| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| #include "assembler.h" |
| |
| #include <math.h> // For cos, log, pow, sin, tan, etc. |
| #include "api.h" |
| #include "builtins.h" |
| #include "counters.h" |
| #include "cpu.h" |
| #include "debug.h" |
| #include "deoptimizer.h" |
| #include "execution.h" |
| #include "ic.h" |
| #include "isolate.h" |
| #include "jsregexp.h" |
| #include "lazy-instance.h" |
| #include "platform.h" |
| #include "regexp-macro-assembler.h" |
| #include "regexp-stack.h" |
| #include "runtime.h" |
| #include "serialize.h" |
| #include "store-buffer-inl.h" |
| #include "stub-cache.h" |
| #include "token.h" |
| |
| #if V8_TARGET_ARCH_IA32 |
| #include "ia32/assembler-ia32-inl.h" |
| #elif V8_TARGET_ARCH_X64 |
| #include "x64/assembler-x64-inl.h" |
| #elif V8_TARGET_ARCH_ARM |
| #include "arm/assembler-arm-inl.h" |
| #elif V8_TARGET_ARCH_MIPS |
| #include "mips/assembler-mips-inl.h" |
| #else |
| #error "Unknown architecture." |
| #endif |
| |
| // Include native regexp-macro-assembler. |
| #ifndef V8_INTERPRETED_REGEXP |
| #if V8_TARGET_ARCH_IA32 |
| #include "ia32/regexp-macro-assembler-ia32.h" |
| #elif V8_TARGET_ARCH_X64 |
| #include "x64/regexp-macro-assembler-x64.h" |
| #elif V8_TARGET_ARCH_ARM |
| #include "arm/regexp-macro-assembler-arm.h" |
| #elif V8_TARGET_ARCH_MIPS |
| #include "mips/regexp-macro-assembler-mips.h" |
| #else // Unknown architecture. |
| #error "Unknown architecture." |
| #endif // Target architecture. |
| #endif // V8_INTERPRETED_REGEXP |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // Common double constants. |
| |
| struct DoubleConstant BASE_EMBEDDED { |
| double min_int; |
| double one_half; |
| double minus_zero; |
| double zero; |
| double uint8_max_value; |
| double negative_infinity; |
| double canonical_non_hole_nan; |
| double the_hole_nan; |
| }; |
| |
| struct InitializeDoubleConstants { |
| static void Construct(DoubleConstant* double_constants) { |
| double_constants->min_int = kMinInt; |
| double_constants->one_half = 0.5; |
| double_constants->minus_zero = -0.0; |
| double_constants->uint8_max_value = 255; |
| double_constants->zero = 0.0; |
| double_constants->canonical_non_hole_nan = OS::nan_value(); |
| double_constants->the_hole_nan = BitCast<double>(kHoleNanInt64); |
| double_constants->negative_infinity = -V8_INFINITY; |
| } |
| }; |
| |
| static LazyInstance<DoubleConstant, InitializeDoubleConstants>::type |
| double_constants = LAZY_INSTANCE_INITIALIZER; |
| |
| const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING"; |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of AssemblerBase |
| |
| AssemblerBase::AssemblerBase(Isolate* isolate) |
| : isolate_(isolate), |
| jit_cookie_(0) { |
| if (FLAG_mask_constants_with_cookie && isolate != NULL) { |
| jit_cookie_ = V8::RandomPrivate(isolate); |
| } |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Label |
| |
| int Label::pos() const { |
| if (pos_ < 0) return -pos_ - 1; |
| if (pos_ > 0) return pos_ - 1; |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfoWriter and RelocIterator |
| // |
| // Relocation information is written backwards in memory, from high addresses |
| // towards low addresses, byte by byte. Therefore, in the encodings listed |
| // below, the first byte listed it at the highest address, and successive |
| // bytes in the record are at progressively lower addresses. |
| // |
| // Encoding |
| // |
| // The most common modes are given single-byte encodings. Also, it is |
| // easy to identify the type of reloc info and skip unwanted modes in |
| // an iteration. |
| // |
| // The encoding relies on the fact that there are fewer than 14 |
| // different non-compactly encoded relocation modes. |
| // |
| // The first byte of a relocation record has a tag in its low 2 bits: |
| // Here are the record schemes, depending on the low tag and optional higher |
| // tags. |
| // |
| // Low tag: |
| // 00: embedded_object: [6-bit pc delta] 00 |
| // |
| // 01: code_target: [6-bit pc delta] 01 |
| // |
| // 10: short_data_record: [6-bit pc delta] 10 followed by |
| // [6-bit data delta] [2-bit data type tag] |
| // |
| // 11: long_record [2-bit high tag][4 bit middle_tag] 11 |
| // followed by variable data depending on type. |
| // |
| // 2-bit data type tags, used in short_data_record and data_jump long_record: |
| // code_target_with_id: 00 |
| // position: 01 |
| // statement_position: 10 |
| // comment: 11 (not used in short_data_record) |
| // |
| // Long record format: |
| // 4-bit middle_tag: |
| // 0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2 |
| // (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM, |
| // and is between 0000 and 1100) |
| // The format is: |
| // 00 [4 bit middle_tag] 11 followed by |
| // 00 [6 bit pc delta] |
| // |
| // 1101: not used (would allow one more relocation mode to be added) |
| // 1110: long_data_record |
| // The format is: [2-bit data_type_tag] 1110 11 |
| // signed intptr_t, lowest byte written first |
| // (except data_type code_target_with_id, which |
| // is followed by a signed int, not intptr_t.) |
| // |
| // 1111: long_pc_jump |
| // The format is: |
| // pc-jump: 00 1111 11, |
| // 00 [6 bits pc delta] |
| // or |
| // pc-jump (variable length): |
| // 01 1111 11, |
| // [7 bits data] 0 |
| // ... |
| // [7 bits data] 1 |
| // (Bits 6..31 of pc delta, with leading zeroes |
| // dropped, and last non-zero chunk tagged with 1.) |
| |
| |
| const int kMaxRelocModes = 14; |
| |
| const int kTagBits = 2; |
| const int kTagMask = (1 << kTagBits) - 1; |
| const int kExtraTagBits = 4; |
| const int kLocatableTypeTagBits = 2; |
| const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits; |
| |
| const int kEmbeddedObjectTag = 0; |
| const int kCodeTargetTag = 1; |
| const int kLocatableTag = 2; |
| const int kDefaultTag = 3; |
| |
| const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1; |
| |
| const int kSmallPCDeltaBits = kBitsPerByte - kTagBits; |
| const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1; |
| const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask; |
| |
| const int kVariableLengthPCJumpTopTag = 1; |
| const int kChunkBits = 7; |
| const int kChunkMask = (1 << kChunkBits) - 1; |
| const int kLastChunkTagBits = 1; |
| const int kLastChunkTagMask = 1; |
| const int kLastChunkTag = 1; |
| |
| |
| const int kDataJumpExtraTag = kPCJumpExtraTag - 1; |
| |
| const int kCodeWithIdTag = 0; |
| const int kNonstatementPositionTag = 1; |
| const int kStatementPositionTag = 2; |
| const int kCommentTag = 3; |
| |
| |
| uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) { |
| // Return if the pc_delta can fit in kSmallPCDeltaBits bits. |
| // Otherwise write a variable length PC jump for the bits that do |
| // not fit in the kSmallPCDeltaBits bits. |
| if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta; |
| WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag); |
| uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits; |
| ASSERT(pc_jump > 0); |
| // Write kChunkBits size chunks of the pc_jump. |
| for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) { |
| byte b = pc_jump & kChunkMask; |
| *--pos_ = b << kLastChunkTagBits; |
| } |
| // Tag the last chunk so it can be identified. |
| *pos_ = *pos_ | kLastChunkTag; |
| // Return the remaining kSmallPCDeltaBits of the pc_delta. |
| return pc_delta & kSmallPCDeltaMask; |
| } |
| |
| |
| void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) { |
| // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump. |
| pc_delta = WriteVariableLengthPCJump(pc_delta); |
| *--pos_ = pc_delta << kTagBits | tag; |
| } |
| |
| |
| void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) { |
| *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag); |
| } |
| |
| |
| void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) { |
| *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) | |
| extra_tag << kTagBits | |
| kDefaultTag); |
| } |
| |
| |
| void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) { |
| // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump. |
| pc_delta = WriteVariableLengthPCJump(pc_delta); |
| WriteExtraTag(extra_tag, 0); |
| *--pos_ = pc_delta; |
| } |
| |
| |
| void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) { |
| WriteExtraTag(kDataJumpExtraTag, top_tag); |
| for (int i = 0; i < kIntSize; i++) { |
| *--pos_ = static_cast<byte>(data_delta); |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| data_delta = data_delta >> kBitsPerByte; |
| } |
| } |
| |
| void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) { |
| WriteExtraTag(kDataJumpExtraTag, top_tag); |
| for (int i = 0; i < kIntptrSize; i++) { |
| *--pos_ = static_cast<byte>(data_delta); |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| data_delta = data_delta >> kBitsPerByte; |
| } |
| } |
| |
| |
| void RelocInfoWriter::Write(const RelocInfo* rinfo) { |
| #ifdef DEBUG |
| byte* begin_pos = pos_; |
| #endif |
| ASSERT(rinfo->pc() - last_pc_ >= 0); |
| ASSERT(RelocInfo::NUMBER_OF_MODES - RelocInfo::LAST_COMPACT_ENUM <= |
| kMaxRelocModes); |
| // Use unsigned delta-encoding for pc. |
| uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_); |
| RelocInfo::Mode rmode = rinfo->rmode(); |
| |
| // The two most common modes are given small tags, and usually fit in a byte. |
| if (rmode == RelocInfo::EMBEDDED_OBJECT) { |
| WriteTaggedPC(pc_delta, kEmbeddedObjectTag); |
| } else if (rmode == RelocInfo::CODE_TARGET) { |
| WriteTaggedPC(pc_delta, kCodeTargetTag); |
| ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize); |
| } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { |
| // Use signed delta-encoding for id. |
| ASSERT(static_cast<int>(rinfo->data()) == rinfo->data()); |
| int id_delta = static_cast<int>(rinfo->data()) - last_id_; |
| // Check if delta is small enough to fit in a tagged byte. |
| if (is_intn(id_delta, kSmallDataBits)) { |
| WriteTaggedPC(pc_delta, kLocatableTag); |
| WriteTaggedData(id_delta, kCodeWithIdTag); |
| } else { |
| // Otherwise, use costly encoding. |
| WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); |
| WriteExtraTaggedIntData(id_delta, kCodeWithIdTag); |
| } |
| last_id_ = static_cast<int>(rinfo->data()); |
| } else if (RelocInfo::IsPosition(rmode)) { |
| // Use signed delta-encoding for position. |
| ASSERT(static_cast<int>(rinfo->data()) == rinfo->data()); |
| int pos_delta = static_cast<int>(rinfo->data()) - last_position_; |
| int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag |
| : kStatementPositionTag; |
| // Check if delta is small enough to fit in a tagged byte. |
| if (is_intn(pos_delta, kSmallDataBits)) { |
| WriteTaggedPC(pc_delta, kLocatableTag); |
| WriteTaggedData(pos_delta, pos_type_tag); |
| } else { |
| // Otherwise, use costly encoding. |
| WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); |
| WriteExtraTaggedIntData(pos_delta, pos_type_tag); |
| } |
| last_position_ = static_cast<int>(rinfo->data()); |
| } else if (RelocInfo::IsComment(rmode)) { |
| // Comments are normally not generated, so we use the costly encoding. |
| WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); |
| WriteExtraTaggedData(rinfo->data(), kCommentTag); |
| ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize); |
| } else { |
| ASSERT(rmode > RelocInfo::LAST_COMPACT_ENUM); |
| int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM; |
| // For all other modes we simply use the mode as the extra tag. |
| // None of these modes need a data component. |
| ASSERT(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag); |
| WriteExtraTaggedPC(pc_delta, saved_mode); |
| } |
| last_pc_ = rinfo->pc(); |
| #ifdef DEBUG |
| ASSERT(begin_pos - pos_ <= kMaxSize); |
| #endif |
| } |
| |
| |
| inline int RelocIterator::AdvanceGetTag() { |
| return *--pos_ & kTagMask; |
| } |
| |
| |
| inline int RelocIterator::GetExtraTag() { |
| return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1); |
| } |
| |
| |
| inline int RelocIterator::GetTopTag() { |
| return *pos_ >> (kTagBits + kExtraTagBits); |
| } |
| |
| |
| inline void RelocIterator::ReadTaggedPC() { |
| rinfo_.pc_ += *pos_ >> kTagBits; |
| } |
| |
| |
| inline void RelocIterator::AdvanceReadPC() { |
| rinfo_.pc_ += *--pos_; |
| } |
| |
| |
| void RelocIterator::AdvanceReadId() { |
| int x = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| x |= static_cast<int>(*--pos_) << i * kBitsPerByte; |
| } |
| last_id_ += x; |
| rinfo_.data_ = last_id_; |
| } |
| |
| |
| void RelocIterator::AdvanceReadPosition() { |
| int x = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| x |= static_cast<int>(*--pos_) << i * kBitsPerByte; |
| } |
| last_position_ += x; |
| rinfo_.data_ = last_position_; |
| } |
| |
| |
| void RelocIterator::AdvanceReadData() { |
| intptr_t x = 0; |
| for (int i = 0; i < kIntptrSize; i++) { |
| x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte; |
| } |
| rinfo_.data_ = x; |
| } |
| |
| |
| void RelocIterator::AdvanceReadVariableLengthPCJump() { |
| // Read the 32-kSmallPCDeltaBits most significant bits of the |
| // pc jump in kChunkBits bit chunks and shift them into place. |
| // Stop when the last chunk is encountered. |
| uint32_t pc_jump = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| byte pc_jump_part = *--pos_; |
| pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits; |
| if ((pc_jump_part & kLastChunkTagMask) == 1) break; |
| } |
| // The least significant kSmallPCDeltaBits bits will be added |
| // later. |
| rinfo_.pc_ += pc_jump << kSmallPCDeltaBits; |
| } |
| |
| |
| inline int RelocIterator::GetLocatableTypeTag() { |
| return *pos_ & ((1 << kLocatableTypeTagBits) - 1); |
| } |
| |
| |
| inline void RelocIterator::ReadTaggedId() { |
