| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_X64) |
| |
| #include "bootstrapper.h" |
| #include "codegen.h" |
| #include "assembler-x64.h" |
| #include "macro-assembler-x64.h" |
| #include "serialize.h" |
| #include "debug.h" |
| #include "heap.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) |
| : Assembler(arg_isolate, buffer, size), |
| generating_stub_(false), |
| allow_stub_calls_(true), |
| has_frame_(false), |
| root_array_available_(true) { |
| if (isolate() != NULL) { |
| code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), |
| isolate()); |
| } |
| } |
| |
| |
| static intptr_t RootRegisterDelta(ExternalReference other, Isolate* isolate) { |
| Address roots_register_value = kRootRegisterBias + |
| reinterpret_cast<Address>(isolate->heap()->roots_array_start()); |
| intptr_t delta = other.address() - roots_register_value; |
| return delta; |
| } |
| |
| |
| Operand MacroAssembler::ExternalOperand(ExternalReference target, |
| Register scratch) { |
| if (root_array_available_ && !Serializer::enabled()) { |
| intptr_t delta = RootRegisterDelta(target, isolate()); |
| if (is_int32(delta)) { |
| Serializer::TooLateToEnableNow(); |
| return Operand(kRootRegister, static_cast<int32_t>(delta)); |
| } |
| } |
| movq(scratch, target); |
| return Operand(scratch, 0); |
| } |
| |
| |
| void MacroAssembler::Load(Register destination, ExternalReference source) { |
| if (root_array_available_ && !Serializer::enabled()) { |
| intptr_t delta = RootRegisterDelta(source, isolate()); |
| if (is_int32(delta)) { |
| Serializer::TooLateToEnableNow(); |
| movq(destination, Operand(kRootRegister, static_cast<int32_t>(delta))); |
| return; |
| } |
| } |
| // Safe code. |
| if (destination.is(rax)) { |
| load_rax(source); |
| } else { |
| movq(kScratchRegister, source); |
| movq(destination, Operand(kScratchRegister, 0)); |
| } |
| } |
| |
| |
| void MacroAssembler::Store(ExternalReference destination, Register source) { |
| if (root_array_available_ && !Serializer::enabled()) { |
| intptr_t delta = RootRegisterDelta(destination, isolate()); |
| if (is_int32(delta)) { |
| Serializer::TooLateToEnableNow(); |
| movq(Operand(kRootRegister, static_cast<int32_t>(delta)), source); |
| return; |
| } |
| } |
| // Safe code. |
| if (source.is(rax)) { |
| store_rax(destination); |
| } else { |
| movq(kScratchRegister, destination); |
| movq(Operand(kScratchRegister, 0), source); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadAddress(Register destination, |
| ExternalReference source) { |
| if (root_array_available_ && !Serializer::enabled()) { |
| intptr_t delta = RootRegisterDelta(source, isolate()); |
| if (is_int32(delta)) { |
| Serializer::TooLateToEnableNow(); |
| lea(destination, Operand(kRootRegister, static_cast<int32_t>(delta))); |
| return; |
| } |
| } |
| // Safe code. |
| movq(destination, source); |
| } |
| |
| |
| int MacroAssembler::LoadAddressSize(ExternalReference source) { |
| if (root_array_available_ && !Serializer::enabled()) { |
| // This calculation depends on the internals of LoadAddress. |
| // It's correctness is ensured by the asserts in the Call |
| // instruction below. |
| intptr_t delta = RootRegisterDelta(source, isolate()); |
| if (is_int32(delta)) { |
| Serializer::TooLateToEnableNow(); |
| // Operand is lea(scratch, Operand(kRootRegister, delta)); |
| // Opcodes : REX.W 8D ModRM Disp8/Disp32 - 4 or 7. |
| int size = 4; |
| if (!is_int8(static_cast<int32_t>(delta))) { |
| size += 3; // Need full four-byte displacement in lea. |
| } |
| return size; |
| } |
| } |
| // Size of movq(destination, src); |
| return 10; |
| } |
| |
| |
| void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { |
| ASSERT(root_array_available_); |
| movq(destination, Operand(kRootRegister, |
| (index << kPointerSizeLog2) - kRootRegisterBias)); |
| } |
| |
| |
| void MacroAssembler::LoadRootIndexed(Register destination, |
| Register variable_offset, |
| int fixed_offset) { |
| ASSERT(root_array_available_); |
| movq(destination, |
| Operand(kRootRegister, |
| variable_offset, times_pointer_size, |
| (fixed_offset << kPointerSizeLog2) - kRootRegisterBias)); |
| } |
| |
| |
| void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) { |
| ASSERT(root_array_available_); |
| movq(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias), |
| source); |
| } |
| |
| |
| void MacroAssembler::PushRoot(Heap::RootListIndex index) { |
| ASSERT(root_array_available_); |
| push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias)); |
| } |
| |
| |
| void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { |
| ASSERT(root_array_available_); |
| cmpq(with, Operand(kRootRegister, |
| (index << kPointerSizeLog2) - kRootRegisterBias)); |
| } |
| |
| |
| void MacroAssembler::CompareRoot(const Operand& with, |
| Heap::RootListIndex index) { |
| ASSERT(root_array_available_); |
| ASSERT(!with.AddressUsesRegister(kScratchRegister)); |
| LoadRoot(kScratchRegister, index); |
| cmpq(with, kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. |
| Register addr, |
| Register scratch, |
| SaveFPRegsMode save_fp, |
| RememberedSetFinalAction and_then) { |
| if (FLAG_debug_code) { |
| Label ok; |
| JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| // Load store buffer top. |
| LoadRoot(scratch, Heap::kStoreBufferTopRootIndex); |
| // Store pointer to buffer. |
| movq(Operand(scratch, 0), addr); |
| // Increment buffer top. |
| addq(scratch, Immediate(kPointerSize)); |
| // Write back new top of buffer. |
| StoreRoot(scratch, Heap::kStoreBufferTopRootIndex); |
| // Call stub on end of buffer. |
| Label done; |
| // Check for end of buffer. |
| testq(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit)); |
| if (and_then == kReturnAtEnd) { |
| Label buffer_overflowed; |
| j(not_equal, &buffer_overflowed, Label::kNear); |
| ret(0); |
| bind(&buffer_overflowed); |
| } else { |
| ASSERT(and_then == kFallThroughAtEnd); |
| j(equal, &done, Label::kNear); |
| } |
| StoreBufferOverflowStub store_buffer_overflow = |
| StoreBufferOverflowStub(save_fp); |
| CallStub(&store_buffer_overflow); |
| if (and_then == kReturnAtEnd) { |
| ret(0); |
| } else { |
| ASSERT(and_then == kFallThroughAtEnd); |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::InNewSpace(Register object, |
| Register scratch, |
| Condition cc, |
| Label* branch, |
| Label::Distance distance) { |
| if (Serializer::enabled()) { |
| // Can't do arithmetic on external references if it might get serialized. |
| // The mask isn't really an address. We load it as an external reference in |
| // case the size of the new space is different between the snapshot maker |
| // and the running system. |
| if (scratch.is(object)) { |
| movq(kScratchRegister, ExternalReference::new_space_mask(isolate())); |
