| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| |
| #include "ia32/lithium-gap-resolver-ia32.h" |
| #include "ia32/lithium-codegen-ia32.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| LGapResolver::LGapResolver(LCodeGen* owner) |
| : cgen_(owner), |
| moves_(32), |
| source_uses_(), |
| destination_uses_(), |
| spilled_register_(-1) {} |
| |
| |
| void LGapResolver::Resolve(LParallelMove* parallel_move) { |
| ASSERT(HasBeenReset()); |
| // Build up a worklist of moves. |
| BuildInitialMoveList(parallel_move); |
| |
| for (int i = 0; i < moves_.length(); ++i) { |
| LMoveOperands move = moves_[i]; |
| // Skip constants to perform them last. They don't block other moves |
| // and skipping such moves with register destinations keeps those |
| // registers free for the whole algorithm. |
| if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { |
| PerformMove(i); |
| } |
| } |
| |
| // Perform the moves with constant sources. |
| for (int i = 0; i < moves_.length(); ++i) { |
| if (!moves_[i].IsEliminated()) { |
| ASSERT(moves_[i].source()->IsConstantOperand()); |
| EmitMove(i); |
| } |
| } |
| |
| Finish(); |
| ASSERT(HasBeenReset()); |
| } |
| |
| |
| void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { |
| // Perform a linear sweep of the moves to add them to the initial list of |
| // moves to perform, ignoring any move that is redundant (the source is |
| // the same as the destination, the destination is ignored and |
| // unallocated, or the move was already eliminated). |
| const ZoneList<LMoveOperands>* moves = parallel_move->move_operands(); |
| for (int i = 0; i < moves->length(); ++i) { |
| LMoveOperands move = moves->at(i); |
| if (!move.IsRedundant()) AddMove(move); |
| } |
| Verify(); |
| } |
| |
| |
| void LGapResolver::PerformMove(int index) { |
| // Each call to this function performs a move and deletes it from the move |
| // graph. We first recursively perform any move blocking this one. We |
| // mark a move as "pending" on entry to PerformMove in order to detect |
| // cycles in the move graph. We use operand swaps to resolve cycles, |
| // which means that a call to PerformMove could change any source operand |
| // in the move graph. |
| |
| ASSERT(!moves_[index].IsPending()); |
| ASSERT(!moves_[index].IsRedundant()); |
| |
| // Clear this move's destination to indicate a pending move. The actual |
| // destination is saved on the side. |
| ASSERT(moves_[index].source() != NULL); // Or else it will look eliminated. |
| LOperand* destination = moves_[index].destination(); |
| moves_[index].set_destination(NULL); |
| |
| // Perform a depth-first traversal of the move graph to resolve |
| // dependencies. Any unperformed, unpending move with a source the same |
| // as this one's destination blocks this one so recursively perform all |
| // such moves. |
| for (int i = 0; i < moves_.length(); ++i) { |
| LMoveOperands other_move = moves_[i]; |
| if (other_move.Blocks(destination) && !other_move.IsPending()) { |
| // Though PerformMove can change any source operand in the move graph, |
| // this call cannot create a blocking move via a swap (this loop does |
| // not miss any). Assume there is a non-blocking move with source A |
| // and this move is blocked on source B and there is a swap of A and |
| // B. Then A and B must be involved in the same cycle (or they would |
| // not be swapped). Since this move's destination is B and there is |
| // only a single incoming edge to an operand, this move must also be |
| // involved in the same cycle. In that case, the blocking move will |
| // be created but will be "pending" when we return from PerformMove. |
| PerformMove(i); |
| } |
| } |
| |
| // We are about to resolve this move and don't need it marked as |
