| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifdef ENABLE_GDB_JIT_INTERFACE |
| #include "v8.h" |
| #include "gdb-jit.h" |
| |
| #include "bootstrapper.h" |
| #include "compiler.h" |
| #include "global-handles.h" |
| #include "messages.h" |
| #include "natives.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class ELF; |
| |
| class Writer BASE_EMBEDDED { |
| public: |
| explicit Writer(ELF* elf) |
| : elf_(elf), |
| position_(0), |
| capacity_(1024), |
| buffer_(reinterpret_cast<byte*>(malloc(capacity_))) { |
| } |
| |
| ~Writer() { |
| free(buffer_); |
| } |
| |
| uintptr_t position() const { |
| return position_; |
| } |
| |
| template<typename T> |
| class Slot { |
| public: |
| Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { } |
| |
| T* operator-> () { |
| return w_->RawSlotAt<T>(offset_); |
| } |
| |
| void set(const T& value) { |
| *w_->RawSlotAt<T>(offset_) = value; |
| } |
| |
| Slot<T> at(int i) { |
| return Slot<T>(w_, offset_ + sizeof(T) * i); |
| } |
| |
| private: |
| Writer* w_; |
| uintptr_t offset_; |
| }; |
| |
| template<typename T> |
| void Write(const T& val) { |
| Ensure(position_ + sizeof(T)); |
| *RawSlotAt<T>(position_) = val; |
| position_ += sizeof(T); |
| } |
| |
| template<typename T> |
| Slot<T> SlotAt(uintptr_t offset) { |
| Ensure(offset + sizeof(T)); |
| return Slot<T>(this, offset); |
| } |
| |
| template<typename T> |
| Slot<T> CreateSlotHere() { |
| return CreateSlotsHere<T>(1); |
| } |
| |
| template<typename T> |
| Slot<T> CreateSlotsHere(uint32_t count) { |
| uintptr_t slot_position = position_; |
| position_ += sizeof(T) * count; |
| Ensure(position_); |
| return SlotAt<T>(slot_position); |
| } |
| |
| void Ensure(uintptr_t pos) { |
| if (capacity_ < pos) { |
| while (capacity_ < pos) capacity_ *= 2; |
| buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_)); |
| } |
| } |
| |
| ELF* elf() { return elf_; } |
| |
| byte* buffer() { return buffer_; } |
| |
| void Align(uintptr_t align) { |
| uintptr_t delta = position_ % align; |
| if (delta == 0) return; |
| uintptr_t padding = align - delta; |
| Ensure(position_ += padding); |
| ASSERT((position_ % align) == 0); |
| } |
| |
| void WriteULEB128(uintptr_t value) { |
| do { |
| uint8_t byte = value & 0x7F; |
| value >>= 7; |
| if (value != 0) byte |= 0x80; |
| Write<uint8_t>(byte); |
| } while (value != 0); |
| } |
| |
| void WriteSLEB128(intptr_t value) { |
| bool more = true; |
| while (more) { |
| int8_t byte = value & 0x7F; |
| bool byte_sign = byte & 0x40; |
| value >>= 7; |
| |
| if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) { |
| more = false; |
| } else { |
| byte |= 0x80; |
| } |
| |
| Write<int8_t>(byte); |
| } |
| } |
| |
| void WriteString(const char* str) { |
| do { |
| Write<char>(*str); |
| } while (*str++); |
| } |
| |
| private: |
| template<typename T> friend class Slot; |
| |
| template<typename T> |
| T* RawSlotAt(uintptr_t offset) { |
| ASSERT(offset < capacity_ && offset + sizeof(T) <= capacity_); |
| return reinterpret_cast<T*>(&buffer_[offset]); |
| } |
| |
| ELF* elf_; |
| uintptr_t position_; |
| uintptr_t capacity_; |
| byte* buffer_; |
| }; |
| |
| class StringTable; |
| |
| class ELFSection : public ZoneObject { |
| public: |
| struct Header { |
| uint32_t name; |
| uint32_t type; |
| uintptr_t flags; |
| uintptr_t address; |
| uintptr_t offset; |
| uintptr_t size; |
| uint32_t link; |
| uint32_t info; |
| uintptr_t alignment; |
| uintptr_t entry_size; |
| }; |
| |
| enum Type { |
| TYPE_NULL = 0, |
| TYPE_PROGBITS = 1, |
| TYPE_SYMTAB = 2, |
| TYPE_STRTAB = 3, |
| TYPE_RELA = 4, |
| TYPE_HASH = 5, |
| TYPE_DYNAMIC = 6, |
| TYPE_NOTE = 7, |
| TYPE_NOBITS = 8, |
| TYPE_REL = 9, |
| TYPE_SHLIB = 10, |
| TYPE_DYNSYM = 11, |
| TYPE_LOPROC = 0x70000000, |
| TYPE_X86_64_UNWIND = 0x70000001, |
| TYPE_HIPROC = 0x7fffffff, |
| TYPE_LOUSER = 0x80000000, |
| TYPE_HIUSER = 0xffffffff |
| }; |
| |
| enum Flags { |
| FLAG_WRITE = 1, |
| FLAG_ALLOC = 2, |
| FLAG_EXEC = 4 |
| }; |
| |
| enum SpecialIndexes { |
| INDEX_ABSOLUTE = 0xfff1 |
| }; |
| |
| ELFSection(const char* name, Type type, uintptr_t align) |
| : name_(name), type_(type), align_(align) { } |
| |
| virtual ~ELFSection() { } |
| |
| void PopulateHeader(Writer::Slot<Header> header, StringTable* strtab); |
| |
| virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { |
| uintptr_t start = w->position(); |
| if (WriteBody(w)) { |
| uintptr_t end = w->position(); |
| header->offset = start; |
| header->size = end - start; |
| } |
| } |
| |
| virtual bool WriteBody(Writer* w) { |
| return false; |
| } |
| |
| uint16_t index() const { return index_; } |
| void set_index(uint16_t index) { index_ = index; } |
| |
| protected: |
| virtual void PopulateHeader(Writer::Slot<Header> header) { |
| header->flags = 0; |
| header->address = 0; |
| header->offset = 0; |
| header->size = 0; |
| header->link = 0; |
| header->info = 0; |
| header->entry_size = 0; |
| } |
| |
| |
| private: |
| const char* name_; |
| Type type_; |
| uintptr_t align_; |
| uint16_t index_; |
| }; |
| |
| |
| class FullHeaderELFSection : public ELFSection { |
| public: |
| FullHeaderELFSection(const char* name, |
| Type type, |
