciiStringEquals(
masm, left, right, tmp1, tmp2, tmp3);
// Handle more complex cases in runtime.
__ bind(&runtime);
__ Push(left, right);
__ TailCallRuntime(Runtime::kStringEquals, 2, 1);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::OBJECTS);
Label miss;
__ And(a2, a1, Operand(a0));
__ JumpIfSmi(a2, &miss);
__ GetObjectType(a0, a2, a2);
__ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
__ GetObjectType(a1, a2, a2);
__ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
ASSERT(GetCondition() == eq);
__ Subu(v0, a0, Operand(a1));
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
__ Push(a1, a0);
__ push(ra);
// Call the runtime system in a fresh internal frame.
ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
masm->isolate());
__ EnterInternalFrame();
__ Push(a1, a0);
__ li(t0, Operand(Smi::FromInt(op_)));
__ push(t0);
__ CallExternalReference(miss, 3);
__ LeaveInternalFrame();
// Compute the entry point of the rewritten stub.
__ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
// Restore registers.
__ pop(ra);
__ pop(a0);
__ pop(a1);
__ Jump(a2);
}
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// No need to pop or drop anything, LeaveExitFrame will restore the old
// stack, thus dropping the allocated space for the return value.
// The saved ra is after the reserved stack space for the 4 args.
__ lw(t9, MemOperand(sp, kCArgsSlotsSize));
if (FLAG_debug_code && EnableSlowAsserts()) {
// In case of an error the return address may point to a memory area
// filled with kZapValue by the GC.
// Dereference the address and check for this.
__ lw(t0, MemOperand(t9));
__ Assert(ne, "Received invalid return address.", t0,
Operand(reinterpret_cast<uint32_t>(kZapValue)));
}
__ Jump(t9);
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
ExternalReference function) {
__ li(t9, Operand(function));
this->GenerateCall(masm, t9);
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Register target) {
__ Move(t9, target);
__ AssertStackIsAligned();
// Allocate space for arg slots.
__ Subu(sp, sp, kCArgsSlotsSize);
// Block the trampoline pool through the whole function to make sure the
// number of generated instructions is constant.
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
// We need to get the current 'pc' value, which is not available on MIPS.
Label find_ra;
masm->bal(&find_ra); // ra = pc + 8.
masm->nop(); // Branch delay slot nop.
masm->bind(&find_ra);
const int kNumInstructionsToJump = 6;
masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize);
// Push return address (accessible to GC through exit frame pc).
// This spot for ra was reserved in EnterExitFrame.
masm->sw(ra, MemOperand(sp, kCArgsSlotsSize));
masm->li(ra, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
RelocInfo::CODE_TARGET), true);
// Call the function.
masm->Jump(t9);
// Make sure the stored 'ra' points to this position.
ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra));
}
MaybeObject* StringDictionaryLookupStub::GenerateNegativeLookup(
MacroAssembler* masm,
Label* miss,
Label* done,
Register receiver,
Register properties,
String* name,
Register scratch0) {
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the null value).
for (int i = 0; i < kInlinedProbes; i++) {
// scratch0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = scratch0;
// Capacity is smi 2^n.
__ lw(index, FieldMemOperand(properties, kCapacityOffset));
__ Subu(index, index, Operand(1));
__ And(index, index, Operand(
Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
// index *= 3.
__ mov(at, index);
__ sll(index, index, 1);
__ Addu(index, index, at);
Register entity_name = scratch0;
// Having undefined at this place means the name is not contained.
ASSERT_EQ(kSmiTagSize, 1);
Register tmp = properties;
__ sll(scratch0, index, 1);
__ Addu(tmp, properties, scratch0);
__ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
ASSERT(!tmp.is(entity_name));
__ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
__ Branch(done, eq, entity_name, Operand(tmp));
if (i != kInlinedProbes - 1) {
// Stop if found the property.
__ Branch(miss, eq, entity_name, Operand(Handle<String>(name)));
// Check if the entry name is not a symbol.
__ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
__ lbu(entity_name,
FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
__ And(scratch0, entity_name, Operand(kIsSymbolMask));
__ Branch(miss, eq, scratch0, Operand(zero_reg));
// Restore the properties.
