| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Platform specific code for Win32. |
| |
| #define V8_WIN32_HEADERS_FULL |
| #include "win32-headers.h" |
| |
| #include "v8.h" |
| |
| #include "platform.h" |
| #include "vm-state-inl.h" |
| |
| // Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please |
| // refer to The Open Group Base Specification for specification of the correct |
| // semantics for these functions. |
| // (http://www.opengroup.org/onlinepubs/000095399/) |
| #ifdef _MSC_VER |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Test for finite value - usually defined in math.h |
| int isfinite(double x) { |
| return _finite(x); |
| } |
| |
| } // namespace v8 |
| } // namespace internal |
| |
| // Test for a NaN (not a number) value - usually defined in math.h |
| int isnan(double x) { |
| return _isnan(x); |
| } |
| |
| |
| // Test for infinity - usually defined in math.h |
| int isinf(double x) { |
| return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0; |
| } |
| |
| |
| // Test if x is less than y and both nominal - usually defined in math.h |
| int isless(double x, double y) { |
| return isnan(x) || isnan(y) ? 0 : x < y; |
| } |
| |
| |
| // Test if x is greater than y and both nominal - usually defined in math.h |
| int isgreater(double x, double y) { |
| return isnan(x) || isnan(y) ? 0 : x > y; |
| } |
| |
| |
| // Classify floating point number - usually defined in math.h |
| int fpclassify(double x) { |
| // Use the MS-specific _fpclass() for classification. |
| int flags = _fpclass(x); |
| |
| // Determine class. We cannot use a switch statement because |
| // the _FPCLASS_ constants are defined as flags. |
| if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL; |
| if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO; |
| if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL; |
| if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE; |
| |
| // All cases should be covered by the code above. |
| ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN)); |
| return FP_NAN; |
| } |
| |
| |
| // Test sign - usually defined in math.h |
| int signbit(double x) { |
| // We need to take care of the special case of both positive |
| // and negative versions of zero. |
| if (x == 0) |
| return _fpclass(x) & _FPCLASS_NZ; |
| else |
| return x < 0; |
| } |
| |
| |
| // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually |
| // defined in strings.h. |
| int strncasecmp(const char* s1, const char* s2, int n) { |
| return _strnicmp(s1, s2, n); |
| } |
| |
| #endif // _MSC_VER |
| |
| |
| // Extra functions for MinGW. Most of these are the _s functions which are in |
| // the Microsoft Visual Studio C++ CRT. |
| #ifdef __MINGW32__ |
| |
| int localtime_s(tm* out_tm, const time_t* time) { |
| tm* posix_local_time_struct = localtime(time); |
| if (posix_local_time_struct == NULL) return 1; |
| *out_tm = *posix_local_time_struct; |
| return 0; |
| } |
| |
| |
| // Not sure this the correct interpretation of _mkgmtime |
| time_t _mkgmtime(tm* timeptr) { |
| return mktime(timeptr); |
| } |
| |
| |
| int fopen_s(FILE** pFile, const char* filename, const char* mode) { |
| *pFile = fopen(filename, mode); |
| return *pFile != NULL ? 0 : 1; |
| } |
| |
| |
| #define _TRUNCATE 0 |
| #define STRUNCATE 80 |
| |
| int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count, |
| const char* format, va_list argptr) { |
| ASSERT(count == _TRUNCATE); |
| return _vsnprintf(buffer, sizeOfBuffer, format, argptr); |
| } |
| |
| |
| int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) { |
| CHECK(source != NULL); |
| CHECK(dest != NULL); |
| CHECK_GT(dest_size, 0); |
| |
| if (count == _TRUNCATE) { |
| while (dest_size > 0 && *source != 0) { |
| *(dest++) = *(source++); |
| --dest_size; |
| } |
| if (dest_size == 0) { |
| *(dest - 1) = 0; |
| return STRUNCATE; |
| } |
| } else { |
| while (dest_size > 0 && count > 0 && *source != 0) { |
| *(dest++) = *(source++); |
| --dest_size; |
| --count; |
| } |
| } |
| CHECK_GT(dest_size, 0); |
| *dest = 0; |
| return 0; |
| } |
| |
| |
| inline void MemoryBarrier() { |
| int barrier = 0; |
| __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier)); |
| } |
| |
| #endif // __MINGW32__ |
| |
| // Generate a pseudo-random number in the range 0-2^31-1. Usually |
| // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW. |
| int random() { |
| return rand(); |
| } |
| |
| |
| namespace v8 { |
| namespace internal { |
| |
| intptr_t OS::MaxVirtualMemory() { |
| return 0; |
| } |
| |
| |
| double ceiling(double x) { |
| return ceil(x); |
| } |
| |
| |
| static Mutex* limit_mutex = NULL; |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| static OS::MemCopyFunction memcopy_function = NULL; |
| static Mutex* memcopy_function_mutex = OS::CreateMutex(); |
| // Defined in codegen-ia32.cc. |
| OS::MemCopyFunction CreateMemCopyFunction(); |
| |
| // Copy memory area to disjoint memory area. |
| void OS::MemCopy(void* dest, const void* src, size_t size) { |
| if (memcopy_function == NULL) { |
| ScopedLock lock(memcopy_function_mutex); |
| if (memcopy_function == NULL) { |
| OS::MemCopyFunction temp = CreateMemCopyFunction(); |
| MemoryBarrier(); |
| memcopy_function = temp; |
| } |
| } |
| // Note: here we rely on dependent reads being ordered. This is true |
| // on all architectures we currently support. |
| (*memcopy_function)(dest, src, size); |
| #ifdef DEBUG |
| CHECK_EQ(0, memcmp(dest, src, size)); |
| #endif |
| } |
| #endif // V8_TARGET_ARCH_IA32 |
| |
| #ifdef _WIN64 |
| typedef double (*ModuloFunction)(double, double); |
| static ModuloFunction modulo_function = NULL; |
| static Mutex* modulo_function_mutex = OS::CreateMutex(); |
| // Defined in codegen-x64.cc. |
| ModuloFunction CreateModuloFunction(); |
| |
| double modulo(double x, double y) { |
| if (modulo_function == NULL) { |
| ScopedLock lock(modulo_function_mutex); |
| if (modulo_function == NULL) { |
| ModuloFunction temp = CreateModuloFunction(); |
| MemoryBarrier(); |
| modulo_function = temp; |
| } |
| } |
| // Note: here we rely on dependent reads being ordered. This is true |
| // on all architectures we currently support. |
| return (*modulo_function)(x, y); |
| } |
| #else // Win32 |
| |
| double modulo(double x, double y) { |
| // Workaround MS fmod bugs. ECMA-262 says: |
| // dividend is finite and divisor is an infinity => result equals dividend |
| // dividend is a zero and divisor is nonzero finite => result equals dividend |
| if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) && |
| !(x == 0 && (y != 0 && isfinite(y)))) { |
| x = fmod(x, y); |
| } |
| return x; |
| } |
| |
| #endif // _WIN64 |
| |
| // ---------------------------------------------------------------------------- |
| // The Time class represents time on win32. A timestamp is represented as |
| // a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript |
| // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC, |
| // January 1, 1970. |
| |
| class Time { |
| public: |
| // Constructors. |
| Time(); |
| explicit Time(double jstime); |
| Time(int year, int mon, int day, int hour, int min, int sec); |
| |
| // Convert timestamp to JavaScript representation. |
| double ToJSTime(); |
| |
| // Set timestamp to current time. |
| void SetToCurrentTime(); |
| |
| // Returns the local timezone offset in milliseconds east of UTC. This is |
| // the number of milliseconds you must add to UTC to get local time, i.e. |
| // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This |
| // routine also takes into account whether daylight saving is effect |
| // at the time. |
| int64_t LocalOffset(); |
| |