| uintptr_t align, |
| uintptr_t addr, |
| uintptr_t offset, |
| uintptr_t size, |
| uintptr_t flags) |
| : ELFSection(name, type, align), |
| addr_(addr), |
| offset_(offset), |
| size_(size), |
| flags_(flags) { } |
| |
| protected: |
| virtual void PopulateHeader(Writer::Slot<Header> header) { |
| ELFSection::PopulateHeader(header); |
| header->address = addr_; |
| header->offset = offset_; |
| header->size = size_; |
| header->flags = flags_; |
| } |
| |
| private: |
| uintptr_t addr_; |
| uintptr_t offset_; |
| uintptr_t size_; |
| uintptr_t flags_; |
| }; |
| |
| |
| class StringTable : public ELFSection { |
| public: |
| explicit StringTable(const char* name) |
| : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) { |
| } |
| |
| uintptr_t Add(const char* str) { |
| if (*str == '\0') return 0; |
| |
| uintptr_t offset = size_; |
| WriteString(str); |
| return offset; |
| } |
| |
| void AttachWriter(Writer* w) { |
| writer_ = w; |
| offset_ = writer_->position(); |
| |
| // First entry in the string table should be an empty string. |
| WriteString(""); |
| } |
| |
| void DetachWriter() { |
| writer_ = NULL; |
| } |
| |
| virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { |
| ASSERT(writer_ == NULL); |
| header->offset = offset_; |
| header->size = size_; |
| } |
| |
| private: |
| void WriteString(const char* str) { |
| uintptr_t written = 0; |
| do { |
| writer_->Write(*str); |
| written++; |
| } while (*str++); |
| size_ += written; |
| } |
| |
| Writer* writer_; |
| |
| uintptr_t offset_; |
| uintptr_t size_; |
| }; |
| |
| |
| void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header, |
| StringTable* strtab) { |
| header->name = strtab->Add(name_); |
| header->type = type_; |
| header->alignment = align_; |
| PopulateHeader(header); |
| } |
| |
| |
| class ELF BASE_EMBEDDED { |
| public: |
| ELF() : sections_(6) { |
| sections_.Add(new ELFSection("", ELFSection::TYPE_NULL, 0)); |
| sections_.Add(new StringTable(".shstrtab")); |
| } |
| |
| void Write(Writer* w) { |
| WriteHeader(w); |
| WriteSectionTable(w); |
| WriteSections(w); |
| } |
| |
| ELFSection* SectionAt(uint32_t index) { |
| return sections_[index]; |
| } |
| |
| uint32_t AddSection(ELFSection* section) { |
| sections_.Add(section); |
| section->set_index(sections_.length() - 1); |
| return sections_.length() - 1; |
| } |
| |
| private: |
| struct ELFHeader { |
| uint8_t ident[16]; |
| uint16_t type; |
| uint16_t machine; |
| uint32_t version; |
| uintptr_t entry; |
| uintptr_t pht_offset; |
| uintptr_t sht_offset; |
| uint32_t flags; |
| uint16_t header_size; |
| uint16_t pht_entry_size; |
| uint16_t pht_entry_num; |
| uint16_t sht_entry_size; |
| uint16_t sht_entry_num; |
| uint16_t sht_strtab_index; |
| }; |
| |
| |
| void WriteHeader(Writer* w) { |
| ASSERT(w->position() == 0); |
| Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>(); |
| #if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_ARM) |
| const uint8_t ident[16] = |
| { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| #elif defined(V8_TARGET_ARCH_X64) |
| const uint8_t ident[16] = |
| { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0 , 0, 0, 0, 0, 0, 0}; |
| #else |
| #error Unsupported target architecture. |
| #endif |
| memcpy(header->ident, ident, 16); |
| header->type = 1; |
| #if defined(V8_TARGET_ARCH_IA32) |
| header->machine = 3; |
| #elif defined(V8_TARGET_ARCH_X64) |
| // Processor identification value for x64 is 62 as defined in |
| // System V ABI, AMD64 Supplement |
| // http://www.x86-64.org/documentation/abi.pdf |
| header->machine = 62; |
| #elif defined(V8_TARGET_ARCH_ARM) |
| // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at |
| // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf |
| header->machine = 40; |
| #else |
| #error Unsupported target architecture. |
| #endif |
| header->version = 1; |
| header->entry = 0; |
| header->pht_offset = 0; |
| header->sht_offset = sizeof(ELFHeader); // Section table follows header. |
| header->flags = 0; |
| header->header_size = sizeof(ELFHeader); |
| header->pht_entry_size = 0; |
| header->pht_entry_num = 0; |
| header->sht_entry_size = sizeof(ELFSection::Header); |
| header->sht_entry_num = sections_.length(); |
| header->sht_strtab_index = 1; |
| } |
| |
| void WriteSectionTable(Writer* w) { |
| // Section headers table immediately follows file header. |
| ASSERT(w->position() == sizeof(ELFHeader)); |
| |
| Writer::Slot<ELFSection::Header> headers = |
| w->CreateSlotsHere<ELFSection::Header>(sections_.length()); |
| |
| // String table for section table is the first section. |
| StringTable* strtab = static_cast<StringTable*>(SectionAt(1)); |
| strtab->AttachWriter(w); |
| for (int i = 0, length = sections_.length(); |
| i < length; |
| i++) { |
| sections_[i]->PopulateHeader(headers.at(i), strtab); |
| } |
| strtab->DetachWriter(); |
| } |
| |
| int SectionHeaderPosition(uint32_t section_index) { |
| return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index; |
| } |
| |
| void WriteSections(Writer* w) { |
| Writer::Slot<ELFSection::Header> headers = |
| w->SlotAt<ELFSection::Header>(sizeof(ELFHeader)); |
| |