| int8_t signed_b = *pos_; |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| last_id_ += signed_b >> kLocatableTypeTagBits; |
| rinfo_.data_ = last_id_; |
| } |
| |
| |
| inline void RelocIterator::ReadTaggedPosition() { |
| int8_t signed_b = *pos_; |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| last_position_ += signed_b >> kLocatableTypeTagBits; |
| rinfo_.data_ = last_position_; |
| } |
| |
| |
| static inline RelocInfo::Mode GetPositionModeFromTag(int tag) { |
| ASSERT(tag == kNonstatementPositionTag || |
| tag == kStatementPositionTag); |
| return (tag == kNonstatementPositionTag) ? |
| RelocInfo::POSITION : |
| RelocInfo::STATEMENT_POSITION; |
| } |
| |
| |
| void RelocIterator::next() { |
| ASSERT(!done()); |
| // Basically, do the opposite of RelocInfoWriter::Write. |
| // Reading of data is as far as possible avoided for unwanted modes, |
| // but we must always update the pc. |
| // |
| // We exit this loop by returning when we find a mode we want. |
| while (pos_ > end_) { |
| int tag = AdvanceGetTag(); |
| if (tag == kEmbeddedObjectTag) { |
| ReadTaggedPC(); |
| if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return; |
| } else if (tag == kCodeTargetTag) { |
| ReadTaggedPC(); |
| if (SetMode(RelocInfo::CODE_TARGET)) return; |
| } else if (tag == kLocatableTag) { |
| ReadTaggedPC(); |
| Advance(); |
| int locatable_tag = GetLocatableTypeTag(); |
| if (locatable_tag == kCodeWithIdTag) { |
| if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { |
| ReadTaggedId(); |
| return; |
| } |
| } else { |
| // Compact encoding is never used for comments, |
| // so it must be a position. |
| ASSERT(locatable_tag == kNonstatementPositionTag || |
| locatable_tag == kStatementPositionTag); |
| if (mode_mask_ & RelocInfo::kPositionMask) { |
| ReadTaggedPosition(); |
| if (SetMode(GetPositionModeFromTag(locatable_tag))) return; |
| } |
| } |
| } else { |
| ASSERT(tag == kDefaultTag); |
| int extra_tag = GetExtraTag(); |
| if (extra_tag == kPCJumpExtraTag) { |
| int top_tag = GetTopTag(); |
| if (top_tag == kVariableLengthPCJumpTopTag) { |
| AdvanceReadVariableLengthPCJump(); |
| } else { |
| AdvanceReadPC(); |
| } |
| } else if (extra_tag == kDataJumpExtraTag) { |
| int locatable_tag = GetTopTag(); |
| if (locatable_tag == kCodeWithIdTag) { |
| if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { |
| AdvanceReadId(); |
| return; |
| } |
| Advance(kIntSize); |
| } else if (locatable_tag != kCommentTag) { |
| ASSERT(locatable_tag == kNonstatementPositionTag || |
| locatable_tag == kStatementPositionTag); |
| if (mode_mask_ & RelocInfo::kPositionMask) { |
| AdvanceReadPosition(); |
| if (SetMode(GetPositionModeFromTag(locatable_tag))) return; |
| } else { |
| Advance(kIntSize); |
| } |
| } else { |
| ASSERT(locatable_tag == kCommentTag); |
| if (SetMode(RelocInfo::COMMENT)) { |
| AdvanceReadData(); |
| return; |
| } |
| Advance(kIntptrSize); |
| } |
| } else { |
| AdvanceReadPC(); |
| int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM; |
| if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return; |
| } |
| } |
| } |
| done_ = true; |
| } |
| |
| |
| RelocIterator::RelocIterator(Code* code, int mode_mask) { |
| rinfo_.host_ = code; |
| rinfo_.pc_ = code->instruction_start(); |
| rinfo_.data_ = 0; |
| // Relocation info is read backwards. |
| pos_ = code->relocation_start() + code->relocation_size(); |
| end_ = code->relocation_start(); |
| done_ = false; |
| mode_mask_ = mode_mask; |
| last_id_ = 0; |
| last_position_ = 0; |
| if (mode_mask_ == 0) pos_ = end_; |
| next(); |
| } |
| |
| |
| RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) { |
| rinfo_.pc_ = desc.buffer; |
| rinfo_.data_ = 0; |
| // Relocation info is read backwards. |
| pos_ = desc.buffer + desc.buffer_size; |
| end_ = pos_ - desc.reloc_size; |
| done_ = false; |
| mode_mask_ = mode_mask; |
| last_id_ = 0; |
| last_position_ = 0; |
| if (mode_mask_ == 0) pos_ = end_; |
| next(); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| |
| #ifdef ENABLE_DISASSEMBLER |
| const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) { |
| switch (rmode) { |
| case RelocInfo::NONE: |
| return "no reloc"; |
| case RelocInfo::EMBEDDED_OBJECT: |
| return "embedded object"; |
| case RelocInfo::CONSTRUCT_CALL: |
| return "code target (js construct call)"; |
| case RelocInfo::CODE_TARGET_CONTEXT: |
| return "code target (context)"; |
| case RelocInfo::DEBUG_BREAK: |
| #ifndef ENABLE_DEBUGGER_SUPPORT |
| UNREACHABLE(); |
| #endif |
| return "debug break"; |
| case RelocInfo::CODE_TARGET: |
| return "code target"; |