| // pending, so restore its destination. |
| moves_[index].set_destination(destination); |
| |
| // This move's source may have changed due to swaps to resolve cycles and |
| // so it may now be the last move in the cycle. If so remove it. |
| if (moves_[index].source()->Equals(destination)) { |
| RemoveMove(index); |
| return; |
| } |
| |
| // The move may be blocked on a (at most one) pending move, in which case |
| // we have a cycle. Search for such a blocking move and perform a swap to |
| // resolve it. |
| for (int i = 0; i < moves_.length(); ++i) { |
| LMoveOperands other_move = moves_[i]; |
| if (other_move.Blocks(destination)) { |
| ASSERT(other_move.IsPending()); |
| EmitSwap(index); |
| return; |
| } |
| } |
| |
| // This move is not blocked. |
| EmitMove(index); |
| } |
| |
| |
| void LGapResolver::AddMove(LMoveOperands move) { |
| LOperand* source = move.source(); |
| if (source->IsRegister()) ++source_uses_[source->index()]; |
| |
| LOperand* destination = move.destination(); |
| if (destination->IsRegister()) ++destination_uses_[destination->index()]; |
| |
| moves_.Add(move); |
| } |
| |
| |
| void LGapResolver::RemoveMove(int index) { |
| LOperand* source = moves_[index].source(); |
| if (source->IsRegister()) { |
| --source_uses_[source->index()]; |
| ASSERT(source_uses_[source->index()] >= 0); |
| } |
| |
| LOperand* destination = moves_[index].destination(); |
| if (destination->IsRegister()) { |
| --destination_uses_[destination->index()]; |
| ASSERT(destination_uses_[destination->index()] >= 0); |
| } |
| |
| moves_[index].Eliminate(); |
| } |
| |
| |
| int LGapResolver::CountSourceUses(LOperand* operand) { |
| int count = 0; |
| for (int i = 0; i < moves_.length(); ++i) { |
| if (!moves_[i].IsEliminated() && moves_[i].source()->Equals(operand)) { |
| ++count; |
| } |
| } |
| return count; |
| } |
| |
| |
| Register LGapResolver::GetFreeRegisterNot(Register reg) { |
| int skip_index = reg.is(no_reg) ? -1 : Register::ToAllocationIndex(reg); |
| for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) { |
| if (source_uses_[i] == 0 && destination_uses_[i] > 0 && i != skip_index) { |
| return Register::FromAllocationIndex(i); |
| } |
| } |
| return no_reg; |
| } |
| |
| |
| bool LGapResolver::HasBeenReset() { |
| if (!moves_.is_empty()) return false; |
| if (spilled_register_ >= 0) return false; |
| |
| for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) { |
| if (source_uses_[i] != 0) return false; |
| if (destination_uses_[i] != 0) return false; |
| } |
| return true; |
| } |
| |
| |
| void LGapResolver::Verify() { |
| #ifdef ENABLE_SLOW_ASSERTS |
| // No operand should be the destination for more than one move. |
| for (int i = 0; i < moves_.length(); ++i) { |
| LOperand* destination = moves_[i].destination(); |
| for (int j = i + 1; j < moves_.length(); ++j) { |
| SLOW_ASSERT(!destination->Equals(moves_[j].destination())); |
| } |
| } |
| #endif |
| } |
| |
| |
| #define __ ACCESS_MASM(cgen_->masm()) |
| |
| void LGapResolver::Finish() { |
| if (spilled_register_ >= 0) { |
| __ pop(Register::FromAllocationIndex(spilled_register_)); |
| spilled_register_ = -1; |
| } |
| moves_.Rewind(0); |
| } |
| |
| |
| void LGapResolver::EnsureRestored(LOperand* operand) { |
| if (operand->IsRegister() && operand->index() == spilled_register_) { |
| __ pop(Register::FromAllocationIndex(spilled_register_)); |
| spilled_register_ = -1; |
| } |
| } |
| |
| |
| Register LGapResolver::EnsureTempRegister() { |
| // 1. We may have already spilled to create a temp register. |
| if (spilled_register_ >= 0) { |
| return Register::FromAllocationIndex(spilled_register_); |
| } |
| |
| // 2. We may have a free register that we can use without spilling. |
| Register free = GetFreeRegisterNot(no_reg); |