| and_(scratch, kScratchRegister); |
| } else { |
| movq(scratch, ExternalReference::new_space_mask(isolate())); |
| and_(scratch, object); |
| } |
| movq(kScratchRegister, ExternalReference::new_space_start(isolate())); |
| cmpq(scratch, kScratchRegister); |
| j(cc, branch, distance); |
| } else { |
| ASSERT(is_int32(static_cast<int64_t>(HEAP->NewSpaceMask()))); |
| intptr_t new_space_start = |
| reinterpret_cast<intptr_t>(HEAP->NewSpaceStart()); |
| movq(kScratchRegister, -new_space_start, RelocInfo::NONE); |
| if (scratch.is(object)) { |
| addq(scratch, kScratchRegister); |
| } else { |
| lea(scratch, Operand(object, kScratchRegister, times_1, 0)); |
| } |
| and_(scratch, Immediate(static_cast<int32_t>(HEAP->NewSpaceMask()))); |
| j(cc, branch, distance); |
| } |
| } |
| |
| |
| void MacroAssembler::RecordWriteField( |
| Register object, |
| int offset, |
| Register value, |
| Register dst, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // The compiled code assumes that record write doesn't change the |
| // context register, so we check that none of the clobbered |
| // registers are rsi. |
| ASSERT(!value.is(rsi) && !dst.is(rsi)); |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kPointerSize. |
| ASSERT(IsAligned(offset, kPointerSize)); |
| |
| lea(dst, FieldOperand(object, offset)); |
| if (emit_debug_code()) { |
| Label ok; |
| testb(dst, Immediate((1 << kPointerSizeLog2) - 1)); |
| j(zero, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| RecordWrite( |
| object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE); |
| movq(dst, BitCast<int64_t>(kZapValue), RelocInfo::NONE); |
| } |
| } |
| |
| |
| void MacroAssembler::RecordWriteArray(Register object, |
| Register value, |
| Register index, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Array access: calculate the destination address. Index is not a smi. |
| Register dst = index; |
| lea(dst, Operand(object, index, times_pointer_size, |
| FixedArray::kHeaderSize - kHeapObjectTag)); |
| |
| RecordWrite( |
| object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE); |
| movq(index, BitCast<int64_t>(kZapValue), RelocInfo::NONE); |
| } |
| } |
| |
| |
| void MacroAssembler::RecordWrite(Register object, |
| Register address, |
| Register value, |
| SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // The compiled code assumes that record write doesn't change the |
| // context register, so we check that none of the clobbered |
| // registers are rsi. |
| ASSERT(!value.is(rsi) && !address.is(rsi)); |
| |
| ASSERT(!object.is(value)); |
| ASSERT(!object.is(address)); |
| ASSERT(!value.is(address)); |
| if (emit_debug_code()) { |
| AbortIfSmi(object); |
| } |
| |
| if (remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) { |
| return; |
| } |
| |
| if (FLAG_debug_code) { |
| Label ok; |
| cmpq(value, Operand(address, 0)); |
| j(equal, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of smis and stores into the young generation. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| // Skip barrier if writing a smi. |
| JumpIfSmi(value, &done); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, |
| zero, |
| &done, |
| Label::kNear); |
| |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, |
| zero, |
| &done, |
| Label::kNear); |
| |
| RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); |
| CallStub(&stub); |
| |
| bind(&done); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| movq(address, BitCast<int64_t>(kZapValue), RelocInfo::NONE); |
| movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE); |
| } |
| } |
| |
| |
| void MacroAssembler::Assert(Condition cc, const char* msg) { |
| if (emit_debug_code()) Check(cc, msg); |
| } |
| |
| |
| void MacroAssembler::AssertFastElements(Register elements) { |
| if (emit_debug_code()) { |
| Label ok; |
| CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), |
| Heap::kFixedArrayMapRootIndex); |
| j(equal, &ok, Label::kNear); |
| CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), |
| Heap::kFixedDoubleArrayMapRootIndex); |
| j(equal, &ok, Label::kNear); |
| CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), |
| Heap::kFixedCOWArrayMapRootIndex); |
| j(equal, &ok, Label::kNear); |
| Abort("JSObject with fast elements map has slow elements"); |
| bind(&ok); |
| } |
| } |
| |
| |
| void MacroAssembler::Check(Condition cc, const char* msg) { |
| Label L; |
| j(cc, &L, Label::kNear); |
| Abort(msg); |
| // Control will not return here. |
| bind(&L); |
| } |
| |
| |
| void MacroAssembler::CheckStackAlignment() { |
| int frame_alignment = OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kPointerSize) { |
| ASSERT(IsPowerOf2(frame_alignment)); |
| Label alignment_as_expected; |
| testq(rsp, Immediate(frame_alignment_mask)); |
| j(zero, &alignment_as_expected, Label::kNear); |
| // Abort if stack is not aligned. |
| int3(); |
| bind(&alignment_as_expected); |
| } |
| } |
| |
| |
| void MacroAssembler::NegativeZeroTest(Register result, |
| Register op, |
| Label* then_label) { |
| Label ok; |
| testl(result, result); |
| j(not_zero, &ok, Label::kNear); |
| testl(op, op); |
| j(sign, then_label); |
| bind(&ok); |
| } |
| |
| |
| void MacroAssembler::Abort(const char* msg) { |
| // We want to pass the msg string like a smi to avoid GC |
| // problems, however msg is not guaranteed to be aligned |
| // properly. Instead, we pass an aligned pointer that is |
| // a proper v8 smi, but also pass the alignment difference |
| // from the real pointer as a smi. |
| intptr_t p1 = reinterpret_cast<intptr_t>(msg); |
| intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; |
| // Note: p0 might not be a valid Smi _value_, but it has a valid Smi tag. |
| ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); |
| #ifdef DEBUG |
| if (msg != NULL) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| #endif |
| push(rax); |
| movq(kScratchRegister, p0, RelocInfo::NONE); |
| push(kScratchRegister); |
| movq(kScratchRegister, |
| reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))), |
| RelocInfo::NONE); |
| push(kScratchRegister); |
| |
| if (!has_frame_) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| CallRuntime(Runtime::kAbort, 2); |
| } else { |
| CallRuntime(Runtime::kAbort, 2); |
| } |
| // Control will not return here. |
| int3(); |
| } |
| |
| |
| void MacroAssembler::CallStub(CodeStub* stub, unsigned ast_id) { |
| ASSERT(AllowThisStubCall(stub)); // Calls are not allowed in some stubs |
| Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id); |
| } |
| |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub) { |
| ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe()); |
| Jump(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::StubReturn(int argc) { |