| for (int i = 0, length = sections_.length(); |
| i < length; |
| i++) { |
| sections_[i]->WriteBody(headers.at(i), w); |
| } |
| } |
| |
| ZoneList<ELFSection*> sections_; |
| }; |
| |
| |
| class ELFSymbol BASE_EMBEDDED { |
| public: |
| enum Type { |
| TYPE_NOTYPE = 0, |
| TYPE_OBJECT = 1, |
| TYPE_FUNC = 2, |
| TYPE_SECTION = 3, |
| TYPE_FILE = 4, |
| TYPE_LOPROC = 13, |
| TYPE_HIPROC = 15 |
| }; |
| |
| enum Binding { |
| BIND_LOCAL = 0, |
| BIND_GLOBAL = 1, |
| BIND_WEAK = 2, |
| BIND_LOPROC = 13, |
| BIND_HIPROC = 15 |
| }; |
| |
| ELFSymbol(const char* name, |
| uintptr_t value, |
| uintptr_t size, |
| Binding binding, |
| Type type, |
| uint16_t section) |
| : name(name), |
| value(value), |
| size(size), |
| info((binding << 4) | type), |
| other(0), |
| section(section) { |
| } |
| |
| Binding binding() const { |
| return static_cast<Binding>(info >> 4); |
| } |
| #if defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_ARM) |
| struct SerializedLayout { |
| SerializedLayout(uint32_t name, |
| uintptr_t value, |
| uintptr_t size, |
| Binding binding, |
| Type type, |
| uint16_t section) |
| : name(name), |
| value(value), |
| size(size), |
| info((binding << 4) | type), |
| other(0), |
| section(section) { |
| } |
| |
| uint32_t name; |
| uintptr_t value; |
| uintptr_t size; |
| uint8_t info; |
| uint8_t other; |
| uint16_t section; |
| }; |
| #elif defined(V8_TARGET_ARCH_X64) |
| struct SerializedLayout { |
| SerializedLayout(uint32_t name, |
| uintptr_t value, |
| uintptr_t size, |
| Binding binding, |
| Type type, |
| uint16_t section) |
| : name(name), |
| info((binding << 4) | type), |
| other(0), |
| section(section), |
| value(value), |
| size(size) { |
| } |
| |
| uint32_t name; |
| uint8_t info; |
| uint8_t other; |
| uint16_t section; |
| uintptr_t value; |
| uintptr_t size; |
| }; |
| #endif |
| |
| void Write(Writer::Slot<SerializedLayout> s, StringTable* t) { |
| // Convert symbol names from strings to indexes in the string table. |
| s->name = t->Add(name); |
| s->value = value; |
| s->size = size; |
| s->info = info; |
| s->other = other; |
| s->section = section; |
| } |
| |
| private: |
| const char* name; |
| uintptr_t value; |
| uintptr_t size; |
| uint8_t info; |
| uint8_t other; |
| uint16_t section; |
| }; |
| |
| |
| class ELFSymbolTable : public ELFSection { |
| public: |
| explicit ELFSymbolTable(const char* name) |
| : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)), |
| locals_(1), |
| globals_(1) { |
| } |
| |
| virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { |
| w->Align(header->alignment); |
| int total_symbols = locals_.length() + globals_.length() + 1; |
| header->offset = w->position(); |
| |
| Writer::Slot<ELFSymbol::SerializedLayout> symbols = |
| w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols); |
| |
| header->size = w->position() - header->offset; |
| |
| // String table for this symbol table should follow it in the section table. |
| StringTable* strtab = |
| static_cast<StringTable*>(w->elf()->SectionAt(index() + 1)); |
| strtab->AttachWriter(w); |
| symbols.at(0).set(ELFSymbol::SerializedLayout(0, |
| 0, |
| 0, |
| ELFSymbol::BIND_LOCAL, |
| ELFSymbol::TYPE_NOTYPE, |
| 0)); |
| WriteSymbolsList(&locals_, symbols.at(1), strtab); |
| WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab); |
| strtab->DetachWriter(); |
| } |
| |
| void Add(const ELFSymbol& symbol) { |
| if (symbol.binding() == ELFSymbol::BIND_LOCAL) { |
| locals_.Add(symbol); |
| } else { |
| globals_.Add(symbol); |
| } |
| } |
| |
| protected: |
| virtual void PopulateHeader(Writer::Slot<Header> header) { |
| ELFSection::PopulateHeader(header); |
| // We are assuming that string table will follow symbol table. |
| header->link = index() + 1; |
| header->info = locals_.length() + 1; |
| header->entry_size = sizeof(ELFSymbol::SerializedLayout); |
| } |
| |
| private: |
| void WriteSymbolsList(const ZoneList<ELFSymbol>* src, |
| Writer::Slot<ELFSymbol::SerializedLayout> dst, |
| StringTable* strtab) { |
| for (int i = 0, len = src->length(); |
| i < len; |
| i++) { |
| src->at(i).Write(dst.at(i), strtab); |
| } |
| } |
| |
| ZoneList<ELFSymbol> locals_; |
| ZoneList<ELFSymbol> globals_; |
| }; |
| |
| |
| class CodeDescription BASE_EMBEDDED { |
| public: |
| |
| #ifdef V8_TARGET_ARCH_X64 |
| enum StackState { |
| POST_RBP_PUSH, |
| POST_RBP_SET, |
| POST_RBP_POP, |
| STACK_STATE_MAX |
| }; |
| #endif |
| |
| CodeDescription(const char* name, |
| Code* code, |
| Handle<Script> script, |
| GDBJITLineInfo* lineinfo, |
| GDBJITInterface::CodeTag tag) |
| : name_(name), |
| code_(code), |
| script_(script), |
| lineinfo_(lineinfo), |
| tag_(tag) { |
| } |
| |
| const char* name() const { |
| return name_; |
| } |
| |
| GDBJITLineInfo* lineinfo() const { |
| return lineinfo_; |
| } |
| |
| GDBJITInterface::CodeTag tag() const { |
| return tag_; |
| } |
| |
| uintptr_t CodeStart() const { |
| return reinterpret_cast<uintptr_t>(code_->instruction_start()); |
| } |
| |
| uintptr_t CodeEnd() const { |
| return reinterpret_cast<uintptr_t>(code_->instruction_end()); |
| } |
| |
| uintptr_t CodeSize() const { |
| return CodeEnd() - CodeStart(); |
| } |
| |
