| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdarg.h> |
| |
| #include "v8.h" |
| |
| #include "conversions-inl.h" |
| #include "factory.h" |
| #include "scanner.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| int HexValue(uc32 c) { |
| if ('0' <= c && c <= '9') |
| return c - '0'; |
| if ('a' <= c && c <= 'f') |
| return c - 'a' + 10; |
| if ('A' <= c && c <= 'F') |
| return c - 'A' + 10; |
| return -1; |
| } |
| |
| |
| // Provide a common interface to getting a character at a certain |
| // index from a char* or a String object. |
| static inline int GetChar(const char* str, int index) { |
| ASSERT(index >= 0 && index < StrLength(str)); |
| return str[index]; |
| } |
| |
| |
| static inline int GetChar(String* str, int index) { |
| return str->Get(index); |
| } |
| |
| |
| static inline int GetLength(const char* str) { |
| return StrLength(str); |
| } |
| |
| |
| static inline int GetLength(String* str) { |
| return str->length(); |
| } |
| |
| |
| static inline const char* GetCString(const char* str, int index) { |
| return str + index; |
| } |
| |
| |
| static inline const char* GetCString(String* str, int index) { |
| int length = str->length(); |
| char* result = NewArray<char>(length + 1); |
| for (int i = index; i < length; i++) { |
| uc16 c = str->Get(i); |
| if (c <= 127) { |
| result[i - index] = static_cast<char>(c); |
| } else { |
| result[i - index] = 127; // Force number parsing to fail. |
| } |
| } |
| result[length - index] = '\0'; |
| return result; |
| } |
| |
| |
| static inline void ReleaseCString(const char* original, const char* str) { |
| } |
| |
| |
| static inline void ReleaseCString(String* original, const char* str) { |
| DeleteArray(const_cast<char *>(str)); |
| } |
| |
| |
| static inline bool IsSpace(const char* str, int index) { |
| ASSERT(index >= 0 && index < StrLength(str)); |
| return Scanner::kIsWhiteSpace.get(str[index]); |
| } |
| |
| |
| static inline bool IsSpace(String* str, int index) { |
| return Scanner::kIsWhiteSpace.get(str->Get(index)); |
| } |
| |
| |
| static inline bool SubStringEquals(const char* str, |
| int index, |
| const char* other) { |
| return strncmp(str + index, other, strlen(other)) != 0; |
| } |
| |
| |
| static inline bool SubStringEquals(String* str, int index, const char* other) { |
| HandleScope scope; |
| int str_length = str->length(); |
| int other_length = StrLength(other); |
| int end = index + other_length < str_length ? |
| index + other_length : |
| str_length; |
| Handle<String> substring = |
| Factory::NewSubString(Handle<String>(str), index, end); |
| return substring->IsEqualTo(Vector<const char>(other, other_length)); |
| } |
| |
| |
| // Check if a string should be parsed as an octal number. The string |
| // can be either a char* or a String*. |
| template<class S> |
| static bool ShouldParseOctal(S* s, int i) { |
| int index = i; |
| int len = GetLength(s); |
| if (index < len && GetChar(s, index) != '0') return false; |
| |
| // If the first real character (following '0') is not an octal |
| // digit, bail out early. This also takes care of numbers of the |
| // forms 0.xxx and 0exxx by not allowing the first 0 to be |
| // interpreted as an octal. |
| index++; |
| if (index < len) { |
| int d = GetChar(s, index) - '0'; |
| if (d < 0 || d > 7) return false; |
| } else { |
| return false; |
| } |
| |
| // Traverse all digits (including the first). If there is an octal |
| // prefix which is not a part of a longer decimal prefix, we return |
