| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "api.h" |
| #include "arguments.h" |
| #include "bootstrapper.h" |
| #include "builtins.h" |
| #include "gdb-jit.h" |
| #include "ic-inl.h" |
| #include "heap-profiler.h" |
| #include "mark-compact.h" |
| #include "vm-state-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| namespace { |
| |
| // Arguments object passed to C++ builtins. |
| template <BuiltinExtraArguments extra_args> |
| class BuiltinArguments : public Arguments { |
| public: |
| BuiltinArguments(int length, Object** arguments) |
| : Arguments(length, arguments) { } |
| |
| Object*& operator[] (int index) { |
| ASSERT(index < length()); |
| return Arguments::operator[](index); |
| } |
| |
| template <class S> Handle<S> at(int index) { |
| ASSERT(index < length()); |
| return Arguments::at<S>(index); |
| } |
| |
| Handle<Object> receiver() { |
| return Arguments::at<Object>(0); |
| } |
| |
| Handle<JSFunction> called_function() { |
| STATIC_ASSERT(extra_args == NEEDS_CALLED_FUNCTION); |
| return Arguments::at<JSFunction>(Arguments::length() - 1); |
| } |
| |
| // Gets the total number of arguments including the receiver (but |
| // excluding extra arguments). |
| int length() const { |
| STATIC_ASSERT(extra_args == NO_EXTRA_ARGUMENTS); |
| return Arguments::length(); |
| } |
| |
| #ifdef DEBUG |
| void Verify() { |
| // Check we have at least the receiver. |
| ASSERT(Arguments::length() >= 1); |
| } |
| #endif |
| }; |
| |
| |
| // Specialize BuiltinArguments for the called function extra argument. |
| |
| template <> |
| int BuiltinArguments<NEEDS_CALLED_FUNCTION>::length() const { |
| return Arguments::length() - 1; |
| } |
| |
| #ifdef DEBUG |
| template <> |
| void BuiltinArguments<NEEDS_CALLED_FUNCTION>::Verify() { |
| // Check we have at least the receiver and the called function. |
| ASSERT(Arguments::length() >= 2); |
| // Make sure cast to JSFunction succeeds. |
| called_function(); |
| } |
| #endif |
| |
| |
| #define DEF_ARG_TYPE(name, spec) \ |
| typedef BuiltinArguments<spec> name##ArgumentsType; |
| BUILTIN_LIST_C(DEF_ARG_TYPE) |
| #undef DEF_ARG_TYPE |
| |
| } // namespace |
| |
| // ---------------------------------------------------------------------------- |
| // Support macro for defining builtins in C++. |
| // ---------------------------------------------------------------------------- |
| // |
| // A builtin function is defined by writing: |
| // |
| // BUILTIN(name) { |
| // ... |
| // } |
| // |
| // In the body of the builtin function the arguments can be accessed |
| // through the BuiltinArguments object args. |
| |
| #ifdef DEBUG |
| |
| #define BUILTIN(name) \ |
| MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ |
| name##ArgumentsType args, Isolate* isolate); \ |
| MUST_USE_RESULT static MaybeObject* Builtin_##name( \ |
| name##ArgumentsType args, Isolate* isolate) { \ |
| ASSERT(isolate == Isolate::Current()); \ |
| args.Verify(); \ |
| return Builtin_Impl_##name(args, isolate); \ |
| } \ |
| MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ |
| name##ArgumentsType args, Isolate* isolate) |
| |
| #else // For release mode. |
| |
| #define BUILTIN(name) \ |
| static MaybeObject* Builtin_##name(name##ArgumentsType args, Isolate* isolate) |
| |
| #endif |
| |
| |
| static inline bool CalledAsConstructor(Isolate* isolate) { |
| #ifdef DEBUG |
| // Calculate the result using a full stack frame iterator and check |
| // that the state of the stack is as we assume it to be in the |
| // code below. |
| StackFrameIterator it; |
| ASSERT(it.frame()->is_exit()); |
| it.Advance(); |
| StackFrame* frame = it.frame(); |
| bool reference_result = frame->is_construct(); |
| #endif |
| Address fp = Isolate::c_entry_fp(isolate->thread_local_top()); |
| // Because we know fp points to an exit frame we can use the relevant |
| // part of ExitFrame::ComputeCallerState directly. |
| const int kCallerOffset = ExitFrameConstants::kCallerFPOffset; |
| Address caller_fp = Memory::Address_at(fp + kCallerOffset); |
| // This inlines the part of StackFrame::ComputeType that grabs the |
| // type of the current frame. Note that StackFrame::ComputeType |
| // has been specialized for each architecture so if any one of them |
| // changes this code has to be changed as well. |
| const int kMarkerOffset = StandardFrameConstants::kMarkerOffset; |
| const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT); |
| Object* marker = Memory::Object_at(caller_fp + kMarkerOffset); |
| bool result = (marker == kConstructMarker); |
| ASSERT_EQ(result, reference_result); |
| return result; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| BUILTIN(Illegal) { |
| UNREACHABLE(); |
| return isolate->heap()->undefined_value(); // Make compiler happy. |
| } |
| |
| |
| BUILTIN(EmptyFunction) { |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| static MaybeObject* ArrayCodeGenericCommon(Arguments* args, |
| Isolate* isolate, |
| JSFunction* constructor) { |
| Heap* heap = isolate->heap(); |
| isolate->counters()->array_function_runtime()->Increment(); |
| |
| JSArray* array; |
| if (CalledAsConstructor(isolate)) { |
| array = JSArray::cast((*args)[0]); |
| // Initialize elements and length in case later allocations fail so that the |
| // array object is initialized in a valid state. |
| array->set_length(Smi::FromInt(0)); |
| array->set_elements(heap->empty_fixed_array()); |
| if (!FLAG_smi_only_arrays) { |
| Context* global_context = isolate->context()->global_context(); |
| if (array->GetElementsKind() == FAST_SMI_ONLY_ELEMENTS && |
| !global_context->object_js_array_map()->IsUndefined()) { |
| array->set_map(Map::cast(global_context->object_js_array_map())); |
| } |
| } |
| } else { |
| // Allocate the JS Array |
| MaybeObject* maybe_obj = heap->AllocateJSObject(constructor); |
| if (!maybe_obj->To(&array)) return maybe_obj; |
| } |
| |
| // Optimize the case where there is one argument and the argument is a |
| // small smi. |
| if (args->length() == 2) { |
| Object* obj = (*args)[1]; |
| if (obj->IsSmi()) { |
| int len = Smi::cast(obj)->value(); |
| if (len >= 0 && len < JSObject::kInitialMaxFastElementArray) { |
| Object* fixed_array; |
| { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(len); |
| if (!maybe_obj->ToObject(&fixed_array)) return maybe_obj; |
| } |
| // We do not use SetContent to skip the unnecessary elements type check. |
| array->set_elements(FixedArray::cast(fixed_array)); |
| array->set_length(Smi::cast(obj)); |
| return array; |
| } |
| } |
| // Take the argument as the length. |
| { MaybeObject* maybe_obj = array->Initialize(0); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| return array->SetElementsLength((*args)[1]); |
| } |
| |
| // Optimize the case where there are no parameters passed. |
| if (args->length() == 1) { |