| ASSERT(argc >= 1 && generating_stub()); |
| ret((argc - 1) * kPointerSize); |
| } |
| |
| |
| bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { |
| if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false; |
| return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe(); |
| } |
| |
| |
| void MacroAssembler::IllegalOperation(int num_arguments) { |
| if (num_arguments > 0) { |
| addq(rsp, Immediate(num_arguments * kPointerSize)); |
| } |
| LoadRoot(rax, Heap::kUndefinedValueRootIndex); |
| } |
| |
| |
| void MacroAssembler::IndexFromHash(Register hash, Register index) { |
| // The assert checks that the constants for the maximum number of digits |
| // for an array index cached in the hash field and the number of bits |
| // reserved for it does not conflict. |
| ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < |
| (1 << String::kArrayIndexValueBits)); |
| // We want the smi-tagged index in key. Even if we subsequently go to |
| // the slow case, converting the key to a smi is always valid. |
| // key: string key |
| // hash: key's hash field, including its array index value. |
| and_(hash, Immediate(String::kArrayIndexValueMask)); |
| shr(hash, Immediate(String::kHashShift)); |
| // Here we actually clobber the key which will be used if calling into |
| // runtime later. However as the new key is the numeric value of a string key |
| // there is no difference in using either key. |
| Integer32ToSmi(index, hash); |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { |
| CallRuntime(Runtime::FunctionForId(id), num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { |
| const Runtime::Function* function = Runtime::FunctionForId(id); |
| Set(rax, function->nargs); |
| LoadAddress(rbx, ExternalReference(function, isolate())); |
| CEntryStub ces(1, kSaveFPRegs); |
| CallStub(&ces); |
| } |
| |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, |
| int num_arguments) { |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| if (f->nargs >= 0 && f->nargs != num_arguments) { |
| IllegalOperation(num_arguments); |
| return; |
| } |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Set(rax, num_arguments); |
| LoadAddress(rbx, ExternalReference(f, isolate())); |
| CEntryStub ces(f->result_size); |
| CallStub(&ces); |
| } |
| |
| |
| void MacroAssembler::CallExternalReference(const ExternalReference& ext, |
| int num_arguments) { |
| Set(rax, num_arguments); |
| LoadAddress(rbx, ext); |
| |
| CEntryStub stub(1); |
| CallStub(&stub); |
| } |
| |
| |
| void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size) { |
| // ----------- S t a t e ------------- |
| // -- rsp[0] : return address |
| // -- rsp[8] : argument num_arguments - 1 |
| // ... |
| // -- rsp[8 * num_arguments] : argument 0 (receiver) |
| // ----------------------------------- |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Set(rax, num_arguments); |
| JumpToExternalReference(ext, result_size); |
| } |
| |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size) { |
| TailCallExternalReference(ExternalReference(fid, isolate()), |
| num_arguments, |
| result_size); |
| } |
| |
| |
| static int Offset(ExternalReference ref0, ExternalReference ref1) { |
| int64_t offset = (ref0.address() - ref1.address()); |
| // Check that fits into int. |
| ASSERT(static_cast<int>(offset) == offset); |
| return static_cast<int>(offset); |
| } |
| |
| |
| void MacroAssembler::PrepareCallApiFunction(int arg_stack_space) { |
| #ifdef _WIN64 |
| // We need to prepare a slot for result handle on stack and put |
| // a pointer to it into 1st arg register. |
| EnterApiExitFrame(arg_stack_space + 1); |
| |
| // rcx must be used to pass the pointer to the return value slot. |
| lea(rcx, StackSpaceOperand(arg_stack_space)); |
| #else |
| EnterApiExitFrame(arg_stack_space); |
| #endif |
| } |
| |
| |
| void MacroAssembler::CallApiFunctionAndReturn(Address function_address, |
| int stack_space) { |
| Label empty_result; |
| Label prologue; |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| Label write_back; |
| |
| Factory* factory = isolate()->factory(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(); |
| const int kNextOffset = 0; |
| const int kLimitOffset = Offset( |
| ExternalReference::handle_scope_limit_address(), |
| next_address); |
| const int kLevelOffset = Offset( |
| ExternalReference::handle_scope_level_address(), |
| next_address); |
| ExternalReference scheduled_exception_address = |
| ExternalReference::scheduled_exception_address(isolate()); |
| |
| // Allocate HandleScope in callee-save registers. |
| Register prev_next_address_reg = r14; |
| Register prev_limit_reg = rbx; |
| Register base_reg = r15; |
| movq(base_reg, next_address); |
| movq(prev_next_address_reg, Operand(base_reg, kNextOffset)); |
| movq(prev_limit_reg, Operand(base_reg, kLimitOffset)); |
| addl(Operand(base_reg, kLevelOffset), Immediate(1)); |
| // Call the api function! |
| movq(rax, reinterpret_cast<int64_t>(function_address), |
| RelocInfo::RUNTIME_ENTRY); |
| call(rax); |
| |
| #ifdef _WIN64 |
| // rax keeps a pointer to v8::Handle, unpack it. |
| movq(rax, Operand(rax, 0)); |
| #endif |
| // Check if the result handle holds 0. |
| testq(rax, rax); |
| j(zero, &empty_result); |
| // It was non-zero. Dereference to get the result value. |
| movq(rax, Operand(rax, 0)); |
| bind(&prologue); |
| |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| subl(Operand(base_reg, kLevelOffset), Immediate(1)); |
| movq(Operand(base_reg, kNextOffset), prev_next_address_reg); |
| cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset)); |
| j(not_equal, &delete_allocated_handles); |
| bind(&leave_exit_frame); |
| |
| // Check if the function scheduled an exception. |
| movq(rsi, scheduled_exception_address); |
| Cmp(Operand(rsi, 0), factory->the_hole_value()); |
| j(not_equal, &promote_scheduled_exception); |
| |
| LeaveApiExitFrame(); |
| ret(stack_space * kPointerSize); |
| |
| bind(&promote_scheduled_exception); |
| TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); |
| |
| bind(&empty_result); |
| // It was zero; the result is undefined. |
| Move(rax, factory->undefined_value()); |
| jmp(&prologue); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| bind(&delete_allocated_handles); |
| movq(Operand(base_reg, kLimitOffset), prev_limit_reg); |
| movq(prev_limit_reg, rax); |
| #ifdef _WIN64 |
| LoadAddress(rcx, ExternalReference::isolate_address()); |
| #else |
| LoadAddress(rdi, ExternalReference::isolate_address()); |
| #endif |
| LoadAddress(rax, |
| ExternalReference::delete_handle_scope_extensions(isolate())); |
| call(rax); |
| movq(rax, prev_limit_reg); |
| jmp(&leave_exit_frame); |
| } |