| bool IsLineInfoAvailable() { |
| return !script_.is_null() && |
| script_->source()->IsString() && |
| script_->HasValidSource() && |
| script_->name()->IsString() && |
| lineinfo_ != NULL; |
| } |
| |
| #ifdef V8_TARGET_ARCH_X64 |
| uintptr_t GetStackStateStartAddress(StackState state) const { |
| ASSERT(state < STACK_STATE_MAX); |
| return stack_state_start_addresses_[state]; |
| } |
| |
| void SetStackStateStartAddress(StackState state, uintptr_t addr) { |
| ASSERT(state < STACK_STATE_MAX); |
| stack_state_start_addresses_[state] = addr; |
| } |
| #endif |
| |
| SmartPointer<char> GetFilename() { |
| return String::cast(script_->name())->ToCString(); |
| } |
| |
| int GetScriptLineNumber(int pos) { |
| return GetScriptLineNumberSafe(script_, pos) + 1; |
| } |
| |
| |
| private: |
| const char* name_; |
| Code* code_; |
| Handle<Script> script_; |
| GDBJITLineInfo* lineinfo_; |
| GDBJITInterface::CodeTag tag_; |
| #ifdef V8_TARGET_ARCH_X64 |
| uintptr_t stack_state_start_addresses_[STACK_STATE_MAX]; |
| #endif |
| }; |
| |
| |
| static void CreateSymbolsTable(CodeDescription* desc, |
| ELF* elf, |
| int text_section_index) { |
| ELFSymbolTable* symtab = new ELFSymbolTable(".symtab"); |
| StringTable* strtab = new StringTable(".strtab"); |
| |
| // Symbol table should be followed by the linked string table. |
| elf->AddSection(symtab); |
| elf->AddSection(strtab); |
| |
| symtab->Add(ELFSymbol("V8 Code", |
| 0, |
| 0, |
| ELFSymbol::BIND_LOCAL, |
| ELFSymbol::TYPE_FILE, |
| ELFSection::INDEX_ABSOLUTE)); |
| |
| symtab->Add(ELFSymbol(desc->name(), |
| 0, |
| desc->CodeSize(), |
| ELFSymbol::BIND_GLOBAL, |
| ELFSymbol::TYPE_FUNC, |
| text_section_index)); |
| } |
| |
| |
| class DebugInfoSection : public ELFSection { |
| public: |
| explicit DebugInfoSection(CodeDescription* desc) |
| : ELFSection(".debug_info", TYPE_PROGBITS, 1), desc_(desc) { } |
| |
| bool WriteBody(Writer* w) { |
| Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>(); |
| uintptr_t start = w->position(); |
| w->Write<uint16_t>(2); // DWARF version. |
| w->Write<uint32_t>(0); // Abbreviation table offset. |
| w->Write<uint8_t>(sizeof(intptr_t)); |
| |
| w->WriteULEB128(1); // Abbreviation code. |
| w->WriteString(*desc_->GetFilename()); |
| w->Write<intptr_t>(desc_->CodeStart()); |
| w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); |
| w->Write<uint32_t>(0); |
| size.set(static_cast<uint32_t>(w->position() - start)); |
| return true; |
| } |
| |
| private: |
| CodeDescription* desc_; |
| }; |
| |
| |
| class DebugAbbrevSection : public ELFSection { |
| public: |
| DebugAbbrevSection() : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1) { } |
| |
| // DWARF2 standard, figure 14. |
| enum DWARF2Tags { |
| DW_TAG_COMPILE_UNIT = 0x11 |
| }; |
| |
| // DWARF2 standard, figure 16. |
| enum DWARF2ChildrenDetermination { |
| DW_CHILDREN_NO = 0, |
| DW_CHILDREN_YES = 1 |
| }; |
| |
| // DWARF standard, figure 17. |
| enum DWARF2Attribute { |
| DW_AT_NAME = 0x3, |
| DW_AT_STMT_LIST = 0x10, |
| DW_AT_LOW_PC = 0x11, |
| DW_AT_HIGH_PC = 0x12 |
| }; |
| |
| // DWARF2 standard, figure 19. |
| enum DWARF2AttributeForm { |
| DW_FORM_ADDR = 0x1, |
| DW_FORM_STRING = 0x8, |
| DW_FORM_DATA4 = 0x6 |
| }; |
| |
| bool WriteBody(Writer* w) { |
| w->WriteULEB128(1); |
| w->WriteULEB128(DW_TAG_COMPILE_UNIT); |
| w->Write<uint8_t>(DW_CHILDREN_NO); |
| w->WriteULEB128(DW_AT_NAME); |
| w->WriteULEB128(DW_FORM_STRING); |
| w->WriteULEB128(DW_AT_LOW_PC); |
| w->WriteULEB128(DW_FORM_ADDR); |
| w->WriteULEB128(DW_AT_HIGH_PC); |
| w->WriteULEB128(DW_FORM_ADDR); |
| w->WriteULEB128(DW_AT_STMT_LIST); |
| w->WriteULEB128(DW_FORM_DATA4); |
| w->WriteULEB128(0); |
| w->WriteULEB128(0); |
| w->WriteULEB128(0); |
| return true; |
| } |
| }; |
| |
| |
| class DebugLineSection : public ELFSection { |
| public: |
| explicit DebugLineSection(CodeDescription* desc) |
| : ELFSection(".debug_line", TYPE_PROGBITS, 1), |
| desc_(desc) { } |
| |
| // DWARF2 standard, figure 34. |
| enum DWARF2Opcodes { |
| DW_LNS_COPY = 1, |
| DW_LNS_ADVANCE_PC = 2, |
| DW_LNS_ADVANCE_LINE = 3, |
| DW_LNS_SET_FILE = 4, |
| DW_LNS_SET_COLUMN = 5, |
| DW_LNS_NEGATE_STMT = 6 |
| }; |
| |
| // DWARF2 standard, figure 35. |
| enum DWARF2ExtendedOpcode { |
| DW_LNE_END_SEQUENCE = 1, |
| DW_LNE_SET_ADDRESS = 2, |
| DW_LNE_DEFINE_FILE = 3 |
| }; |
| |
| bool WriteBody(Writer* w) { |
| // Write prologue. |
| Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>(); |
| uintptr_t start = w->position(); |
| |
| // Used for special opcodes |
| const int8_t line_base = 1; |
| const uint8_t line_range = 7; |
| const int8_t max_line_incr = (line_base + line_range - 1); |
| const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1; |
| |
| w->Write<uint16_t>(2); // Field version. |
| Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>(); |
| uintptr_t prologue_start = w->position(); |
| w->Write<uint8_t>(1); // Field minimum_instruction_length. |
| w->Write<uint8_t>(1); // Field default_is_stmt. |
| w->Write<int8_t>(line_base); // Field line_base. |
| w->Write<uint8_t>(line_range); // Field line_range. |
| w->Write<uint8_t>(opcode_base); // Field opcode_base. |