| return array->Initialize(JSArray::kPreallocatedArrayElements); |
| } |
| |
| // Set length and elements on the array. |
| int number_of_elements = args->length() - 1; |
| MaybeObject* maybe_object = |
| array->EnsureCanContainElements(args, 1, number_of_elements, |
| ALLOW_CONVERTED_DOUBLE_ELEMENTS); |
| if (maybe_object->IsFailure()) return maybe_object; |
| |
| // Allocate an appropriately typed elements array. |
| MaybeObject* maybe_elms; |
| ElementsKind elements_kind = array->GetElementsKind(); |
| if (elements_kind == FAST_DOUBLE_ELEMENTS) { |
| maybe_elms = heap->AllocateUninitializedFixedDoubleArray( |
| number_of_elements); |
| } else { |
| maybe_elms = heap->AllocateFixedArrayWithHoles(number_of_elements); |
| } |
| FixedArrayBase* elms; |
| if (!maybe_elms->To<FixedArrayBase>(&elms)) return maybe_elms; |
| |
| // Fill in the content |
| switch (array->GetElementsKind()) { |
| case FAST_SMI_ONLY_ELEMENTS: { |
| FixedArray* smi_elms = FixedArray::cast(elms); |
| for (int index = 0; index < number_of_elements; index++) { |
| smi_elms->set(index, (*args)[index+1], SKIP_WRITE_BARRIER); |
| } |
| break; |
| } |
| case FAST_ELEMENTS: { |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
| FixedArray* object_elms = FixedArray::cast(elms); |
| for (int index = 0; index < number_of_elements; index++) { |
| object_elms->set(index, (*args)[index+1], mode); |
| } |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| FixedDoubleArray* double_elms = FixedDoubleArray::cast(elms); |
| for (int index = 0; index < number_of_elements; index++) { |
| double_elms->set(index, (*args)[index+1]->Number()); |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| array->set_elements(elms); |
| array->set_length(Smi::FromInt(number_of_elements)); |
| return array; |
| } |
| |
| |
| BUILTIN(InternalArrayCodeGeneric) { |
| return ArrayCodeGenericCommon( |
| &args, |
| isolate, |
| isolate->context()->global_context()->internal_array_function()); |
| } |
| |
| |
| BUILTIN(ArrayCodeGeneric) { |
| return ArrayCodeGenericCommon( |
| &args, |
| isolate, |
| isolate->context()->global_context()->array_function()); |
| } |
| |
| |
| static void MoveElements(Heap* heap, |
| AssertNoAllocation* no_gc, |
| FixedArray* dst, |
| int dst_index, |
| FixedArray* src, |
| int src_index, |
| int len) { |
| if (len == 0) return; |
| ASSERT(dst->map() != HEAP->fixed_cow_array_map()); |
| memmove(dst->data_start() + dst_index, |
| src->data_start() + src_index, |
| len * kPointerSize); |
| WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); |
| if (mode == UPDATE_WRITE_BARRIER) { |
| heap->RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); |
| } |
| heap->incremental_marking()->RecordWrites(dst); |
| } |
| |
| |
| static void FillWithHoles(Heap* heap, FixedArray* dst, int from, int to) { |
| ASSERT(dst->map() != heap->fixed_cow_array_map()); |
| MemsetPointer(dst->data_start() + from, heap->the_hole_value(), to - from); |
| } |
| |
| |
| static FixedArray* LeftTrimFixedArray(Heap* heap, |
| FixedArray* elms, |
| int to_trim) { |
| ASSERT(elms->map() != HEAP->fixed_cow_array_map()); |
| // For now this trick is only applied to fixed arrays in new and paged space. |
| // In large object space the object's start must coincide with chunk |
| // and thus the trick is just not applicable. |
| ASSERT(!HEAP->lo_space()->Contains(elms)); |
| |
| STATIC_ASSERT(FixedArray::kMapOffset == 0); |
| STATIC_ASSERT(FixedArray::kLengthOffset == kPointerSize); |
| STATIC_ASSERT(FixedArray::kHeaderSize == 2 * kPointerSize); |
| |
| Object** former_start = HeapObject::RawField(elms, 0); |
| |
| const int len = elms->length(); |
| |
| if (to_trim > FixedArray::kHeaderSize / kPointerSize && |
| !heap->new_space()->Contains(elms)) { |
| // If we are doing a big trim in old space then we zap the space that was |
| // formerly part of the array so that the GC (aided by the card-based |
| // remembered set) won't find pointers to new-space there. |
| Object** zap = reinterpret_cast<Object**>(elms->address()); |
| zap++; // Header of filler must be at least one word so skip that. |
| for (int i = 1; i < to_trim; i++) { |
| *zap++ = Smi::FromInt(0); |
| } |
| } |
| // Technically in new space this write might be omitted (except for |
| // debug mode which iterates through the heap), but to play safer |
| // we still do it. |
| heap->CreateFillerObjectAt(elms->address(), to_trim * kPointerSize); |
| |
| former_start[to_trim] = heap->fixed_array_map(); |
| former_start[to_trim + 1] = Smi::FromInt(len - to_trim); |
| |
| // Maintain marking consistency for HeapObjectIterator and |
| // IncrementalMarking. |
| int size_delta = to_trim * kPointerSize; |
| if (heap->marking()->TransferMark(elms->address(), |
| elms->address() + size_delta)) { |
| MemoryChunk::IncrementLiveBytesFromMutator(elms->address(), -size_delta); |
| } |
| |
| HEAP_PROFILE(heap, ObjectMoveEvent(elms->address(), |
| elms->address() + size_delta)); |
| return FixedArray::cast(HeapObject::FromAddress( |
| elms->address() + to_trim * kPointerSize)); |
| } |
| |
| |
| static bool ArrayPrototypeHasNoElements(Heap* heap, |
| Context* global_context, |
| JSObject* array_proto) { |
| // This method depends on non writability of Object and Array prototype |
| // fields. |
| if (array_proto->elements() != heap->empty_fixed_array()) return false; |
| // Object.prototype |
| Object* proto = array_proto->GetPrototype(); |
| if (proto == heap->null_value()) return false; |
| array_proto = JSObject::cast(proto); |
| if (array_proto != global_context->initial_object_prototype()) return false; |
| if (array_proto->elements() != heap->empty_fixed_array()) return false; |
| return array_proto->GetPrototype()->IsNull(); |
| } |
| |
| |
| MUST_USE_RESULT |
| static inline MaybeObject* EnsureJSArrayWithWritableFastElements( |
| Heap* heap, Object* receiver, Arguments* args, int first_added_arg) { |
| if (!receiver->IsJSArray()) return NULL; |
| JSArray* array = JSArray::cast(receiver); |
| HeapObject* elms = array->elements(); |
| Map* map = elms->map(); |
| if (map == heap->fixed_array_map()) { |
| if (args == NULL || array->HasFastElements()) return elms; |
| if (array->HasFastDoubleElements()) { |
| ASSERT(elms == heap->empty_fixed_array()); |
| MaybeObject* maybe_transition = |
| array->TransitionElementsKind(FAST_ELEMENTS); |
| if (maybe_transition->IsFailure()) return maybe_transition; |
| return elms; |
| } |
| } else if (map == heap->fixed_cow_array_map()) { |
| MaybeObject* maybe_writable_result = array->EnsureWritableFastElements(); |
| if (args == NULL || array->HasFastElements() || |
| maybe_writable_result->IsFailure()) { |
| return maybe_writable_result; |
| } |
| } else { |
| return NULL; |
| } |
| |
| // Need to ensure that the arguments passed in args can be contained in |
