| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Platform specific code for MacOS goes here. For the POSIX comaptible parts |
| // the implementation is in platform-posix.cc. |
| |
| #include <unistd.h> |
| #include <sys/mman.h> |
| #include <mach/mach_init.h> |
| #include <mach-o/dyld.h> |
| #include <mach-o/getsect.h> |
| |
| #include <AvailabilityMacros.h> |
| |
| #include <pthread.h> |
| #include <semaphore.h> |
| #include <signal.h> |
| #include <mach/mach.h> |
| #include <mach/semaphore.h> |
| #include <mach/task.h> |
| #include <mach/vm_statistics.h> |
| #include <sys/time.h> |
| #include <sys/resource.h> |
| #include <sys/types.h> |
| #include <stdarg.h> |
| #include <stdlib.h> |
| |
| #include <errno.h> |
| |
| #undef MAP_TYPE |
| |
| #include "v8.h" |
| |
| #include "platform.h" |
| |
| // Manually define these here as weak imports, rather than including execinfo.h. |
| // This lets us launch on 10.4 which does not have these calls. |
| extern "C" { |
| extern int backtrace(void**, int) __attribute__((weak_import)); |
| extern char** backtrace_symbols(void* const*, int) |
| __attribute__((weak_import)); |
| extern void backtrace_symbols_fd(void* const*, int, int) |
| __attribute__((weak_import)); |
| } |
| |
| |
| namespace v8 { |
| namespace internal { |
| |
| // 0 is never a valid thread id on MacOSX since a ptread_t is |
| // a pointer. |
| static const pthread_t kNoThread = (pthread_t) 0; |
| |
| |
| double ceiling(double x) { |
| // Correct Mac OS X Leopard 'ceil' behavior. |
| if (-1.0 < x && x < 0.0) { |
| return -0.0; |
| } else { |
| return ceil(x); |
| } |
| } |
| |
| |
| void OS::Setup() { |
| // Seed the random number generator. |
| // Convert the current time to a 64-bit integer first, before converting it |
| // to an unsigned. Going directly will cause an overflow and the seed to be |
| // set to all ones. The seed will be identical for different instances that |
| // call this setup code within the same millisecond. |
| uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); |
| srandom(static_cast<unsigned int>(seed)); |
| } |
| |
| |
| // We keep the lowest and highest addresses mapped as a quick way of |
| // determining that pointers are outside the heap (used mostly in assertions |
| // and verification). The estimate is conservative, ie, not all addresses in |
| // 'allocated' space are actually allocated to our heap. The range is |
| // [lowest, highest), inclusive on the low and and exclusive on the high end. |
| static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); |
| static void* highest_ever_allocated = reinterpret_cast<void*>(0); |
| |
| |
| static void UpdateAllocatedSpaceLimits(void* address, int size) { |
| lowest_ever_allocated = Min(lowest_ever_allocated, address); |
| highest_ever_allocated = |
| Max(highest_ever_allocated, |
| reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); |
| } |
| |
| |
| bool OS::IsOutsideAllocatedSpace(void* address) { |
| return address < lowest_ever_allocated || address >= highest_ever_allocated; |
| } |
| |
| |
| size_t OS::AllocateAlignment() { |
| return getpagesize(); |
| } |
| |
| |
| // Constants used for mmap. |
| // kMmapFd is used to pass vm_alloc flags to tag the region with the user |
| // defined tag 255 This helps identify V8-allocated regions in memory analysis |
| // tools like vmmap(1). |
| static const int kMmapFd = VM_MAKE_TAG(255); |
| static const off_t kMmapFdOffset = 0; |
| |
| |
| void* OS::Allocate(const size_t requested, |
| size_t* allocated, |
| bool is_executable) { |
| const size_t msize = RoundUp(requested, getpagesize()); |