| if (!free.is(no_reg)) return free; |
| |
| // 3. Prefer to spill a register that is not used in any remaining move |
| // because it will not need to be restored until the end. |
| for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) { |
| if (source_uses_[i] == 0 && destination_uses_[i] == 0) { |
| Register scratch = Register::FromAllocationIndex(i); |
| __ push(scratch); |
| spilled_register_ = i; |
| return scratch; |
| } |
| } |
| |
| // 4. Use an arbitrary register. Register 0 is as arbitrary as any other. |
| Register scratch = Register::FromAllocationIndex(0); |
| __ push(scratch); |
| spilled_register_ = 0; |
| return scratch; |
| } |
| |
| |
| void LGapResolver::EmitMove(int index) { |
| LOperand* source = moves_[index].source(); |
| LOperand* destination = moves_[index].destination(); |
| EnsureRestored(source); |
| EnsureRestored(destination); |
| |
| // Dispatch on the source and destination operand kinds. Not all |
| // combinations are possible. |
| if (source->IsRegister()) { |
| ASSERT(destination->IsRegister() || destination->IsStackSlot()); |
| Register src = cgen_->ToRegister(source); |
| Operand dst = cgen_->ToOperand(destination); |
| __ mov(dst, src); |
| |
| } else if (source->IsStackSlot()) { |
| ASSERT(destination->IsRegister() || destination->IsStackSlot()); |
| Operand src = cgen_->ToOperand(source); |
| if (destination->IsRegister()) { |
| Register dst = cgen_->ToRegister(destination); |
| __ mov(dst, src); |
| } else { |
| // Spill on demand to use a temporary register for memory-to-memory |
| // moves. |
| Register tmp = EnsureTempRegister(); |
| Operand dst = cgen_->ToOperand(destination); |
| __ mov(tmp, src); |
| __ mov(dst, tmp); |
| } |
| |
| } else if (source->IsConstantOperand()) { |
| ASSERT(destination->IsRegister() || destination->IsStackSlot()); |
| Immediate src = cgen_->ToImmediate(source); |
| Operand dst = cgen_->ToOperand(destination); |
| __ mov(dst, src); |
| |
| } else if (source->IsDoubleRegister()) { |
| ASSERT(destination->IsDoubleRegister() || |
| destination->IsDoubleStackSlot()); |
| XMMRegister src = cgen_->ToDoubleRegister(source); |
| Operand dst = cgen_->ToOperand(destination); |
| __ movdbl(dst, src); |
| |
| } else if (source->IsDoubleStackSlot()) { |
| ASSERT(destination->IsDoubleRegister() || |
| destination->IsDoubleStackSlot()); |
| Operand src = cgen_->ToOperand(source); |
| if (destination->IsDoubleRegister()) { |
| XMMRegister dst = cgen_->ToDoubleRegister(destination); |
| __ movdbl(dst, src); |
| } else { |
| // We rely on having xmm0 available as a fixed scratch register. |
| Operand dst = cgen_->ToOperand(destination); |
| __ movdbl(xmm0, src); |
| __ movdbl(dst, xmm0); |
| } |
| |
| } else { |
| UNREACHABLE(); |
| } |
| |
| RemoveMove(index); |
| } |
| |
| |
| void LGapResolver::EmitSwap(int index) { |
| LOperand* source = moves_[index].source(); |
| LOperand* destination = moves_[index].destination(); |
| EnsureRestored(source); |
| EnsureRestored(destination); |
| |
| // Dispatch on the source and destination operand kinds. Not all |
| // combinations are possible. |
| if (source->IsRegister() && destination->IsRegister()) { |
| // Register-register. |
| Register src = cgen_->ToRegister(source); |
| Register dst = cgen_->ToRegister(destination); |
| __ xchg(dst, src); |
| |
| } else if ((source->IsRegister() && destination->IsStackSlot()) || |
| (source->IsStackSlot() && destination->IsRegister())) { |
| // Register-memory. Use a free register as a temp if possible. Do not |
| // spill on demand because the simple spill implementation cannot avoid |
| // spilling src at this point. |
| Register tmp = GetFreeRegisterNot(no_reg); |
| Register reg = |
| cgen_->ToRegister(source->IsRegister() ? source : destination); |