| case RelocInfo::CODE_TARGET_WITH_ID: |
| return "code target with id"; |
| case RelocInfo::GLOBAL_PROPERTY_CELL: |
| return "global property cell"; |
| case RelocInfo::RUNTIME_ENTRY: |
| return "runtime entry"; |
| case RelocInfo::JS_RETURN: |
| return "js return"; |
| case RelocInfo::COMMENT: |
| return "comment"; |
| case RelocInfo::POSITION: |
| return "position"; |
| case RelocInfo::STATEMENT_POSITION: |
| return "statement position"; |
| case RelocInfo::EXTERNAL_REFERENCE: |
| return "external reference"; |
| case RelocInfo::INTERNAL_REFERENCE: |
| return "internal reference"; |
| case RelocInfo::DEBUG_BREAK_SLOT: |
| #ifndef ENABLE_DEBUGGER_SUPPORT |
| UNREACHABLE(); |
| #endif |
| return "debug break slot"; |
| case RelocInfo::NUMBER_OF_MODES: |
| UNREACHABLE(); |
| return "number_of_modes"; |
| } |
| return "unknown relocation type"; |
| } |
| |
| |
| void RelocInfo::Print(FILE* out) { |
| PrintF(out, "%p %s", pc_, RelocModeName(rmode_)); |
| if (IsComment(rmode_)) { |
| PrintF(out, " (%s)", reinterpret_cast<char*>(data_)); |
| } else if (rmode_ == EMBEDDED_OBJECT) { |
| PrintF(out, " ("); |
| target_object()->ShortPrint(out); |
| PrintF(out, ")"); |
| } else if (rmode_ == EXTERNAL_REFERENCE) { |
| ExternalReferenceEncoder ref_encoder; |
| PrintF(out, " (%s) (%p)", |
| ref_encoder.NameOfAddress(*target_reference_address()), |
| *target_reference_address()); |
| } else if (IsCodeTarget(rmode_)) { |
| Code* code = Code::GetCodeFromTargetAddress(target_address()); |
| PrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()), |
| target_address()); |
| if (rmode_ == CODE_TARGET_WITH_ID) { |
| PrintF(" (id=%d)", static_cast<int>(data_)); |
| } |
| } else if (IsPosition(rmode_)) { |
| PrintF(out, " (%" V8_PTR_PREFIX "d)", data()); |
| } else if (rmode_ == RelocInfo::RUNTIME_ENTRY && |
| Isolate::Current()->deoptimizer_data() != NULL) { |
| // Depotimization bailouts are stored as runtime entries. |
| int id = Deoptimizer::GetDeoptimizationId( |
| target_address(), Deoptimizer::EAGER); |
| if (id != Deoptimizer::kNotDeoptimizationEntry) { |
| PrintF(out, " (deoptimization bailout %d)", id); |
| } |
| } |
| |
| PrintF(out, "\n"); |
| } |
| #endif // ENABLE_DISASSEMBLER |
| |
| |
| #ifdef DEBUG |
| void RelocInfo::Verify() { |
| switch (rmode_) { |
| case EMBEDDED_OBJECT: |
| Object::VerifyPointer(target_object()); |
| break; |
| case GLOBAL_PROPERTY_CELL: |
| Object::VerifyPointer(target_cell()); |
| break; |
| case DEBUG_BREAK: |
| #ifndef ENABLE_DEBUGGER_SUPPORT |
| UNREACHABLE(); |
| break; |
| #endif |
| case CONSTRUCT_CALL: |
| case CODE_TARGET_CONTEXT: |
| case CODE_TARGET_WITH_ID: |
| case CODE_TARGET: { |
| // convert inline target address to code object |
| Address addr = target_address(); |
| ASSERT(addr != NULL); |
| // Check that we can find the right code object. |
| Code* code = Code::GetCodeFromTargetAddress(addr); |
| Object* found = HEAP->FindCodeObject(addr); |
| ASSERT(found->IsCode()); |
| ASSERT(code->address() == HeapObject::cast(found)->address()); |
| break; |
| } |
| case RUNTIME_ENTRY: |
| case JS_RETURN: |
| case COMMENT: |
| case POSITION: |
| case STATEMENT_POSITION: |
| case EXTERNAL_REFERENCE: |
| case INTERNAL_REFERENCE: |
| case DEBUG_BREAK_SLOT: |
| case NONE: |
| break; |
| case NUMBER_OF_MODES: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| #endif // DEBUG |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of ExternalReference |
| |
| ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate) |
| : address_(Redirect(isolate, Builtins::c_function_address(id))) {} |
| |
| |
| ExternalReference::ExternalReference( |
| ApiFunction* fun, |
| Type type = ExternalReference::BUILTIN_CALL, |
| Isolate* isolate = NULL) |
| : address_(Redirect(isolate, fun->address(), type)) {} |
| |
| |
| ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate) |
| : address_(isolate->builtins()->builtin_address(name)) {} |
| |
| |
| ExternalReference::ExternalReference(Runtime::FunctionId id, |
| Isolate* isolate) |
| : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {} |
| |
| |
| ExternalReference::ExternalReference(const Runtime::Function* f, |
| Isolate* isolate) |
| : address_(Redirect(isolate, f->entry)) {} |
| |
| |
| ExternalReference ExternalReference::isolate_address() { |
| return ExternalReference(Isolate::Current()); |
| } |
| |
| |
| ExternalReference::ExternalReference(const IC_Utility& ic_utility, |
| Isolate* isolate) |
| : address_(Redirect(isolate, ic_utility.address())) {} |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ExternalReference::ExternalReference(const Debug_Address& debug_address, |