| // the array. |
| int args_length = args->length(); |
| if (first_added_arg >= args_length) return array->elements(); |
| |
| MaybeObject* maybe_array = array->EnsureCanContainElements( |
| args, |
| first_added_arg, |
| args_length - first_added_arg, |
| DONT_ALLOW_DOUBLE_ELEMENTS); |
| if (maybe_array->IsFailure()) return maybe_array; |
| return array->elements(); |
| } |
| |
| |
| static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap, |
| JSArray* receiver) { |
| if (!FLAG_clever_optimizations) return false; |
| Context* global_context = heap->isolate()->context()->global_context(); |
| JSObject* array_proto = |
| JSObject::cast(global_context->array_function()->prototype()); |
| return receiver->GetPrototype() == array_proto && |
| ArrayPrototypeHasNoElements(heap, global_context, array_proto); |
| } |
| |
| |
| MUST_USE_RESULT static MaybeObject* CallJsBuiltin( |
| Isolate* isolate, |
| const char* name, |
| BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { |
| HandleScope handleScope(isolate); |
| |
| Handle<Object> js_builtin = |
| GetProperty(Handle<JSObject>(isolate->global_context()->builtins()), |
| name); |
| Handle<JSFunction> function = Handle<JSFunction>::cast(js_builtin); |
| int argc = args.length() - 1; |
| ScopedVector<Handle<Object> > argv(argc); |
| for (int i = 0; i < argc; ++i) { |
| argv[i] = args.at<Object>(i + 1); |
| } |
| bool pending_exception; |
| Handle<Object> result = Execution::Call(function, |
| args.receiver(), |
| argc, |
| argv.start(), |
| &pending_exception); |
| if (pending_exception) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| BUILTIN(ArrayPush) { |
| Heap* heap = isolate->heap(); |
| Object* receiver = *args.receiver(); |
| Object* elms_obj; |
| { MaybeObject* maybe_elms_obj = |
| EnsureJSArrayWithWritableFastElements(heap, receiver, &args, 1); |
| if (maybe_elms_obj == NULL) { |
| return CallJsBuiltin(isolate, "ArrayPush", args); |
| } |
| if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| } |
| FixedArray* elms = FixedArray::cast(elms_obj); |
| JSArray* array = JSArray::cast(receiver); |
| |
| int len = Smi::cast(array->length())->value(); |
| int to_add = args.length() - 1; |
| if (to_add == 0) { |
| return Smi::FromInt(len); |
| } |
| // Currently fixed arrays cannot grow too big, so |
| // we should never hit this case. |
| ASSERT(to_add <= (Smi::kMaxValue - len)); |
| |
| int new_length = len + to_add; |
| |
| if (new_length > elms->length()) { |
| // New backing storage is needed. |
| int capacity = new_length + (new_length >> 1) + 16; |
| Object* obj; |
| { MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* new_elms = FixedArray::cast(obj); |
| |
| CopyObjectToObjectElements(elms, FAST_ELEMENTS, 0, |
| new_elms, FAST_ELEMENTS, 0, len); |
| FillWithHoles(heap, new_elms, new_length, capacity); |
| |
| elms = new_elms; |
| } |
| |
| // Add the provided values. |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
| for (int index = 0; index < to_add; index++) { |
| elms->set(index + len, args[index + 1], mode); |
| } |
| |
| if (elms != array->elements()) { |
| array->set_elements(elms); |
| } |
| |
| // Set the length. |
| array->set_length(Smi::FromInt(new_length)); |
| return Smi::FromInt(new_length); |
| } |
| |
| |
| BUILTIN(ArrayPop) { |
| Heap* heap = isolate->heap(); |
| Object* receiver = *args.receiver(); |
| Object* elms_obj; |
| { MaybeObject* maybe_elms_obj = |
| EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0); |
| if (maybe_elms_obj == NULL) return CallJsBuiltin(isolate, "ArrayPop", args); |
| if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| } |
| FixedArray* elms = FixedArray::cast(elms_obj); |
| JSArray* array = JSArray::cast(receiver); |
| |
| int len = Smi::cast(array->length())->value(); |
| if (len == 0) return heap->undefined_value(); |
| |
| // Get top element |
| MaybeObject* top = elms->get(len - 1); |
| |
| // Set the length. |
| array->set_length(Smi::FromInt(len - 1)); |
| |
| if (!top->IsTheHole()) { |
| // Delete the top element. |
| elms->set_the_hole(len - 1); |
| return top; |
| } |
| |
| top = array->GetPrototype()->GetElement(len - 1); |
| |
| return top; |
| } |
| |
| |
| BUILTIN(ArrayShift) { |
| Heap* heap = isolate->heap(); |
| Object* receiver = *args.receiver(); |
| Object* elms_obj; |
| { MaybeObject* maybe_elms_obj = |
| EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0); |
| if (maybe_elms_obj == NULL) |
| return CallJsBuiltin(isolate, "ArrayShift", args); |
| if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| } |
| if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
| return CallJsBuiltin(isolate, "ArrayShift", args); |
| } |
| FixedArray* elms = FixedArray::cast(elms_obj); |
| JSArray* array = JSArray::cast(receiver); |
| ASSERT(array->HasFastTypeElements()); |
| |
| int len = Smi::cast(array->length())->value(); |
| if (len == 0) return heap->undefined_value(); |
| |
| // Get first element |
| Object* first = elms->get(0); |
| if (first->IsTheHole()) { |
| first = heap->undefined_value(); |
| } |
| |
| if (!heap->lo_space()->Contains(elms)) { |
| array->set_elements(LeftTrimFixedArray(heap, elms, 1)); |
| } else { |
| // Shift the elements. |
| AssertNoAllocation no_gc; |
| MoveElements(heap, &no_gc, elms, 0, elms, 1, len - 1); |
| elms->set(len - 1, heap->the_hole_value()); |
| } |
| |
| // Set the length. |
| array->set_length(Smi::FromInt(len - 1)); |
| |
| return first; |
| } |
| |
| |
| BUILTIN(ArrayUnshift) { |
| Heap* heap = isolate->heap(); |
| Object* receiver = *args.receiver(); |
| Object* elms_obj; |
| { MaybeObject* maybe_elms_obj = |
| EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0); |
| if (maybe_elms_obj == NULL) |
| return CallJsBuiltin(isolate, "ArrayUnshift", args); |
| if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| } |
| if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
| return CallJsBuiltin(isolate, "ArrayUnshift", args); |
| } |
| FixedArray* elms = FixedArray::cast(elms_obj); |
| JSArray* array = JSArray::cast(receiver); |
| ASSERT(array->HasFastTypeElements()); |
| |
| int len = Smi::cast(array->length())->value(); |
| int to_add = args.length() - 1; |
| int new_length = len + to_add; |
| // Currently fixed arrays cannot grow too big, so |
| // we should never hit this case. |
| ASSERT(to_add <= (Smi::kMaxValue - len)); |
| |
| MaybeObject* maybe_object = |
| array->EnsureCanContainElements(&args, 1, to_add, |
| DONT_ALLOW_DOUBLE_ELEMENTS); |
| if (maybe_object->IsFailure()) return maybe_object; |
| |
| if (new_length > elms->length()) { |
| // New backing storage is needed. |
| int capacity = new_length + (new_length >> 1) + 16; |
| Object* obj; |
| { MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* new_elms = FixedArray::cast(obj); |
| CopyObjectToObjectElements(elms, FAST_ELEMENTS, 0, |