| |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, |
| int result_size) { |
| // Set the entry point and jump to the C entry runtime stub. |
| LoadAddress(rbx, ext); |
| CEntryStub ces(result_size); |
| jmp(ces.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper) { |
| // You can't call a builtin without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Rely on the assertion to check that the number of provided |
| // arguments match the expected number of arguments. Fake a |
| // parameter count to avoid emitting code to do the check. |
| ParameterCount expected(0); |
| GetBuiltinEntry(rdx, id); |
| InvokeCode(rdx, expected, expected, flag, call_wrapper, CALL_AS_METHOD); |
| } |
| |
| |
| void MacroAssembler::GetBuiltinFunction(Register target, |
| Builtins::JavaScript id) { |
| // Load the builtins object into target register. |
| movq(target, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| movq(target, FieldOperand(target, GlobalObject::kBuiltinsOffset)); |
| movq(target, FieldOperand(target, |
| JSBuiltinsObject::OffsetOfFunctionWithId(id))); |
| } |
| |
| |
| void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
| ASSERT(!target.is(rdi)); |
| // Load the JavaScript builtin function from the builtins object. |
| GetBuiltinFunction(rdi, id); |
| movq(target, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); |
| } |
| |
| |
| #define REG(Name) { kRegister_ ## Name ## _Code } |
| |
| static const Register saved_regs[] = { |
| REG(rax), REG(rcx), REG(rdx), REG(rbx), REG(rbp), REG(rsi), REG(rdi), REG(r8), |
| REG(r9), REG(r10), REG(r11) |
| }; |
| |
| #undef REG |
| |
| static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); |
| |
| |
| void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) { |
| // We don't allow a GC during a store buffer overflow so there is no need to |
| // store the registers in any particular way, but we do have to store and |
| // restore them. |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) { |
| push(reg); |
| } |
| } |
| // R12 to r15 are callee save on all platforms. |
| if (fp_mode == kSaveFPRegs) { |
| CpuFeatures::Scope scope(SSE2); |
| subq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(Operand(rsp, i * kDoubleSize), reg); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) { |
| if (fp_mode == kSaveFPRegs) { |
| CpuFeatures::Scope scope(SSE2); |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(reg, Operand(rsp, i * kDoubleSize)); |
| } |
| addq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); |
| } |
| for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { |
| Register reg = saved_regs[i]; |
| if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) { |
| pop(reg); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Set(Register dst, int64_t x) { |
| if (x == 0) { |
| xorl(dst, dst); |
| } else if (is_uint32(x)) { |
| movl(dst, Immediate(static_cast<uint32_t>(x))); |
| } else if (is_int32(x)) { |
| movq(dst, Immediate(static_cast<int32_t>(x))); |
| } else { |
| movq(dst, x, RelocInfo::NONE); |
| } |
| } |
| |
| void MacroAssembler::Set(const Operand& dst, int64_t x) { |
| if (is_int32(x)) { |
| movq(dst, Immediate(static_cast<int32_t>(x))); |
| } else { |
| Set(kScratchRegister, x); |
| movq(dst, kScratchRegister); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Smi tagging, untagging and tag detection. |
| |
| Register MacroAssembler::GetSmiConstant(Smi* source) { |
| int value = source->value(); |
| if (value == 0) { |
| xorl(kScratchRegister, kScratchRegister); |
| return kScratchRegister; |
| } |
| if (value == 1) { |
| return kSmiConstantRegister; |
| } |
| LoadSmiConstant(kScratchRegister, source); |
| return kScratchRegister; |
| } |
| |
| void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) { |
| if (emit_debug_code()) { |
| movq(dst, |
| reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)), |
| RelocInfo::NONE); |
| cmpq(dst, kSmiConstantRegister); |
| if (allow_stub_calls()) { |
| Assert(equal, "Uninitialized kSmiConstantRegister"); |
| } else { |
| Label ok; |
| j(equal, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| } |
| int value = source->value(); |
| if (value == 0) { |
| xorl(dst, dst); |
| return; |
| } |
| bool negative = value < 0; |
| unsigned int uvalue = negative ? -value : value; |
| |
| switch (uvalue) { |
| case 9: |
| lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_8, 0)); |
| break; |
| case 8: |
| xorl(dst, dst); |
| lea(dst, Operand(dst, kSmiConstantRegister, times_8, 0)); |
| break; |
| case 4: |
| xorl(dst, dst); |
| lea(dst, Operand(dst, kSmiConstantRegister, times_4, 0)); |
| break; |
| case 5: |
| lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_4, 0)); |
| break; |
| case 3: |
| lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_2, 0)); |
| break; |
| case 2: |
| lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_1, 0)); |
| break; |
| case 1: |
| movq(dst, kSmiConstantRegister); |
| break; |
| case 0: |
| UNREACHABLE(); |
| return; |
| default: |
| movq(dst, reinterpret_cast<uint64_t>(source), RelocInfo::NONE); |
| return; |
| } |
| if (negative) { |
| neg(dst); |
| } |
| } |
| |
| |
| void MacroAssembler::Integer32ToSmi(Register dst, Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| if (!dst.is(src)) { |
| movl(dst, src); |
| } |
| shl(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) { |
| if (emit_debug_code()) { |
| testb(dst, Immediate(0x01)); |
| Label ok; |
| j(zero, &ok, Label::kNear); |
| if (allow_stub_calls()) { |
| Abort("Integer32ToSmiField writing to non-smi location"); |
| } else { |
| int3(); |
| } |
| bind(&ok); |
| } |
| ASSERT(kSmiShift % kBitsPerByte == 0); |
| movl(Operand(dst, kSmiShift / kBitsPerByte), src); |
| } |
| |
| |
| void MacroAssembler::Integer64PlusConstantToSmi(Register dst, |
| Register src, |
| int constant) { |
| if (dst.is(src)) { |
| addl(dst, Immediate(constant)); |
| } else { |
| leal(dst, Operand(src, constant)); |
| } |
| shl(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::SmiToInteger32(Register dst, Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| shr(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) { |
| movl(dst, Operand(src, kSmiShift / kBitsPerByte)); |
| } |
| |
| |
| void MacroAssembler::SmiToInteger64(Register dst, Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| sar(dst, Immediate(kSmiShift)); |
| } |
| |
| |
| void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) { |
| movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte)); |
| } |
| |
| |
| void MacroAssembler::SmiTest(Register src) { |
| testq(src, src); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(Register smi1, Register smi2) { |
| if (emit_debug_code()) { |
| AbortIfNotSmi(smi1); |
| AbortIfNotSmi(smi2); |