| int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
| void* mbase = mmap(NULL, msize, prot, |
| MAP_PRIVATE | MAP_ANON, |
| kMmapFd, kMmapFdOffset); |
| if (mbase == MAP_FAILED) { |
| LOG(StringEvent("OS::Allocate", "mmap failed")); |
| return NULL; |
| } |
| *allocated = msize; |
| UpdateAllocatedSpaceLimits(mbase, msize); |
| return mbase; |
| } |
| |
| |
| void OS::Free(void* address, const size_t size) { |
| // TODO(1240712): munmap has a return value which is ignored here. |
| int result = munmap(address, size); |
| USE(result); |
| ASSERT(result == 0); |
| } |
| |
| |
| #ifdef ENABLE_HEAP_PROTECTION |
| |
| void OS::Protect(void* address, size_t size) { |
| UNIMPLEMENTED(); |
| } |
| |
| |
| void OS::Unprotect(void* address, size_t size, bool is_executable) { |
| UNIMPLEMENTED(); |
| } |
| |
| #endif |
| |
| |
| void OS::Sleep(int milliseconds) { |
| usleep(1000 * milliseconds); |
| } |
| |
| |
| void OS::Abort() { |
| // Redirect to std abort to signal abnormal program termination |
| abort(); |
| } |
| |
| |
| void OS::DebugBreak() { |
| asm("int $3"); |
| } |
| |
| |
| class PosixMemoryMappedFile : public OS::MemoryMappedFile { |
| public: |
| PosixMemoryMappedFile(FILE* file, void* memory, int size) |
| : file_(file), memory_(memory), size_(size) { } |
| virtual ~PosixMemoryMappedFile(); |
| virtual void* memory() { return memory_; } |
| private: |
| FILE* file_; |
| void* memory_; |
| int size_; |
| }; |
| |
| |
| OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, |
| void* initial) { |
| FILE* file = fopen(name, "w+"); |
| if (file == NULL) return NULL; |
| fwrite(initial, size, 1, file); |
| void* memory = |
| mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); |
| return new PosixMemoryMappedFile(file, memory, size); |
| } |
| |
| |
| PosixMemoryMappedFile::~PosixMemoryMappedFile() { |
| if (memory_) munmap(memory_, size_); |
| fclose(file_); |
| } |
| |
| |
| void OS::LogSharedLibraryAddresses() { |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| unsigned int images_count = _dyld_image_count(); |
| for (unsigned int i = 0; i < images_count; ++i) { |
| const mach_header* header = _dyld_get_image_header(i); |
| if (header == NULL) continue; |
| #if V8_HOST_ARCH_X64 |
| uint64_t size; |
| char* code_ptr = getsectdatafromheader_64( |
| reinterpret_cast<const mach_header_64*>(header), |
| SEG_TEXT, |
| SECT_TEXT, |
| &size); |
| #else |
| unsigned int size; |
| char* code_ptr = getsectdatafromheader(header, SEG_TEXT, SECT_TEXT, &size); |
| #endif |
| if (code_ptr == NULL) continue; |
| const uintptr_t slide = _dyld_get_image_vmaddr_slide(i); |
| const uintptr_t start = reinterpret_cast<uintptr_t>(code_ptr) + slide; |
| LOG(SharedLibraryEvent(_dyld_get_image_name(i), start, start + size)); |
| } |
| #endif // ENABLE_LOGGING_AND_PROFILING |
| } |
| |
| |
| uint64_t OS::CpuFeaturesImpliedByPlatform() { |
| // MacOSX requires all these to install so we can assume they are present. |
| // These constants are defined by the CPUid instructions. |
| const uint64_t one = 1; |
| return (one << SSE2) | (one << CMOV) | (one << RDTSC) | (one << CPUID); |
| } |
| |
| |
| int OS::ActivationFrameAlignment() { |
| // OS X activation frames must be 16 byte-aligned; see "Mac OS X ABI |
| // Function Call Guide". |
| return 16; |
| } |
| |
| |
| const char* OS::LocalTimezone(double time) { |
| if (isnan(time)) return ""; |
| time_t tv = static_cast<time_t>(floor(time/msPerSecond)); |
| struct tm* t = localtime(&tv); |
| if (NULL == t) return ""; |
| return t->tm_zone; |
| } |
| |
| |
| double OS::LocalTimeOffset() { |