| // true. Otherwise, false is returned. |
| while (index < len) { |
| int d = GetChar(s, index++) - '0'; |
| if (d == 8 || d == 9) return false; |
| if (d < 0 || d > 7) return true; |
| } |
| return true; |
| } |
| |
| |
| extern "C" double gay_strtod(const char* s00, const char** se); |
| |
| |
| // Parse an int from a string starting a given index and in a given |
| // radix. The string can be either a char* or a String*. |
| template <class S> |
| static int InternalStringToInt(S* s, int i, int radix, double* value) { |
| int len = GetLength(s); |
| |
| // Setup limits for computing the value. |
| ASSERT(2 <= radix && radix <= 36); |
| int lim_0 = '0' + (radix < 10 ? radix : 10); |
| int lim_a = 'a' + (radix - 10); |
| int lim_A = 'A' + (radix - 10); |
| |
| // NOTE: The code for computing the value may seem a bit complex at |
| // first glance. It is structured to use 32-bit multiply-and-add |
| // loops as long as possible to avoid loosing precision. |
| |
| double v = 0.0; |
| int j; |
| for (j = i; j < len;) { |
| // Parse the longest part of the string starting at index j |
| // possible while keeping the multiplier, and thus the part |
| // itself, within 32 bits. |
| uint32_t part = 0, multiplier = 1; |
| int k; |
| for (k = j; k < len; k++) { |
| int c = GetChar(s, k); |
| if (c >= '0' && c < lim_0) { |
| c = c - '0'; |
| } else if (c >= 'a' && c < lim_a) { |
| c = c - 'a' + 10; |
| } else if (c >= 'A' && c < lim_A) { |
| c = c - 'A' + 10; |
| } else { |
| break; |
| } |
| |
| // Update the value of the part as long as the multiplier fits |
| // in 32 bits. When we can't guarantee that the next iteration |
| // will not overflow the multiplier, we stop parsing the part |
| // by leaving the loop. |
| static const uint32_t kMaximumMultiplier = 0xffffffffU / 36; |
| uint32_t m = multiplier * radix; |
| if (m > kMaximumMultiplier) break; |
| part = part * radix + c; |
| multiplier = m; |
| ASSERT(multiplier > part); |
| } |
| |
| // Compute the number of part digits. If no digits were parsed; |
| // we're done parsing the entire string. |
| int digits = k - j; |
| if (digits == 0) break; |
| |
| // Update the value and skip the part in the string. |
| ASSERT(multiplier == |
| pow(static_cast<double>(radix), static_cast<double>(digits))); |
| v = v * multiplier + part; |
| j = k; |
| } |
| |
| // If the resulting value is larger than 2^53 the value does not fit |
| // in the mantissa of the double and there is a loss of precision. |
| // When the value is larger than 2^53 the rounding depends on the |
| // code generation. If the code generator spills the double value |
| // it uses 64 bits and if it does not it uses 80 bits. |
| // |
| // If there is a potential for overflow we resort to strtod for |
| // radix 10 numbers to get higher precision. For numbers in another |
| // radix we live with the loss of precision. |
| static const double kPreciseConversionLimit = 9007199254740992.0; |
| if (radix == 10 && v > kPreciseConversionLimit) { |
| const char* cstr = GetCString(s, i); |
| const char* end; |
| v = gay_strtod(cstr, &end); |
| ReleaseCString(s, cstr); |
| } |
| |
| *value = v; |
| return j; |
| } |
| |
| |
| int StringToInt(String* str, int index, int radix, double* value) { |
| return InternalStringToInt(str, index, radix, value); |
| } |
| |
| |
| int StringToInt(const char* str, int index, int radix, double* value) { |
| return InternalStringToInt(const_cast<char*>(str), index, radix, value); |
| } |
| |
| |
| static const double JUNK_STRING_VALUE = OS::nan_value(); |