| Isolate* isolate) |
| : address_(debug_address.address(isolate)) {} |
| #endif |
| |
| ExternalReference::ExternalReference(StatsCounter* counter) |
| : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {} |
| |
| |
| ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate) |
| : address_(isolate->get_address_from_id(id)) {} |
| |
| |
| ExternalReference::ExternalReference(const SCTableReference& table_ref) |
| : address_(table_ref.address()) {} |
| |
| |
| ExternalReference ExternalReference:: |
| incremental_marking_record_write_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode))); |
| } |
| |
| |
| ExternalReference ExternalReference:: |
| incremental_evacuation_record_write_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(IncrementalMarking::RecordWriteForEvacuationFromCode))); |
| } |
| |
| |
| ExternalReference ExternalReference:: |
| store_buffer_overflow_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow))); |
| } |
| |
| |
| ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache))); |
| } |
| |
| |
| ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) { |
| return |
| ExternalReference(Redirect(isolate, FUNCTION_ADDR(Runtime::PerformGC))); |
| } |
| |
| |
| ExternalReference ExternalReference::fill_heap_number_with_random_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(V8::FillHeapNumberWithRandom))); |
| } |
| |
| |
| ExternalReference ExternalReference::delete_handle_scope_extensions( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(HandleScope::DeleteExtensions))); |
| } |
| |
| |
| ExternalReference ExternalReference::random_uint32_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(V8::Random))); |
| } |
| |
| |
| ExternalReference ExternalReference::get_date_field_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField))); |
| } |
| |
| |
| ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) { |
| return ExternalReference(isolate->date_cache()->stamp_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::transcendental_cache_array_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->transcendental_cache()->cache_array_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::new_deoptimizer_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New))); |
| } |
| |
| |
| ExternalReference ExternalReference::compute_output_frames_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames))); |
| } |
| |
| |
| ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) { |
| return ExternalReference(isolate->keyed_lookup_cache()->keys_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::keyed_lookup_cache_field_offsets( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->keyed_lookup_cache()->field_offsets_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::roots_array_start(Isolate* isolate) { |
| return ExternalReference(isolate->heap()->roots_array_start()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) { |
| return ExternalReference(isolate->stack_guard()->address_of_jslimit()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_real_stack_limit( |
| Isolate* isolate) { |
| return ExternalReference(isolate->stack_guard()->address_of_real_jslimit()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_limit( |
| Isolate* isolate) { |
| return ExternalReference(isolate->regexp_stack()->limit_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::new_space_start(Isolate* isolate) { |
| return ExternalReference(isolate->heap()->NewSpaceStart()); |
| } |
| |
| |
| ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) { |
| return ExternalReference(isolate->heap()->store_buffer()->TopAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::new_space_mask(Isolate* isolate) { |
| return ExternalReference(reinterpret_cast<Address>( |
| isolate->heap()->NewSpaceMask())); |
| } |
| |
| |
| ExternalReference ExternalReference::new_space_allocation_top_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::heap_always_allocate_scope_depth( |
| Isolate* isolate) { |
| Heap* heap = isolate->heap(); |
| return ExternalReference(heap->always_allocate_scope_depth_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::new_space_allocation_limit_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::handle_scope_level_address() { |
| return ExternalReference(HandleScope::current_level_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::handle_scope_next_address() { |
| return ExternalReference(HandleScope::current_next_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::handle_scope_limit_address() { |