| new_elms, FAST_ELEMENTS, to_add, len); |
| FillWithHoles(heap, new_elms, new_length, capacity); |
| elms = new_elms; |
| array->set_elements(elms); |
| } else { |
| AssertNoAllocation no_gc; |
| MoveElements(heap, &no_gc, elms, to_add, elms, 0, len); |
| } |
| |
| // Add the provided values. |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
| for (int i = 0; i < to_add; i++) { |
| elms->set(i, args[i + 1], mode); |
| } |
| |
| // Set the length. |
| array->set_length(Smi::FromInt(new_length)); |
| return Smi::FromInt(new_length); |
| } |
| |
| |
| BUILTIN(ArraySlice) { |
| Heap* heap = isolate->heap(); |
| Object* receiver = *args.receiver(); |
| FixedArray* elms; |
| int len = -1; |
| if (receiver->IsJSArray()) { |
| JSArray* array = JSArray::cast(receiver); |
| if (!array->HasFastTypeElements() || |
| !IsJSArrayFastElementMovingAllowed(heap, array)) { |
| return CallJsBuiltin(isolate, "ArraySlice", args); |
| } |
| |
| elms = FixedArray::cast(array->elements()); |
| len = Smi::cast(array->length())->value(); |
| } else { |
| // Array.slice(arguments, ...) is quite a common idiom (notably more |
| // than 50% of invocations in Web apps). Treat it in C++ as well. |
| Map* arguments_map = |
| isolate->context()->global_context()->arguments_boilerplate()->map(); |
| |
| bool is_arguments_object_with_fast_elements = |
| receiver->IsJSObject() |
| && JSObject::cast(receiver)->map() == arguments_map |
| && JSObject::cast(receiver)->HasFastTypeElements(); |
| if (!is_arguments_object_with_fast_elements) { |
| return CallJsBuiltin(isolate, "ArraySlice", args); |
| } |
| elms = FixedArray::cast(JSObject::cast(receiver)->elements()); |
| Object* len_obj = JSObject::cast(receiver) |
| ->InObjectPropertyAt(Heap::kArgumentsLengthIndex); |
| if (!len_obj->IsSmi()) { |
| return CallJsBuiltin(isolate, "ArraySlice", args); |
| } |
| len = Smi::cast(len_obj)->value(); |
| if (len > elms->length()) { |
| return CallJsBuiltin(isolate, "ArraySlice", args); |
| } |
| for (int i = 0; i < len; i++) { |
| if (elms->get(i) == heap->the_hole_value()) { |
| return CallJsBuiltin(isolate, "ArraySlice", args); |
| } |
| } |
| } |
| ASSERT(len >= 0); |
| int n_arguments = args.length() - 1; |
| |
| // Note carefully choosen defaults---if argument is missing, |
| // it's undefined which gets converted to 0 for relative_start |
| // and to len for relative_end. |
| int relative_start = 0; |
| int relative_end = len; |
| if (n_arguments > 0) { |
| Object* arg1 = args[1]; |
| if (arg1->IsSmi()) { |
| relative_start = Smi::cast(arg1)->value(); |
| } else if (!arg1->IsUndefined()) { |
| return CallJsBuiltin(isolate, "ArraySlice", args); |
| } |
| if (n_arguments > 1) { |
| Object* arg2 = args[2]; |
| if (arg2->IsSmi()) { |
| relative_end = Smi::cast(arg2)->value(); |
| } else if (!arg2->IsUndefined()) { |
| return CallJsBuiltin(isolate, "ArraySlice", args); |
| } |
| } |
| } |
| |
| // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. |
| int k = (relative_start < 0) ? Max(len + relative_start, 0) |
| : Min(relative_start, len); |
| |
| // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. |
| int final = (relative_end < 0) ? Max(len + relative_end, 0) |
| : Min(relative_end, len); |
| |
| ElementsKind elements_kind = JSObject::cast(receiver)->GetElementsKind(); |
| |
| // Calculate the length of result array. |
| int result_len = Max(final - k, 0); |
| |
| MaybeObject* maybe_array = |
| heap->AllocateJSArrayAndStorage(elements_kind, |
| result_len, |
| result_len); |
| JSArray* result_array; |
| if (!maybe_array->To(&result_array)) return maybe_array; |
| |
| CopyObjectToObjectElements(elms, FAST_ELEMENTS, k, |
| FixedArray::cast(result_array->elements()), |
| FAST_ELEMENTS, 0, result_len); |
| |
| return result_array; |
| } |
| |
| |
| BUILTIN(ArraySplice) { |
| Heap* heap = isolate->heap(); |
| Object* receiver = *args.receiver(); |
| Object* elms_obj; |
| { MaybeObject* maybe_elms_obj = |
| EnsureJSArrayWithWritableFastElements(heap, receiver, &args, 3); |
| if (maybe_elms_obj == NULL) |
| return CallJsBuiltin(isolate, "ArraySplice", args); |
| if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| } |
| if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
| return CallJsBuiltin(isolate, "ArraySplice", args); |
| } |
| FixedArray* elms = FixedArray::cast(elms_obj); |
| JSArray* array = JSArray::cast(receiver); |
| ASSERT(array->HasFastTypeElements()); |
| |
| int len = Smi::cast(array->length())->value(); |
| |
| int n_arguments = args.length() - 1; |
| |
| int relative_start = 0; |
| if (n_arguments > 0) { |
| Object* arg1 = args[1]; |
| if (arg1->IsSmi()) { |
| relative_start = Smi::cast(arg1)->value(); |
| } else if (!arg1->IsUndefined()) { |
| return CallJsBuiltin(isolate, "ArraySplice", args); |
| } |
| } |
| int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) |
| : Min(relative_start, len); |
| |
| // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is |
| // given as a request to delete all the elements from the start. |
| // And it differs from the case of undefined delete count. |
| // This does not follow ECMA-262, but we do the same for |
| // compatibility. |
| int actual_delete_count; |
| if (n_arguments == 1) { |
| ASSERT(len - actual_start >= 0); |
| actual_delete_count = len - actual_start; |
| } else { |
| int value = 0; // ToInteger(undefined) == 0 |
| if (n_arguments > 1) { |
| Object* arg2 = args[2]; |
| if (arg2->IsSmi()) { |
| value = Smi::cast(arg2)->value(); |
| } else { |
| return CallJsBuiltin(isolate, "ArraySplice", args); |
| } |
| } |
| actual_delete_count = Min(Max(value, 0), len - actual_start); |
| } |
| |
| JSArray* result_array = NULL; |
| ElementsKind elements_kind = |
| JSObject::cast(receiver)->GetElementsKind(); |
| MaybeObject* maybe_array = |
| heap->AllocateJSArrayAndStorage(elements_kind, |
| actual_delete_count, |
| actual_delete_count); |
| if (!maybe_array->To(&result_array)) return maybe_array; |
| |
| { |
| // Fill newly created array. |
| CopyObjectToObjectElements(elms, FAST_ELEMENTS, actual_start, |
| FixedArray::cast(result_array->elements()), |
| FAST_ELEMENTS, 0, actual_delete_count); |
| } |
| |
| int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0; |
| int new_length = len - actual_delete_count + item_count; |
| |
| bool elms_changed = false; |
| if (item_count < actual_delete_count) { |
| // Shrink the array. |
| const bool trim_array = !heap->lo_space()->Contains(elms) && |
| ((actual_start + item_count) < |
| (len - actual_delete_count - actual_start)); |
| if (trim_array) { |
| const int delta = actual_delete_count - item_count; |
| |
| { |
| AssertNoAllocation no_gc; |
| MoveElements(heap, &no_gc, elms, delta, elms, 0, actual_start); |
| } |
| |
| elms = LeftTrimFixedArray(heap, elms, delta); |
| |
| elms_changed = true; |