| |
| |
| // Convert a string to a double value. The string can be either a |
| // char* or a String*. |
| template<class S> |
| static double InternalStringToDouble(S* str, |
| int flags, |
| double empty_string_val) { |
| double result = 0.0; |
| int index = 0; |
| |
| int len = GetLength(str); |
| |
| // Skip leading spaces. |
| while ((index < len) && IsSpace(str, index)) index++; |
| |
| // Is the string empty? |
| if (index >= len) return empty_string_val; |
| |
| // Get the first character. |
| uint16_t first = GetChar(str, index); |
| |
| // Numbers can only start with '-', '+', '.', 'I' (Infinity), or a digit. |
| if (first != '-' && first != '+' && first != '.' && first != 'I' && |
| (first > '9' || first < '0')) { |
| return JUNK_STRING_VALUE; |
| } |
| |
| // Compute sign of result based on first character. |
| int sign = 1; |
| if (first == '-') { |
| sign = -1; |
| index++; |
| // String only containing a '-' are junk chars. |
| if (index == len) return JUNK_STRING_VALUE; |
| } |
| |
| // do we have a hex number? |
| // (since the string is 0-terminated, it's ok to look one char beyond the end) |
| if ((flags & ALLOW_HEX) != 0 && |
| (index + 1) < len && |
| GetChar(str, index) == '0' && |
| (GetChar(str, index + 1) == 'x' || GetChar(str, index + 1) == 'X')) { |
| index += 2; |
| index = StringToInt(str, index, 16, &result); |
| } else if ((flags & ALLOW_OCTALS) != 0 && ShouldParseOctal(str, index)) { |
| // NOTE: We optimistically try to parse the number as an octal (if |
| // we're allowed to), even though this is not as dictated by |
| // ECMA-262. The reason for doing this is compatibility with IE and |
| // Firefox. |
| index = StringToInt(str, index, 8, &result); |
| } else { |
| const char* cstr = GetCString(str, index); |
| const char* end; |
| // Optimistically parse the number and then, if that fails, |
| // check if it might have been {+,-,}Infinity. |
| result = gay_strtod(cstr, &end); |
| ReleaseCString(str, cstr); |
| if (result != 0.0 || end != cstr) { |
| // It appears that strtod worked |
| index += static_cast<int>(end - cstr); |
| } else { |
| // Check for {+,-,}Infinity |
| bool is_negative = (GetChar(str, index) == '-'); |
| if (GetChar(str, index) == '+' || GetChar(str, index) == '-') |
| index++; |
| if (!SubStringEquals(str, index, "Infinity")) |
| return JUNK_STRING_VALUE; |
| result = is_negative ? -V8_INFINITY : V8_INFINITY; |
| index += 8; |
| } |
| } |
| |
| if ((flags & ALLOW_TRAILING_JUNK) == 0) { |
| // skip trailing spaces |
| while ((index < len) && IsSpace(str, index)) index++; |
| // string ending with junk? |
| if (index < len) return JUNK_STRING_VALUE; |
| } |
| |
| return sign * result; |
| } |
| |
| |
| double StringToDouble(String* str, int flags, double empty_string_val) { |
| return InternalStringToDouble(str, flags, empty_string_val); |
| } |
| |
| |
| double StringToDouble(const char* str, int flags, double empty_string_val) { |
| return InternalStringToDouble(str, flags, empty_string_val); |
| } |
| |
| |
| extern "C" char* dtoa(double d, int mode, int ndigits, |
| int* decpt, int* sign, char** rve); |
| |
| extern "C" void freedtoa(char* s); |
| |
| const char* DoubleToCString(double v, Vector<char> buffer) { |
| StringBuilder builder(buffer.start(), buffer.length()); |
| |
| switch (fpclassify(v)) { |
| case FP_NAN: |
| builder.AddString("NaN"); |
| break; |
| |
| case FP_INFINITE: |
| if (v < 0.0) { |
| builder.AddString("-Infinity"); |
| } else { |
| builder.AddString("Infinity"); |