| } |
| cmpq(smi1, smi2); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(Register dst, Smi* src) { |
| if (emit_debug_code()) { |
| AbortIfNotSmi(dst); |
| } |
| Cmp(dst, src); |
| } |
| |
| |
| void MacroAssembler::Cmp(Register dst, Smi* src) { |
| ASSERT(!dst.is(kScratchRegister)); |
| if (src->value() == 0) { |
| testq(dst, dst); |
| } else { |
| Register constant_reg = GetSmiConstant(src); |
| cmpq(dst, constant_reg); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiCompare(Register dst, const Operand& src) { |
| if (emit_debug_code()) { |
| AbortIfNotSmi(dst); |
| AbortIfNotSmi(src); |
| } |
| cmpq(dst, src); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(const Operand& dst, Register src) { |
| if (emit_debug_code()) { |
| AbortIfNotSmi(dst); |
| AbortIfNotSmi(src); |
| } |
| cmpq(dst, src); |
| } |
| |
| |
| void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) { |
| if (emit_debug_code()) { |
| AbortIfNotSmi(dst); |
| } |
| cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value())); |
| } |
| |
| |
| void MacroAssembler::Cmp(const Operand& dst, Smi* src) { |
| // The Operand cannot use the smi register. |
| Register smi_reg = GetSmiConstant(src); |
| ASSERT(!dst.AddressUsesRegister(smi_reg)); |
| cmpq(dst, smi_reg); |
| } |
| |
| |
| void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) { |
| cmpl(Operand(dst, kSmiShift / kBitsPerByte), src); |
| } |
| |
| |
| void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst, |
| Register src, |
| int power) { |
| ASSERT(power >= 0); |
| ASSERT(power < 64); |
| if (power == 0) { |
| SmiToInteger64(dst, src); |
| return; |
| } |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| if (power < kSmiShift) { |
| sar(dst, Immediate(kSmiShift - power)); |
| } else if (power > kSmiShift) { |
| shl(dst, Immediate(power - kSmiShift)); |
| } |
| } |
| |
| |
| void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst, |
| Register src, |
| int power) { |
| ASSERT((0 <= power) && (power < 32)); |
| if (dst.is(src)) { |
| shr(dst, Immediate(power + kSmiShift)); |
| } else { |
| UNIMPLEMENTED(); // Not used. |
| } |
| } |
| |
| |
| void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2, |
| Label* on_not_smis, |
| Label::Distance near_jump) { |
| if (dst.is(src1) || dst.is(src2)) { |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| movq(kScratchRegister, src1); |
| or_(kScratchRegister, src2); |
| JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump); |
| movq(dst, kScratchRegister); |
| } else { |
| movq(dst, src1); |
| or_(dst, src2); |
| JumpIfNotSmi(dst, on_not_smis, near_jump); |
| } |
| } |
| |
| |
| Condition MacroAssembler::CheckSmi(Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| testb(src, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckSmi(const Operand& src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| testb(src, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckNonNegativeSmi(Register src) { |
| STATIC_ASSERT(kSmiTag == 0); |
| // Test that both bits of the mask 0x8000000000000001 are zero. |
| movq(kScratchRegister, src); |
| rol(kScratchRegister, Immediate(1)); |
| testb(kScratchRegister, Immediate(3)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckBothSmi(Register first, Register second) { |
| if (first.is(second)) { |
| return CheckSmi(first); |
| } |
| STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3); |
| leal(kScratchRegister, Operand(first, second, times_1, 0)); |
| testb(kScratchRegister, Immediate(0x03)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckBothNonNegativeSmi(Register first, |
| Register second) { |
| if (first.is(second)) { |
| return CheckNonNegativeSmi(first); |
| } |
| movq(kScratchRegister, first); |
| or_(kScratchRegister, second); |
| rol(kScratchRegister, Immediate(1)); |
| testl(kScratchRegister, Immediate(3)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckEitherSmi(Register first, |
| Register second, |
| Register scratch) { |
| if (first.is(second)) { |
| return CheckSmi(first); |
| } |
| if (scratch.is(second)) { |
| andl(scratch, first); |
| } else { |
| if (!scratch.is(first)) { |
| movl(scratch, first); |
| } |
| andl(scratch, second); |
| } |
| testb(scratch, Immediate(kSmiTagMask)); |
| return zero; |
| } |
| |
| |
| Condition MacroAssembler::CheckIsMinSmi(Register src) { |
| ASSERT(!src.is(kScratchRegister)); |
| // If we overflow by subtracting one, it's the minimal smi value. |
| cmpq(src, kSmiConstantRegister); |
| return overflow; |
| } |
| |
| |
| Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) { |
| // A 32-bit integer value can always be converted to a smi. |
| return always; |
| } |
| |
| |
| Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) { |
| // An unsigned 32-bit integer value is valid as long as the high bit |
| // is not set. |
| testl(src, src); |
| return positive; |
| } |
| |
| |
| void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) { |
| if (dst.is(src)) { |
| andl(dst, Immediate(kSmiTagMask)); |
| } else { |
| movl(dst, Immediate(kSmiTagMask)); |
| andl(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) { |
| if (!(src.AddressUsesRegister(dst))) { |
| movl(dst, Immediate(kSmiTagMask)); |
| andl(dst, src); |
| } else { |
| movl(dst, src); |
| andl(dst, Immediate(kSmiTagMask)); |
| } |
| } |
| |
| |
| void MacroAssembler::JumpIfNotValidSmiValue(Register src, |
| Label* on_invalid, |
| Label::Distance near_jump) { |
| Condition is_valid = CheckInteger32ValidSmiValue(src); |
| j(NegateCondition(is_valid), on_invalid, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src, |
| Label* on_invalid, |
| Label::Distance near_jump) { |
| Condition is_valid = CheckUInteger32ValidSmiValue(src); |
| j(NegateCondition(is_valid), on_invalid, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfSmi(Register src, |
| Label* on_smi, |
| Label::Distance near_jump) { |
| Condition smi = CheckSmi(src); |
| j(smi, on_smi, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotSmi(Register src, |
| Label* on_not_smi, |
| Label::Distance near_jump) { |
| Condition smi = CheckSmi(src); |
| j(NegateCondition(smi), on_not_smi, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpUnlessNonNegativeSmi( |
| Register src, Label* on_not_smi_or_negative, |
| Label::Distance near_jump) { |
| Condition non_negative_smi = CheckNonNegativeSmi(src); |
| j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfSmiEqualsConstant(Register src, |
| Smi* constant, |
| Label* on_equals, |
| Label::Distance near_jump) { |
| SmiCompare(src, constant); |
| j(equal, on_equals, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothSmi(Register src1, |
| Register src2, |
| Label* on_not_both_smi, |
| Label::Distance near_jump) { |