| } else { |
| AssertNoAllocation no_gc; |
| MoveElements(heap, &no_gc, |
| elms, actual_start + item_count, |
| elms, actual_start + actual_delete_count, |
| (len - actual_delete_count - actual_start)); |
| FillWithHoles(heap, elms, new_length, len); |
| } |
| } else if (item_count > actual_delete_count) { |
| // Currently fixed arrays cannot grow too big, so |
| // we should never hit this case. |
| ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len)); |
| |
| // Check if array need to grow. |
| if (new_length > elms->length()) { |
| // New backing storage is needed. |
| int capacity = new_length + (new_length >> 1) + 16; |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| heap->AllocateUninitializedFixedArray(capacity); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* new_elms = FixedArray::cast(obj); |
| |
| { |
| // Copy the part before actual_start as is. |
| CopyObjectToObjectElements(elms, FAST_ELEMENTS, 0, |
| new_elms, FAST_ELEMENTS, 0, actual_start); |
| const int to_copy = len - actual_delete_count - actual_start; |
| CopyObjectToObjectElements(elms, FAST_ELEMENTS, |
| actual_start + actual_delete_count, |
| new_elms, FAST_ELEMENTS, |
| actual_start + item_count, to_copy); |
| } |
| |
| FillWithHoles(heap, new_elms, new_length, capacity); |
| |
| elms = new_elms; |
| elms_changed = true; |
| } else { |
| AssertNoAllocation no_gc; |
| MoveElements(heap, &no_gc, |
| elms, actual_start + item_count, |
| elms, actual_start + actual_delete_count, |
| (len - actual_delete_count - actual_start)); |
| } |
| } |
| |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
| for (int k = actual_start; k < actual_start + item_count; k++) { |
| elms->set(k, args[3 + k - actual_start], mode); |
| } |
| |
| if (elms_changed) { |
| array->set_elements(elms); |
| } |
| |
| // Set the length. |
| array->set_length(Smi::FromInt(new_length)); |
| |
| return result_array; |
| } |
| |
| |
| BUILTIN(ArrayConcat) { |
| Heap* heap = isolate->heap(); |
| Context* global_context = isolate->context()->global_context(); |
| JSObject* array_proto = |
| JSObject::cast(global_context->array_function()->prototype()); |
| if (!ArrayPrototypeHasNoElements(heap, global_context, array_proto)) { |
| return CallJsBuiltin(isolate, "ArrayConcat", args); |
| } |
| |
| // Iterate through all the arguments performing checks |
| // and calculating total length. |
| int n_arguments = args.length(); |
| int result_len = 0; |
| ElementsKind elements_kind = FAST_SMI_ONLY_ELEMENTS; |
| for (int i = 0; i < n_arguments; i++) { |
| Object* arg = args[i]; |
| if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastTypeElements() |
| || JSArray::cast(arg)->GetPrototype() != array_proto) { |
| return CallJsBuiltin(isolate, "ArrayConcat", args); |
| } |
| |
| int len = Smi::cast(JSArray::cast(arg)->length())->value(); |
| |
| // We shouldn't overflow when adding another len. |
| const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); |
| STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); |
| USE(kHalfOfMaxInt); |
| result_len += len; |
| ASSERT(result_len >= 0); |
| |
| if (result_len > FixedArray::kMaxLength) { |
| return CallJsBuiltin(isolate, "ArrayConcat", args); |
| } |
| |
| if (!JSArray::cast(arg)->HasFastSmiOnlyElements()) { |
| elements_kind = FAST_ELEMENTS; |
| } |
| } |
| |
| // Allocate result. |
| JSArray* result_array; |
| MaybeObject* maybe_array = |
| heap->AllocateJSArrayAndStorage(elements_kind, |
| result_len, |
| result_len); |
| if (!maybe_array->To(&result_array)) return maybe_array; |
| if (result_len == 0) return result_array; |
| |
| // Copy data. |
| int start_pos = 0; |
| FixedArray* result_elms(FixedArray::cast(result_array->elements())); |
| for (int i = 0; i < n_arguments; i++) { |
| JSArray* array = JSArray::cast(args[i]); |
| int len = Smi::cast(array->length())->value(); |
| FixedArray* elms = FixedArray::cast(array->elements()); |
| CopyObjectToObjectElements(elms, FAST_ELEMENTS, 0, |
| result_elms, FAST_ELEMENTS, |
| start_pos, len); |
| start_pos += len; |
| } |
| ASSERT(start_pos == result_len); |
| |
| return result_array; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Strict mode poison pills |
| |
| |
| BUILTIN(StrictModePoisonPill) { |
| HandleScope scope; |
| return isolate->Throw(*isolate->factory()->NewTypeError( |
| "strict_poison_pill", HandleVector<Object>(NULL, 0))); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // |
| |
| |
| // Returns the holder JSObject if the function can legally be called |
| // with this receiver. Returns Heap::null_value() if the call is |
| // illegal. Any arguments that don't fit the expected type is |
| // overwritten with undefined. Arguments that do fit the expected |
| // type is overwritten with the object in the prototype chain that |
| // actually has that type. |
| static inline Object* TypeCheck(Heap* heap, |
| int argc, |
| Object** argv, |
| FunctionTemplateInfo* info) { |
| Object* recv = argv[0]; |
| // API calls are only supported with JSObject receivers. |
| if (!recv->IsJSObject()) return heap->null_value(); |
| Object* sig_obj = info->signature(); |
| if (sig_obj->IsUndefined()) return recv; |
| SignatureInfo* sig = SignatureInfo::cast(sig_obj); |
| // If necessary, check the receiver |
| Object* recv_type = sig->receiver(); |
| |
| Object* holder = recv; |
| if (!recv_type->IsUndefined()) { |
| for (; holder != heap->null_value(); holder = holder->GetPrototype()) { |
| if (holder->IsInstanceOf(FunctionTemplateInfo::cast(recv_type))) { |
| break; |
| } |
| } |
| if (holder == heap->null_value()) return holder; |
| } |
| Object* args_obj = sig->args(); |
| // If there is no argument signature we're done |
| if (args_obj->IsUndefined()) return holder; |
| FixedArray* args = FixedArray::cast(args_obj); |
| int length = args->length(); |
| if (argc <= length) length = argc - 1; |
| for (int i = 0; i < length; i++) { |
| Object* argtype = args->get(i); |
| if (argtype->IsUndefined()) continue; |
| Object** arg = &argv[-1 - i]; |
| Object* current = *arg; |
| for (; current != heap->null_value(); current = current->GetPrototype()) { |
| if (current->IsInstanceOf(FunctionTemplateInfo::cast(argtype))) { |
| *arg = current; |
| break; |
| } |
| } |
| if (current == heap->null_value()) *arg = heap->undefined_value(); |
| } |
| return holder; |
| } |
| |
| |
| template <bool is_construct> |
| MUST_USE_RESULT static MaybeObject* HandleApiCallHelper( |
| BuiltinArguments<NEEDS_CALLED_FUNCTION> args, Isolate* isolate) { |
| ASSERT(is_construct == CalledAsConstructor(isolate)); |
| Heap* heap = isolate->heap(); |
| |
| HandleScope scope(isolate); |
| Handle<JSFunction> function = args.called_function(); |
| ASSERT(function->shared()->IsApiFunction()); |
| |
| FunctionTemplateInfo* fun_data = function->shared()->get_api_func_data(); |