| } |
| break; |
| |
| case FP_ZERO: |
| builder.AddCharacter('0'); |
| break; |
| |
| default: { |
| int decimal_point; |
| int sign; |
| |
| char* decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL); |
| int length = StrLength(decimal_rep); |
| |
| if (sign) builder.AddCharacter('-'); |
| |
| if (length <= decimal_point && decimal_point <= 21) { |
| // ECMA-262 section 9.8.1 step 6. |
| builder.AddString(decimal_rep); |
| builder.AddPadding('0', decimal_point - length); |
| |
| } else if (0 < decimal_point && decimal_point <= 21) { |
| // ECMA-262 section 9.8.1 step 7. |
| builder.AddSubstring(decimal_rep, decimal_point); |
| builder.AddCharacter('.'); |
| builder.AddString(decimal_rep + decimal_point); |
| |
| } else if (decimal_point <= 0 && decimal_point > -6) { |
| // ECMA-262 section 9.8.1 step 8. |
| builder.AddString("0."); |
| builder.AddPadding('0', -decimal_point); |
| builder.AddString(decimal_rep); |
| |
| } else { |
| // ECMA-262 section 9.8.1 step 9 and 10 combined. |
| builder.AddCharacter(decimal_rep[0]); |
| if (length != 1) { |
| builder.AddCharacter('.'); |
| builder.AddString(decimal_rep + 1); |
| } |
| builder.AddCharacter('e'); |
| builder.AddCharacter((decimal_point >= 0) ? '+' : '-'); |
| int exponent = decimal_point - 1; |
| if (exponent < 0) exponent = -exponent; |
| builder.AddFormatted("%d", exponent); |
| } |
| |
| freedtoa(decimal_rep); |
| } |
| } |
| return builder.Finalize(); |
| } |
| |
| |
| const char* IntToCString(int n, Vector<char> buffer) { |
| bool negative = false; |
| if (n < 0) { |
| // We must not negate the most negative int. |
| if (n == kMinInt) return DoubleToCString(n, buffer); |
| negative = true; |
| n = -n; |
| } |
| // Build the string backwards from the least significant digit. |
| int i = buffer.length(); |
| buffer[--i] = '\0'; |
| do { |
| buffer[--i] = '0' + (n % 10); |
| n /= 10; |
| } while (n); |
| if (negative) buffer[--i] = '-'; |
| return buffer.start() + i; |
| } |
| |
| |
| char* DoubleToFixedCString(double value, int f) { |
| ASSERT(f >= 0); |
| |
| bool negative = false; |
| double abs_value = value; |
| if (value < 0) { |
| abs_value = -value; |
| negative = true; |
| } |
| |
| if (abs_value >= 1e21) { |
| char arr[100]; |
| Vector<char> buffer(arr, ARRAY_SIZE(arr)); |
| return StrDup(DoubleToCString(value, buffer)); |
| } |
| |
| // Find a sufficiently precise decimal representation of n. |
| int decimal_point; |
| int sign; |
| char* decimal_rep = dtoa(abs_value, 3, f, &decimal_point, &sign, NULL); |
| int decimal_rep_length = StrLength(decimal_rep); |
| |
| // Create a representation that is padded with zeros if needed. |
| int zero_prefix_length = 0; |
| int zero_postfix_length = 0; |
| |
| if (decimal_point <= 0) { |
| zero_prefix_length = -decimal_point + 1; |
| decimal_point = 1; |
| } |
| |
| if (zero_prefix_length + decimal_rep_length < decimal_point + f) { |
| zero_postfix_length = decimal_point + f - decimal_rep_length - |
| zero_prefix_length; |
| } |
| |
| unsigned rep_length = |
| zero_prefix_length + decimal_rep_length + zero_postfix_length; |
| StringBuilder rep_builder(rep_length + 1); |
| rep_builder.AddPadding('0', zero_prefix_length); |
| rep_builder.AddString(decimal_rep); |
| rep_builder.AddPadding('0', zero_postfix_length); |
| char* rep = rep_builder.Finalize(); |
| freedtoa(decimal_rep); |
| |
| // Create the result string by appending a minus and putting in a |
| // decimal point if needed. |
| unsigned result_size = decimal_point + f + 2; |