| return ExternalReference(HandleScope::current_limit_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::scheduled_exception_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->scheduled_exception_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_min_int() { |
| return ExternalReference(reinterpret_cast<void*>( |
| &double_constants.Pointer()->min_int)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_one_half() { |
| return ExternalReference(reinterpret_cast<void*>( |
| &double_constants.Pointer()->one_half)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_minus_zero() { |
| return ExternalReference(reinterpret_cast<void*>( |
| &double_constants.Pointer()->minus_zero)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_zero() { |
| return ExternalReference(reinterpret_cast<void*>( |
| &double_constants.Pointer()->zero)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_uint8_max_value() { |
| return ExternalReference(reinterpret_cast<void*>( |
| &double_constants.Pointer()->uint8_max_value)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_negative_infinity() { |
| return ExternalReference(reinterpret_cast<void*>( |
| &double_constants.Pointer()->negative_infinity)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_canonical_non_hole_nan() { |
| return ExternalReference(reinterpret_cast<void*>( |
| &double_constants.Pointer()->canonical_non_hole_nan)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_the_hole_nan() { |
| return ExternalReference(reinterpret_cast<void*>( |
| &double_constants.Pointer()->the_hole_nan)); |
| } |
| |
| |
| #ifndef V8_INTERPRETED_REGEXP |
| |
| ExternalReference ExternalReference::re_check_stack_guard_state( |
| Isolate* isolate) { |
| Address function; |
| #ifdef V8_TARGET_ARCH_X64 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_IA32 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_ARM |
| function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_MIPS |
| function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); |
| #else |
| UNREACHABLE(); |
| #endif |
| return ExternalReference(Redirect(isolate, function)); |
| } |
| |
| ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack))); |
| } |
| |
| ExternalReference ExternalReference::re_case_insensitive_compare_uc16( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16))); |
| } |
| |
| ExternalReference ExternalReference::re_word_character_map() { |
| return ExternalReference( |
| NativeRegExpMacroAssembler::word_character_map_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_static_offsets_vector( |
| Isolate* isolate) { |
| return ExternalReference( |
| OffsetsVector::static_offsets_vector_address(isolate)); |
| } |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_memory_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->regexp_stack()->memory_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_memory_size( |
| Isolate* isolate) { |
| return ExternalReference(isolate->regexp_stack()->memory_size_address()); |
| } |
| |
| #endif // V8_INTERPRETED_REGEXP |
| |
| |
| static double add_two_doubles(double x, double y) { |
| return x + y; |
| } |
| |
| |
| static double sub_two_doubles(double x, double y) { |
| return x - y; |
| } |
| |
| |
| static double mul_two_doubles(double x, double y) { |
| return x * y; |
| } |
| |
| |
| static double div_two_doubles(double x, double y) { |
| return x / y; |
| } |
| |
| |
| static double mod_two_doubles(double x, double y) { |
| return modulo(x, y); |
| } |
| |
| |
| static double math_sin_double(double x) { |
| return sin(x); |
| } |
| |
| |
| static double math_cos_double(double x) { |
| return cos(x); |
| } |
| |
| |
| static double math_tan_double(double x) { |
| return tan(x); |
| } |
| |
| |
| static double math_log_double(double x) { |
| return log(x); |
| } |
| |
| |
| ExternalReference ExternalReference::math_sin_double_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(math_sin_double), |
| BUILTIN_FP_CALL)); |
| } |
| |
| |
| ExternalReference ExternalReference::math_cos_double_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(math_cos_double), |
| BUILTIN_FP_CALL)); |
| } |
| |
| |
| ExternalReference ExternalReference::math_tan_double_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(math_tan_double), |
| BUILTIN_FP_CALL)); |
| } |
| |
| |
| ExternalReference ExternalReference::math_log_double_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(math_log_double), |
| BUILTIN_FP_CALL)); |
| } |
| |
| |
| // Helper function to compute x^y, where y is known to be an |
| // integer. Uses binary decomposition to limit the number of |