| Condition both_smi = CheckBothSmi(src1, src2); |
| j(NegateCondition(both_smi), on_not_both_smi, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1, |
| Register src2, |
| Label* on_not_both_smi, |
| Label::Distance near_jump) { |
| Condition both_smi = CheckBothNonNegativeSmi(src1, src2); |
| j(NegateCondition(both_smi), on_not_both_smi, near_jump); |
| } |
| |
| |
| void MacroAssembler::SmiTryAddConstant(Register dst, |
| Register src, |
| Smi* constant, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| // Does not assume that src is a smi. |
| ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask)); |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src.is(kScratchRegister)); |
| |
| JumpIfNotSmi(src, on_not_smi_result, near_jump); |
| Register tmp = (dst.is(src) ? kScratchRegister : dst); |
| LoadSmiConstant(tmp, constant); |
| addq(tmp, src); |
| j(overflow, on_not_smi_result, near_jump); |
| if (dst.is(src)) { |
| movq(dst, tmp); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| return; |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| switch (constant->value()) { |
| case 1: |
| addq(dst, kSmiConstantRegister); |
| return; |
| case 2: |
| lea(dst, Operand(src, kSmiConstantRegister, times_2, 0)); |
| return; |
| case 4: |
| lea(dst, Operand(src, kSmiConstantRegister, times_4, 0)); |
| return; |
| case 8: |
| lea(dst, Operand(src, kSmiConstantRegister, times_8, 0)); |
| return; |
| default: |
| Register constant_reg = GetSmiConstant(constant); |
| addq(dst, constant_reg); |
| return; |
| } |
| } else { |
| switch (constant->value()) { |
| case 1: |
| lea(dst, Operand(src, kSmiConstantRegister, times_1, 0)); |
| return; |
| case 2: |
| lea(dst, Operand(src, kSmiConstantRegister, times_2, 0)); |
| return; |
| case 4: |
| lea(dst, Operand(src, kSmiConstantRegister, times_4, 0)); |
| return; |
| case 8: |
| lea(dst, Operand(src, kSmiConstantRegister, times_8, 0)); |
| return; |
| default: |
| LoadSmiConstant(dst, constant); |
| addq(dst, src); |
| return; |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) { |
| if (constant->value() != 0) { |
| addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant->value())); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAddConstant(Register dst, |
| Register src, |
| Smi* constant, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| |
| LoadSmiConstant(kScratchRegister, constant); |
| addq(kScratchRegister, src); |
| j(overflow, on_not_smi_result, near_jump); |
| movq(dst, kScratchRegister); |
| } else { |
| LoadSmiConstant(dst, constant); |
| addq(dst, src); |
| j(overflow, on_not_smi_result, near_jump); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| Register constant_reg = GetSmiConstant(constant); |
| subq(dst, constant_reg); |
| } else { |
| if (constant->value() == Smi::kMinValue) { |
| LoadSmiConstant(dst, constant); |
| // Adding and subtracting the min-value gives the same result, it only |
| // differs on the overflow bit, which we don't check here. |
| addq(dst, src); |
| } else { |
| // Subtract by adding the negation. |
| LoadSmiConstant(dst, Smi::FromInt(-constant->value())); |
| addq(dst, src); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::SmiSubConstant(Register dst, |
| Register src, |
| Smi* constant, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| if (constant->value() == 0) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| if (constant->value() == Smi::kMinValue) { |
| // Subtracting min-value from any non-negative value will overflow. |
| // We test the non-negativeness before doing the subtraction. |
| testq(src, src); |
| j(not_sign, on_not_smi_result, near_jump); |
| LoadSmiConstant(kScratchRegister, constant); |
| subq(dst, kScratchRegister); |
| } else { |
| // Subtract by adding the negation. |
| LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value())); |
| addq(kScratchRegister, dst); |
| j(overflow, on_not_smi_result, near_jump); |
| movq(dst, kScratchRegister); |
| } |
| } else { |
| if (constant->value() == Smi::kMinValue) { |
| // Subtracting min-value from any non-negative value will overflow. |
| // We test the non-negativeness before doing the subtraction. |
| testq(src, src); |
| j(not_sign, on_not_smi_result, near_jump); |
| LoadSmiConstant(dst, constant); |
| // Adding and subtracting the min-value gives the same result, it only |
| // differs on the overflow bit, which we don't check here. |
| addq(dst, src); |
| } else { |
| // Subtract by adding the negation. |
| LoadSmiConstant(dst, Smi::FromInt(-(constant->value()))); |
| addq(dst, src); |
| j(overflow, on_not_smi_result, near_jump); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::SmiNeg(Register dst, |
| Register src, |
| Label* on_smi_result, |
| Label::Distance near_jump) { |
| if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| movq(kScratchRegister, src); |
| neg(dst); // Low 32 bits are retained as zero by negation. |
| // Test if result is zero or Smi::kMinValue. |
| cmpq(dst, kScratchRegister); |
| j(not_equal, on_smi_result, near_jump); |
| movq(src, kScratchRegister); |
| } else { |
| movq(dst, src); |
| neg(dst); |
| cmpq(dst, src); |
| // If the result is zero or Smi::kMinValue, negation failed to create a smi. |
| j(not_equal, on_smi_result, near_jump); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAdd(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| ASSERT_NOT_NULL(on_not_smi_result); |
| ASSERT(!dst.is(src2)); |
| if (dst.is(src1)) { |
| movq(kScratchRegister, src1); |
| addq(kScratchRegister, src2); |
| j(overflow, on_not_smi_result, near_jump); |
| movq(dst, kScratchRegister); |
| } else { |
| movq(dst, src1); |
| addq(dst, src2); |
| j(overflow, on_not_smi_result, near_jump); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAdd(Register dst, |
| Register src1, |
| const Operand& src2, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| ASSERT_NOT_NULL(on_not_smi_result); |
| if (dst.is(src1)) { |
| movq(kScratchRegister, src1); |
| addq(kScratchRegister, src2); |
| j(overflow, on_not_smi_result, near_jump); |
| movq(dst, kScratchRegister); |
| } else { |
| ASSERT(!src2.AddressUsesRegister(dst)); |
| movq(dst, src1); |
| addq(dst, src2); |
| j(overflow, on_not_smi_result, near_jump); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiAdd(Register dst, |
| Register src1, |
| Register src2) { |
| // No overflow checking. Use only when it's known that |
| // overflowing is impossible. |
| if (!dst.is(src1)) { |
| if (emit_debug_code()) { |
| movq(kScratchRegister, src1); |
| addq(kScratchRegister, src2); |
| Check(no_overflow, "Smi addition overflow"); |
| } |
| lea(dst, Operand(src1, src2, times_1, 0)); |
| } else { |
| addq(dst, src2); |