| if (is_construct) { |
| Handle<FunctionTemplateInfo> desc(fun_data, isolate); |
| bool pending_exception = false; |
| isolate->factory()->ConfigureInstance( |
| desc, Handle<JSObject>::cast(args.receiver()), &pending_exception); |
| ASSERT(isolate->has_pending_exception() == pending_exception); |
| if (pending_exception) return Failure::Exception(); |
| fun_data = *desc; |
| } |
| |
| Object* raw_holder = TypeCheck(heap, args.length(), &args[0], fun_data); |
| |
| if (raw_holder->IsNull()) { |
| // This function cannot be called with the given receiver. Abort! |
| Handle<Object> obj = |
| isolate->factory()->NewTypeError( |
| "illegal_invocation", HandleVector(&function, 1)); |
| return isolate->Throw(*obj); |
| } |
| |
| Object* raw_call_data = fun_data->call_code(); |
| if (!raw_call_data->IsUndefined()) { |
| CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data); |
| Object* callback_obj = call_data->callback(); |
| v8::InvocationCallback callback = |
| v8::ToCData<v8::InvocationCallback>(callback_obj); |
| Object* data_obj = call_data->data(); |
| Object* result; |
| |
| LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver()))); |
| ASSERT(raw_holder->IsJSObject()); |
| |
| CustomArguments custom(isolate); |
| v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), |
| data_obj, *function, raw_holder); |
| |
| v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
| custom.end(), |
| &args[0] - 1, |
| args.length() - 1, |
| is_construct); |
| |
| v8::Handle<v8::Value> value; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| ExternalCallbackScope call_scope(isolate, |
| v8::ToCData<Address>(callback_obj)); |
| value = callback(new_args); |
| } |
| if (value.IsEmpty()) { |
| result = heap->undefined_value(); |
| } else { |
| result = *reinterpret_cast<Object**>(*value); |
| } |
| |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (!is_construct || result->IsJSObject()) return result; |
| } |
| |
| return *args.receiver(); |
| } |
| |
| |
| BUILTIN(HandleApiCall) { |
| return HandleApiCallHelper<false>(args, isolate); |
| } |
| |
| |
| BUILTIN(HandleApiCallConstruct) { |
| return HandleApiCallHelper<true>(args, isolate); |
| } |
| |
| |
| #ifdef DEBUG |
| |
| static void VerifyTypeCheck(Handle<JSObject> object, |
| Handle<JSFunction> function) { |
| ASSERT(function->shared()->IsApiFunction()); |
| FunctionTemplateInfo* info = function->shared()->get_api_func_data(); |
| if (info->signature()->IsUndefined()) return; |
| SignatureInfo* signature = SignatureInfo::cast(info->signature()); |
| Object* receiver_type = signature->receiver(); |
| if (receiver_type->IsUndefined()) return; |
| FunctionTemplateInfo* type = FunctionTemplateInfo::cast(receiver_type); |
| ASSERT(object->IsInstanceOf(type)); |
| } |
| |
| #endif |
| |
| |
| BUILTIN(FastHandleApiCall) { |
| ASSERT(!CalledAsConstructor(isolate)); |
| Heap* heap = isolate->heap(); |
| const bool is_construct = false; |
| |
| // We expect four more arguments: callback, function, call data, and holder. |
| const int args_length = args.length() - 4; |
| ASSERT(args_length >= 0); |
| |
| Object* callback_obj = args[args_length]; |
| |
| v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
| &args[args_length + 1], |
| &args[0] - 1, |
| args_length - 1, |
| is_construct); |
| |
| #ifdef DEBUG |
| VerifyTypeCheck(Utils::OpenHandle(*new_args.Holder()), |
| Utils::OpenHandle(*new_args.Callee())); |
| #endif |
| HandleScope scope(isolate); |
| Object* result; |
| v8::Handle<v8::Value> value; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| ExternalCallbackScope call_scope(isolate, |
| v8::ToCData<Address>(callback_obj)); |
| v8::InvocationCallback callback = |
| v8::ToCData<v8::InvocationCallback>(callback_obj); |
| |
| value = callback(new_args); |
| } |
| if (value.IsEmpty()) { |
| result = heap->undefined_value(); |
| } else { |
| result = *reinterpret_cast<Object**>(*value); |
| } |
| |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return result; |
| } |
| |
| |
| // Helper function to handle calls to non-function objects created through the |
| // API. The object can be called as either a constructor (using new) or just as |
| // a function (without new). |
| MUST_USE_RESULT static MaybeObject* HandleApiCallAsFunctionOrConstructor( |
| Isolate* isolate, |
| bool is_construct_call, |
| BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { |
| // Non-functions are never called as constructors. Even if this is an object |
| // called as a constructor the delegate call is not a construct call. |
| ASSERT(!CalledAsConstructor(isolate)); |
| Heap* heap = isolate->heap(); |
| |
| Handle<Object> receiver = args.receiver(); |
| |
| // Get the object called. |
| JSObject* obj = JSObject::cast(*receiver); |
| |
| // Get the invocation callback from the function descriptor that was |
| // used to create the called object. |
| ASSERT(obj->map()->has_instance_call_handler()); |
| JSFunction* constructor = JSFunction::cast(obj->map()->constructor()); |
| ASSERT(constructor->shared()->IsApiFunction()); |
| Object* handler = |
| constructor->shared()->get_api_func_data()->instance_call_handler(); |
| ASSERT(!handler->IsUndefined()); |
| CallHandlerInfo* call_data = CallHandlerInfo::cast(handler); |
| Object* callback_obj = call_data->callback(); |
| v8::InvocationCallback callback = |
| v8::ToCData<v8::InvocationCallback>(callback_obj); |
| |
| // Get the data for the call and perform the callback. |
| Object* result; |
| { |
| HandleScope scope(isolate); |
| LOG(isolate, ApiObjectAccess("call non-function", obj)); |
| |
| CustomArguments custom(isolate); |
| v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), |
| call_data->data(), constructor, obj); |
| v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
| custom.end(), |
| &args[0] - 1, |
| args.length() - 1, |
| is_construct_call); |
| v8::Handle<v8::Value> value; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| ExternalCallbackScope call_scope(isolate, |
| v8::ToCData<Address>(callback_obj)); |
| value = callback(new_args); |
| } |
| if (value.IsEmpty()) { |
| result = heap->undefined_value(); |
| } else { |
| result = *reinterpret_cast<Object**>(*value); |
| } |
| } |
| // Check for exceptions and return result. |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return result; |
| } |
| |
| |
| // Handle calls to non-function objects created through the API. This delegate |
| // function is used when the call is a normal function call. |
| BUILTIN(HandleApiCallAsFunction) { |
| return HandleApiCallAsFunctionOrConstructor(isolate, false, args); |
| } |
| |
| |
| // Handle calls to non-function objects created through the API. This delegate |
| // function is used when the call is a construct call. |
| BUILTIN(HandleApiCallAsConstructor) { |