| // Returns the daylight savings time offset for the time in milliseconds. |
| int64_t DaylightSavingsOffset(); |
| |
| // Returns a string identifying the current timezone for the |
| // timestamp taking into account daylight saving. |
| char* LocalTimezone(); |
| |
| private: |
| // Constants for time conversion. |
| static const int64_t kTimeEpoc = 116444736000000000LL; |
| static const int64_t kTimeScaler = 10000; |
| static const int64_t kMsPerMinute = 60000; |
| |
| // Constants for timezone information. |
| static const int kTzNameSize = 128; |
| static const bool kShortTzNames = false; |
| |
| // Timezone information. We need to have static buffers for the |
| // timezone names because we return pointers to these in |
| // LocalTimezone(). |
| static bool tz_initialized_; |
| static TIME_ZONE_INFORMATION tzinfo_; |
| static char std_tz_name_[kTzNameSize]; |
| static char dst_tz_name_[kTzNameSize]; |
| |
| // Initialize the timezone information (if not already done). |
| static void TzSet(); |
| |
| // Guess the name of the timezone from the bias. |
| static const char* GuessTimezoneNameFromBias(int bias); |
| |
| // Return whether or not daylight savings time is in effect at this time. |
| bool InDST(); |
| |
| // Return the difference (in milliseconds) between this timestamp and |
| // another timestamp. |
| int64_t Diff(Time* other); |
| |
| // Accessor for FILETIME representation. |
| FILETIME& ft() { return time_.ft_; } |
| |
| // Accessor for integer representation. |
| int64_t& t() { return time_.t_; } |
| |
| // Although win32 uses 64-bit integers for representing timestamps, |
| // these are packed into a FILETIME structure. The FILETIME structure |
| // is just a struct representing a 64-bit integer. The TimeStamp union |
| // allows access to both a FILETIME and an integer representation of |
| // the timestamp. |
| union TimeStamp { |
| FILETIME ft_; |
| int64_t t_; |
| }; |
| |
| TimeStamp time_; |
| }; |
| |
| // Static variables. |
| bool Time::tz_initialized_ = false; |
| TIME_ZONE_INFORMATION Time::tzinfo_; |
| char Time::std_tz_name_[kTzNameSize]; |
| char Time::dst_tz_name_[kTzNameSize]; |
| |
| |
| // Initialize timestamp to start of epoc. |
| Time::Time() { |
| t() = 0; |
| } |
| |
| |
| // Initialize timestamp from a JavaScript timestamp. |
| Time::Time(double jstime) { |
| t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc; |
| } |
| |
| |
| // Initialize timestamp from date/time components. |
| Time::Time(int year, int mon, int day, int hour, int min, int sec) { |
| SYSTEMTIME st; |
| st.wYear = year; |
| st.wMonth = mon; |
| st.wDay = day; |
| st.wHour = hour; |
| st.wMinute = min; |
| st.wSecond = sec; |
| st.wMilliseconds = 0; |
| SystemTimeToFileTime(&st, &ft()); |
| } |
| |
| |
| // Convert timestamp to JavaScript timestamp. |
| double Time::ToJSTime() { |
| return static_cast<double>((t() - kTimeEpoc) / kTimeScaler); |
| } |
| |
| |
| // Guess the name of the timezone from the bias. |
| // The guess is very biased towards the northern hemisphere. |
| const char* Time::GuessTimezoneNameFromBias(int bias) { |
| static const int kHour = 60; |
| switch (-bias) { |
| case -9*kHour: return "Alaska"; |
| case -8*kHour: return "Pacific"; |
| case -7*kHour: return "Mountain"; |
| case -6*kHour: return "Central"; |
| case -5*kHour: return "Eastern"; |
| case -4*kHour: return "Atlantic"; |
| case 0*kHour: return "GMT"; |
| case +1*kHour: return "Central Europe"; |
| case +2*kHour: return "Eastern Europe"; |
| case +3*kHour: return "Russia"; |
| case +5*kHour + 30: return "India"; |
| case +8*kHour: return "China"; |
| case +9*kHour: return "Japan"; |
| case +12*kHour: return "New Zealand"; |
| default: return "Local"; |
| } |
| } |
| |
| |
| // Initialize timezone information. The timezone information is obtained from |
| // windows. If we cannot get the timezone information we fall back to CET. |
| // Please notice that this code is not thread-safe. |
| void Time::TzSet() { |
| // Just return if timezone information has already been initialized. |
| if (tz_initialized_) return; |
| |
| // Initialize POSIX time zone data. |
| _tzset(); |
| // Obtain timezone information from operating system. |
| memset(&tzinfo_, 0, sizeof(tzinfo_)); |
| if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) { |
| // If we cannot get timezone information we fall back to CET. |
| tzinfo_.Bias = -60; |
| tzinfo_.StandardDate.wMonth = 10; |
| tzinfo_.StandardDate.wDay = 5; |
| tzinfo_.StandardDate.wHour = 3; |
| tzinfo_.StandardBias = 0; |
| tzinfo_.DaylightDate.wMonth = 3; |
| tzinfo_.DaylightDate.wDay = 5; |
| tzinfo_.DaylightDate.wHour = 2; |
| tzinfo_.DaylightBias = -60; |
| } |
| |
| // Make standard and DST timezone names. |
| WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, |
| std_tz_name_, kTzNameSize, NULL, NULL); |
| std_tz_name_[kTzNameSize - 1] = '\0'; |
| WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, |
| dst_tz_name_, kTzNameSize, NULL, NULL); |
| dst_tz_name_[kTzNameSize - 1] = '\0'; |
| |
| // If OS returned empty string or resource id (like "@tzres.dll,-211") |
| // simply guess the name from the UTC bias of the timezone. |
| // To properly resolve the resource identifier requires a library load, |
| // which is not possible in a sandbox. |
| if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') { |
| OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1), |
| "%s Standard Time", |
| GuessTimezoneNameFromBias(tzinfo_.Bias)); |
| } |
| if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') { |
| OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1), |
| "%s Daylight Time", |
| GuessTimezoneNameFromBias(tzinfo_.Bias)); |
| } |
| |
| // Timezone information initialized. |
| tz_initialized_ = true; |
| } |
| |
| |
| // Return the difference in milliseconds between this and another timestamp. |
| int64_t Time::Diff(Time* other) { |
| return (t() - other->t()) / kTimeScaler; |
| } |
| |
| |
| // Set timestamp to current time. |
| void Time::SetToCurrentTime() { |
| // The default GetSystemTimeAsFileTime has a ~15.5ms resolution. |
| // Because we're fast, we like fast timers which have at least a |
| // 1ms resolution. |
| // |
| // timeGetTime() provides 1ms granularity when combined with |
| // timeBeginPeriod(). If the host application for v8 wants fast |
| // timers, it can use timeBeginPeriod to increase the resolution. |
| // |
| // Using timeGetTime() has a drawback because it is a 32bit value |
| // and hence rolls-over every ~49days. |
| // |
| // To use the clock, we use GetSystemTimeAsFileTime as our base; |
| // and then use timeGetTime to extrapolate current time from the |
| // start time. To deal with rollovers, we resync the clock |
| // any time when more than kMaxClockElapsedTime has passed or |
| // whenever timeGetTime creates a rollover. |
| |
| static bool initialized = false; |
| static TimeStamp init_time; |
| static DWORD init_ticks; |
| static const int64_t kHundredNanosecondsPerSecond = 10000000; |
| static const int64_t kMaxClockElapsedTime = |
| 60*kHundredNanosecondsPerSecond; // 1 minute |
| |
| // If we are uninitialized, we need to resync the clock. |
| bool needs_resync = !initialized; |
| |
| // Get the current time. |
| TimeStamp time_now; |
| GetSystemTimeAsFileTime(&time_now.ft_); |
| DWORD ticks_now = timeGetTime(); |
| |
| // Check if we need to resync due to clock rollover. |
| needs_resync |= ticks_now < init_ticks; |
| |
| // Check if we need to resync due to elapsed time. |
| needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime; |
| |
| // Resync the clock if necessary. |
| if (needs_resync) { |
| GetSystemTimeAsFileTime(&init_time.ft_); |
| init_ticks = ticks_now = timeGetTime(); |