| w->Write<uint8_t>(0); // DW_LNS_COPY operands count. |
| w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count. |
| w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count. |
| w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count. |
| w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count. |
| w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count. |
| w->Write<uint8_t>(0); // Empty include_directories sequence. |
| w->WriteString(*desc_->GetFilename()); // File name. |
| w->WriteULEB128(0); // Current directory. |
| w->WriteULEB128(0); // Unknown modification time. |
| w->WriteULEB128(0); // Unknown file size. |
| w->Write<uint8_t>(0); |
| prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start)); |
| |
| WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t)); |
| w->Write<intptr_t>(desc_->CodeStart()); |
| w->Write<uint8_t>(DW_LNS_COPY); |
| |
| intptr_t pc = 0; |
| intptr_t line = 1; |
| bool is_statement = true; |
| |
| List<GDBJITLineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info(); |
| pc_info->Sort(&ComparePCInfo); |
| |
| int pc_info_length = pc_info->length(); |
| for (int i = 0; i < pc_info_length; i++) { |
| GDBJITLineInfo::PCInfo* info = &pc_info->at(i); |
| ASSERT(info->pc_ >= pc); |
| |
| // Reduce bloating in the debug line table by removing duplicate line |
| // entries (per DWARF2 standard). |
| intptr_t new_line = desc_->GetScriptLineNumber(info->pos_); |
| if (new_line == line) { |
| continue; |
| } |
| |
| // Mark statement boundaries. For a better debugging experience, mark |
| // the last pc address in the function as a statement (e.g. "}"), so that |
| // a user can see the result of the last line executed in the function, |
| // should control reach the end. |
| if ((i+1) == pc_info_length) { |
| if (!is_statement) { |
| w->Write<uint8_t>(DW_LNS_NEGATE_STMT); |
| } |
| } else if (is_statement != info->is_statement_) { |
| w->Write<uint8_t>(DW_LNS_NEGATE_STMT); |
| is_statement = !is_statement; |
| } |
| |
| // Generate special opcodes, if possible. This results in more compact |
| // debug line tables. See the DWARF 2.0 standard to learn more about |
| // special opcodes. |
| uintptr_t pc_diff = info->pc_ - pc; |
| intptr_t line_diff = new_line - line; |
| |
| // Compute special opcode (see DWARF 2.0 standard) |
| intptr_t special_opcode = (line_diff - line_base) + |
| (line_range * pc_diff) + opcode_base; |
| |
| // If special_opcode is less than or equal to 255, it can be used as a |
| // special opcode. If line_diff is larger than the max line increment |
| // allowed for a special opcode, or if line_diff is less than the minimum |
| // line that can be added to the line register (i.e. line_base), then |
| // special_opcode can't be used. |
| if ((special_opcode >= opcode_base) && (special_opcode <= 255) && |
| (line_diff <= max_line_incr) && (line_diff >= line_base)) { |
| w->Write<uint8_t>(special_opcode); |
| } else { |
| w->Write<uint8_t>(DW_LNS_ADVANCE_PC); |
| w->WriteSLEB128(pc_diff); |
| w->Write<uint8_t>(DW_LNS_ADVANCE_LINE); |
| w->WriteSLEB128(line_diff); |
| w->Write<uint8_t>(DW_LNS_COPY); |
| } |
| |
| // Increment the pc and line operands. |
| pc += pc_diff; |
| line += line_diff; |
| } |
| // Advance the pc to the end of the routine, since the end sequence opcode |
| // requires this. |
| w->Write<uint8_t>(DW_LNS_ADVANCE_PC); |
| w->WriteSLEB128(desc_->CodeSize() - pc); |
| WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0); |
| total_length.set(static_cast<uint32_t>(w->position() - start)); |
| return true; |
| } |
| |
| private: |
| void WriteExtendedOpcode(Writer* w, |
| DWARF2ExtendedOpcode op, |
| size_t operands_size) { |
| w->Write<uint8_t>(0); |
| w->WriteULEB128(operands_size + 1); |
| w->Write<uint8_t>(op); |
| } |
| |
| static int ComparePCInfo(const GDBJITLineInfo::PCInfo* a, |
| const GDBJITLineInfo::PCInfo* b) { |
| if (a->pc_ == b->pc_) { |
| if (a->is_statement_ != b->is_statement_) { |
| return b->is_statement_ ? +1 : -1; |
| } |
| return 0; |
| } else if (a->pc_ > b->pc_) { |
| return +1; |
| } else { |
| return -1; |
| } |
| } |
| |
| CodeDescription* desc_; |
| }; |
| |
| |
| #ifdef V8_TARGET_ARCH_X64 |
| |
| |
| class UnwindInfoSection : public ELFSection { |
| public: |
| explicit UnwindInfoSection(CodeDescription *desc); |
| virtual bool WriteBody(Writer *w); |
| |
| int WriteCIE(Writer *w); |
| void WriteFDE(Writer *w, int); |
| |
| void WriteFDEStateOnEntry(Writer *w); |
| void WriteFDEStateAfterRBPPush(Writer *w); |
| void WriteFDEStateAfterRBPSet(Writer *w); |
| void WriteFDEStateAfterRBPPop(Writer *w); |
| |
| void WriteLength(Writer *w, |
| Writer::Slot<uint32_t>* length_slot, |
| int initial_position); |
| |
| private: |
| CodeDescription *desc_; |
| |
| // DWARF3 Specification, Table 7.23 |
| enum CFIInstructions { |
| DW_CFA_ADVANCE_LOC = 0x40, |
| DW_CFA_OFFSET = 0x80, |
| DW_CFA_RESTORE = 0xC0, |
| DW_CFA_NOP = 0x00, |
| DW_CFA_SET_LOC = 0x01, |
| DW_CFA_ADVANCE_LOC1 = 0x02, |
| DW_CFA_ADVANCE_LOC2 = 0x03, |
| DW_CFA_ADVANCE_LOC4 = 0x04, |
| DW_CFA_OFFSET_EXTENDED = 0x05, |
| DW_CFA_RESTORE_EXTENDED = 0x06, |
| DW_CFA_UNDEFINED = 0x07, |
| DW_CFA_SAME_VALUE = 0x08, |
| DW_CFA_REGISTER = 0x09, |