| StringBuilder builder(result_size + 1); |
| if (negative) builder.AddCharacter('-'); |
| builder.AddSubstring(rep, decimal_point); |
| if (f > 0) { |
| builder.AddCharacter('.'); |
| builder.AddSubstring(rep + decimal_point, f); |
| } |
| DeleteArray(rep); |
| return builder.Finalize(); |
| } |
| |
| |
| static char* CreateExponentialRepresentation(char* decimal_rep, |
| int exponent, |
| bool negative, |
| int significant_digits) { |
| bool negative_exponent = false; |
| if (exponent < 0) { |
| negative_exponent = true; |
| exponent = -exponent; |
| } |
| |
| // Leave room in the result for appending a minus, for a period, the |
| // letter 'e', a minus or a plus depending on the exponent, and a |
| // three digit exponent. |
| unsigned result_size = significant_digits + 7; |
| StringBuilder builder(result_size + 1); |
| |
| if (negative) builder.AddCharacter('-'); |
| builder.AddCharacter(decimal_rep[0]); |
| if (significant_digits != 1) { |
| builder.AddCharacter('.'); |
| builder.AddString(decimal_rep + 1); |
| int rep_length = StrLength(decimal_rep); |
| builder.AddPadding('0', significant_digits - rep_length); |
| } |
| |
| builder.AddCharacter('e'); |
| builder.AddCharacter(negative_exponent ? '-' : '+'); |
| builder.AddFormatted("%d", exponent); |
| return builder.Finalize(); |
| } |
| |
| |
| |
| char* DoubleToExponentialCString(double value, int f) { |
| // f might be -1 to signal that f was undefined in JavaScript. |
| ASSERT(f >= -1 && f <= 20); |
| |
| bool negative = false; |
| if (value < 0) { |
| value = -value; |
| negative = true; |
| } |
| |
| // Find a sufficiently precise decimal representation of n. |
| int decimal_point; |
| int sign; |
| char* decimal_rep = NULL; |
| if (f == -1) { |
| decimal_rep = dtoa(value, 0, 0, &decimal_point, &sign, NULL); |
| f = StrLength(decimal_rep) - 1; |
| } else { |
| decimal_rep = dtoa(value, 2, f + 1, &decimal_point, &sign, NULL); |
| } |
| int decimal_rep_length = StrLength(decimal_rep); |
| ASSERT(decimal_rep_length > 0); |
| ASSERT(decimal_rep_length <= f + 1); |
| USE(decimal_rep_length); |
| |
| int exponent = decimal_point - 1; |
| char* result = |
| CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1); |
| |
| freedtoa(decimal_rep); |
| |
| return result; |
| } |
| |
| |
| char* DoubleToPrecisionCString(double value, int p) { |
| ASSERT(p >= 1 && p <= 21); |
| |
| bool negative = false; |
| if (value < 0) { |
| value = -value; |
| negative = true; |
| } |
| |
| // Find a sufficiently precise decimal representation of n. |
| int decimal_point; |
| int sign; |
| char* decimal_rep = dtoa(value, 2, p, &decimal_point, &sign, NULL); |
| int decimal_rep_length = StrLength(decimal_rep); |
| ASSERT(decimal_rep_length <= p); |
| |
| int exponent = decimal_point - 1; |
| |
| char* result = NULL; |
| |
| if (exponent < -6 || exponent >= p) { |
| result = |
| CreateExponentialRepresentation(decimal_rep, exponent, negative, p); |
| } else { |
| // Use fixed notation. |
| // |
| // Leave room in the result for appending a minus, a period and in |
| // the case where decimal_point is not positive for a zero in |
| // front of the period. |
| unsigned result_size = (decimal_point <= 0) |
| ? -decimal_point + p + 3 |
| : p + 2; |
| StringBuilder builder(result_size + 1); |
| if (negative) builder.AddCharacter('-'); |
| if (decimal_point <= 0) { |
| builder.AddString("0."); |
| builder.AddPadding('0', -decimal_point); |
| builder.AddString(decimal_rep); |
| builder.AddPadding('0', p - decimal_rep_length); |