| initialized = true; |
| } |
| |
| // Finally, compute the actual time. Why is this so hard. |
| DWORD elapsed = ticks_now - init_ticks; |
| this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000); |
| } |
| |
| |
| // Return the local timezone offset in milliseconds east of UTC. This |
| // takes into account whether daylight saving is in effect at the time. |
| // Only times in the 32-bit Unix range may be passed to this function. |
| // Also, adding the time-zone offset to the input must not overflow. |
| // The function EquivalentTime() in date.js guarantees this. |
| int64_t Time::LocalOffset() { |
| // Initialize timezone information, if needed. |
| TzSet(); |
| |
| Time rounded_to_second(*this); |
| rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler * |
| 1000 * kTimeScaler; |
| // Convert to local time using POSIX localtime function. |
| // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime() |
| // very slow. Other browsers use localtime(). |
| |
| // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to |
| // POSIX seconds past 1/1/1970 0:00:00. |
| double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000; |
| if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) { |
| return 0; |
| } |
| // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int. |
| time_t posix_time = static_cast<time_t>(unchecked_posix_time); |
| |
| // Convert to local time, as struct with fields for day, hour, year, etc. |
| tm posix_local_time_struct; |
| if (localtime_s(&posix_local_time_struct, &posix_time)) return 0; |
| // Convert local time in struct to POSIX time as if it were a UTC time. |
| time_t local_posix_time = _mkgmtime(&posix_local_time_struct); |
| Time localtime(1000.0 * local_posix_time); |
| |
| return localtime.Diff(&rounded_to_second); |
| } |
| |
| |
| // Return whether or not daylight savings time is in effect at this time. |
| bool Time::InDST() { |
| // Initialize timezone information, if needed. |
| TzSet(); |
| |
| // Determine if DST is in effect at the specified time. |
| bool in_dst = false; |
| if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) { |
| // Get the local timezone offset for the timestamp in milliseconds. |
| int64_t offset = LocalOffset(); |
| |
| // Compute the offset for DST. The bias parameters in the timezone info |
| // are specified in minutes. These must be converted to milliseconds. |
| int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute; |
| |
| // If the local time offset equals the timezone bias plus the daylight |
| // bias then DST is in effect. |
| in_dst = offset == dstofs; |
| } |
| |
| return in_dst; |
| } |
| |
| |
| // Return the daylight savings time offset for this time. |
| int64_t Time::DaylightSavingsOffset() { |
| return InDST() ? 60 * kMsPerMinute : 0; |
| } |
| |
| |
| // Returns a string identifying the current timezone for the |
| // timestamp taking into account daylight saving. |
| char* Time::LocalTimezone() { |
| // Return the standard or DST time zone name based on whether daylight |
| // saving is in effect at the given time. |
| return InDST() ? dst_tz_name_ : std_tz_name_; |
| } |
| |
| |
| void OS::Setup() { |
| // Seed the random number generator. |
| // Convert the current time to a 64-bit integer first, before converting it |
| // to an unsigned. Going directly can cause an overflow and the seed to be |
| // set to all ones. The seed will be identical for different instances that |
| // call this setup code within the same millisecond. |
| uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); |
| srand(static_cast<unsigned int>(seed)); |
| limit_mutex = CreateMutex(); |
| } |
| |
| |
| // Returns the accumulated user time for thread. |
| int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) { |
| FILETIME dummy; |
| uint64_t usertime; |
| |
| // Get the amount of time that the thread has executed in user mode. |
| if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy, |
| reinterpret_cast<FILETIME*>(&usertime))) return -1; |
| |
| // Adjust the resolution to micro-seconds. |
| usertime /= 10; |
| |
| // Convert to seconds and microseconds |
| *secs = static_cast<uint32_t>(usertime / 1000000); |
| *usecs = static_cast<uint32_t>(usertime % 1000000); |
| return 0; |
| } |
| |
| |
| // Returns current time as the number of milliseconds since |
| // 00:00:00 UTC, January 1, 1970. |
| double OS::TimeCurrentMillis() { |
| Time t; |
| t.SetToCurrentTime(); |
| return t.ToJSTime(); |
| } |
| |
| // Returns the tickcounter based on timeGetTime. |
| int64_t OS::Ticks() { |
| return timeGetTime() * 1000; // Convert to microseconds. |
| } |
| |
| |
| // Returns a string identifying the current timezone taking into |
| // account daylight saving. |
| const char* OS::LocalTimezone(double time) { |
| return Time(time).LocalTimezone(); |
| } |
| |
| |
| // Returns the local time offset in milliseconds east of UTC without |
| // taking daylight savings time into account. |
| double OS::LocalTimeOffset() { |
| // Use current time, rounded to the millisecond. |
| Time t(TimeCurrentMillis()); |
| // Time::LocalOffset inlcudes any daylight savings offset, so subtract it. |
| return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset()); |
| } |
| |
| |
| // Returns the daylight savings offset in milliseconds for the given |
| // time. |
| double OS::DaylightSavingsOffset(double time) { |
| int64_t offset = Time(time).DaylightSavingsOffset(); |
| return static_cast<double>(offset); |
| } |
| |
| |
| int OS::GetLastError() { |
| return ::GetLastError(); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Win32 console output. |
| // |
| // If a Win32 application is linked as a console application it has a normal |
| // standard output and standard error. In this case normal printf works fine |
| // for output. However, if the application is linked as a GUI application, |
| // the process doesn't have a console, and therefore (debugging) output is lost. |
| // This is the case if we are embedded in a windows program (like a browser). |
| // In order to be able to get debug output in this case the the debugging |
| // facility using OutputDebugString. This output goes to the active debugger |
| // for the process (if any). Else the output can be monitored using DBMON.EXE. |
| |
| enum OutputMode { |
| UNKNOWN, // Output method has not yet been determined. |
| CONSOLE, // Output is written to stdout. |
| ODS // Output is written to debug facility. |
| }; |
| |
| static OutputMode output_mode = UNKNOWN; // Current output mode. |
| |
| |
| // Determine if the process has a console for output. |
| static bool HasConsole() { |
| // Only check the first time. Eventual race conditions are not a problem, |
| // because all threads will eventually determine the same mode. |
| if (output_mode == UNKNOWN) { |
| // We cannot just check that the standard output is attached to a console |
| // because this would fail if output is redirected to a file. Therefore we |
| // say that a process does not have an output console if either the |
| // standard output handle is invalid or its file type is unknown. |
| if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE && |
| GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN) |
| output_mode = CONSOLE; |
| else |
| output_mode = ODS; |
| } |
| return output_mode == CONSOLE; |
| } |
| |
| |
| static void VPrintHelper(FILE* stream, const char* format, va_list args) { |
| if (HasConsole()) { |
| vfprintf(stream, format, args); |
| } else { |
| // It is important to use safe print here in order to avoid |
| // overflowing the buffer. We might truncate the output, but this |
| // does not crash. |
| EmbeddedVector<char, 4096> buffer; |
| OS::VSNPrintF(buffer, format, args); |
| OutputDebugStringA(buffer.start()); |
| } |
| } |
| |
| |
| FILE* OS::FOpen(const char* path, const char* mode) { |
| FILE* result; |
| if (fopen_s(&result, path, mode) == 0) { |
| return result; |
| } else { |
| return NULL; |
| } |
| } |
| |
| |
| bool OS::Remove(const char* path) { |
| return (DeleteFileA(path) != 0); |
| } |
| |
| |
| FILE* OS::OpenTemporaryFile() { |
| // tmpfile_s tries to use the root dir, don't use it. |
| char tempPathBuffer[MAX_PATH]; |
| DWORD path_result = 0; |
| path_result = GetTempPathA(MAX_PATH, tempPathBuffer); |
| if (path_result > MAX_PATH || path_result == 0) return NULL; |
| UINT name_result = 0; |
| char tempNameBuffer[MAX_PATH]; |
| name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer); |
| if (name_result == 0) return NULL; |
| FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses. |
| if (result != NULL) { |
| Remove(tempNameBuffer); // Delete on close. |
| } |
| return result; |
| } |
| |
| |
| // Open log file in binary mode to avoid /n -> /r/n conversion. |
| const char* const OS::LogFileOpenMode = "wb"; |
| |
| |
| // Print (debug) message to console. |
| void OS::Print(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VPrint(format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::VPrint(const char* format, va_list args) { |
| VPrintHelper(stdout, format, args); |
| } |
| |
| |
| void OS::FPrint(FILE* out, const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VFPrint(out, format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::VFPrint(FILE* out, const char* format, va_list args) { |
| VPrintHelper(out, format, args); |
| } |
| |
| |
| // Print error message to console. |
| void OS::PrintError(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VPrintError(format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::VPrintError(const char* format, va_list args) { |
| VPrintHelper(stderr, format, args); |
| } |
| |
| |
| int OS::SNPrintF(Vector<char> str, const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| int result = VSNPrintF(str, format, args); |
| va_end(args); |
| return result; |
| } |
| |
| |
| int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) { |
| int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args); |
| // Make sure to zero-terminate the string if the output was |
| // truncated or if there was an error. |
| if (n < 0 || n >= str.length()) { |
| if (str.length() > 0) |
| str[str.length() - 1] = '\0'; |
| return -1; |
| } else { |
| return n; |
| } |
| } |
| |
| |
| char* OS::StrChr(char* str, int c) { |
| return const_cast<char*>(strchr(str, c)); |
| } |
| |
| |
| void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) { |
| // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small. |
| size_t buffer_size = static_cast<size_t>(dest.length()); |
| if (n + 1 > buffer_size) // count for trailing '\0' |
| n = _TRUNCATE; |
| int result = strncpy_s(dest.start(), dest.length(), src, n); |
| USE(result); |
| ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE)); |
| } |
| |
| |
| // We keep the lowest and highest addresses mapped as a quick way of |
| // determining that pointers are outside the heap (used mostly in assertions |
| // and verification). The estimate is conservative, ie, not all addresses in |
| // 'allocated' space are actually allocated to our heap. The range is |
| // [lowest, highest), inclusive on the low and and exclusive on the high end. |
| static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); |
| static void* highest_ever_allocated = reinterpret_cast<void*>(0); |
| |
| |
| static void UpdateAllocatedSpaceLimits(void* address, int size) { |
| ASSERT(limit_mutex != NULL); |
| ScopedLock lock(limit_mutex); |
| |
| lowest_ever_allocated = Min(lowest_ever_allocated, address); |
| highest_ever_allocated = |
| Max(highest_ever_allocated, |
| reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); |
| } |
| |
| |
| bool OS::IsOutsideAllocatedSpace(void* pointer) { |
| if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated) |
| return true; |
| // Ask the Windows API |
| if (IsBadWritePtr(pointer, 1)) |
| return true; |
| return false; |
| } |
| |
| |
| // Get the system's page size used by VirtualAlloc() or the next power |
| // of two. The reason for always returning a power of two is that the |
| // rounding up in OS::Allocate expects that. |
| static size_t GetPageSize() { |
| static size_t page_size = 0; |
| if (page_size == 0) { |
| SYSTEM_INFO info; |
| GetSystemInfo(&info); |
| page_size = RoundUpToPowerOf2(info.dwPageSize); |
| } |
| return page_size; |
| } |
| |
| |
| // The allocation alignment is the guaranteed alignment for |
| // VirtualAlloc'ed blocks of memory. |
| size_t OS::AllocateAlignment() { |
| static size_t allocate_alignment = 0; |
| if (allocate_alignment == 0) { |
| SYSTEM_INFO info; |
| GetSystemInfo(&info); |
| allocate_alignment = info.dwAllocationGranularity; |
| } |
| return allocate_alignment; |
| } |
| |
| |
| void* OS::Allocate(const size_t requested, |
| size_t* allocated, |
| bool is_executable) { |
| // The address range used to randomize RWX allocations in OS::Allocate |
| // Try not to map pages into the default range that windows loads DLLs |
| // Use a multiple of 64k to prevent committing unused memory. |
| // Note: This does not guarantee RWX regions will be within the |
| // range kAllocationRandomAddressMin to kAllocationRandomAddressMax |
| #ifdef V8_HOST_ARCH_64_BIT |
| static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000; |
| static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000; |
| #else |
| static const intptr_t kAllocationRandomAddressMin = 0x04000000; |
| static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000; |
| #endif |
| |
| // VirtualAlloc rounds allocated size to page size automatically. |
| size_t msize = RoundUp(requested, static_cast<int>(GetPageSize())); |
| intptr_t address = 0; |
| |
| // Windows XP SP2 allows Data Excution Prevention (DEP). |
| int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; |
| |
| // For exectutable pages try and randomize the allocation address |
| if (prot == PAGE_EXECUTE_READWRITE && |
| msize >= static_cast<size_t>(Page::kPageSize)) { |
| address = (V8::RandomPrivate(Isolate::Current()) << kPageSizeBits) |
| | kAllocationRandomAddressMin; |
| address &= kAllocationRandomAddressMax; |
| } |
| |
| LPVOID mbase = VirtualAlloc(reinterpret_cast<void *>(address), |
| msize, |
| MEM_COMMIT | MEM_RESERVE, |
| prot); |
| if (mbase == NULL && address != 0) |
| mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot); |
| |
| if (mbase == NULL) { |
| LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed")); |
| return NULL; |
| } |
| |
| ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment())); |
| |
| *allocated = msize; |
| UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize)); |
| return mbase; |
| } |
| |
| |
| void OS::Free(void* address, const size_t size) { |
| // TODO(1240712): VirtualFree has a return value which is ignored here. |
| VirtualFree(address, 0, MEM_RELEASE); |
| USE(size); |
| } |
| |
| |
| void OS::ProtectCode(void* address, const size_t size) { |
| DWORD old_protect; |
| VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect); |
| } |
| |
| |
| void OS::Guard(void* address, const size_t size) { |
| DWORD oldprotect; |
| VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect); |
| } |
| |
| |
| void OS::Sleep(int milliseconds) { |
| ::Sleep(milliseconds); |
| } |
| |
| |
| void OS::Abort() { |
| if (!IsDebuggerPresent()) { |
| #ifdef _MSC_VER |
| // Make the MSVCRT do a silent abort. |
| _set_abort_behavior(0, _WRITE_ABORT_MSG); |
| _set_abort_behavior(0, _CALL_REPORTFAULT); |
| #endif // _MSC_VER |
| abort(); |
| } else { |
| DebugBreak(); |
| } |
| } |
| |
| |
| void OS::DebugBreak() { |
| #ifdef _MSC_VER |
| __debugbreak(); |
| #else |
| ::DebugBreak(); |
| #endif |
| } |
| |
| |
| class Win32MemoryMappedFile : public OS::MemoryMappedFile { |
| public: |
| Win32MemoryMappedFile(HANDLE file, |
| HANDLE file_mapping, |
| void* memory, |
| int size) |
| : file_(file), |
| file_mapping_(file_mapping), |
| memory_(memory), |
| size_(size) { } |
| virtual ~Win32MemoryMappedFile(); |
| virtual void* memory() { return memory_; } |
| virtual int size() { return size_; } |
| private: |
| HANDLE file_; |
| HANDLE file_mapping_; |
| void* memory_; |
| int size_; |
| }; |
| |
| |
| OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { |
| // Open a physical file |
| HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, |
| FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); |
| if (file == INVALID_HANDLE_VALUE) return NULL; |
| |
| int size = static_cast<int>(GetFileSize(file, NULL)); |
| |
| // Create a file mapping for the physical file |
| HANDLE file_mapping = CreateFileMapping(file, NULL, |
| PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); |
| if (file_mapping == NULL) return NULL; |
| |
| // Map a view of the file into memory |
| void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); |
| return new Win32MemoryMappedFile(file, file_mapping, memory, size); |
| } |
| |
| |
| OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, |
| void* initial) { |
| // Open a physical file |
| HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, |
| FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL); |
| if (file == NULL) return NULL; |
| // Create a file mapping for the physical file |
| HANDLE file_mapping = CreateFileMapping(file, NULL, |
| PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); |
| if (file_mapping == NULL) return NULL; |
| // Map a view of the file into memory |
| void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); |
| if (memory) memmove(memory, initial, size); |
| return new Win32MemoryMappedFile(file, file_mapping, memory, size); |
| } |
| |
| |
| Win32MemoryMappedFile::~Win32MemoryMappedFile() { |
| if (memory_ != NULL) |
| UnmapViewOfFile(memory_); |
| CloseHandle(file_mapping_); |
| CloseHandle(file_); |
| } |
| |
| |
| // The following code loads functions defined in DbhHelp.h and TlHelp32.h |
| // dynamically. This is to avoid being depending on dbghelp.dll and |
| // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to |
| // kernel32.dll at some point so loading functions defines in TlHelp32.h |
| // dynamically might not be necessary any more - for some versions of Windows?). |
| |
| // Function pointers to functions dynamically loaded from dbghelp.dll. |
| #define DBGHELP_FUNCTION_LIST(V) \ |
| V(SymInitialize) \ |
| V(SymGetOptions) \ |
| V(SymSetOptions) \ |
| V(SymGetSearchPath) \ |
| V(SymLoadModule64) \ |
| V(StackWalk64) \ |
| V(SymGetSymFromAddr64) \ |
| V(SymGetLineFromAddr64) \ |
| V(SymFunctionTableAccess64) \ |
| V(SymGetModuleBase64) |
| |
| // Function pointers to functions dynamically loaded from dbghelp.dll. |
| #define TLHELP32_FUNCTION_LIST(V) \ |
| V(CreateToolhelp32Snapshot) \ |
| V(Module32FirstW) \ |
| V(Module32NextW) |
| |
| // Define the decoration to use for the type and variable name used for |
| // dynamically loaded DLL function.. |
| #define DLL_FUNC_TYPE(name) _##name##_ |
| #define DLL_FUNC_VAR(name) _##name |
| |
| // Define the type for each dynamically loaded DLL function. The function |
| // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros |
| // from the Windows include files are redefined here to have the function |
| // definitions to be as close to the ones in the original .h files as possible. |
| #ifndef IN |
| #define IN |
| #endif |
| #ifndef VOID |
| #define VOID void |
| #endif |
| |
| // DbgHelp isn't supported on MinGW yet |
| #ifndef __MINGW32__ |
| // DbgHelp.h functions. |
| typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess, |
| IN PSTR UserSearchPath, |
| IN BOOL fInvadeProcess); |
| typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID); |
| typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions); |
| typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))( |
| IN HANDLE hProcess, |
| OUT PSTR SearchPath, |
| IN DWORD SearchPathLength); |
| typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))( |
| IN HANDLE hProcess, |
| IN HANDLE hFile, |
| IN PSTR ImageName, |
| IN PSTR ModuleName, |
| IN DWORD64 BaseOfDll, |
| IN DWORD SizeOfDll); |
| typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))( |
| DWORD MachineType, |
| HANDLE hProcess, |
| HANDLE hThread, |
| LPSTACKFRAME64 StackFrame, |
| PVOID ContextRecord, |
| PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine, |
| PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine, |
| PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine, |
| PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress); |
| typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))( |
| IN HANDLE hProcess, |
| IN DWORD64 qwAddr, |
| OUT PDWORD64 pdwDisplacement, |
| OUT PIMAGEHLP_SYMBOL64 Symbol); |
| typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))( |
| IN HANDLE hProcess, |
| IN DWORD64 qwAddr, |
| OUT PDWORD pdwDisplacement, |
| OUT PIMAGEHLP_LINE64 Line64); |
| // DbgHelp.h typedefs. Implementation found in dbghelp.dll. |
| typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))( |
| HANDLE hProcess, |
| DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64 |
| typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))( |
| HANDLE hProcess, |
| DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64 |
| |
| // TlHelp32.h functions. |
| typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))( |
| DWORD dwFlags, |
| DWORD th32ProcessID); |
| typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot, |
| LPMODULEENTRY32W lpme); |
| typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot, |
| LPMODULEENTRY32W lpme); |
| |
| #undef IN |
| #undef VOID |
| |
| // Declare a variable for each dynamically loaded DLL function. |
| #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL; |
| DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION) |
| TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION) |
| #undef DEF_DLL_FUNCTION |
| |
| // Load the functions. This function has a lot of "ugly" macros in order to |
| // keep down code duplication. |
| |
| static bool LoadDbgHelpAndTlHelp32() { |
| static bool dbghelp_loaded = false; |
| |
| if (dbghelp_loaded) return true; |
| |
| HMODULE module; |
| |
| // Load functions from the dbghelp.dll module. |
| module = LoadLibrary(TEXT("dbghelp.dll")); |
| if (module == NULL) { |
| return false; |
| } |
| |
| #define LOAD_DLL_FUNC(name) \ |
| DLL_FUNC_VAR(name) = \ |
| reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); |
| |
| DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC) |
| |
| #undef LOAD_DLL_FUNC |
| |
| // Load functions from the kernel32.dll module (the TlHelp32.h function used |
| // to be in tlhelp32.dll but are now moved to kernel32.dll). |
| module = LoadLibrary(TEXT("kernel32.dll")); |
| if (module == NULL) { |
| return false; |
| } |
| |
| #define LOAD_DLL_FUNC(name) \ |
| DLL_FUNC_VAR(name) = \ |
| reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); |
| |
| TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC) |
| |
| #undef LOAD_DLL_FUNC |
| |
| // Check that all functions where loaded. |
| bool result = |
| #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) && |
| |
| DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED) |
| TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED) |
| |
| #undef DLL_FUNC_LOADED |
| true; |
| |
| dbghelp_loaded = result; |
| return result; |
| // NOTE: The modules are never unloaded and will stay around until the |
| // application is closed. |
| } |
| |
| |
| // Load the symbols for generating stack traces. |
| static bool LoadSymbols(HANDLE process_handle) { |
| static bool symbols_loaded = false; |
| |
| if (symbols_loaded) return true; |
| |
| BOOL ok; |
| |
| // Initialize the symbol engine. |
| ok = _SymInitialize(process_handle, // hProcess |
| NULL, // UserSearchPath |
| false); // fInvadeProcess |
| if (!ok) return false; |
| |
| DWORD options = _SymGetOptions(); |
| options |= SYMOPT_LOAD_LINES; |
| options |= SYMOPT_FAIL_CRITICAL_ERRORS; |
| options = _SymSetOptions(options); |
| |
| char buf[OS::kStackWalkMaxNameLen] = {0}; |
| ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen); |
| if (!ok) { |
| int err = GetLastError(); |
| PrintF("%d\n", err); |
| return false; |
| } |
| |
| HANDLE snapshot = _CreateToolhelp32Snapshot( |
| TH32CS_SNAPMODULE, // dwFlags |
| GetCurrentProcessId()); // th32ProcessId |
| if (snapshot == INVALID_HANDLE_VALUE) return false; |
| MODULEENTRY32W module_entry; |
| module_entry.dwSize = sizeof(module_entry); // Set the size of the structure. |
| BOOL cont = _Module32FirstW(snapshot, &module_entry); |
| while (cont) { |
| DWORD64 base; |
| // NOTE the SymLoadModule64 function has the peculiarity of accepting a |
| // both unicode and ASCII strings even though the parameter is PSTR. |
| base = _SymLoadModule64( |
| process_handle, // hProcess |
| 0, // hFile |
| reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName |
| reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName |
| reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll |
| module_entry.modBaseSize); // SizeOfDll |
| if (base == 0) { |
| int err = GetLastError(); |
| if (err != ERROR_MOD_NOT_FOUND && |
| err != ERROR_INVALID_HANDLE) return false; |
| } |
| LOG(i::Isolate::Current(), |
| SharedLibraryEvent( |
| module_entry.szExePath, |
| reinterpret_cast<unsigned int>(module_entry.modBaseAddr), |
| reinterpret_cast<unsigned int>(module_entry.modBaseAddr + |
| module_entry.modBaseSize))); |
| cont = _Module32NextW(snapshot, &module_entry); |
| } |
| CloseHandle(snapshot); |
| |
| symbols_loaded = true; |
| return true; |
| } |
| |
| |
| void OS::LogSharedLibraryAddresses() { |
| // SharedLibraryEvents are logged when loading symbol information. |
| // Only the shared libraries loaded at the time of the call to |
| // LogSharedLibraryAddresses are logged. DLLs loaded after |
| // initialization are not accounted for. |
| if (!LoadDbgHelpAndTlHelp32()) return; |
| HANDLE process_handle = GetCurrentProcess(); |
| LoadSymbols(process_handle); |
| } |
| |
| |
| void OS::SignalCodeMovingGC() { |
| } |
| |
| |
| // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll |
| |
| // Switch off warning 4748 (/GS can not protect parameters and local variables |
| // from local buffer overrun because optimizations are disabled in function) as |
| // it is triggered by the use of inline assembler. |
| #pragma warning(push) |
| #pragma warning(disable : 4748) |
| int OS::StackWalk(Vector<OS::StackFrame> frames) { |
| BOOL ok; |
| |
| // Load the required functions from DLL's. |
| if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError; |
| |
| // Get the process and thread handles. |
| HANDLE process_handle = GetCurrentProcess(); |
| HANDLE thread_handle = GetCurrentThread(); |
| |
| // Read the symbols. |
| if (!LoadSymbols(process_handle)) return kStackWalkError; |
| |
| // Capture current context. |
| CONTEXT context; |
| RtlCaptureContext(&context); |
| |
| // Initialize the stack walking |
| STACKFRAME64 stack_frame; |
| memset(&stack_frame, 0, sizeof(stack_frame)); |
| #ifdef _WIN64 |
| stack_frame.AddrPC.Offset = context.Rip; |
| stack_frame.AddrFrame.Offset = context.Rbp; |
| stack_frame.AddrStack.Offset = context.Rsp; |
| #else |
| stack_frame.AddrPC.Offset = context.Eip; |
| stack_frame.AddrFrame.Offset = context.Ebp; |
| stack_frame.AddrStack.Offset = context.Esp; |
| #endif |
| stack_frame.AddrPC.Mode = AddrModeFlat; |
| stack_frame.AddrFrame.Mode = AddrModeFlat; |
| stack_frame.AddrStack.Mode = AddrModeFlat; |
| int frames_count = 0; |
| |
| // Collect stack frames. |
| int frames_size = frames.length(); |
| while (frames_count < frames_size) { |
| ok = _StackWalk64( |
| IMAGE_FILE_MACHINE_I386, // MachineType |
| process_handle, // hProcess |
| thread_handle, // hThread |
| &stack_frame, // StackFrame |
| &context, // ContextRecord |
| NULL, // ReadMemoryRoutine |
| _SymFunctionTableAccess64, // FunctionTableAccessRoutine |
| _SymGetModuleBase64, // GetModuleBaseRoutine |
| NULL); // TranslateAddress |
| if (!ok) break; |
| |
| // Store the address. |
| ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address. |
| frames[frames_count].address = |
| reinterpret_cast<void*>(stack_frame.AddrPC.Offset); |
| |
| // Try to locate a symbol for this frame. |
| DWORD64 symbol_displacement; |
| SmartPointer<IMAGEHLP_SYMBOL64> symbol( |
| NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen)); |
| if (symbol.is_empty()) return kStackWalkError; // Out of memory. |
| memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen); |
| (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64); |
| (*symbol)->MaxNameLength = kStackWalkMaxNameLen; |
| ok = _SymGetSymFromAddr64(process_handle, // hProcess |
| stack_frame.AddrPC.Offset, // Address |
| &symbol_displacement, // Displacement |
| *symbol); // Symbol |
| if (ok) { |
| // Try to locate more source information for the symbol. |
| IMAGEHLP_LINE64 Line; |
| memset(&Line, 0, sizeof(Line)); |
| Line.SizeOfStruct = sizeof(Line); |
| DWORD line_displacement; |
| ok = _SymGetLineFromAddr64( |
| process_handle, // hProcess |
| stack_frame.AddrPC.Offset, // dwAddr |
| &line_displacement, // pdwDisplacement |
| &Line); // Line |
| // Format a text representation of the frame based on the information |
| // available. |
| if (ok) { |
| SNPrintF(MutableCStrVector(frames[frames_count].text, |
| kStackWalkMaxTextLen), |
| "%s %s:%d:%d", |
| (*symbol)->Name, Line.FileName, Line.LineNumber, |
| line_displacement); |
| } else { |
| SNPrintF(MutableCStrVector(frames[frames_count].text, |
| kStackWalkMaxTextLen), |
| "%s", |
| (*symbol)->Name); |
| } |
| // Make sure line termination is in place. |
| frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0'; |
| } else { |
| // No text representation of this frame |
| frames[frames_count].text[0] = '\0'; |
| |
| // Continue if we are just missing a module (for non C/C++ frames a |
| // module will never be found). |
| int err = GetLastError(); |
| if (err != ERROR_MOD_NOT_FOUND) { |
| break; |
| } |
| } |
| |
| frames_count++; |
| } |
| |
| // Return the number of frames filled in. |
| return frames_count; |
| } |
| |
| // Restore warnings to previous settings. |
| #pragma warning(pop) |
| |
| #else // __MINGW32__ |
| void OS::LogSharedLibraryAddresses() { } |
| void OS::SignalCodeMovingGC() { } |
| int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; } |
| #endif // __MINGW32__ |
| |
| |
| uint64_t OS::CpuFeaturesImpliedByPlatform() { |
| return 0; // Windows runs on anything. |
| } |
| |
| |
| double OS::nan_value() { |
| #ifdef _MSC_VER |
| // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits |
| // in mask set, so value equals mask. |
| static const __int64 nanval = kQuietNaNMask; |
| return *reinterpret_cast<const double*>(&nanval); |
| #else // _MSC_VER |
| return NAN; |
| #endif // _MSC_VER |
| } |
| |
| |
| int OS::ActivationFrameAlignment() { |
| #ifdef _WIN64 |
| return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned. |
| #else |
| return 8; // Floating-point math runs faster with 8-byte alignment. |
| #endif |
| } |
| |
| |
| void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { |
| MemoryBarrier(); |
| *ptr = value; |
| } |
| |
| |
| bool VirtualMemory::IsReserved() { |
| return address_ != NULL; |
| } |
| |
| |
| VirtualMemory::VirtualMemory(size_t size) { |
| address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); |
| size_ = size; |
| } |
| |
| |
| VirtualMemory::~VirtualMemory() { |
| if (IsReserved()) { |
| if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL; |
| } |
| } |
| |
| |
| bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { |
| int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; |
| if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) { |
| return false; |
| } |
| |
| UpdateAllocatedSpaceLimits(address, static_cast<int>(size)); |
| return true; |
| } |
| |
| |
| bool VirtualMemory::Uncommit(void* address, size_t size) { |
| ASSERT(IsReserved()); |
| return VirtualFree(address, size, MEM_DECOMMIT) != false; |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Win32 thread support. |
| |
| // Definition of invalid thread handle and id. |
| static const HANDLE kNoThread = INVALID_HANDLE_VALUE; |
| |
| // Entry point for threads. The supplied argument is a pointer to the thread |
| // object. The entry function dispatches to the run method in the thread |
| // object. It is important that this function has __stdcall calling |
| // convention. |
| static unsigned int __stdcall ThreadEntry(void* arg) { |
| Thread* thread = reinterpret_cast<Thread*>(arg); |
| thread->Run(); |
| return 0; |
| } |
| |
| |
| class Thread::PlatformData : public Malloced { |
| public: |
| explicit PlatformData(HANDLE thread) : thread_(thread) {} |
| HANDLE thread_; |
| }; |
| |
| |
| // Initialize a Win32 thread object. The thread has an invalid thread |
| // handle until it is started. |
| |
| Thread::Thread(const Options& options) |
| : stack_size_(options.stack_size) { |
| data_ = new PlatformData(kNoThread); |
| set_name(options.name); |
| } |
| |
| |
| Thread::Thread(const char* name) |
| : stack_size_(0) { |
| data_ = new PlatformData(kNoThread); |
| set_name(name); |
| } |
| |
| |
| void Thread::set_name(const char* name) { |
| OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name)); |
| name_[sizeof(name_) - 1] = '\0'; |
| } |
| |
| |
| // Close our own handle for the thread. |
| Thread::~Thread() { |
| if (data_->thread_ != kNoThread) CloseHandle(data_->thread_); |
| delete data_; |
| } |
| |
| |
| // Create a new thread. It is important to use _beginthreadex() instead of |
| // the Win32 function CreateThread(), because the CreateThread() does not |
| // initialize thread specific structures in the C runtime library. |
| void Thread::Start() { |
| data_->thread_ = reinterpret_cast<HANDLE>( |
| _beginthreadex(NULL, |
| static_cast<unsigned>(stack_size_), |
| ThreadEntry, |
| this, |
| 0, |
| NULL)); |
| } |
| |
| |
| // Wait for thread to terminate. |
| void Thread::Join() { |
| WaitForSingleObject(data_->thread_, INFINITE); |
| } |
| |
| |
| Thread::LocalStorageKey Thread::CreateThreadLocalKey() { |
| DWORD result = TlsAlloc(); |
| ASSERT(result != TLS_OUT_OF_INDEXES); |
| return static_cast<LocalStorageKey>(result); |
| } |
| |
| |
| void Thread::DeleteThreadLocalKey(LocalStorageKey key) { |
| BOOL result = TlsFree(static_cast<DWORD>(key)); |
| USE(result); |
| ASSERT(result); |
| } |
| |
| |
| void* Thread::GetThreadLocal(LocalStorageKey key) { |
| return TlsGetValue(static_cast<DWORD>(key)); |
| } |
| |
| |
| void Thread::SetThreadLocal(LocalStorageKey key, void* value) { |
| BOOL result = TlsSetValue(static_cast<DWORD>(key), value); |
| USE(result); |
| ASSERT(result); |
| } |
| |
| |
| |
| void Thread::YieldCPU() { |
| Sleep(0); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Win32 mutex support. |
| // |
| // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are |
| // faster than Win32 Mutex objects because they are implemented using user mode |
| // atomic instructions. Therefore we only do ring transitions if there is lock |
| // contention. |
| |
| class Win32Mutex : public Mutex { |
| public: |
| Win32Mutex() { InitializeCriticalSection(&cs_); } |
| |
| virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); } |
| |
| virtual int Lock() { |
| EnterCriticalSection(&cs_); |
| return 0; |
| } |
| |
| virtual int Unlock() { |
| LeaveCriticalSection(&cs_); |
| return 0; |
| } |
| |
| |
| virtual bool TryLock() { |
| // Returns non-zero if critical section is entered successfully entered. |
| return TryEnterCriticalSection(&cs_); |
| } |
| |
| private: |
| CRITICAL_SECTION cs_; // Critical section used for mutex |
| }; |
| |
| |
| Mutex* OS::CreateMutex() { |
| return new Win32Mutex(); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Win32 semaphore support. |
| // |
| // On Win32 semaphores are implemented using Win32 Semaphore objects. The |
| // semaphores are anonymous. Also, the semaphores are initialized to have |
| // no upper limit on count. |
| |
| |
| class Win32Semaphore : public Semaphore { |
| public: |
| explicit Win32Semaphore(int count) { |
| sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL); |
| } |
| |
| ~Win32Semaphore() { |
| CloseHandle(sem); |
| } |
| |
| void Wait() { |
| WaitForSingleObject(sem, INFINITE); |
| } |
| |
| bool Wait(int timeout) { |
| // Timeout in Windows API is in milliseconds. |
| DWORD millis_timeout = timeout / 1000; |
| return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT; |
| } |
| |
| void Signal() { |
| LONG dummy; |
| ReleaseSemaphore(sem, 1, &dummy); |
| } |
| |
| private: |
| HANDLE sem; |
| }; |
| |
| |
| Semaphore* OS::CreateSemaphore(int count) { |
| return new Win32Semaphore(count); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Win32 socket support. |
| // |
| |
| class Win32Socket : public Socket { |
| public: |
| explicit Win32Socket() { |
| // Create the socket. |
| socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); |
| } |
| explicit Win32Socket(SOCKET socket): socket_(socket) { } |
| virtual ~Win32Socket() { Shutdown(); } |
| |
| // Server initialization. |
| bool Bind(const int port); |
| bool Listen(int backlog) const; |
| Socket* Accept() const; |
| |
| // Client initialization. |
| bool Connect(const char* host, const char* port); |
| |
| // Shutdown socket for both read and write. |
| bool Shutdown(); |
| |
| // Data Transimission |
| int Send(const char* data, int len) const; |
| int Receive(char* data, int len) const; |
| |
| bool SetReuseAddress(bool reuse_address); |
| |
| bool IsValid() const { return socket_ != INVALID_SOCKET; } |
| |
| private: |
| SOCKET socket_; |
| }; |
| |
| |
| bool Win32Socket::Bind(const int port) { |
| if (!IsValid()) { |
| return false; |
| } |
| |
| sockaddr_in addr; |
| memset(&addr, 0, sizeof(addr)); |
| addr.sin_family = AF_INET; |
| addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); |
| addr.sin_port = htons(port); |
| int status = bind(socket_, |
| reinterpret_cast<struct sockaddr *>(&addr), |
| sizeof(addr)); |
| return status == 0; |
| } |
| |
| |
| bool Win32Socket::Listen(int backlog) const { |
| if (!IsValid()) { |
| return false; |
| } |
| |
| int status = listen(socket_, backlog); |
| return status == 0; |
| } |
| |
| |
| Socket* Win32Socket::Accept() const { |
| if (!IsValid()) { |
| return NULL; |
| } |
| |
| SOCKET socket = accept(socket_, NULL, NULL); |
| if (socket == INVALID_SOCKET) { |
| return NULL; |
| } else { |
| return new Win32Socket(socket); |
| } |
| } |
| |
| |
| bool Win32Socket::Connect(const char* host, const char* port) { |
| if (!IsValid()) { |
| return false; |
| } |
| |
| // Lookup host and port. |
| struct addrinfo *result = NULL; |
| struct addrinfo hints; |
| memset(&hints, 0, sizeof(addrinfo)); |
| hints.ai_family = AF_INET; |
| hints.ai_socktype = SOCK_STREAM; |
| hints.ai_protocol = IPPROTO_TCP; |
| int status = getaddrinfo(host, port, &hints, &result); |
| if (status != 0) { |
| return false; |
| } |
| |
| // Connect. |
| status = connect(socket_, |
| result->ai_addr, |
| static_cast<int>(result->ai_addrlen)); |
| freeaddrinfo(result); |
| return status == 0; |
| } |
| |
| |
| bool Win32Socket::Shutdown() { |
| if (IsValid()) { |
| // Shutdown socket for both read and write. |
| int status = shutdown(socket_, SD_BOTH); |
| closesocket(socket_); |
| socket_ = INVALID_SOCKET; |
| return status == SOCKET_ERROR; |
| } |
| return true; |
| } |
| |
| |
| int Win32Socket::Send(const char* data, int len) const { |
| int status = send(socket_, data, len, 0); |
| return status; |
| } |
| |
| |
| int Win32Socket::Receive(char* data, int len) const { |
| int status = recv(socket_, data, len, 0); |
| return status; |
| } |
| |
| |
| bool Win32Socket::SetReuseAddress(bool reuse_address) { |
| BOOL on = reuse_address ? true : false; |
| int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, |
| reinterpret_cast<char*>(&on), sizeof(on)); |
| return status == SOCKET_ERROR; |
| } |
| |
| |
| bool Socket::Setup() { |
| // Initialize Winsock32 |
| int err; |
| WSADATA winsock_data; |
| WORD version_requested = MAKEWORD(1, 0); |
| err = WSAStartup(version_requested, &winsock_data); |
| if (err != 0) { |
| PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError()); |
| } |
| |
| return err == 0; |
| } |
| |
| |
| int Socket::LastError() { |
| return WSAGetLastError(); |
| } |
| |
| |
| uint16_t Socket::HToN(uint16_t value) { |
| return htons(value); |
| } |
| |
| |
| uint16_t Socket::NToH(uint16_t value) { |
| return ntohs(value); |
| } |
| |
| |
| uint32_t Socket::HToN(uint32_t value) { |
| return htonl(value); |
| } |
| |
| |
| uint32_t Socket::NToH(uint32_t value) { |
| return ntohl(value); |
| } |
| |
| |
| Socket* OS::CreateSocket() { |
| return new Win32Socket(); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Win32 profiler support. |
| |
| class Sampler::PlatformData : public Malloced { |
| public: |
| // Get a handle to the calling thread. This is the thread that we are |
| // going to profile. We need to make a copy of the handle because we are |
| // going to use it in the sampler thread. Using GetThreadHandle() will |
| // not work in this case. We're using OpenThread because DuplicateHandle |
| // for some reason doesn't work in Chrome's sandbox. |
| PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT | |
| THREAD_SUSPEND_RESUME | |
| THREAD_QUERY_INFORMATION, |
| false, |
| GetCurrentThreadId())) {} |
| |
| ~PlatformData() { |
| if (profiled_thread_ != NULL) { |
| CloseHandle(profiled_thread_); |
| profiled_thread_ = NULL; |
| } |
| } |
| |
| HANDLE profiled_thread() { return profiled_thread_; } |
| |
| private: |
| HANDLE profiled_thread_; |
| }; |
| |
| |
| class SamplerThread : public Thread { |
| public: |
| explicit SamplerThread(int interval) |
| : Thread("SamplerThread"), |
| interval_(interval) {} |
| |
| static void AddActiveSampler(Sampler* sampler) { |
| ScopedLock lock(mutex_); |
| SamplerRegistry::AddActiveSampler(sampler); |
| if (instance_ == NULL) { |
| instance_ = new SamplerThread(sampler->interval()); |
| instance_->Start(); |
| } else { |
| ASSERT(instance_->interval_ == sampler->interval()); |
| } |
| } |
| |
| static void RemoveActiveSampler(Sampler* sampler) { |
| ScopedLock lock(mutex_); |
| SamplerRegistry::RemoveActiveSampler(sampler); |
| if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { |
| RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); |
| delete instance_; |
| instance_ = NULL; |
| } |
| } |
| |
| // Implement Thread::Run(). |
| virtual void Run() { |
| SamplerRegistry::State state; |
| while ((state = SamplerRegistry::GetState()) != |
| SamplerRegistry::HAS_NO_SAMPLERS) { |
| bool cpu_profiling_enabled = |
| (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); |
| bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); |
| // When CPU profiling is enabled both JavaScript and C++ code is |
| // profiled. We must not suspend. |
| if (!cpu_profiling_enabled) { |
| if (rate_limiter_.SuspendIfNecessary()) continue; |
| } |
| if (cpu_profiling_enabled) { |
| if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { |
| return; |
| } |
| } |
| if (runtime_profiler_enabled) { |
| if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { |
| return; |
| } |
| } |
| OS::Sleep(interval_); |
| } |
| } |
| |
| static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) { |
| if (!sampler->isolate()->IsInitialized()) return; |
| if (!sampler->IsProfiling()) return; |
| SamplerThread* sampler_thread = |
| reinterpret_cast<SamplerThread*>(raw_sampler_thread); |
| sampler_thread->SampleContext(sampler); |
| } |
| |
| static void DoRuntimeProfile(Sampler* sampler, void* ignored) { |
| if (!sampler->isolate()->IsInitialized()) return; |
| sampler->isolate()->runtime_profiler()->NotifyTick(); |
| } |
| |
| void SampleContext(Sampler* sampler) { |
| HANDLE profiled_thread = sampler->platform_data()->profiled_thread(); |
| if (profiled_thread == NULL) return; |
| |
| // Context used for sampling the register state of the profiled thread. |
| CONTEXT context; |
| memset(&context, 0, sizeof(context)); |
| |
| TickSample sample_obj; |
| TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate()); |
| if (sample == NULL) sample = &sample_obj; |
| |
| static const DWORD kSuspendFailed = static_cast<DWORD>(-1); |
| if (SuspendThread(profiled_thread) == kSuspendFailed) return; |
| sample->state = sampler->isolate()->current_vm_state(); |
| |
| context.ContextFlags = CONTEXT_FULL; |
| if (GetThreadContext(profiled_thread, &context) != 0) { |
| #if V8_HOST_ARCH_X64 |
| sample->pc = reinterpret_cast<Address>(context.Rip); |
| sample->sp = reinterpret_cast<Address>(context.Rsp); |
| sample->fp = reinterpret_cast<Address>(context.Rbp); |
| #else |
| sample->pc = reinterpret_cast<Address>(context.Eip); |
| sample->sp = reinterpret_cast<Address>(context.Esp); |
| sample->fp = reinterpret_cast<Address>(context.Ebp); |
| #endif |
| sampler->SampleStack(sample); |
| sampler->Tick(sample); |
| } |
| ResumeThread(profiled_thread); |
| } |
| |
| const int interval_; |
| RuntimeProfilerRateLimiter rate_limiter_; |
| |
| // Protects the process wide state below. |
| static Mutex* mutex_; |
| static SamplerThread* instance_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SamplerThread); |
| }; |
| |
| |
| Mutex* SamplerThread::mutex_ = OS::CreateMutex(); |
| SamplerThread* SamplerThread::instance_ = NULL; |
| |
| |
| Sampler::Sampler(Isolate* isolate, int interval) |
| : isolate_(isolate), |
| interval_(interval), |
| profiling_(false), |
| active_(false), |
| samples_taken_(0) { |
| data_ = new PlatformData; |
| } |
| |
| |
| Sampler::~Sampler() { |
| ASSERT(!IsActive()); |
| delete data_; |
| } |
| |
| |
| void Sampler::Start() { |
| ASSERT(!IsActive()); |
| SetActive(true); |
| SamplerThread::AddActiveSampler(this); |
| } |
| |
| |
| void Sampler::Stop() { |
| ASSERT(IsActive()); |
| SamplerThread::RemoveActiveSampler(this); |
| SetActive(false); |
| } |
| |
| |
| } } // namespace v8::internal |