| DW_CFA_REMEMBER_STATE = 0x0A, |
| DW_CFA_RESTORE_STATE = 0x0B, |
| DW_CFA_DEF_CFA = 0x0C, |
| DW_CFA_DEF_CFA_REGISTER = 0x0D, |
| DW_CFA_DEF_CFA_OFFSET = 0x0E, |
| |
| DW_CFA_DEF_CFA_EXPRESSION = 0x0F, |
| DW_CFA_EXPRESSION = 0x10, |
| DW_CFA_OFFSET_EXTENDED_SF = 0x11, |
| DW_CFA_DEF_CFA_SF = 0x12, |
| DW_CFA_DEF_CFA_OFFSET_SF = 0x13, |
| DW_CFA_VAL_OFFSET = 0x14, |
| DW_CFA_VAL_OFFSET_SF = 0x15, |
| DW_CFA_VAL_EXPRESSION = 0x16 |
| }; |
| |
| // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36 |
| enum RegisterMapping { |
| // Only the relevant ones have been added to reduce clutter. |
| AMD64_RBP = 6, |
| AMD64_RSP = 7, |
| AMD64_RA = 16 |
| }; |
| |
| enum CFIConstants { |
| CIE_ID = 0, |
| CIE_VERSION = 1, |
| CODE_ALIGN_FACTOR = 1, |
| DATA_ALIGN_FACTOR = 1, |
| RETURN_ADDRESS_REGISTER = AMD64_RA |
| }; |
| }; |
| |
| |
| void UnwindInfoSection::WriteLength(Writer *w, |
| Writer::Slot<uint32_t>* length_slot, |
| int initial_position) { |
| uint32_t align = (w->position() - initial_position) % kPointerSize; |
| |
| if (align != 0) { |
| for (uint32_t i = 0; i < (kPointerSize - align); i++) { |
| w->Write<uint8_t>(DW_CFA_NOP); |
| } |
| } |
| |
| ASSERT((w->position() - initial_position) % kPointerSize == 0); |
| length_slot->set(w->position() - initial_position); |
| } |
| |
| |
| UnwindInfoSection::UnwindInfoSection(CodeDescription *desc) |
| : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1), desc_(desc) |
| { } |
| |
| int UnwindInfoSection::WriteCIE(Writer *w) { |
| Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>(); |
| uint32_t cie_position = w->position(); |
| |
| // Write out the CIE header. Currently no 'common instructions' are |
| // emitted onto the CIE; every FDE has its own set of instructions. |
| |
| w->Write<uint32_t>(CIE_ID); |
| w->Write<uint8_t>(CIE_VERSION); |
| w->Write<uint8_t>(0); // Null augmentation string. |
| w->WriteSLEB128(CODE_ALIGN_FACTOR); |
| w->WriteSLEB128(DATA_ALIGN_FACTOR); |
| w->Write<uint8_t>(RETURN_ADDRESS_REGISTER); |
| |
| WriteLength(w, &cie_length_slot, cie_position); |
| |
| return cie_position; |
| } |
| |
| |
| void UnwindInfoSection::WriteFDE(Writer *w, int cie_position) { |
| // The only FDE for this function. The CFA is the current RBP. |
| Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>(); |
| int fde_position = w->position(); |
| w->Write<int32_t>(fde_position - cie_position + 4); |
| |
| w->Write<uintptr_t>(desc_->CodeStart()); |
| w->Write<uintptr_t>(desc_->CodeSize()); |
| |
| WriteFDEStateOnEntry(w); |
| WriteFDEStateAfterRBPPush(w); |
| WriteFDEStateAfterRBPSet(w); |
| WriteFDEStateAfterRBPPop(w); |
| |
| WriteLength(w, &fde_length_slot, fde_position); |
| } |
| |
| |
| void UnwindInfoSection::WriteFDEStateOnEntry(Writer *w) { |
| // The first state, just after the control has been transferred to the the |
| // function. |
| |
| // RBP for this function will be the value of RSP after pushing the RBP |
| // for the previous function. The previous RBP has not been pushed yet. |
| w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); |
| w->WriteULEB128(AMD64_RSP); |
| w->WriteSLEB128(-kPointerSize); |
| |
| // The RA is stored at location CFA + kCallerPCOffset. This is an invariant, |
| // and hence omitted from the next states. |
| w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); |
| w->WriteULEB128(AMD64_RA); |
| w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset); |
| |
| // The RBP of the previous function is still in RBP. |
| w->Write<uint8_t>(DW_CFA_SAME_VALUE); |
| w->WriteULEB128(AMD64_RBP); |
| |
| // Last location described by this entry. |
| w->Write<uint8_t>(DW_CFA_SET_LOC); |
| w->Write<uint64_t>( |
| desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH)); |
| } |
| |
| |
| void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer *w) { |
| // The second state, just after RBP has been pushed. |
| |
| // RBP / CFA for this function is now the current RSP, so just set the |
| // offset from the previous rule (from -8) to 0. |
| w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET); |
| w->WriteULEB128(0); |
| |
| // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant |
| // in this and the next state, and hence omitted in the next state. |
| w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); |
| w->WriteULEB128(AMD64_RBP); |
| w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); |
| |
| // Last location described by this entry. |
| w->Write<uint8_t>(DW_CFA_SET_LOC); |
| w->Write<uint64_t>( |
| desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET)); |
| } |
| |
| |
| void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer *w) { |
| // The third state, after the RBP has been set. |
| |
| // The CFA can now directly be set to RBP. |
| w->Write<uint8_t>(DW_CFA_DEF_CFA); |
| w->WriteULEB128(AMD64_RBP); |
| w->WriteULEB128(0); |
| |
| // Last location described by this entry. |
| w->Write<uint8_t>(DW_CFA_SET_LOC); |
| w->Write<uint64_t>( |
| desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP)); |
| } |
| |
| |
| void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer *w) { |
| // The fourth (final) state. The RBP has been popped (just before issuing a |