| return HandleApiCallAsFunctionOrConstructor(isolate, true, args); |
| } |
| |
| |
| static void Generate_LoadIC_ArrayLength(MacroAssembler* masm) { |
| LoadIC::GenerateArrayLength(masm); |
| } |
| |
| |
| static void Generate_LoadIC_StringLength(MacroAssembler* masm) { |
| LoadIC::GenerateStringLength(masm, false); |
| } |
| |
| |
| static void Generate_LoadIC_StringWrapperLength(MacroAssembler* masm) { |
| LoadIC::GenerateStringLength(masm, true); |
| } |
| |
| |
| static void Generate_LoadIC_FunctionPrototype(MacroAssembler* masm) { |
| LoadIC::GenerateFunctionPrototype(masm); |
| } |
| |
| |
| static void Generate_LoadIC_Initialize(MacroAssembler* masm) { |
| LoadIC::GenerateInitialize(masm); |
| } |
| |
| |
| static void Generate_LoadIC_PreMonomorphic(MacroAssembler* masm) { |
| LoadIC::GeneratePreMonomorphic(masm); |
| } |
| |
| |
| static void Generate_LoadIC_Miss(MacroAssembler* masm) { |
| LoadIC::GenerateMiss(masm); |
| } |
| |
| |
| static void Generate_LoadIC_Megamorphic(MacroAssembler* masm) { |
| LoadIC::GenerateMegamorphic(masm); |
| } |
| |
| |
| static void Generate_LoadIC_Normal(MacroAssembler* masm) { |
| LoadIC::GenerateNormal(masm); |
| } |
| |
| |
| static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) { |
| KeyedLoadIC::GenerateInitialize(masm); |
| } |
| |
| |
| static void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) { |
| KeyedLoadIC::GenerateRuntimeGetProperty(masm); |
| } |
| |
| |
| static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) { |
| KeyedLoadIC::GenerateMiss(masm, false); |
| } |
| |
| |
| static void Generate_KeyedLoadIC_MissForceGeneric(MacroAssembler* masm) { |
| KeyedLoadIC::GenerateMiss(masm, true); |
| } |
| |
| |
| static void Generate_KeyedLoadIC_Generic(MacroAssembler* masm) { |
| KeyedLoadIC::GenerateGeneric(masm); |
| } |
| |
| |
| static void Generate_KeyedLoadIC_String(MacroAssembler* masm) { |
| KeyedLoadIC::GenerateString(masm); |
| } |
| |
| |
| static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) { |
| KeyedLoadIC::GeneratePreMonomorphic(masm); |
| } |
| |
| static void Generate_KeyedLoadIC_IndexedInterceptor(MacroAssembler* masm) { |
| KeyedLoadIC::GenerateIndexedInterceptor(masm); |
| } |
| |
| static void Generate_KeyedLoadIC_NonStrictArguments(MacroAssembler* masm) { |
| KeyedLoadIC::GenerateNonStrictArguments(masm); |
| } |
| |
| static void Generate_StoreIC_Initialize(MacroAssembler* masm) { |
| StoreIC::GenerateInitialize(masm); |
| } |
| |
| |
| static void Generate_StoreIC_Initialize_Strict(MacroAssembler* masm) { |
| StoreIC::GenerateInitialize(masm); |
| } |
| |
| |
| static void Generate_StoreIC_Miss(MacroAssembler* masm) { |
| StoreIC::GenerateMiss(masm); |
| } |
| |
| |
| static void Generate_StoreIC_Normal(MacroAssembler* masm) { |
| StoreIC::GenerateNormal(masm); |
| } |
| |
| |
| static void Generate_StoreIC_Normal_Strict(MacroAssembler* masm) { |
| StoreIC::GenerateNormal(masm); |
| } |
| |
| |
| static void Generate_StoreIC_Megamorphic(MacroAssembler* masm) { |
| StoreIC::GenerateMegamorphic(masm, kNonStrictMode); |
| } |
| |
| |
| static void Generate_StoreIC_Megamorphic_Strict(MacroAssembler* masm) { |
| StoreIC::GenerateMegamorphic(masm, kStrictMode); |
| } |
| |
| |
| static void Generate_StoreIC_ArrayLength(MacroAssembler* masm) { |
| StoreIC::GenerateArrayLength(masm); |
| } |
| |
| |
| static void Generate_StoreIC_ArrayLength_Strict(MacroAssembler* masm) { |
| StoreIC::GenerateArrayLength(masm); |
| } |
| |
| |
| static void Generate_StoreIC_GlobalProxy(MacroAssembler* masm) { |
| StoreIC::GenerateGlobalProxy(masm, kNonStrictMode); |
| } |
| |
| |
| static void Generate_StoreIC_GlobalProxy_Strict(MacroAssembler* masm) { |
| StoreIC::GenerateGlobalProxy(masm, kStrictMode); |
| } |
| |
| |
| static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateGeneric(masm, kNonStrictMode); |
| } |
| |
| |
| static void Generate_KeyedStoreIC_Generic_Strict(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateGeneric(masm, kStrictMode); |
| } |
| |
| |
| static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateMiss(masm, false); |
| } |
| |
| |
| static void Generate_KeyedStoreIC_MissForceGeneric(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateMiss(masm, true); |
| } |
| |
| |
| static void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateSlow(masm); |
| } |
| |
| |
| static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateInitialize(masm); |
| } |
| |
| |
| static void Generate_KeyedStoreIC_Initialize_Strict(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateInitialize(masm); |
| } |
| |
| static void Generate_KeyedStoreIC_NonStrictArguments(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateNonStrictArguments(masm); |
| } |
| |
| static void Generate_TransitionElementsSmiToDouble(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateTransitionElementsSmiToDouble(masm); |
| } |
| |
| static void Generate_TransitionElementsDoubleToObject(MacroAssembler* masm) { |
| KeyedStoreIC::GenerateTransitionElementsDoubleToObject(masm); |
| } |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) { |
| Debug::GenerateLoadICDebugBreak(masm); |
| } |
| |
| |
| static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) { |
| Debug::GenerateStoreICDebugBreak(masm); |
| } |
| |
| |
| static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) { |
| Debug::GenerateKeyedLoadICDebugBreak(masm); |
| } |
| |
| |
| static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) { |
| Debug::GenerateKeyedStoreICDebugBreak(masm); |
| } |
| |
| |
| static void Generate_Return_DebugBreak(MacroAssembler* masm) { |
| Debug::GenerateReturnDebugBreak(masm); |
| } |
| |
| |
| static void Generate_CallFunctionStub_DebugBreak(MacroAssembler* masm) { |
| Debug::GenerateCallFunctionStubDebugBreak(masm); |
| } |
| |
| |
| static void Generate_CallFunctionStub_Recording_DebugBreak( |
| MacroAssembler* masm) { |
| Debug::GenerateCallFunctionStubRecordDebugBreak(masm); |
| } |
| |
| |
| static void Generate_CallConstructStub_DebugBreak(MacroAssembler* masm) { |
| Debug::GenerateCallConstructStubDebugBreak(masm); |
| } |
| |
| |
| static void Generate_CallConstructStub_Recording_DebugBreak( |
| MacroAssembler* masm) { |
| Debug::GenerateCallConstructStubRecordDebugBreak(masm); |
| } |
| |
| |
| static void Generate_Slot_DebugBreak(MacroAssembler* masm) { |
| Debug::GenerateSlotDebugBreak(masm); |
| } |
| |
| |
| static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) { |
| Debug::GeneratePlainReturnLiveEdit(masm); |
| } |
| |
| |
| static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) { |
| Debug::GenerateFrameDropperLiveEdit(masm); |
| } |
| #endif |
| |
| |
| Builtins::Builtins() : initialized_(false) { |
| memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count); |