| time_t tv = time(NULL); |
| struct tm* t = localtime(&tv); |
| // tm_gmtoff includes any daylight savings offset, so subtract it. |
| return static_cast<double>(t->tm_gmtoff * msPerSecond - |
| (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); |
| } |
| |
| |
| int OS::StackWalk(Vector<StackFrame> frames) { |
| #ifdef ANDROID |
| // For some reason the weak linkage doesn't work when building mksnapshot |
| // for android on macos. Just bail out as if we're on 10.4. We don't need |
| // stack walking for mksnapshot. |
| return 0; |
| #else |
| // If weak link to execinfo lib has failed, ie because we are on 10.4, abort. |
| if (backtrace == NULL) |
| return 0; |
| |
| int frames_size = frames.length(); |
| void** addresses = NewArray<void*>(frames_size); |
| int frames_count = backtrace(addresses, frames_size); |
| |
| char** symbols; |
| symbols = backtrace_symbols(addresses, frames_count); |
| if (symbols == NULL) { |
| DeleteArray(addresses); |
| return kStackWalkError; |
| } |
| |
| for (int i = 0; i < frames_count; i++) { |
| frames[i].address = addresses[i]; |
| // Format a text representation of the frame based on the information |
| // available. |
| SNPrintF(MutableCStrVector(frames[i].text, |
| kStackWalkMaxTextLen), |
| "%s", |
| symbols[i]); |
| // Make sure line termination is in place. |
| frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; |
| } |
| |
| DeleteArray(addresses); |
| free(symbols); |
| |
| return frames_count; |
| #endif // ANDROID |
| } |
| |
| |
| |
| |
| VirtualMemory::VirtualMemory(size_t size) { |
| address_ = mmap(NULL, size, PROT_NONE, |
| MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, |
| kMmapFd, kMmapFdOffset); |
| size_ = size; |
| } |
| |
| |
| VirtualMemory::~VirtualMemory() { |
| if (IsReserved()) { |
| if (0 == munmap(address(), size())) address_ = MAP_FAILED; |
| } |
| } |
| |
| |
| bool VirtualMemory::IsReserved() { |
| return address_ != MAP_FAILED; |
| } |
| |
| |
| bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { |
| int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
| if (MAP_FAILED == mmap(address, size, prot, |
| MAP_PRIVATE | MAP_ANON | MAP_FIXED, |
| kMmapFd, kMmapFdOffset)) { |
| return false; |
| } |
| |
| UpdateAllocatedSpaceLimits(address, size); |
| return true; |
| } |
| |
| |
| bool VirtualMemory::Uncommit(void* address, size_t size) { |
| return mmap(address, size, PROT_NONE, |
| MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, |
| kMmapFd, kMmapFdOffset) != MAP_FAILED; |
| } |
| |
| |
| class ThreadHandle::PlatformData : public Malloced { |
| public: |
| explicit PlatformData(ThreadHandle::Kind kind) { |
| Initialize(kind); |
| } |
| |
| void Initialize(ThreadHandle::Kind kind) { |
| switch (kind) { |
| case ThreadHandle::SELF: thread_ = pthread_self(); break; |
| case ThreadHandle::INVALID: thread_ = kNoThread; break; |
| } |
| } |
| pthread_t thread_; // Thread handle for pthread. |
| }; |
| |
| |
| |
| ThreadHandle::ThreadHandle(Kind kind) { |
| data_ = new PlatformData(kind); |
| } |
| |
| |
| void ThreadHandle::Initialize(ThreadHandle::Kind kind) { |
| data_->Initialize(kind); |
| } |
| |
| |
| ThreadHandle::~ThreadHandle() { |
| delete data_; |
| } |
| |
| |
| bool ThreadHandle::IsSelf() const { |
| return pthread_equal(data_->thread_, pthread_self()); |
| } |
| |
| |
| bool ThreadHandle::IsValid() const { |
| return data_->thread_ != kNoThread; |
| } |
| |
| |
| Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) { |
| } |
| |
| |
| Thread::~Thread() { |
| } |
| |
| |
| static void* ThreadEntry(void* arg) { |