| // return). |
| |
| // The CFA can is now calculated in the same way as in the first state. |
| w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); |
| w->WriteULEB128(AMD64_RSP); |
| w->WriteSLEB128(-kPointerSize); |
| |
| // The RBP |
| w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); |
| w->WriteULEB128(AMD64_RBP); |
| w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); |
| |
| // Last location described by this entry. |
| w->Write<uint8_t>(DW_CFA_SET_LOC); |
| w->Write<uint64_t>(desc_->CodeEnd()); |
| } |
| |
| |
| bool UnwindInfoSection::WriteBody(Writer *w) { |
| uint32_t cie_position = WriteCIE(w); |
| WriteFDE(w, cie_position); |
| return true; |
| } |
| |
| |
| #endif // V8_TARGET_ARCH_X64 |
| |
| |
| static void CreateDWARFSections(CodeDescription* desc, ELF* elf) { |
| if (desc->IsLineInfoAvailable()) { |
| elf->AddSection(new DebugInfoSection(desc)); |
| elf->AddSection(new DebugAbbrevSection); |
| elf->AddSection(new DebugLineSection(desc)); |
| } |
| #ifdef V8_TARGET_ARCH_X64 |
| elf->AddSection(new UnwindInfoSection(desc)); |
| #endif |
| } |
| |
| |
| // ------------------------------------------------------------------- |
| // Binary GDB JIT Interface as described in |
| // http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html |
| extern "C" { |
| typedef enum { |
| JIT_NOACTION = 0, |
| JIT_REGISTER_FN, |
| JIT_UNREGISTER_FN |
| } JITAction; |
| |
| struct JITCodeEntry { |
| JITCodeEntry* next_; |
| JITCodeEntry* prev_; |
| Address symfile_addr_; |
| uint64_t symfile_size_; |
| }; |
| |
| struct JITDescriptor { |
| uint32_t version_; |
| uint32_t action_flag_; |
| JITCodeEntry *relevant_entry_; |
| JITCodeEntry *first_entry_; |
| }; |
| |
| // GDB will place breakpoint into this function. |
| // To prevent GCC from inlining or removing it we place noinline attribute |
| // and inline assembler statement inside. |
| void __attribute__((noinline)) __jit_debug_register_code() { |
| __asm__(""); |
| } |
| |
| // GDB will inspect contents of this descriptor. |
| // Static initialization is necessary to prevent GDB from seeing |
| // uninitialized descriptor. |
| JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; |
| } |
| |
| |
| static JITCodeEntry* CreateCodeEntry(Address symfile_addr, |
| uintptr_t symfile_size) { |
| JITCodeEntry* entry = static_cast<JITCodeEntry*>( |
| malloc(sizeof(JITCodeEntry) + symfile_size)); |
| |
| entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1); |
| entry->symfile_size_ = symfile_size; |
| memcpy(entry->symfile_addr_, symfile_addr, symfile_size); |
| |
| entry->prev_ = entry->next_ = NULL; |
| |
| return entry; |
| } |
| |
| |
| static void DestroyCodeEntry(JITCodeEntry* entry) { |
| free(entry); |
| } |
| |
| |
| static void RegisterCodeEntry(JITCodeEntry* entry) { |
| #if defined(DEBUG) && !defined(WIN32) |
| static int file_num = 0; |
| if (FLAG_gdbjit_dump) { |
| static const int kMaxFileNameSize = 64; |
| static const char* kElfFilePrefix = "/tmp/elfdump"; |
| static const char* kObjFileExt = ".o"; |
| char file_name[64]; |
| |
| OS::SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "%s%d%s", |
| kElfFilePrefix, file_num++, kObjFileExt); |
| WriteBytes(file_name, entry->symfile_addr_, entry->symfile_size_); |
| } |
| #endif |
| |
| entry->next_ = __jit_debug_descriptor.first_entry_; |
| if (entry->next_ != NULL) entry->next_->prev_ = entry; |
| __jit_debug_descriptor.first_entry_ = |
| __jit_debug_descriptor.relevant_entry_ = entry; |
| |
| __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN; |
| __jit_debug_register_code(); |
| } |
| |
| |
| static void UnregisterCodeEntry(JITCodeEntry* entry) { |
| if (entry->prev_ != NULL) { |
| entry->prev_->next_ = entry->next_; |
| } else { |
| __jit_debug_descriptor.first_entry_ = entry->next_; |
| } |
| |
| if (entry->next_ != NULL) { |
| entry->next_->prev_ = entry->prev_; |
| } |
| |
| __jit_debug_descriptor.relevant_entry_ = entry; |
| __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN; |
| __jit_debug_register_code(); |
| } |
| |
| |
| static JITCodeEntry* CreateELFObject(CodeDescription* desc) { |
| ZoneScope zone_scope(DELETE_ON_EXIT); |
| |
| ELF elf; |
| Writer w(&elf); |
| |
| int text_section_index = elf.AddSection( |
| new FullHeaderELFSection(".text", |
| ELFSection::TYPE_NOBITS, |
| kCodeAlignment, |
| desc->CodeStart(), |
| 0, |
| desc->CodeSize(), |
| ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC)); |
| |
| CreateSymbolsTable(desc, &elf, text_section_index); |
| |
| CreateDWARFSections(desc, &elf); |
| |
| elf.Write(&w); |
| |
| return CreateCodeEntry(w.buffer(), w.position()); |
| } |
| |
| |
| static bool SameCodeObjects(void* key1, void* key2) { |
| return key1 == key2; |
| } |
| |
| |
| static HashMap* GetEntries() { |
| static HashMap* entries = NULL; |
| if (entries == NULL) { |
| entries = new HashMap(&SameCodeObjects); |
| } |
| return entries; |
| } |
| |
| |
| static uint32_t HashForCodeObject(Code* code) { |
| static const uintptr_t kGoldenRatio = 2654435761u; |
| uintptr_t hash = reinterpret_cast<uintptr_t>(code->address()); |
| return static_cast<uint32_t>((hash >> kCodeAlignmentBits) * kGoldenRatio); |