| Assert(no_overflow, "Smi addition overflow"); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiSub(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| ASSERT_NOT_NULL(on_not_smi_result); |
| ASSERT(!dst.is(src2)); |
| if (dst.is(src1)) { |
| cmpq(dst, src2); |
| j(overflow, on_not_smi_result, near_jump); |
| subq(dst, src2); |
| } else { |
| movq(dst, src1); |
| subq(dst, src2); |
| j(overflow, on_not_smi_result, near_jump); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) { |
| // No overflow checking. Use only when it's known that |
| // overflowing is impossible (e.g., subtracting two positive smis). |
| ASSERT(!dst.is(src2)); |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| subq(dst, src2); |
| Assert(no_overflow, "Smi subtraction overflow"); |
| } |
| |
| |
| void MacroAssembler::SmiSub(Register dst, |
| Register src1, |
| const Operand& src2, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| ASSERT_NOT_NULL(on_not_smi_result); |
| if (dst.is(src1)) { |
| movq(kScratchRegister, src2); |
| cmpq(src1, kScratchRegister); |
| j(overflow, on_not_smi_result, near_jump); |
| subq(src1, kScratchRegister); |
| } else { |
| movq(dst, src1); |
| subq(dst, src2); |
| j(overflow, on_not_smi_result, near_jump); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiSub(Register dst, |
| Register src1, |
| const Operand& src2) { |
| // No overflow checking. Use only when it's known that |
| // overflowing is impossible (e.g., subtracting two positive smis). |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| subq(dst, src2); |
| Assert(no_overflow, "Smi subtraction overflow"); |
| } |
| |
| |
| void MacroAssembler::SmiMul(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| ASSERT(!dst.is(src2)); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| |
| if (dst.is(src1)) { |
| Label failure, zero_correct_result; |
| movq(kScratchRegister, src1); // Create backup for later testing. |
| SmiToInteger64(dst, src1); |
| imul(dst, src2); |
| j(overflow, &failure, Label::kNear); |
| |
| // Check for negative zero result. If product is zero, and one |
| // argument is negative, go to slow case. |
| Label correct_result; |
| testq(dst, dst); |
| j(not_zero, &correct_result, Label::kNear); |
| |
| movq(dst, kScratchRegister); |
| xor_(dst, src2); |
| // Result was positive zero. |
| j(positive, &zero_correct_result, Label::kNear); |
| |
| bind(&failure); // Reused failure exit, restores src1. |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result, near_jump); |
| |
| bind(&zero_correct_result); |
| Set(dst, 0); |
| |
| bind(&correct_result); |
| } else { |
| SmiToInteger64(dst, src1); |
| imul(dst, src2); |
| j(overflow, on_not_smi_result, near_jump); |
| // Check for negative zero result. If product is zero, and one |
| // argument is negative, go to slow case. |
| Label correct_result; |
| testq(dst, dst); |
| j(not_zero, &correct_result, Label::kNear); |
| // One of src1 and src2 is zero, the check whether the other is |
| // negative. |
| movq(kScratchRegister, src1); |
| xor_(kScratchRegister, src2); |
| j(negative, on_not_smi_result, near_jump); |
| bind(&correct_result); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiDiv(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src2.is(rax)); |
| ASSERT(!src2.is(rdx)); |
| ASSERT(!src1.is(rdx)); |
| |
| // Check for 0 divisor (result is +/-Infinity). |
| testq(src2, src2); |
| j(zero, on_not_smi_result, near_jump); |
| |
| if (src1.is(rax)) { |
| movq(kScratchRegister, src1); |
| } |
| SmiToInteger32(rax, src1); |
| // We need to rule out dividing Smi::kMinValue by -1, since that would |
| // overflow in idiv and raise an exception. |
| // We combine this with negative zero test (negative zero only happens |
| // when dividing zero by a negative number). |
| |
| // We overshoot a little and go to slow case if we divide min-value |
| // by any negative value, not just -1. |
| Label safe_div; |
| testl(rax, Immediate(0x7fffffff)); |
| j(not_zero, &safe_div, Label::kNear); |
| testq(src2, src2); |
| if (src1.is(rax)) { |
| j(positive, &safe_div, Label::kNear); |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result, near_jump); |
| } else { |
| j(negative, on_not_smi_result, near_jump); |
| } |
| bind(&safe_div); |
| |
| SmiToInteger32(src2, src2); |
| // Sign extend src1 into edx:eax. |
| cdq(); |
| idivl(src2); |
| Integer32ToSmi(src2, src2); |
| // Check that the remainder is zero. |
| testl(rdx, rdx); |
| if (src1.is(rax)) { |
| Label smi_result; |
| j(zero, &smi_result, Label::kNear); |
| movq(src1, kScratchRegister); |
| jmp(on_not_smi_result, near_jump); |
| bind(&smi_result); |
| } else { |
| j(not_zero, on_not_smi_result, near_jump); |
| } |
| if (!dst.is(src1) && src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| Integer32ToSmi(dst, rax); |
| } |
| |
| |
| void MacroAssembler::SmiMod(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!src2.is(rax)); |
| ASSERT(!src2.is(rdx)); |
| ASSERT(!src1.is(rdx)); |
| ASSERT(!src1.is(src2)); |
| |
| testq(src2, src2); |
| j(zero, on_not_smi_result, near_jump); |
| |
| if (src1.is(rax)) { |
| movq(kScratchRegister, src1); |
| } |
| SmiToInteger32(rax, src1); |
| SmiToInteger32(src2, src2); |
| |
| // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow). |
| Label safe_div; |
| cmpl(rax, Immediate(Smi::kMinValue)); |
| j(not_equal, &safe_div, Label::kNear); |
| cmpl(src2, Immediate(-1)); |
| j(not_equal, &safe_div, Label::kNear); |
| // Retag inputs and go slow case. |
| Integer32ToSmi(src2, src2); |
| if (src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| jmp(on_not_smi_result, near_jump); |
| bind(&safe_div); |
| |
| // Sign extend eax into edx:eax. |
| cdq(); |
| idivl(src2); |
| // Restore smi tags on inputs. |
| Integer32ToSmi(src2, src2); |
| if (src1.is(rax)) { |
| movq(src1, kScratchRegister); |
| } |
| // Check for a negative zero result. If the result is zero, and the |
| // dividend is negative, go slow to return a floating point negative zero. |
| Label smi_result; |
| testl(rdx, rdx); |
| j(not_zero, &smi_result, Label::kNear); |
| testq(src1, src1); |
| j(negative, on_not_smi_result, near_jump); |
| bind(&smi_result); |
| Integer32ToSmi(dst, rdx); |
| } |
| |
| |
| void MacroAssembler::SmiNot(Register dst, Register src) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src.is(kScratchRegister)); |
| // Set tag and padding bits before negating, so that they are zero afterwards. |
| movl(kScratchRegister, Immediate(~0)); |
| if (dst.is(src)) { |
| xor_(dst, kScratchRegister); |
| } else { |
| lea(dst, Operand(src, kScratchRegister, times_1, 0)); |
| } |
| not_(dst); |
| } |
| |
| |
| void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) { |
| ASSERT(!dst.is(src2)); |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| and_(dst, src2); |