| Operand mem = |
| cgen_->ToOperand(source->IsRegister() ? destination : source); |
| if (tmp.is(no_reg)) { |
| __ xor_(reg, mem); |
| __ xor_(mem, reg); |
| __ xor_(reg, mem); |
| } else { |
| __ mov(tmp, mem); |
| __ mov(mem, reg); |
| __ mov(reg, tmp); |
| } |
| |
| } else if (source->IsStackSlot() && destination->IsStackSlot()) { |
| // Memory-memory. Spill on demand to use a temporary. If there is a |
| // free register after that, use it as a second temporary. |
| Register tmp0 = EnsureTempRegister(); |
| Register tmp1 = GetFreeRegisterNot(tmp0); |
| Operand src = cgen_->ToOperand(source); |
| Operand dst = cgen_->ToOperand(destination); |
| if (tmp1.is(no_reg)) { |
| // Only one temp register available to us. |
| __ mov(tmp0, dst); |
| __ xor_(tmp0, src); |
| __ xor_(src, tmp0); |
| __ xor_(tmp0, src); |
| __ mov(dst, tmp0); |
| } else { |
| __ mov(tmp0, dst); |
| __ mov(tmp1, src); |
| __ mov(dst, tmp1); |
| __ mov(src, tmp0); |
| } |
| |
| } else if (source->IsDoubleRegister() || destination->IsDoubleRegister()) { |
| // XMM register-register or register-memory. We rely on having xmm0 |
| // available as a fixed scratch register. |
| ASSERT(source->IsDoubleRegister() || source->IsDoubleStackSlot()); |
| ASSERT(destination->IsDoubleRegister() || |
| destination->IsDoubleStackSlot()); |
| XMMRegister reg = cgen_->ToDoubleRegister(source->IsDoubleRegister() |
| ? source |
| : destination); |
| Operand other = |
| cgen_->ToOperand(source->IsDoubleRegister() ? destination : source); |
| __ movdbl(xmm0, other); |
| __ movdbl(other, reg); |
| __ movdbl(reg, Operand(xmm0)); |
| |
| } else if (source->IsDoubleStackSlot() && destination->IsDoubleStackSlot()) { |
| // Double-width memory-to-memory. Spill on demand to use a general |
| // purpose temporary register and also rely on having xmm0 available as |
| // a fixed scratch register. |
| Register tmp = EnsureTempRegister(); |
| Operand src0 = cgen_->ToOperand(source); |
| Operand src1 = cgen_->HighOperand(source); |
| Operand dst0 = cgen_->ToOperand(destination); |
| Operand dst1 = cgen_->HighOperand(destination); |
| __ movdbl(xmm0, dst0); // Save destination in xmm0. |
| __ mov(tmp, src0); // Then use tmp to copy source to destination. |
| __ mov(dst0, tmp); |
| __ mov(tmp, src1); |
| __ mov(dst1, tmp); |
| __ movdbl(src0, xmm0); |
| |
| } else { |
| // No other combinations are possible. |
| UNREACHABLE(); |
| } |
| |
| // The swap of source and destination has executed a move from source to |
| // destination. |
| RemoveMove(index); |
| |
| // Any unperformed (including pending) move with a source of either |
| // this move's source or destination needs to have their source |
| // changed to reflect the state of affairs after the swap. |
| for (int i = 0; i < moves_.length(); ++i) { |
| LMoveOperands other_move = moves_[i]; |
| if (other_move.Blocks(source)) { |
| moves_[i].set_source(destination); |
| } else if (other_move.Blocks(destination)) { |
| moves_[i].set_source(source); |
| } |
| } |
| |
| // In addition to swapping the actual uses as sources, we need to update |
| // the use counts. |
| if (source->IsRegister() && destination->IsRegister()) { |
| int temp = source_uses_[source->index()]; |
| source_uses_[source->index()] = source_uses_[destination->index()]; |
| source_uses_[destination->index()] = temp; |
| } else if (source->IsRegister()) { |
| // We don't have use counts for non-register operands like destination. |
| // Compute those counts now. |
| source_uses_[source->index()] = CountSourceUses(source); |
| } else if (destination->IsRegister()) { |
| source_uses_[destination->index()] = CountSourceUses(destination); |
| } |
| } |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_IA32 |