| memset(names_, 0, sizeof(names_[0]) * builtin_count); |
| } |
| |
| |
| Builtins::~Builtins() { |
| } |
| |
| |
| #define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name), |
| Address const Builtins::c_functions_[cfunction_count] = { |
| BUILTIN_LIST_C(DEF_ENUM_C) |
| }; |
| #undef DEF_ENUM_C |
| |
| #define DEF_JS_NAME(name, ignore) #name, |
| #define DEF_JS_ARGC(ignore, argc) argc, |
| const char* const Builtins::javascript_names_[id_count] = { |
| BUILTINS_LIST_JS(DEF_JS_NAME) |
| }; |
| |
| int const Builtins::javascript_argc_[id_count] = { |
| BUILTINS_LIST_JS(DEF_JS_ARGC) |
| }; |
| #undef DEF_JS_NAME |
| #undef DEF_JS_ARGC |
| |
| struct BuiltinDesc { |
| byte* generator; |
| byte* c_code; |
| const char* s_name; // name is only used for generating log information. |
| int name; |
| Code::Flags flags; |
| BuiltinExtraArguments extra_args; |
| }; |
| |
| #define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} } |
| |
| class BuiltinFunctionTable { |
| public: |
| BuiltinDesc* functions() { |
| CallOnce(&once_, &Builtins::InitBuiltinFunctionTable); |
| return functions_; |
| } |
| |
| OnceType once_; |
| BuiltinDesc functions_[Builtins::builtin_count + 1]; |
| |
| friend class Builtins; |
| }; |
| |
| static BuiltinFunctionTable builtin_function_table = |
| BUILTIN_FUNCTION_TABLE_INIT; |
| |
| // Define array of pointers to generators and C builtin functions. |
| // We do this in a sort of roundabout way so that we can do the initialization |
| // within the lexical scope of Builtins:: and within a context where |
| // Code::Flags names a non-abstract type. |
| void Builtins::InitBuiltinFunctionTable() { |
| BuiltinDesc* functions = builtin_function_table.functions_; |
| functions[builtin_count].generator = NULL; |
| functions[builtin_count].c_code = NULL; |
| functions[builtin_count].s_name = NULL; |
| functions[builtin_count].name = builtin_count; |
| functions[builtin_count].flags = static_cast<Code::Flags>(0); |
| functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS; |
| |
| #define DEF_FUNCTION_PTR_C(aname, aextra_args) \ |
| functions->generator = FUNCTION_ADDR(Generate_Adaptor); \ |
| functions->c_code = FUNCTION_ADDR(Builtin_##aname); \ |
| functions->s_name = #aname; \ |
| functions->name = c_##aname; \ |
| functions->flags = Code::ComputeFlags(Code::BUILTIN); \ |
| functions->extra_args = aextra_args; \ |
| ++functions; |
| |
| #define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \ |
| functions->generator = FUNCTION_ADDR(Generate_##aname); \ |
| functions->c_code = NULL; \ |
| functions->s_name = #aname; \ |
| functions->name = k##aname; \ |
| functions->flags = Code::ComputeFlags(Code::kind, \ |
| state, \ |
| extra); \ |
| functions->extra_args = NO_EXTRA_ARGUMENTS; \ |
| ++functions; |
| |
| BUILTIN_LIST_C(DEF_FUNCTION_PTR_C) |
| BUILTIN_LIST_A(DEF_FUNCTION_PTR_A) |
| BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A) |
| |
| #undef DEF_FUNCTION_PTR_C |
| #undef DEF_FUNCTION_PTR_A |
| } |
| |
| void Builtins::SetUp(bool create_heap_objects) { |
| ASSERT(!initialized_); |
| Isolate* isolate = Isolate::Current(); |
| Heap* heap = isolate->heap(); |
| |
| // Create a scope for the handles in the builtins. |
| HandleScope scope(isolate); |
| |
| const BuiltinDesc* functions = builtin_function_table.functions(); |
| |
| // For now we generate builtin adaptor code into a stack-allocated |
| // buffer, before copying it into individual code objects. Be careful |
| // with alignment, some platforms don't like unaligned code. |
| union { int force_alignment; byte buffer[4*KB]; } u; |
| |
| // Traverse the list of builtins and generate an adaptor in a |
| // separate code object for each one. |
| for (int i = 0; i < builtin_count; i++) { |
| if (create_heap_objects) { |
| MacroAssembler masm(isolate, u.buffer, sizeof u.buffer); |
| // Generate the code/adaptor. |
| typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments); |
| Generator g = FUNCTION_CAST<Generator>(functions[i].generator); |
| // We pass all arguments to the generator, but it may not use all of |
| // them. This works because the first arguments are on top of the |
| // stack. |
| ASSERT(!masm.has_frame()); |
| g(&masm, functions[i].name, functions[i].extra_args); |
| // Move the code into the object heap. |
| CodeDesc desc; |
| masm.GetCode(&desc); |
| Code::Flags flags = functions[i].flags; |
| Object* code = NULL; |
| { |
| // During startup it's OK to always allocate and defer GC to later. |
| // This simplifies things because we don't need to retry. |
| AlwaysAllocateScope __scope__; |
| { MaybeObject* maybe_code = |
| heap->CreateCode(desc, flags, masm.CodeObject()); |
| if (!maybe_code->ToObject(&code)) { |
| v8::internal::V8::FatalProcessOutOfMemory("CreateCode"); |
| } |
| } |
| } |
| // Log the event and add the code to the builtins array. |
| PROFILE(isolate, |
| CodeCreateEvent(Logger::BUILTIN_TAG, |
| Code::cast(code), |
| functions[i].s_name)); |
| GDBJIT(AddCode(GDBJITInterface::BUILTIN, |
| functions[i].s_name, |
| Code::cast(code))); |
| builtins_[i] = code; |
| #ifdef ENABLE_DISASSEMBLER |
| if (FLAG_print_builtin_code) { |
| PrintF("Builtin: %s\n", functions[i].s_name); |
| Code::cast(code)->Disassemble(functions[i].s_name); |
| PrintF("\n"); |
| } |
| #endif |
| } else { |
| // Deserializing. The values will be filled in during IterateBuiltins. |
| builtins_[i] = NULL; |
| } |
| names_[i] = functions[i].s_name; |
| } |
| |
| // Mark as initialized. |
| initialized_ = true; |
| } |
| |
| |
| void Builtins::TearDown() { |
| initialized_ = false; |
| } |
| |
| |
| void Builtins::IterateBuiltins(ObjectVisitor* v) { |
| v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count); |
| } |
| |
| |
| const char* Builtins::Lookup(byte* pc) { |
| // may be called during initialization (disassembler!) |
| if (initialized_) { |
| for (int i = 0; i < builtin_count; i++) { |
| Code* entry = Code::cast(builtins_[i]); |
| if (entry->contains(pc)) { |
| return names_[i]; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| |
| #define DEFINE_BUILTIN_ACCESSOR_C(name, ignore) \ |
| Handle<Code> Builtins::name() { \ |
| Code** code_address = \ |
| reinterpret_cast<Code**>(builtin_address(k##name)); \ |
| return Handle<Code>(code_address); \ |
| } |
| #define DEFINE_BUILTIN_ACCESSOR_A(name, kind, state, extra) \ |
| Handle<Code> Builtins::name() { \ |
| Code** code_address = \ |
| reinterpret_cast<Code**>(builtin_address(k##name)); \ |
| return Handle<Code>(code_address); \ |
| } |
| BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C) |
| BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A) |
| BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A) |
| #undef DEFINE_BUILTIN_ACCESSOR_C |
| #undef DEFINE_BUILTIN_ACCESSOR_A |
| |
| |
| } } // namespace v8::internal |