| // multiplications; see the discussion in "Hacker's Delight" by Henry |
| // S. Warren, Jr., figure 11-6, page 213. |
| double power_double_int(double x, int y) { |
| double m = (y < 0) ? 1 / x : x; |
| unsigned n = (y < 0) ? -y : y; |
| double p = 1; |
| while (n != 0) { |
| if ((n & 1) != 0) p *= m; |
| m *= m; |
| if ((n & 2) != 0) p *= m; |
| m *= m; |
| n >>= 2; |
| } |
| return p; |
| } |
| |
| |
| double power_double_double(double x, double y) { |
| // The checks for special cases can be dropped in ia32 because it has already |
| // been done in generated code before bailing out here. |
| if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) return OS::nan_value(); |
| return pow(x, y); |
| } |
| |
| |
| ExternalReference ExternalReference::power_double_double_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(power_double_double), |
| BUILTIN_FP_FP_CALL)); |
| } |
| |
| |
| ExternalReference ExternalReference::power_double_int_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(power_double_int), |
| BUILTIN_FP_INT_CALL)); |
| } |
| |
| |
| static int native_compare_doubles(double y, double x) { |
| if (x == y) return EQUAL; |
| return x < y ? LESS : GREATER; |
| } |
| |
| |
| bool EvalComparison(Token::Value op, double op1, double op2) { |
| ASSERT(Token::IsCompareOp(op)); |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: return (op1 == op2); |
| case Token::NE: return (op1 != op2); |
| case Token::LT: return (op1 < op2); |
| case Token::GT: return (op1 > op2); |
| case Token::LTE: return (op1 <= op2); |
| case Token::GTE: return (op1 >= op2); |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| |
| ExternalReference ExternalReference::double_fp_operation( |
| Token::Value operation, Isolate* isolate) { |
| typedef double BinaryFPOperation(double x, double y); |
| BinaryFPOperation* function = NULL; |
| switch (operation) { |
| case Token::ADD: |
| function = &add_two_doubles; |
| break; |
| case Token::SUB: |
| function = &sub_two_doubles; |
| break; |
| case Token::MUL: |
| function = &mul_two_doubles; |
| break; |
| case Token::DIV: |
| function = &div_two_doubles; |
| break; |
| case Token::MOD: |
| function = &mod_two_doubles; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(function), |
| BUILTIN_FP_FP_CALL)); |
| } |
| |
| |
| ExternalReference ExternalReference::compare_doubles(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(native_compare_doubles), |
| BUILTIN_COMPARE_CALL)); |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ExternalReference ExternalReference::debug_break(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break))); |
| } |
| |
| |
| ExternalReference ExternalReference::debug_step_in_fp_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->step_in_fp_addr()); |
| } |
| #endif |
| |
| |
| void PositionsRecorder::RecordPosition(int pos) { |
| ASSERT(pos != RelocInfo::kNoPosition); |
| ASSERT(pos >= 0); |
| state_.current_position = pos; |
| #ifdef ENABLE_GDB_JIT_INTERFACE |
| if (gdbjit_lineinfo_ != NULL) { |
| gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false); |
| } |
| #endif |
| } |
| |
| |
| void PositionsRecorder::RecordStatementPosition(int pos) { |
| ASSERT(pos != RelocInfo::kNoPosition); |
| ASSERT(pos >= 0); |
| state_.current_statement_position = pos; |
| #ifdef ENABLE_GDB_JIT_INTERFACE |
| if (gdbjit_lineinfo_ != NULL) { |
| gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true); |
| } |
| #endif |
| } |
| |
| |
| bool PositionsRecorder::WriteRecordedPositions() { |
| bool written = false; |
| |
| // Write the statement position if it is different from what was written last |
| // time. |
| if (state_.current_statement_position != state_.written_statement_position) { |
| EnsureSpace ensure_space(assembler_); |
| assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION, |
| state_.current_statement_position); |
| state_.written_statement_position = state_.current_statement_position; |
| written = true; |
| } |
| |
| // Write the position if it is different from what was written last time and |
| // also different from the written statement position. |
| if (state_.current_position != state_.written_position && |
| state_.current_position != state_.written_statement_position) { |
| EnsureSpace ensure_space(assembler_); |
| assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position); |
| state_.written_position = state_.current_position; |
| written = true; |
| } |
| |
| // Return whether something was written. |
| return written; |
| } |
| |
| } } // namespace v8::internal |