| Thread* thread = reinterpret_cast<Thread*>(arg); |
| // This is also initialized by the first argument to pthread_create() but we |
| // don't know which thread will run first (the original thread or the new |
| // one) so we initialize it here too. |
| thread->thread_handle_data()->thread_ = pthread_self(); |
| ASSERT(thread->IsValid()); |
| thread->Run(); |
| return NULL; |
| } |
| |
| |
| void Thread::Start() { |
| pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this); |
| } |
| |
| |
| void Thread::Join() { |
| pthread_join(thread_handle_data()->thread_, NULL); |
| } |
| |
| |
| Thread::LocalStorageKey Thread::CreateThreadLocalKey() { |
| pthread_key_t key; |
| int result = pthread_key_create(&key, NULL); |
| USE(result); |
| ASSERT(result == 0); |
| return static_cast<LocalStorageKey>(key); |
| } |
| |
| |
| void Thread::DeleteThreadLocalKey(LocalStorageKey key) { |
| pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
| int result = pthread_key_delete(pthread_key); |
| USE(result); |
| ASSERT(result == 0); |
| } |
| |
| |
| void* Thread::GetThreadLocal(LocalStorageKey key) { |
| pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
| return pthread_getspecific(pthread_key); |
| } |
| |
| |
| void Thread::SetThreadLocal(LocalStorageKey key, void* value) { |
| pthread_key_t pthread_key = static_cast<pthread_key_t>(key); |
| pthread_setspecific(pthread_key, value); |
| } |
| |
| |
| void Thread::YieldCPU() { |
| sched_yield(); |
| } |
| |
| |
| class MacOSMutex : public Mutex { |
| public: |
| |
| MacOSMutex() { |
| pthread_mutexattr_t attr; |
| pthread_mutexattr_init(&attr); |
| pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); |
| pthread_mutex_init(&mutex_, &attr); |
| } |
| |
| ~MacOSMutex() { pthread_mutex_destroy(&mutex_); } |
| |
| int Lock() { return pthread_mutex_lock(&mutex_); } |
| |
| int Unlock() { return pthread_mutex_unlock(&mutex_); } |
| |
| private: |
| pthread_mutex_t mutex_; |
| }; |
| |
| |
| Mutex* OS::CreateMutex() { |
| return new MacOSMutex(); |
| } |
| |
| |
| class MacOSSemaphore : public Semaphore { |
| public: |
| explicit MacOSSemaphore(int count) { |
| semaphore_create(mach_task_self(), &semaphore_, SYNC_POLICY_FIFO, count); |
| } |
| |
| ~MacOSSemaphore() { |
| semaphore_destroy(mach_task_self(), semaphore_); |
| } |
| |
| // The MacOS mach semaphore documentation claims it does not have spurious |
| // wakeups, the way pthreads semaphores do. So the code from the linux |
| // platform is not needed here. |
| void Wait() { semaphore_wait(semaphore_); } |
| |
| bool Wait(int timeout); |
| |
| void Signal() { semaphore_signal(semaphore_); } |
| |
| private: |
| semaphore_t semaphore_; |
| }; |
| |
| |
| bool MacOSSemaphore::Wait(int timeout) { |
| mach_timespec_t ts; |
| ts.tv_sec = timeout / 1000000; |
| ts.tv_nsec = (timeout % 1000000) * 1000; |
| return semaphore_timedwait(semaphore_, ts) != KERN_OPERATION_TIMED_OUT; |
| } |
| |
| |
| Semaphore* OS::CreateSemaphore(int count) { |
| return new MacOSSemaphore(count); |
| } |
| |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| |
| class Sampler::PlatformData : public Malloced { |
| public: |
| explicit PlatformData(Sampler* sampler) |
| : sampler_(sampler), |
| task_self_(mach_task_self()), |
| profiled_thread_(0), |
| sampler_thread_(0) { |
| } |
| |
| Sampler* sampler_; |
| // Note: for profiled_thread_ Mach primitives are used instead of PThread's |
| // because the latter doesn't provide thread manipulation primitives required. |
| // For details, consult "Mac OS X Internals" book, Section 7.3. |
| mach_port_t task_self_; |