| } |
| |
| |
| static const intptr_t kLineInfoTag = 0x1; |
| |
| |
| static bool IsLineInfoTagged(void* ptr) { |
| return 0 != (reinterpret_cast<intptr_t>(ptr) & kLineInfoTag); |
| } |
| |
| |
| static void* TagLineInfo(GDBJITLineInfo* ptr) { |
| return reinterpret_cast<void*>( |
| reinterpret_cast<intptr_t>(ptr) | kLineInfoTag); |
| } |
| |
| |
| static GDBJITLineInfo* UntagLineInfo(void* ptr) { |
| return reinterpret_cast<GDBJITLineInfo*>( |
| reinterpret_cast<intptr_t>(ptr) & ~kLineInfoTag); |
| } |
| |
| |
| void GDBJITInterface::AddCode(Handle<String> name, |
| Handle<Script> script, |
| Handle<Code> code) { |
| if (!FLAG_gdbjit) return; |
| |
| // Force initialization of line_ends array. |
| GetScriptLineNumber(script, 0); |
| |
| if (!name.is_null()) { |
| SmartPointer<char> name_cstring = name->ToCString(DISALLOW_NULLS); |
| AddCode(*name_cstring, *code, GDBJITInterface::FUNCTION, *script); |
| } else { |
| AddCode("", *code, GDBJITInterface::FUNCTION, *script); |
| } |
| } |
| |
| static void AddUnwindInfo(CodeDescription *desc) { |
| #ifdef V8_TARGET_ARCH_X64 |
| if (desc->tag() == GDBJITInterface::FUNCTION) { |
| // To avoid propagating unwinding information through |
| // compilation pipeline we use an approximation. |
| // For most use cases this should not affect usability. |
| static const int kFramePointerPushOffset = 1; |
| static const int kFramePointerSetOffset = 4; |
| static const int kFramePointerPopOffset = -3; |
| |
| uintptr_t frame_pointer_push_address = |
| desc->CodeStart() + kFramePointerPushOffset; |
| |
| uintptr_t frame_pointer_set_address = |
| desc->CodeStart() + kFramePointerSetOffset; |
| |
| uintptr_t frame_pointer_pop_address = |
| desc->CodeEnd() + kFramePointerPopOffset; |
| |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, |
| frame_pointer_push_address); |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, |
| frame_pointer_set_address); |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, |
| frame_pointer_pop_address); |
| } else { |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, |
| desc->CodeStart()); |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, |
| desc->CodeStart()); |
| desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, |
| desc->CodeEnd()); |
| } |
| #endif // V8_TARGET_ARCH_X64 |
| } |
| |
| |
| Mutex* GDBJITInterface::mutex_ = OS::CreateMutex(); |
| |
| |
| void GDBJITInterface::AddCode(const char* name, |
| Code* code, |
| GDBJITInterface::CodeTag tag, |
| Script* script) { |
| if (!FLAG_gdbjit) return; |
| |
| ScopedLock lock(mutex_); |
| AssertNoAllocation no_gc; |
| |
| HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true); |
| if (e->value != NULL && !IsLineInfoTagged(e->value)) return; |
| |
| GDBJITLineInfo* lineinfo = UntagLineInfo(e->value); |
| CodeDescription code_desc(name, |
| code, |
| script != NULL ? Handle<Script>(script) |
| : Handle<Script>(), |
| lineinfo, |
| tag); |
| |
| if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) { |
| delete lineinfo; |
| GetEntries()->Remove(code, HashForCodeObject(code)); |
| return; |
| } |
| |
| AddUnwindInfo(&code_desc); |
| JITCodeEntry* entry = CreateELFObject(&code_desc); |
| ASSERT(!IsLineInfoTagged(entry)); |
| |
| delete lineinfo; |
| e->value = entry; |
| |
| RegisterCodeEntry(entry); |
| } |
| |
| |
| void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag, |
| const char* name, |
| Code* code) { |
| if (!FLAG_gdbjit) return; |
| |
| EmbeddedVector<char, 256> buffer; |
| StringBuilder builder(buffer.start(), buffer.length()); |
| |
| builder.AddString(Tag2String(tag)); |
| if ((name != NULL) && (*name != '\0')) { |
| builder.AddString(": "); |
| builder.AddString(name); |
| } else { |
| builder.AddFormatted(": code object %p", static_cast<void*>(code)); |
| } |
| |
| AddCode(builder.Finalize(), code, tag); |
| } |
| |
| |
| void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag, |
| String* name, |
| Code* code) { |
| if (!FLAG_gdbjit) return; |
| AddCode(tag, name != NULL ? *name->ToCString(DISALLOW_NULLS) : NULL, code); |
| } |
| |
| |
| void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag, Code* code) { |
| if (!FLAG_gdbjit) return; |
| |
| AddCode(tag, "", code); |
| } |
| |
| |
| void GDBJITInterface::RemoveCode(Code* code) { |
| if (!FLAG_gdbjit) return; |
| |
| ScopedLock lock(mutex_); |
| HashMap::Entry* e = GetEntries()->Lookup(code, |
| HashForCodeObject(code), |
| false); |
| if (e == NULL) return; |
| |
| if (IsLineInfoTagged(e->value)) { |
| delete UntagLineInfo(e->value); |
| } else { |
| JITCodeEntry* entry = static_cast<JITCodeEntry*>(e->value); |
| UnregisterCodeEntry(entry); |
| DestroyCodeEntry(entry); |
| } |
| e->value = NULL; |
| GetEntries()->Remove(code, HashForCodeObject(code)); |
| } |
| |
| |
| void GDBJITInterface::RegisterDetailedLineInfo(Code* code, |
| GDBJITLineInfo* line_info) { |
| ScopedLock lock(mutex_); |
| ASSERT(!IsLineInfoTagged(line_info)); |
| HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true); |
| ASSERT(e->value == NULL); |
| e->value = TagLineInfo(line_info); |
| } |
| |
| |
| } } // namespace v8::internal |
| #endif |