| } else { |
| const int m = Min(decimal_rep_length, decimal_point); |
| builder.AddSubstring(decimal_rep, m); |
| builder.AddPadding('0', decimal_point - decimal_rep_length); |
| if (decimal_point < p) { |
| builder.AddCharacter('.'); |
| const int extra = negative ? 2 : 1; |
| if (decimal_rep_length > decimal_point) { |
| const int len = StrLength(decimal_rep + decimal_point); |
| const int n = Min(len, p - (builder.position() - extra)); |
| builder.AddSubstring(decimal_rep + decimal_point, n); |
| } |
| builder.AddPadding('0', extra + (p - builder.position())); |
| } |
| } |
| result = builder.Finalize(); |
| } |
| |
| freedtoa(decimal_rep); |
| return result; |
| } |
| |
| |
| char* DoubleToRadixCString(double value, int radix) { |
| ASSERT(radix >= 2 && radix <= 36); |
| |
| // Character array used for conversion. |
| static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; |
| |
| // Buffer for the integer part of the result. 1024 chars is enough |
| // for max integer value in radix 2. We need room for a sign too. |
| static const int kBufferSize = 1100; |
| char integer_buffer[kBufferSize]; |
| integer_buffer[kBufferSize - 1] = '\0'; |
| |
| // Buffer for the decimal part of the result. We only generate up |
| // to kBufferSize - 1 chars for the decimal part. |
| char decimal_buffer[kBufferSize]; |
| decimal_buffer[kBufferSize - 1] = '\0'; |
| |
| // Make sure the value is positive. |
| bool is_negative = value < 0.0; |
| if (is_negative) value = -value; |
| |
| // Get the integer part and the decimal part. |
| double integer_part = floor(value); |
| double decimal_part = value - integer_part; |
| |
| // Convert the integer part starting from the back. Always generate |
| // at least one digit. |
| int integer_pos = kBufferSize - 2; |
| do { |
| integer_buffer[integer_pos--] = |
| chars[static_cast<int>(modulo(integer_part, radix))]; |
| integer_part /= radix; |
| } while (integer_part >= 1.0); |
| // Sanity check. |
| ASSERT(integer_pos > 0); |
| // Add sign if needed. |
| if (is_negative) integer_buffer[integer_pos--] = '-'; |
| |
| // Convert the decimal part. Repeatedly multiply by the radix to |
| // generate the next char. Never generate more than kBufferSize - 1 |
| // chars. |
| // |
| // TODO(1093998): We will often generate a full decimal_buffer of |
| // chars because hitting zero will often not happen. The right |
| // solution would be to continue until the string representation can |
| // be read back and yield the original value. To implement this |
| // efficiently, we probably have to modify dtoa. |
| int decimal_pos = 0; |
| while ((decimal_part > 0.0) && (decimal_pos < kBufferSize - 1)) { |
| decimal_part *= radix; |
| decimal_buffer[decimal_pos++] = |
| chars[static_cast<int>(floor(decimal_part))]; |
| decimal_part -= floor(decimal_part); |
| } |
| decimal_buffer[decimal_pos] = '\0'; |
| |
| // Compute the result size. |
| int integer_part_size = kBufferSize - 2 - integer_pos; |
| // Make room for zero termination. |
| unsigned result_size = integer_part_size + decimal_pos; |
| // If the number has a decimal part, leave room for the period. |
| if (decimal_pos > 0) result_size++; |
| // Allocate result and fill in the parts. |
| StringBuilder builder(result_size + 1); |
| builder.AddSubstring(integer_buffer + integer_pos + 1, integer_part_size); |
| if (decimal_pos > 0) builder.AddCharacter('.'); |
| builder.AddSubstring(decimal_buffer, decimal_pos); |
| return builder.Finalize(); |
| } |
| |
| |
| } } // namespace v8::internal |