| thread_act_t profiled_thread_; |
| pthread_t sampler_thread_; |
| |
| // Sampler thread handler. |
| void Runner() { |
| // Loop until the sampler is disengaged. |
| while (sampler_->IsActive()) { |
| TickSample sample; |
| |
| // If profiling, we record the pc and sp of the profiled thread. |
| if (sampler_->IsProfiling() |
| && KERN_SUCCESS == thread_suspend(profiled_thread_)) { |
| #if V8_HOST_ARCH_X64 |
| thread_state_flavor_t flavor = x86_THREAD_STATE64; |
| x86_thread_state64_t state; |
| mach_msg_type_number_t count = x86_THREAD_STATE64_COUNT; |
| #if __DARWIN_UNIX03 |
| #define REGISTER_FIELD(name) __r ## name |
| #else |
| #define REGISTER_FIELD(name) r ## name |
| #endif // __DARWIN_UNIX03 |
| #elif V8_HOST_ARCH_IA32 |
| thread_state_flavor_t flavor = i386_THREAD_STATE; |
| i386_thread_state_t state; |
| mach_msg_type_number_t count = i386_THREAD_STATE_COUNT; |
| #if __DARWIN_UNIX03 |
| #define REGISTER_FIELD(name) __e ## name |
| #else |
| #define REGISTER_FIELD(name) e ## name |
| #endif // __DARWIN_UNIX03 |
| #else |
| #error Unsupported Mac OS X host architecture. |
| #endif // V8_HOST_ARCH |
| |
| if (thread_get_state(profiled_thread_, |
| flavor, |
| reinterpret_cast<natural_t*>(&state), |
| &count) == KERN_SUCCESS) { |
| sample.pc = reinterpret_cast<Address>(state.REGISTER_FIELD(ip)); |
| sample.sp = reinterpret_cast<Address>(state.REGISTER_FIELD(sp)); |
| sample.fp = reinterpret_cast<Address>(state.REGISTER_FIELD(bp)); |
| sampler_->SampleStack(&sample); |
| } |
| thread_resume(profiled_thread_); |
| } |
| |
| // We always sample the VM state. |
| sample.state = Logger::state(); |
| // Invoke tick handler with program counter and stack pointer. |
| sampler_->Tick(&sample); |
| |
| // Wait until next sampling. |
| usleep(sampler_->interval_ * 1000); |
| } |
| } |
| }; |
| |
| #undef REGISTER_FIELD |
| |
| |
| // Entry point for sampler thread. |
| static void* SamplerEntry(void* arg) { |
| Sampler::PlatformData* data = |
| reinterpret_cast<Sampler::PlatformData*>(arg); |
| data->Runner(); |
| return 0; |
| } |
| |
| |
| Sampler::Sampler(int interval, bool profiling) |
| : interval_(interval), profiling_(profiling), active_(false) { |
| data_ = new PlatformData(this); |
| } |
| |
| |
| Sampler::~Sampler() { |
| delete data_; |
| } |
| |
| |
| void Sampler::Start() { |
| // If we are profiling, we need to be able to access the calling |
| // thread. |
| if (IsProfiling()) { |
| data_->profiled_thread_ = mach_thread_self(); |
| } |
| |
| // Create sampler thread with high priority. |
| // According to POSIX spec, when SCHED_FIFO policy is used, a thread |
| // runs until it exits or blocks. |
| pthread_attr_t sched_attr; |
| sched_param fifo_param; |
| pthread_attr_init(&sched_attr); |
| pthread_attr_setinheritsched(&sched_attr, PTHREAD_EXPLICIT_SCHED); |
| pthread_attr_setschedpolicy(&sched_attr, SCHED_FIFO); |
| fifo_param.sched_priority = sched_get_priority_max(SCHED_FIFO); |
| pthread_attr_setschedparam(&sched_attr, &fifo_param); |
| |
| active_ = true; |
| pthread_create(&data_->sampler_thread_, &sched_attr, SamplerEntry, data_); |
| } |
| |
| |
| void Sampler::Stop() { |
| // Seting active to false triggers termination of the sampler |
| // thread. |
| active_ = false; |
| |
| // Wait for sampler thread to terminate. |
| pthread_join(data_->sampler_thread_, NULL); |
| |
| // Deallocate Mach port for thread. |
| if (IsProfiling()) { |
| mach_port_deallocate(data_->task_self_, data_->profiled_thread_); |
| } |
| } |
| |
| #endif // ENABLE_LOGGING_AND_PROFILING |
| |
| } } // namespace v8::internal |