__ lw(properties,
FieldMemOperand(receiver, JSObject::kPropertiesOffset));
}
}
const int spill_mask =
(ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
a2.bit() | a1.bit() | a0.bit());
__ MultiPush(spill_mask);
__ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ li(a1, Operand(Handle<String>(name)));
StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
MaybeObject* result = masm->TryCallStub(&stub);
if (result->IsFailure()) return result;
__ MultiPop(spill_mask);
__ Branch(done, eq, v0, Operand(zero_reg));
__ Branch(miss, ne, v0, Operand(zero_reg));
return result;
}
// Probe the string dictionary in the |elements| register. Jump to the
// |done| label if a property with the given name is found. Jump to
// the |miss| label otherwise.
// If lookup was successful |scratch2| will be equal to elements + 4 * index.
void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register scratch1,
Register scratch2) {
// Assert that name contains a string.
if (FLAG_debug_code) __ AbortIfNotString(name);
// Compute the capacity mask.
__ lw(scratch1, FieldMemOperand(elements, kCapacityOffset));
__ sra(scratch1, scratch1, kSmiTagSize); // convert smi to int
__ Subu(scratch1, scratch1, Operand(1));
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
ASSERT(StringDictionary::GetProbeOffset(i) <
1 << (32 - String::kHashFieldOffset));
__ Addu(scratch2, scratch2, Operand(
StringDictionary::GetProbeOffset(i) << String::kHashShift));
}
__ srl(scratch2, scratch2, String::kHashShift);
__ And(scratch2, scratch1, scratch2);
// Scale the index by multiplying by the element size.
ASSERT(StringDictionary::kEntrySize == 3);
// scratch2 = scratch2 * 3.
__ mov(at, scratch2);
__ sll(scratch2, scratch2, 1);
__ Addu(scratch2, scratch2, at);
// Check if the key is identical to the name.
__ sll(at, scratch2, 2);
__ Addu(scratch2, elements, at);
__ lw(at, FieldMemOperand(scratch2, kElementsStartOffset));
__ Branch(done, eq, name, Operand(at));
}
const int spill_mask =
(ra.bit() | t2.bit() | t1.bit() | t0.bit() |
a3.bit() | a2.bit() | a1.bit() | a0.bit()) &
~(scratch1.bit() | scratch2.bit());
__ MultiPush(spill_mask);
__ Move(a0, elements);
__ Move(a1, name);
StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
__ CallStub(&stub);
__ mov(scratch2, a2);
__ MultiPop(spill_mask);
__ Branch(done, ne, v0, Operand(zero_reg));
__ Branch(miss, eq, v0, Operand(zero_reg));
}
void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
// Registers:
// result: StringDictionary to probe
// a1: key
// : StringDictionary to probe.
// index_: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
Register result = v0;
Register dictionary = a0;
Register key = a1;
Register index = a2;
Register mask = a3;
Register hash = t0;
Register undefined = t1;
Register entry_key = t2;
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
__ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
__ sra(mask, mask, kSmiTagSize);
__ Subu(mask, mask, Operand(1));
__ lw(hash, FieldMemOperand(key, String::kHashFieldOffset));
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
// Capacity is smi 2^n.
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
ASSERT(StringDictionary::GetProbeOffset(i) <
1 << (32 - String::kHashFieldOffset));
__ Addu(index, hash, Operand(
StringDictionary::GetProbeOffset(i) << String::kHashShift));
} else {
__ mov(index, hash);
}
__ srl(index, index, String::kHashShift);
__ And(index, mask, index);
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
// index *= 3.
__ mov(at, index);
__ sll(index, index, 1);
__ Addu(index, index, at);
ASSERT_EQ(kSmiTagSize, 1);
__ sll(index, index, 2);
__ Addu(index, index, dictionary);
__ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));
// Having undefined at this place means the name is not contained.
__ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
// Stop if found the property.
__ Branch(&in_dictionary, eq, entry_key, Operand(key));
if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
// Check if the entry name is not a symbol.
__ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
__ lbu(entry_key,
FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
__ And(result, entry_key, Operand(kIsSymbolMask));
__ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg));
}
}
__ bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode_ == POSITIVE_LOOKUP) {
__ mov(result, zero_reg);
__ Ret();
}
__ bind(&in_dictionary);
__ li(result, 1);
__ Ret();
__ bind(&not_in_dictionary);
__ mov(result, zero_reg);
__ Ret();
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS