| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "accessors.h" |
| #include "api.h" |
| #include "bootstrapper.h" |
| #include "execution.h" |
| #include "global-handles.h" |
| #include "ic-inl.h" |
| #include "natives.h" |
| #include "platform.h" |
| #include "runtime.h" |
| #include "serialize.h" |
| #include "stub-cache.h" |
| #include "v8threads.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Coding of external references. |
| |
| // The encoding of an external reference. The type is in the high word. |
| // The id is in the low word. |
| static uint32_t EncodeExternal(TypeCode type, uint16_t id) { |
| return static_cast<uint32_t>(type) << 16 | id; |
| } |
| |
| |
| static int* GetInternalPointer(StatsCounter* counter) { |
| // All counters refer to dummy_counter, if deserializing happens without |
| // setting up counters. |
| static int dummy_counter = 0; |
| return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter; |
| } |
| |
| |
| ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) { |
| ExternalReferenceTable* external_reference_table = |
| isolate->external_reference_table(); |
| if (external_reference_table == NULL) { |
| external_reference_table = new ExternalReferenceTable(isolate); |
| isolate->set_external_reference_table(external_reference_table); |
| } |
| return external_reference_table; |
| } |
| |
| |
| void ExternalReferenceTable::AddFromId(TypeCode type, |
| uint16_t id, |
| const char* name, |
| Isolate* isolate) { |
| Address address; |
| switch (type) { |
| case C_BUILTIN: { |
| ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate); |
| address = ref.address(); |
| break; |
| } |
| case BUILTIN: { |
| ExternalReference ref(static_cast<Builtins::Name>(id), isolate); |
| address = ref.address(); |
| break; |
| } |
| case RUNTIME_FUNCTION: { |
| ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate); |
| address = ref.address(); |
| break; |
| } |
| case IC_UTILITY: { |
| ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)), |
| isolate); |
| address = ref.address(); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| return; |
| } |
| Add(address, type, id, name); |
| } |
| |
| |
| void ExternalReferenceTable::Add(Address address, |
| TypeCode type, |
| uint16_t id, |
| const char* name) { |
| ASSERT_NE(NULL, address); |
| ExternalReferenceEntry entry; |
| entry.address = address; |
| entry.code = EncodeExternal(type, id); |
| entry.name = name; |
| ASSERT_NE(0, entry.code); |
| refs_.Add(entry); |
| if (id > max_id_[type]) max_id_[type] = id; |
| } |
| |
| |
| void ExternalReferenceTable::PopulateTable(Isolate* isolate) { |
| for (int type_code = 0; type_code < kTypeCodeCount; type_code++) { |
| max_id_[type_code] = 0; |
| } |
| |
| // The following populates all of the different type of external references |
| // into the ExternalReferenceTable. |
| // |
| // NOTE: This function was originally 100k of code. It has since been |
| // rewritten to be mostly table driven, as the callback macro style tends to |
| // very easily cause code bloat. Please be careful in the future when adding |
| // new references. |
| |
| struct RefTableEntry { |
| TypeCode type; |
| uint16_t id; |
| const char* name; |
| }; |
| |
| static const RefTableEntry ref_table[] = { |
| // Builtins |
| #define DEF_ENTRY_C(name, ignored) \ |
| { C_BUILTIN, \ |
| Builtins::c_##name, \ |
| "Builtins::" #name }, |
| |
| BUILTIN_LIST_C(DEF_ENTRY_C) |
| #undef DEF_ENTRY_C |
| |
| #define DEF_ENTRY_C(name, ignored) \ |
| { BUILTIN, \ |
| Builtins::k##name, \ |
| "Builtins::" #name }, |
| #define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored) |
| |
| BUILTIN_LIST_C(DEF_ENTRY_C) |
| BUILTIN_LIST_A(DEF_ENTRY_A) |
| BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) |
| #undef DEF_ENTRY_C |
| #undef DEF_ENTRY_A |
| |
| // Runtime functions |
| #define RUNTIME_ENTRY(name, nargs, ressize) \ |
| { RUNTIME_FUNCTION, \ |
| Runtime::k##name, \ |
| "Runtime::" #name }, |
| |
| RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY) |
| #undef RUNTIME_ENTRY |
| |
| // IC utilities |
| #define IC_ENTRY(name) \ |
| { IC_UTILITY, \ |
| IC::k##name, \ |
| "IC::" #name }, |
| |
| IC_UTIL_LIST(IC_ENTRY) |
| #undef IC_ENTRY |
| }; // end of ref_table[]. |
| |
| for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) { |
| AddFromId(ref_table[i].type, |
| ref_table[i].id, |
| ref_table[i].name, |
| isolate); |
| } |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Debug addresses |
| Add(Debug_Address(Debug::k_after_break_target_address).address(isolate), |
| DEBUG_ADDRESS, |
| Debug::k_after_break_target_address << kDebugIdShift, |
| "Debug::after_break_target_address()"); |
| Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate), |
| DEBUG_ADDRESS, |
| Debug::k_debug_break_slot_address << kDebugIdShift, |
| "Debug::debug_break_slot_address()"); |
| Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate), |
| DEBUG_ADDRESS, |
| Debug::k_debug_break_return_address << kDebugIdShift, |
| "Debug::debug_break_return_address()"); |
| Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate), |
| DEBUG_ADDRESS, |
| Debug::k_restarter_frame_function_pointer << kDebugIdShift, |
| "Debug::restarter_frame_function_pointer_address()"); |
| #endif |
| |
| // Stat counters |
| struct StatsRefTableEntry { |
| StatsCounter* (Counters::*counter)(); |
| uint16_t id; |
| const char* name; |
| }; |
| |
| const StatsRefTableEntry stats_ref_table[] = { |
| #define COUNTER_ENTRY(name, caption) \ |
| { &Counters::name, \ |
| Counters::k_##name, \ |
| "Counters::" #name }, |
| |
| STATS_COUNTER_LIST_1(COUNTER_ENTRY) |
| STATS_COUNTER_LIST_2(COUNTER_ENTRY) |
| #undef COUNTER_ENTRY |
| }; // end of stats_ref_table[]. |
| |
| Counters* counters = isolate->counters(); |
| for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) { |
| Add(reinterpret_cast<Address>(GetInternalPointer( |
| (counters->*(stats_ref_table[i].counter))())), |
| STATS_COUNTER, |
| stats_ref_table[i].id, |
| stats_ref_table[i].name); |
| } |
| |
| // Top addresses |
| |
| const char* AddressNames[] = { |
| #define C(name) "Isolate::" #name, |
| ISOLATE_ADDRESS_LIST(C) |
| NULL |
| #undef C |
| }; |
| |
| for (uint16_t i = 0; i < Isolate::k_isolate_address_count; ++i) { |
| Add(isolate->get_address_from_id((Isolate::AddressId)i), |
| TOP_ADDRESS, i, AddressNames[i]); |
| } |
| |
| // Accessors |
| #define ACCESSOR_DESCRIPTOR_DECLARATION(name) \ |
| Add((Address)&Accessors::name, \ |
| ACCESSOR, \ |
| Accessors::k##name, \ |
| "Accessors::" #name); |
| |
| ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION) |
| #undef ACCESSOR_DESCRIPTOR_DECLARATION |
| |
| StubCache* stub_cache = isolate->stub_cache(); |
| |
| // Stub cache tables |
| Add(stub_cache->key_reference(StubCache::kPrimary).address(), |
| STUB_CACHE_TABLE, |
| 1, |
| "StubCache::primary_->key"); |
| Add(stub_cache->value_reference(StubCache::kPrimary).address(), |
| STUB_CACHE_TABLE, |
| 2, |
| "StubCache::primary_->value"); |
| Add(stub_cache->key_reference(StubCache::kSecondary).address(), |
| STUB_CACHE_TABLE, |
| 3, |
| "StubCache::secondary_->key"); |
| Add(stub_cache->value_reference(StubCache::kSecondary).address(), |
| STUB_CACHE_TABLE, |
| 4, |
| "StubCache::secondary_->value"); |
| |
| // Runtime entries |
| Add(ExternalReference::perform_gc_function(isolate).address(), |
| RUNTIME_ENTRY, |
| 1, |
| "Runtime::PerformGC"); |
| Add(ExternalReference::fill_heap_number_with_random_function( |
| isolate).address(), |
| RUNTIME_ENTRY, |
| 2, |
| "V8::FillHeapNumberWithRandom"); |
| Add(ExternalReference::random_uint32_function(isolate).address(), |
| RUNTIME_ENTRY, |
| 3, |
| "V8::Random"); |
| Add(ExternalReference::delete_handle_scope_extensions(isolate).address(), |
| RUNTIME_ENTRY, |
| 4, |
| "HandleScope::DeleteExtensions"); |
| |
| // Miscellaneous |
| Add(ExternalReference::the_hole_value_location(isolate).address(), |
| UNCLASSIFIED, |
| 2, |
| "Factory::the_hole_value().location()"); |
| Add(ExternalReference::roots_address(isolate).address(), |
| UNCLASSIFIED, |
| 3, |
| "Heap::roots_address()"); |
| Add(ExternalReference::address_of_stack_limit(isolate).address(), |
| UNCLASSIFIED, |
| 4, |
| "StackGuard::address_of_jslimit()"); |
| Add(ExternalReference::address_of_real_stack_limit(isolate).address(), |
| UNCLASSIFIED, |
| 5, |
| "StackGuard::address_of_real_jslimit()"); |
| #ifndef V8_INTERPRETED_REGEXP |
| Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(), |
| UNCLASSIFIED, |
| 6, |
| "RegExpStack::limit_address()"); |
| Add(ExternalReference::address_of_regexp_stack_memory_address( |
| isolate).address(), |
| UNCLASSIFIED, |
| 7, |
| "RegExpStack::memory_address()"); |
| Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(), |
| UNCLASSIFIED, |
| 8, |
| "RegExpStack::memory_size()"); |
| Add(ExternalReference::address_of_static_offsets_vector(isolate).address(), |
| UNCLASSIFIED, |
| 9, |
| "OffsetsVector::static_offsets_vector"); |
| #endif // V8_INTERPRETED_REGEXP |
| Add(ExternalReference::new_space_start(isolate).address(), |
| UNCLASSIFIED, |
| 10, |
| "Heap::NewSpaceStart()"); |
| Add(ExternalReference::new_space_mask(isolate).address(), |
| UNCLASSIFIED, |
| 11, |
| "Heap::NewSpaceMask()"); |
| Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(), |
| UNCLASSIFIED, |
| 12, |
| "Heap::always_allocate_scope_depth()"); |
| Add(ExternalReference::new_space_allocation_limit_address(isolate).address(), |
| UNCLASSIFIED, |
| 13, |
| "Heap::NewSpaceAllocationLimitAddress()"); |
| Add(ExternalReference::new_space_allocation_top_address(isolate).address(), |
| UNCLASSIFIED, |
| 14, |
| "Heap::NewSpaceAllocationTopAddress()"); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| Add(ExternalReference::debug_break(isolate).address(), |
| UNCLASSIFIED, |
| 15, |
| "Debug::Break()"); |
| Add(ExternalReference::debug_step_in_fp_address(isolate).address(), |
| UNCLASSIFIED, |
| 16, |
| "Debug::step_in_fp_addr()"); |
| #endif |
| Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(), |
| UNCLASSIFIED, |
| 17, |
| "add_two_doubles"); |
| Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(), |
| UNCLASSIFIED, |
| 18, |
| "sub_two_doubles"); |
| Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(), |
| UNCLASSIFIED, |
| 19, |
| "mul_two_doubles"); |
| Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(), |
| UNCLASSIFIED, |
| 20, |
| "div_two_doubles"); |
| Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(), |
| UNCLASSIFIED, |
| 21, |
| "mod_two_doubles"); |
| Add(ExternalReference::compare_doubles(isolate).address(), |
| UNCLASSIFIED, |
| 22, |
| "compare_doubles"); |
| #ifndef V8_INTERPRETED_REGEXP |
| Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(), |
| UNCLASSIFIED, |
| 23, |
| "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); |
| Add(ExternalReference::re_check_stack_guard_state(isolate).address(), |
| UNCLASSIFIED, |
| 24, |
| "RegExpMacroAssembler*::CheckStackGuardState()"); |
| Add(ExternalReference::re_grow_stack(isolate).address(), |
| UNCLASSIFIED, |
| 25, |
| "NativeRegExpMacroAssembler::GrowStack()"); |
| Add(ExternalReference::re_word_character_map().address(), |
| UNCLASSIFIED, |
| 26, |
| "NativeRegExpMacroAssembler::word_character_map"); |
| #endif // V8_INTERPRETED_REGEXP |
| // Keyed lookup cache. |
| Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(), |
| UNCLASSIFIED, |
| 27, |
| "KeyedLookupCache::keys()"); |
| Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(), |
| UNCLASSIFIED, |
| 28, |
| "KeyedLookupCache::field_offsets()"); |
| Add(ExternalReference::transcendental_cache_array_address(isolate).address(), |
| UNCLASSIFIED, |
| 29, |
| "TranscendentalCache::caches()"); |
| Add(ExternalReference::handle_scope_next_address().address(), |
| UNCLASSIFIED, |
| 30, |
| "HandleScope::next"); |
| Add(ExternalReference::handle_scope_limit_address().address(), |
| UNCLASSIFIED, |
| 31, |
| "HandleScope::limit"); |
| Add(ExternalReference::handle_scope_level_address().address(), |
| UNCLASSIFIED, |
| 32, |
| "HandleScope::level"); |
| Add(ExternalReference::new_deoptimizer_function(isolate).address(), |
| UNCLASSIFIED, |
| 33, |
| "Deoptimizer::New()"); |
| Add(ExternalReference::compute_output_frames_function(isolate).address(), |
| UNCLASSIFIED, |
| 34, |
| "Deoptimizer::ComputeOutputFrames()"); |
| Add(ExternalReference::address_of_min_int().address(), |
| UNCLASSIFIED, |
| 35, |
| "LDoubleConstant::min_int"); |
| Add(ExternalReference::address_of_one_half().address(), |
| UNCLASSIFIED, |
| 36, |
| "LDoubleConstant::one_half"); |
| Add(ExternalReference::isolate_address().address(), |
| UNCLASSIFIED, |
| 37, |
| "isolate"); |
| Add(ExternalReference::address_of_minus_zero().address(), |
| UNCLASSIFIED, |
| 38, |
| "LDoubleConstant::minus_zero"); |
| Add(ExternalReference::address_of_negative_infinity().address(), |
| UNCLASSIFIED, |
| 39, |
| "LDoubleConstant::negative_infinity"); |
| Add(ExternalReference::power_double_double_function(isolate).address(), |
| UNCLASSIFIED, |
| 40, |
| "power_double_double_function"); |
| Add(ExternalReference::power_double_int_function(isolate).address(), |
| UNCLASSIFIED, |
| 41, |
| "power_double_int_function"); |
| Add(ExternalReference::arguments_marker_location(isolate).address(), |
| UNCLASSIFIED, |
| 42, |
| "Factory::arguments_marker().location()"); |
| } |
| |
| |
| ExternalReferenceEncoder::ExternalReferenceEncoder() |
| : encodings_(Match), |
| isolate_(Isolate::Current()) { |
| ExternalReferenceTable* external_references = |
| ExternalReferenceTable::instance(isolate_); |
| for (int i = 0; i < external_references->size(); ++i) { |
| Put(external_references->address(i), i); |
| } |
| } |
| |
| |
| uint32_t ExternalReferenceEncoder::Encode(Address key) const { |
| int index = IndexOf(key); |
| ASSERT(key == NULL || index >= 0); |
| return index >=0 ? |
| ExternalReferenceTable::instance(isolate_)->code(index) : 0; |
| } |
| |
| |
| const char* ExternalReferenceEncoder::NameOfAddress(Address key) const { |
| int index = IndexOf(key); |
| return index >= 0 ? |
| ExternalReferenceTable::instance(isolate_)->name(index) : NULL; |
| } |
| |
| |
| int ExternalReferenceEncoder::IndexOf(Address key) const { |
| if (key == NULL) return -1; |
| HashMap::Entry* entry = |
| const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false); |
| return entry == NULL |
| ? -1 |
| : static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); |
| } |
| |
| |
| void ExternalReferenceEncoder::Put(Address key, int index) { |
| HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true); |
| entry->value = reinterpret_cast<void*>(index); |
| } |
| |
| |
| ExternalReferenceDecoder::ExternalReferenceDecoder() |
| : encodings_(NewArray<Address*>(kTypeCodeCount)), |
| isolate_(Isolate::Current()) { |
| ExternalReferenceTable* external_references = |
| ExternalReferenceTable::instance(isolate_); |
| for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { |
| int max = external_references->max_id(type) + 1; |
| encodings_[type] = NewArray<Address>(max + 1); |
| } |
| for (int i = 0; i < external_references->size(); ++i) { |
| Put(external_references->code(i), external_references->address(i)); |
| } |
| } |
| |
| |
| ExternalReferenceDecoder::~ExternalReferenceDecoder() { |
| for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { |
| DeleteArray(encodings_[type]); |
| } |
| DeleteArray(encodings_); |
| } |
| |
| |
| bool Serializer::serialization_enabled_ = false; |
| bool Serializer::too_late_to_enable_now_ = false; |
| |
| |
| Deserializer::Deserializer(SnapshotByteSource* source) |
| : isolate_(NULL), |
| source_(source), |
| external_reference_decoder_(NULL) { |
| } |
| |
| |
| // This routine both allocates a new object, and also keeps |
| // track of where objects have been allocated so that we can |
| // fix back references when deserializing. |
| Address Deserializer::Allocate(int space_index, Space* space, int size) { |
| Address address; |
| if (!SpaceIsLarge(space_index)) { |
| ASSERT(!SpaceIsPaged(space_index) || |
| size <= Page::kPageSize - Page::kObjectStartOffset); |
| MaybeObject* maybe_new_allocation; |
| if (space_index == NEW_SPACE) { |
| maybe_new_allocation = |
| reinterpret_cast<NewSpace*>(space)->AllocateRaw(size); |
| } else { |
| maybe_new_allocation = |
| reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size); |
| } |
| Object* new_allocation = maybe_new_allocation->ToObjectUnchecked(); |
| HeapObject* new_object = HeapObject::cast(new_allocation); |
| address = new_object->address(); |
| high_water_[space_index] = address + size; |
| } else { |
| ASSERT(SpaceIsLarge(space_index)); |
| LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space); |
| Object* new_allocation; |
| if (space_index == kLargeData) { |
| new_allocation = lo_space->AllocateRaw(size)->ToObjectUnchecked(); |
| } else if (space_index == kLargeFixedArray) { |
| new_allocation = |
| lo_space->AllocateRawFixedArray(size)->ToObjectUnchecked(); |
| } else { |
| ASSERT_EQ(kLargeCode, space_index); |
| new_allocation = lo_space->AllocateRawCode(size)->ToObjectUnchecked(); |
| } |
| HeapObject* new_object = HeapObject::cast(new_allocation); |
| // Record all large objects in the same space. |
| address = new_object->address(); |
| pages_[LO_SPACE].Add(address); |
| } |
| last_object_address_ = address; |
| return address; |
| } |
| |
| |
| // This returns the address of an object that has been described in the |
| // snapshot as being offset bytes back in a particular space. |
| HeapObject* Deserializer::GetAddressFromEnd(int space) { |
| int offset = source_->GetInt(); |
| ASSERT(!SpaceIsLarge(space)); |
| offset <<= kObjectAlignmentBits; |
| return HeapObject::FromAddress(high_water_[space] - offset); |
| } |
| |
| |
| // This returns the address of an object that has been described in the |
| // snapshot as being offset bytes into a particular space. |
| HeapObject* Deserializer::GetAddressFromStart(int space) { |
| int offset = source_->GetInt(); |
| if (SpaceIsLarge(space)) { |
| // Large spaces have one object per 'page'. |
| return HeapObject::FromAddress(pages_[LO_SPACE][offset]); |
| } |
| offset <<= kObjectAlignmentBits; |
| if (space == NEW_SPACE) { |
| // New space has only one space - numbered 0. |
| return HeapObject::FromAddress(pages_[space][0] + offset); |
| } |
| ASSERT(SpaceIsPaged(space)); |
| int page_of_pointee = offset >> kPageSizeBits; |
| Address object_address = pages_[space][page_of_pointee] + |
| (offset & Page::kPageAlignmentMask); |
| return HeapObject::FromAddress(object_address); |
| } |
| |
| |
| void Deserializer::Deserialize() { |
| isolate_ = Isolate::Current(); |
| // Don't GC while deserializing - just expand the heap. |
| AlwaysAllocateScope always_allocate; |
| // Don't use the free lists while deserializing. |
| LinearAllocationScope allocate_linearly; |
| // No active threads. |
| ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse()); |
| // No active handles. |
| ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty()); |
| // Make sure the entire partial snapshot cache is traversed, filling it with |
| // valid object pointers. |
| isolate_->set_serialize_partial_snapshot_cache_length( |
| Isolate::kPartialSnapshotCacheCapacity); |
| ASSERT_EQ(NULL, external_reference_decoder_); |
| external_reference_decoder_ = new ExternalReferenceDecoder(); |
| isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); |
| isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); |
| |
| isolate_->heap()->set_global_contexts_list( |
| isolate_->heap()->undefined_value()); |
| } |
| |
| |
| void Deserializer::DeserializePartial(Object** root) { |
| isolate_ = Isolate::Current(); |
| // Don't GC while deserializing - just expand the heap. |
| AlwaysAllocateScope always_allocate; |
| // Don't use the free lists while deserializing. |
| LinearAllocationScope allocate_linearly; |
| if (external_reference_decoder_ == NULL) { |
| external_reference_decoder_ = new ExternalReferenceDecoder(); |
| } |
| VisitPointer(root); |
| } |
| |
| |
| Deserializer::~Deserializer() { |
| ASSERT(source_->AtEOF()); |
| if (external_reference_decoder_) { |
| delete external_reference_decoder_; |
| external_reference_decoder_ = NULL; |
| } |
| } |
| |
| |
| // This is called on the roots. It is the driver of the deserialization |
| // process. It is also called on the body of each function. |
| void Deserializer::VisitPointers(Object** start, Object** end) { |
| // The space must be new space. Any other space would cause ReadChunk to try |
| // to update the remembered using NULL as the address. |
| ReadChunk(start, end, NEW_SPACE, NULL); |
| } |
| |
| |
| // This routine writes the new object into the pointer provided and then |
| // returns true if the new object was in young space and false otherwise. |
| // The reason for this strange interface is that otherwise the object is |
| // written very late, which means the ByteArray map is not set up by the |
| // time we need to use it to mark the space at the end of a page free (by |
| // making it into a byte array). |
| void Deserializer::ReadObject(int space_number, |
| Space* space, |
| Object** write_back) { |
| int size = source_->GetInt() << kObjectAlignmentBits; |
| Address address = Allocate(space_number, space, size); |
| *write_back = HeapObject::FromAddress(address); |
| Object** current = reinterpret_cast<Object**>(address); |
| Object** limit = current + (size >> kPointerSizeLog2); |
| if (FLAG_log_snapshot_positions) { |
| LOG(isolate_, SnapshotPositionEvent(address, source_->position())); |
| } |
| ReadChunk(current, limit, space_number, address); |
| #ifdef DEBUG |
| bool is_codespace = (space == HEAP->code_space()) || |
| ((space == HEAP->lo_space()) && (space_number == kLargeCode)); |
| ASSERT(HeapObject::FromAddress(address)->IsCode() == is_codespace); |
| #endif |
| } |
| |
| |
| // This macro is always used with a constant argument so it should all fold |
| // away to almost nothing in the generated code. It might be nicer to do this |
| // with the ternary operator but there are type issues with that. |
| #define ASSIGN_DEST_SPACE(space_number) \ |
| Space* dest_space; \ |
| if (space_number == NEW_SPACE) { \ |
| dest_space = isolate->heap()->new_space(); \ |
| } else if (space_number == OLD_POINTER_SPACE) { \ |
| dest_space = isolate->heap()->old_pointer_space(); \ |
| } else if (space_number == OLD_DATA_SPACE) { \ |
| dest_space = isolate->heap()->old_data_space(); \ |
| } else if (space_number == CODE_SPACE) { \ |
| dest_space = isolate->heap()->code_space(); \ |
| } else if (space_number == MAP_SPACE) { \ |
| dest_space = isolate->heap()->map_space(); \ |
| } else if (space_number == CELL_SPACE) { \ |
| dest_space = isolate->heap()->cell_space(); \ |
| } else { \ |
| ASSERT(space_number >= LO_SPACE); \ |
| dest_space = isolate->heap()->lo_space(); \ |
| } |
| |
| |
| static const int kUnknownOffsetFromStart = -1; |
| |
| |
| void Deserializer::ReadChunk(Object** current, |
| Object** limit, |
| int source_space, |
| Address address) { |
| Isolate* const isolate = isolate_; |
| while (current < limit) { |
| int data = source_->Get(); |
| switch (data) { |
| #define CASE_STATEMENT(where, how, within, space_number) \ |
| case where + how + within + space_number: \ |
| ASSERT((where & ~kPointedToMask) == 0); \ |
| ASSERT((how & ~kHowToCodeMask) == 0); \ |
| ASSERT((within & ~kWhereToPointMask) == 0); \ |
| ASSERT((space_number & ~kSpaceMask) == 0); |
| |
| #define CASE_BODY(where, how, within, space_number_if_any, offset_from_start) \ |
| { \ |
| bool emit_write_barrier = false; \ |
| bool current_was_incremented = false; \ |
| int space_number = space_number_if_any == kAnyOldSpace ? \ |
| (data & kSpaceMask) : space_number_if_any; \ |
| if (where == kNewObject && how == kPlain && within == kStartOfObject) {\ |
| ASSIGN_DEST_SPACE(space_number) \ |
| ReadObject(space_number, dest_space, current); \ |
| emit_write_barrier = \ |
| (space_number == NEW_SPACE && source_space != NEW_SPACE); \ |
| } else { \ |
| Object* new_object = NULL; /* May not be a real Object pointer. */ \ |
| if (where == kNewObject) { \ |
| ASSIGN_DEST_SPACE(space_number) \ |
| ReadObject(space_number, dest_space, &new_object); \ |
| } else if (where == kRootArray) { \ |
| int root_id = source_->GetInt(); \ |
| new_object = isolate->heap()->roots_address()[root_id]; \ |
| } else if (where == kPartialSnapshotCache) { \ |
| int cache_index = source_->GetInt(); \ |
| new_object = isolate->serialize_partial_snapshot_cache() \ |
| [cache_index]; \ |
| } else if (where == kExternalReference) { \ |
| int reference_id = source_->GetInt(); \ |
| Address address = external_reference_decoder_-> \ |
| Decode(reference_id); \ |
| new_object = reinterpret_cast<Object*>(address); \ |
| } else if (where == kBackref) { \ |
| emit_write_barrier = \ |
| (space_number == NEW_SPACE && source_space != NEW_SPACE); \ |
| new_object = GetAddressFromEnd(data & kSpaceMask); \ |
| } else { \ |
| ASSERT(where == kFromStart); \ |
| if (offset_from_start == kUnknownOffsetFromStart) { \ |
| emit_write_barrier = \ |
| (space_number == NEW_SPACE && source_space != NEW_SPACE); \ |
| new_object = GetAddressFromStart(data & kSpaceMask); \ |
| } else { \ |
| Address object_address = pages_[space_number][0] + \ |
| (offset_from_start << kObjectAlignmentBits); \ |
| new_object = HeapObject::FromAddress(object_address); \ |
| } \ |
| } \ |
| if (within == kFirstInstruction) { \ |
| Code* new_code_object = reinterpret_cast<Code*>(new_object); \ |
| new_object = reinterpret_cast<Object*>( \ |
| new_code_object->instruction_start()); \ |
| } \ |
| if (how == kFromCode) { \ |
| Address location_of_branch_data = \ |
| reinterpret_cast<Address>(current); \ |
| Assembler::set_target_at(location_of_branch_data, \ |
| reinterpret_cast<Address>(new_object)); \ |
| if (within == kFirstInstruction) { \ |
| location_of_branch_data += Assembler::kCallTargetSize; \ |
| current = reinterpret_cast<Object**>(location_of_branch_data); \ |
| current_was_incremented = true; \ |
| } \ |
| } else { \ |
| *current = new_object; \ |
| } \ |
| } \ |
| if (emit_write_barrier) { \ |
| isolate->heap()->RecordWrite(address, static_cast<int>( \ |
| reinterpret_cast<Address>(current) - address)); \ |
| } \ |
| if (!current_was_incremented) { \ |
| current++; /* Increment current if it wasn't done above. */ \ |
| } \ |
| break; \ |
| } \ |
| |
| // This generates a case and a body for each space. The large object spaces are |
| // very rare in snapshots so they are grouped in one body. |
| #define ONE_PER_SPACE(where, how, within) \ |
| CASE_STATEMENT(where, how, within, NEW_SPACE) \ |
| CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart) \ |
| CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \ |
| CASE_BODY(where, how, within, OLD_DATA_SPACE, kUnknownOffsetFromStart) \ |
| CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \ |
| CASE_BODY(where, how, within, OLD_POINTER_SPACE, kUnknownOffsetFromStart) \ |
| CASE_STATEMENT(where, how, within, CODE_SPACE) \ |
| CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart) \ |
| CASE_STATEMENT(where, how, within, CELL_SPACE) \ |
| CASE_BODY(where, how, within, CELL_SPACE, kUnknownOffsetFromStart) \ |
| CASE_STATEMENT(where, how, within, MAP_SPACE) \ |
| CASE_BODY(where, how, within, MAP_SPACE, kUnknownOffsetFromStart) \ |
| CASE_STATEMENT(where, how, within, kLargeData) \ |
| CASE_STATEMENT(where, how, within, kLargeCode) \ |
| CASE_STATEMENT(where, how, within, kLargeFixedArray) \ |
| CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart) |
| |
| // This generates a case and a body for the new space (which has to do extra |
| // write barrier handling) and handles the other spaces with 8 fall-through |
| // cases and one body. |
| #define ALL_SPACES(where, how, within) \ |
| CASE_STATEMENT(where, how, within, NEW_SPACE) \ |
| CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart) \ |
| CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \ |
| CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \ |
| CASE_STATEMENT(where, how, within, CODE_SPACE) \ |
| CASE_STATEMENT(where, how, within, CELL_SPACE) \ |
| CASE_STATEMENT(where, how, within, MAP_SPACE) \ |
| CASE_STATEMENT(where, how, within, kLargeData) \ |
| CASE_STATEMENT(where, how, within, kLargeCode) \ |
| CASE_STATEMENT(where, how, within, kLargeFixedArray) \ |
| CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart) |
| |
| #define ONE_PER_CODE_SPACE(where, how, within) \ |
| CASE_STATEMENT(where, how, within, CODE_SPACE) \ |
| CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart) \ |
| CASE_STATEMENT(where, how, within, kLargeCode) \ |
| CASE_BODY(where, how, within, kLargeCode, kUnknownOffsetFromStart) |
| |
| #define EMIT_COMMON_REFERENCE_PATTERNS(pseudo_space_number, \ |
| space_number, \ |
| offset_from_start) \ |
| CASE_STATEMENT(kFromStart, kPlain, kStartOfObject, pseudo_space_number) \ |
| CASE_BODY(kFromStart, kPlain, kStartOfObject, space_number, offset_from_start) |
| |
| // We generate 15 cases and bodies that process special tags that combine |
| // the raw data tag and the length into one byte. |
| #define RAW_CASE(index, size) \ |
| case kRawData + index: { \ |
| byte* raw_data_out = reinterpret_cast<byte*>(current); \ |
| source_->CopyRaw(raw_data_out, size); \ |
| current = reinterpret_cast<Object**>(raw_data_out + size); \ |
| break; \ |
| } |
| COMMON_RAW_LENGTHS(RAW_CASE) |
| #undef RAW_CASE |
| |
| // Deserialize a chunk of raw data that doesn't have one of the popular |
| // lengths. |
| case kRawData: { |
| int size = source_->GetInt(); |
| byte* raw_data_out = reinterpret_cast<byte*>(current); |
| source_->CopyRaw(raw_data_out, size); |
| current = reinterpret_cast<Object**>(raw_data_out + size); |
| break; |
| } |
| |
| // Deserialize a new object and write a pointer to it to the current |
| // object. |
| ONE_PER_SPACE(kNewObject, kPlain, kStartOfObject) |
| // Support for direct instruction pointers in functions |
| ONE_PER_CODE_SPACE(kNewObject, kPlain, kFirstInstruction) |
| // Deserialize a new code object and write a pointer to its first |
| // instruction to the current code object. |
| ONE_PER_SPACE(kNewObject, kFromCode, kFirstInstruction) |
| // Find a recently deserialized object using its offset from the current |
| // allocation point and write a pointer to it to the current object. |
| ALL_SPACES(kBackref, kPlain, kStartOfObject) |
| // Find a recently deserialized code object using its offset from the |
| // current allocation point and write a pointer to its first instruction |
| // to the current code object or the instruction pointer in a function |
| // object. |
| ALL_SPACES(kBackref, kFromCode, kFirstInstruction) |
| ALL_SPACES(kBackref, kPlain, kFirstInstruction) |
| // Find an already deserialized object using its offset from the start |
| // and write a pointer to it to the current object. |
| ALL_SPACES(kFromStart, kPlain, kStartOfObject) |
| ALL_SPACES(kFromStart, kPlain, kFirstInstruction) |
| // Find an already deserialized code object using its offset from the |
| // start and write a pointer to its first instruction to the current code |
| // object. |
| ALL_SPACES(kFromStart, kFromCode, kFirstInstruction) |
| // Find an already deserialized object at one of the predetermined popular |
| // offsets from the start and write a pointer to it in the current object. |
| COMMON_REFERENCE_PATTERNS(EMIT_COMMON_REFERENCE_PATTERNS) |
| // Find an object in the roots array and write a pointer to it to the |
| // current object. |
| CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0) |
| CASE_BODY(kRootArray, kPlain, kStartOfObject, 0, kUnknownOffsetFromStart) |
| // Find an object in the partial snapshots cache and write a pointer to it |
| // to the current object. |
| CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0) |
| CASE_BODY(kPartialSnapshotCache, |
| kPlain, |
| kStartOfObject, |
| 0, |
| kUnknownOffsetFromStart) |
| // Find an code entry in the partial snapshots cache and |
| // write a pointer to it to the current object. |
| CASE_STATEMENT(kPartialSnapshotCache, kPlain, kFirstInstruction, 0) |
| CASE_BODY(kPartialSnapshotCache, |
| kPlain, |
| kFirstInstruction, |
| 0, |
| kUnknownOffsetFromStart) |
| // Find an external reference and write a pointer to it to the current |
| // object. |
| CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0) |
| CASE_BODY(kExternalReference, |
| kPlain, |
| kStartOfObject, |
| 0, |
| kUnknownOffsetFromStart) |
| // Find an external reference and write a pointer to it in the current |
| // code object. |
| CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0) |
| CASE_BODY(kExternalReference, |
| kFromCode, |
| kStartOfObject, |
| 0, |
| kUnknownOffsetFromStart) |
| |
| #undef CASE_STATEMENT |
| #undef CASE_BODY |
| #undef ONE_PER_SPACE |
| #undef ALL_SPACES |
| #undef EMIT_COMMON_REFERENCE_PATTERNS |
| #undef ASSIGN_DEST_SPACE |
| |
| case kNewPage: { |
| int space = source_->Get(); |
| pages_[space].Add(last_object_address_); |
| if (space == CODE_SPACE) { |
| CPU::FlushICache(last_object_address_, Page::kPageSize); |
| } |
| break; |
| } |
| |
| case kNativesStringResource: { |
| int index = source_->Get(); |
| Vector<const char> source_vector = Natives::GetRawScriptSource(index); |
| NativesExternalStringResource* resource = |
| new NativesExternalStringResource(isolate->bootstrapper(), |
| source_vector.start(), |
| source_vector.length()); |
| *current++ = reinterpret_cast<Object*>(resource); |
| break; |
| } |
| |
| case kSynchronize: { |
| // If we get here then that indicates that you have a mismatch between |
| // the number of GC roots when serializing and deserializing. |
| UNREACHABLE(); |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| ASSERT_EQ(current, limit); |
| } |
| |
| |
| void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) { |
| const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7; |
| for (int shift = max_shift; shift > 0; shift -= 7) { |
| if (integer >= static_cast<uintptr_t>(1u) << shift) { |
| Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart"); |
| } |
| } |
| PutSection(static_cast<int>(integer & 0x7f), "IntLastPart"); |
| } |
| |
| #ifdef DEBUG |
| |
| void Deserializer::Synchronize(const char* tag) { |
| int data = source_->Get(); |
| // If this assert fails then that indicates that you have a mismatch between |
| // the number of GC roots when serializing and deserializing. |
| ASSERT_EQ(kSynchronize, data); |
| do { |
| int character = source_->Get(); |
| if (character == 0) break; |
| if (FLAG_debug_serialization) { |
| PrintF("%c", character); |
| } |
| } while (true); |
| if (FLAG_debug_serialization) { |
| PrintF("\n"); |
| } |
| } |
| |
| |
| void Serializer::Synchronize(const char* tag) { |
| sink_->Put(kSynchronize, tag); |
| int character; |
| do { |
| character = *tag++; |
| sink_->PutSection(character, "TagCharacter"); |
| } while (character != 0); |
| } |
| |
| #endif |
| |
| Serializer::Serializer(SnapshotByteSink* sink) |
| : sink_(sink), |
| current_root_index_(0), |
| external_reference_encoder_(new ExternalReferenceEncoder), |
| large_object_total_(0) { |
| // The serializer is meant to be used only to generate initial heap images |
| // from a context in which there is only one isolate. |
| ASSERT(Isolate::Current()->IsDefaultIsolate()); |
| for (int i = 0; i <= LAST_SPACE; i++) { |
| fullness_[i] = 0; |
| } |
| } |
| |
| |
| Serializer::~Serializer() { |
| delete external_reference_encoder_; |
| } |
| |
| |
| void StartupSerializer::SerializeStrongReferences() { |
| Isolate* isolate = Isolate::Current(); |
| // No active threads. |
| CHECK_EQ(NULL, Isolate::Current()->thread_manager()->FirstThreadStateInUse()); |
| // No active or weak handles. |
| CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); |
| CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); |
| // We don't support serializing installed extensions. |
| for (RegisteredExtension* ext = v8::RegisteredExtension::first_extension(); |
| ext != NULL; |
| ext = ext->next()) { |
| CHECK_NE(v8::INSTALLED, ext->state()); |
| } |
| HEAP->IterateStrongRoots(this, VISIT_ONLY_STRONG); |
| } |
| |
| |
| void PartialSerializer::Serialize(Object** object) { |
| this->VisitPointer(object); |
| Isolate* isolate = Isolate::Current(); |
| |
| // After we have done the partial serialization the partial snapshot cache |
| // will contain some references needed to decode the partial snapshot. We |
| // fill it up with undefineds so it has a predictable length so the |
| // deserialization code doesn't need to know the length. |
| for (int index = isolate->serialize_partial_snapshot_cache_length(); |
| index < Isolate::kPartialSnapshotCacheCapacity; |
| index++) { |
| isolate->serialize_partial_snapshot_cache()[index] = |
| isolate->heap()->undefined_value(); |
| startup_serializer_->VisitPointer( |
| &isolate->serialize_partial_snapshot_cache()[index]); |
| } |
| isolate->set_serialize_partial_snapshot_cache_length( |
| Isolate::kPartialSnapshotCacheCapacity); |
| } |
| |
| |
| void Serializer::VisitPointers(Object** start, Object** end) { |
| for (Object** current = start; current < end; current++) { |
| if ((*current)->IsSmi()) { |
| sink_->Put(kRawData, "RawData"); |
| sink_->PutInt(kPointerSize, "length"); |
| for (int i = 0; i < kPointerSize; i++) { |
| sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); |
| } |
| } else { |
| SerializeObject(*current, kPlain, kStartOfObject); |
| } |
| } |
| } |
| |
| |
| // This ensures that the partial snapshot cache keeps things alive during GC and |
| // tracks their movement. When it is called during serialization of the startup |
| // snapshot the partial snapshot is empty, so nothing happens. When the partial |
| // (context) snapshot is created, this array is populated with the pointers that |
| // the partial snapshot will need. As that happens we emit serialized objects to |
| // the startup snapshot that correspond to the elements of this cache array. On |
| // deserialization we therefore need to visit the cache array. This fills it up |
| // with pointers to deserialized objects. |
| void SerializerDeserializer::Iterate(ObjectVisitor* visitor) { |
| Isolate* isolate = Isolate::Current(); |
| visitor->VisitPointers( |
| isolate->serialize_partial_snapshot_cache(), |
| &isolate->serialize_partial_snapshot_cache()[ |
| isolate->serialize_partial_snapshot_cache_length()]); |
| } |
| |
| |
| // When deserializing we need to set the size of the snapshot cache. This means |
| // the root iteration code (above) will iterate over array elements, writing the |
| // references to deserialized objects in them. |
| void SerializerDeserializer::SetSnapshotCacheSize(int size) { |
| Isolate::Current()->set_serialize_partial_snapshot_cache_length(size); |
| } |
| |
| |
| int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { |
| Isolate* isolate = Isolate::Current(); |
| |
| for (int i = 0; |
| i < isolate->serialize_partial_snapshot_cache_length(); |
| i++) { |
| Object* entry = isolate->serialize_partial_snapshot_cache()[i]; |
| if (entry == heap_object) return i; |
| } |
| |
| // We didn't find the object in the cache. So we add it to the cache and |
| // then visit the pointer so that it becomes part of the startup snapshot |
| // and we can refer to it from the partial snapshot. |
| int length = isolate->serialize_partial_snapshot_cache_length(); |
| CHECK(length < Isolate::kPartialSnapshotCacheCapacity); |
| isolate->serialize_partial_snapshot_cache()[length] = heap_object; |
| startup_serializer_->VisitPointer( |
| &isolate->serialize_partial_snapshot_cache()[length]); |
| // We don't recurse from the startup snapshot generator into the partial |
| // snapshot generator. |
| ASSERT(length == isolate->serialize_partial_snapshot_cache_length()); |
| isolate->set_serialize_partial_snapshot_cache_length(length + 1); |
| return length; |
| } |
| |
| |
| int PartialSerializer::RootIndex(HeapObject* heap_object) { |
| for (int i = 0; i < Heap::kRootListLength; i++) { |
| Object* root = HEAP->roots_address()[i]; |
| if (root == heap_object) return i; |
| } |
| return kInvalidRootIndex; |
| } |
| |
| |
| // Encode the location of an already deserialized object in order to write its |
| // location into a later object. We can encode the location as an offset from |
| // the start of the deserialized objects or as an offset backwards from the |
| // current allocation pointer. |
| void Serializer::SerializeReferenceToPreviousObject( |
| int space, |
| int address, |
| HowToCode how_to_code, |
| WhereToPoint where_to_point) { |
| int offset = CurrentAllocationAddress(space) - address; |
| bool from_start = true; |
| if (SpaceIsPaged(space)) { |
| // For paged space it is simple to encode back from current allocation if |
| // the object is on the same page as the current allocation pointer. |
| if ((CurrentAllocationAddress(space) >> kPageSizeBits) == |
| (address >> kPageSizeBits)) { |
| from_start = false; |
| address = offset; |
| } |
| } else if (space == NEW_SPACE) { |
| // For new space it is always simple to encode back from current allocation. |
| if (offset < address) { |
| from_start = false; |
| address = offset; |
| } |
| } |
| // If we are actually dealing with real offsets (and not a numbering of |
| // all objects) then we should shift out the bits that are always 0. |
| if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits; |
| if (from_start) { |
| #define COMMON_REFS_CASE(pseudo_space, actual_space, offset) \ |
| if (space == actual_space && address == offset && \ |
| how_to_code == kPlain && where_to_point == kStartOfObject) { \ |
| sink_->Put(kFromStart + how_to_code + where_to_point + \ |
| pseudo_space, "RefSer"); \ |
| } else /* NOLINT */ |
| COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE) |
| #undef COMMON_REFS_CASE |
| { /* NOLINT */ |
| sink_->Put(kFromStart + how_to_code + where_to_point + space, "RefSer"); |
| sink_->PutInt(address, "address"); |
| } |
| } else { |
| sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer"); |
| sink_->PutInt(address, "address"); |
| } |
| } |
| |
| |
| void StartupSerializer::SerializeObject( |
| Object* o, |
| HowToCode how_to_code, |
| WhereToPoint where_to_point) { |
| CHECK(o->IsHeapObject()); |
| HeapObject* heap_object = HeapObject::cast(o); |
| |
| if (address_mapper_.IsMapped(heap_object)) { |
| int space = SpaceOfAlreadySerializedObject(heap_object); |
| int address = address_mapper_.MappedTo(heap_object); |
| SerializeReferenceToPreviousObject(space, |
| address, |
| how_to_code, |
| where_to_point); |
| } else { |
| // Object has not yet been serialized. Serialize it here. |
| ObjectSerializer object_serializer(this, |
| heap_object, |
| sink_, |
| how_to_code, |
| where_to_point); |
| object_serializer.Serialize(); |
| } |
| } |
| |
| |
| void StartupSerializer::SerializeWeakReferences() { |
| for (int i = Isolate::Current()->serialize_partial_snapshot_cache_length(); |
| i < Isolate::kPartialSnapshotCacheCapacity; |
| i++) { |
| sink_->Put(kRootArray + kPlain + kStartOfObject, "RootSerialization"); |
| sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index"); |
| } |
| HEAP->IterateWeakRoots(this, VISIT_ALL); |
| } |
| |
| |
| void PartialSerializer::SerializeObject( |
| Object* o, |
| HowToCode how_to_code, |
| WhereToPoint where_to_point) { |
| CHECK(o->IsHeapObject()); |
| HeapObject* heap_object = HeapObject::cast(o); |
| |
| int root_index; |
| if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) { |
| sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); |
| sink_->PutInt(root_index, "root_index"); |
| return; |
| } |
| |
| if (ShouldBeInThePartialSnapshotCache(heap_object)) { |
| int cache_index = PartialSnapshotCacheIndex(heap_object); |
| sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, |
| "PartialSnapshotCache"); |
| sink_->PutInt(cache_index, "partial_snapshot_cache_index"); |
| return; |
| } |
| |
| // Pointers from the partial snapshot to the objects in the startup snapshot |
| // should go through the root array or through the partial snapshot cache. |
| // If this is not the case you may have to add something to the root array. |
| ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object)); |
| // All the symbols that the partial snapshot needs should be either in the |
| // root table or in the partial snapshot cache. |
| ASSERT(!heap_object->IsSymbol()); |
| |
| if (address_mapper_.IsMapped(heap_object)) { |
| int space = SpaceOfAlreadySerializedObject(heap_object); |
| int address = address_mapper_.MappedTo(heap_object); |
| SerializeReferenceToPreviousObject(space, |
| address, |
| how_to_code, |
| where_to_point); |
| } else { |
| // Object has not yet been serialized. Serialize it here. |
| ObjectSerializer serializer(this, |
| heap_object, |
| sink_, |
| how_to_code, |
| where_to_point); |
| serializer.Serialize(); |
| } |
| } |
| |
| |
| void Serializer::ObjectSerializer::Serialize() { |
| int space = Serializer::SpaceOfObject(object_); |
| int size = object_->Size(); |
| |
| sink_->Put(kNewObject + reference_representation_ + space, |
| "ObjectSerialization"); |
| sink_->PutInt(size >> kObjectAlignmentBits, "Size in words"); |
| |
| LOG(i::Isolate::Current(), |
| SnapshotPositionEvent(object_->address(), sink_->Position())); |
| |
| // Mark this object as already serialized. |
| bool start_new_page; |
| int offset = serializer_->Allocate(space, size, &start_new_page); |
| serializer_->address_mapper()->AddMapping(object_, offset); |
| if (start_new_page) { |
| sink_->Put(kNewPage, "NewPage"); |
| sink_->PutSection(space, "NewPageSpace"); |
| } |
| |
| // Serialize the map (first word of the object). |
| serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject); |
| |
| // Serialize the rest of the object. |
| CHECK_EQ(0, bytes_processed_so_far_); |
| bytes_processed_so_far_ = kPointerSize; |
| object_->IterateBody(object_->map()->instance_type(), size, this); |
| OutputRawData(object_->address() + size); |
| } |
| |
| |
| void Serializer::ObjectSerializer::VisitPointers(Object** start, |
| Object** end) { |
| Object** current = start; |
| while (current < end) { |
| while (current < end && (*current)->IsSmi()) current++; |
| if (current < end) OutputRawData(reinterpret_cast<Address>(current)); |
| |
| while (current < end && !(*current)->IsSmi()) { |
| serializer_->SerializeObject(*current, kPlain, kStartOfObject); |
| bytes_processed_so_far_ += kPointerSize; |
| current++; |
| } |
| } |
| } |
| |
| |
| void Serializer::ObjectSerializer::VisitExternalReferences(Address* start, |
| Address* end) { |
| Address references_start = reinterpret_cast<Address>(start); |
| OutputRawData(references_start); |
| |
| for (Address* current = start; current < end; current++) { |
| sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); |
| int reference_id = serializer_->EncodeExternalReference(*current); |
| sink_->PutInt(reference_id, "reference id"); |
| } |
| bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize); |
| } |
| |
| |
| void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { |
| Address target_start = rinfo->target_address_address(); |
| OutputRawData(target_start); |
| Address target = rinfo->target_address(); |
| uint32_t encoding = serializer_->EncodeExternalReference(target); |
| CHECK(target == NULL ? encoding == 0 : encoding != 0); |
| int representation; |
| // Can't use a ternary operator because of gcc. |
| if (rinfo->IsCodedSpecially()) { |
| representation = kStartOfObject + kFromCode; |
| } else { |
| representation = kStartOfObject + kPlain; |
| } |
| sink_->Put(kExternalReference + representation, "ExternalReference"); |
| sink_->PutInt(encoding, "reference id"); |
| bytes_processed_so_far_ += rinfo->target_address_size(); |
| } |
| |
| |
| void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { |
| CHECK(RelocInfo::IsCodeTarget(rinfo->rmode())); |
| Address target_start = rinfo->target_address_address(); |
| OutputRawData(target_start); |
| Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); |
| serializer_->SerializeObject(target, kFromCode, kFirstInstruction); |
| bytes_processed_so_far_ += rinfo->target_address_size(); |
| } |
| |
| |
| void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { |
| Code* target = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); |
| OutputRawData(entry_address); |
| serializer_->SerializeObject(target, kPlain, kFirstInstruction); |
| bytes_processed_so_far_ += kPointerSize; |
| } |
| |
| |
| void Serializer::ObjectSerializer::VisitGlobalPropertyCell(RelocInfo* rinfo) { |
| // We shouldn't have any global property cell references in code |
| // objects in the snapshot. |
| UNREACHABLE(); |
| } |
| |
| |
| void Serializer::ObjectSerializer::VisitExternalAsciiString( |
| v8::String::ExternalAsciiStringResource** resource_pointer) { |
| Address references_start = reinterpret_cast<Address>(resource_pointer); |
| OutputRawData(references_start); |
| for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { |
| Object* source = HEAP->natives_source_cache()->get(i); |
| if (!source->IsUndefined()) { |
| ExternalAsciiString* string = ExternalAsciiString::cast(source); |
| typedef v8::String::ExternalAsciiStringResource Resource; |
| Resource* resource = string->resource(); |
| if (resource == *resource_pointer) { |
| sink_->Put(kNativesStringResource, "NativesStringResource"); |
| sink_->PutSection(i, "NativesStringResourceEnd"); |
| bytes_processed_so_far_ += sizeof(resource); |
| return; |
| } |
| } |
| } |
| // One of the strings in the natives cache should match the resource. We |
| // can't serialize any other kinds of external strings. |
| UNREACHABLE(); |
| } |
| |
| |
| void Serializer::ObjectSerializer::OutputRawData(Address up_to) { |
| Address object_start = object_->address(); |
| int up_to_offset = static_cast<int>(up_to - object_start); |
| int skipped = up_to_offset - bytes_processed_so_far_; |
| // This assert will fail if the reloc info gives us the target_address_address |
| // locations in a non-ascending order. Luckily that doesn't happen. |
| ASSERT(skipped >= 0); |
| if (skipped != 0) { |
| Address base = object_start + bytes_processed_so_far_; |
| #define RAW_CASE(index, length) \ |
| if (skipped == length) { \ |
| sink_->PutSection(kRawData + index, "RawDataFixed"); \ |
| } else /* NOLINT */ |
| COMMON_RAW_LENGTHS(RAW_CASE) |
| #undef RAW_CASE |
| { /* NOLINT */ |
| sink_->Put(kRawData, "RawData"); |
| sink_->PutInt(skipped, "length"); |
| } |
| for (int i = 0; i < skipped; i++) { |
| unsigned int data = base[i]; |
| sink_->PutSection(data, "Byte"); |
| } |
| bytes_processed_so_far_ += skipped; |
| } |
| } |
| |
| |
| int Serializer::SpaceOfObject(HeapObject* object) { |
| for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) { |
| AllocationSpace s = static_cast<AllocationSpace>(i); |
| if (HEAP->InSpace(object, s)) { |
| if (i == LO_SPACE) { |
| if (object->IsCode()) { |
| return kLargeCode; |
| } else if (object->IsFixedArray()) { |
| return kLargeFixedArray; |
| } else { |
| return kLargeData; |
| } |
| } |
| return i; |
| } |
| } |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| |
| int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) { |
| for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) { |
| AllocationSpace s = static_cast<AllocationSpace>(i); |
| if (HEAP->InSpace(object, s)) { |
| return i; |
| } |
| } |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| |
| int Serializer::Allocate(int space, int size, bool* new_page) { |
| CHECK(space >= 0 && space < kNumberOfSpaces); |
| if (SpaceIsLarge(space)) { |
| // In large object space we merely number the objects instead of trying to |
| // determine some sort of address. |
| *new_page = true; |
| large_object_total_ += size; |
| return fullness_[LO_SPACE]++; |
| } |
| *new_page = false; |
| if (fullness_[space] == 0) { |
| *new_page = true; |
| } |
| if (SpaceIsPaged(space)) { |
| // Paged spaces are a little special. We encode their addresses as if the |
| // pages were all contiguous and each page were filled up in the range |
| // 0 - Page::kObjectAreaSize. In practice the pages may not be contiguous |
| // and allocation does not start at offset 0 in the page, but this scheme |
| // means the deserializer can get the page number quickly by shifting the |
| // serialized address. |
| CHECK(IsPowerOf2(Page::kPageSize)); |
| int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1)); |
| CHECK(size <= Page::kObjectAreaSize); |
| if (used_in_this_page + size > Page::kObjectAreaSize) { |
| *new_page = true; |
| fullness_[space] = RoundUp(fullness_[space], Page::kPageSize); |
| } |
| } |
| int allocation_address = fullness_[space]; |
| fullness_[space] = allocation_address + size; |
| return allocation_address; |
| } |
| |
| |
| } } // namespace v8::internal |