| } |
| |
| |
| void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) { |
| if (constant->value() == 0) { |
| Set(dst, 0); |
| } else if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| Register constant_reg = GetSmiConstant(constant); |
| and_(dst, constant_reg); |
| } else { |
| LoadSmiConstant(dst, constant); |
| and_(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) { |
| if (!dst.is(src1)) { |
| ASSERT(!src1.is(src2)); |
| movq(dst, src1); |
| } |
| or_(dst, src2); |
| } |
| |
| |
| void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) { |
| if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| Register constant_reg = GetSmiConstant(constant); |
| or_(dst, constant_reg); |
| } else { |
| LoadSmiConstant(dst, constant); |
| or_(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) { |
| if (!dst.is(src1)) { |
| ASSERT(!src1.is(src2)); |
| movq(dst, src1); |
| } |
| xor_(dst, src2); |
| } |
| |
| |
| void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) { |
| if (dst.is(src)) { |
| ASSERT(!dst.is(kScratchRegister)); |
| Register constant_reg = GetSmiConstant(constant); |
| xor_(dst, constant_reg); |
| } else { |
| LoadSmiConstant(dst, constant); |
| xor_(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst, |
| Register src, |
| int shift_value) { |
| ASSERT(is_uint5(shift_value)); |
| if (shift_value > 0) { |
| if (dst.is(src)) { |
| sar(dst, Immediate(shift_value + kSmiShift)); |
| shl(dst, Immediate(kSmiShift)); |
| } else { |
| UNIMPLEMENTED(); // Not used. |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftLeftConstant(Register dst, |
| Register src, |
| int shift_value) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| if (shift_value > 0) { |
| shl(dst, Immediate(shift_value)); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftLogicalRightConstant( |
| Register dst, Register src, int shift_value, |
| Label* on_not_smi_result, Label::Distance near_jump) { |
| // Logic right shift interprets its result as an *unsigned* number. |
| if (dst.is(src)) { |
| UNIMPLEMENTED(); // Not used. |
| } else { |
| movq(dst, src); |
| if (shift_value == 0) { |
| testq(dst, dst); |
| j(negative, on_not_smi_result, near_jump); |
| } |
| shr(dst, Immediate(shift_value + kSmiShift)); |
| shl(dst, Immediate(kSmiShift)); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftLeft(Register dst, |
| Register src1, |
| Register src2) { |
| ASSERT(!dst.is(rcx)); |
| // Untag shift amount. |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| SmiToInteger32(rcx, src2); |
| // Shift amount specified by lower 5 bits, not six as the shl opcode. |
| and_(rcx, Immediate(0x1f)); |
| shl_cl(dst); |
| } |
| |
| |
| void MacroAssembler::SmiShiftLogicalRight(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smi_result, |
| Label::Distance near_jump) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(rcx)); |
| // dst and src1 can be the same, because the one case that bails out |
| // is a shift by 0, which leaves dst, and therefore src1, unchanged. |
| if (src1.is(rcx) || src2.is(rcx)) { |
| movq(kScratchRegister, rcx); |
| } |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| SmiToInteger32(rcx, src2); |
| orl(rcx, Immediate(kSmiShift)); |
| shr_cl(dst); // Shift is rcx modulo 0x1f + 32. |
| shl(dst, Immediate(kSmiShift)); |
| testq(dst, dst); |
| if (src1.is(rcx) || src2.is(rcx)) { |
| Label positive_result; |
| j(positive, &positive_result, Label::kNear); |
| if (src1.is(rcx)) { |
| movq(src1, kScratchRegister); |
| } else { |
| movq(src2, kScratchRegister); |
| } |
| jmp(on_not_smi_result, near_jump); |
| bind(&positive_result); |
| } else { |
| // src2 was zero and src1 negative. |
| j(negative, on_not_smi_result, near_jump); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiShiftArithmeticRight(Register dst, |
| Register src1, |
| Register src2) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(rcx)); |
| if (src1.is(rcx)) { |
| movq(kScratchRegister, src1); |
| } else if (src2.is(rcx)) { |
| movq(kScratchRegister, src2); |
| } |
| if (!dst.is(src1)) { |
| movq(dst, src1); |
| } |
| SmiToInteger32(rcx, src2); |
| orl(rcx, Immediate(kSmiShift)); |
| sar_cl(dst); // Shift 32 + original rcx & 0x1f. |
| shl(dst, Immediate(kSmiShift)); |
| if (src1.is(rcx)) { |
| movq(src1, kScratchRegister); |
| } else if (src2.is(rcx)) { |
| movq(src2, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::SelectNonSmi(Register dst, |
| Register src1, |
| Register src2, |
| Label* on_not_smis, |
| Label::Distance near_jump) { |
| ASSERT(!dst.is(kScratchRegister)); |
| ASSERT(!src1.is(kScratchRegister)); |
| ASSERT(!src2.is(kScratchRegister)); |
| ASSERT(!dst.is(src1)); |
| ASSERT(!dst.is(src2)); |
| // Both operands must not be smis. |
| #ifdef DEBUG |
| if (allow_stub_calls()) { // Check contains a stub call. |
| Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2)); |
| Check(not_both_smis, "Both registers were smis in SelectNonSmi."); |
| } |
| #endif |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| movl(kScratchRegister, Immediate(kSmiTagMask)); |
| and_(kScratchRegister, src1); |
| testl(kScratchRegister, src2); |
| // If non-zero then both are smis. |
| j(not_zero, on_not_smis, near_jump); |
| |
| // Exactly one operand is a smi. |
| ASSERT_EQ(1, static_cast<int>(kSmiTagMask)); |
| // kScratchRegister still holds src1 & kSmiTag, which is either zero or one. |
| subq(kScratchRegister, Immediate(1)); |
| // If src1 is a smi, then scratch register all 1s, else it is all 0s. |
| movq(dst, src1); |
| xor_(dst, src2); |
| and_(dst, kScratchRegister); |
| // If src1 is a smi, dst holds src1 ^ src2, else it is zero. |
| xor_(dst, src1); |
| // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi. |
| } |
| |
| |
| SmiIndex MacroAssembler::SmiToIndex(Register dst, |
| Register src, |
| int shift) { |
| ASSERT(is_uint6(shift)); |
| // There is a possible optimization if shift is in the range 60-63, but that |
| // will (and must) never happen. |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| if (shift < kSmiShift) { |
| sar(dst, Immediate(kSmiShift - shift)); |
| } else { |
| shl(dst, Immediate(shift - kSmiShift)); |
| } |
| return SmiIndex(dst, times_1); |
| } |
| |
| SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst, |
| Register src, |
| int shift) { |
| // Register src holds a positive smi. |
| ASSERT(is_uint6(shift)); |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| neg(dst); |
| if (shift < kSmiShift) { |
| sar(dst, Immediate(kSmiShift - shift)); |
| } else { |
| shl(dst, Immediate(shift - kSmiShift)); |
| } |
| return SmiIndex(dst, times_1); |
| } |
| |
| |
| void MacroAssembler::AddSmiField(Register dst, const Operand& src) { |
| ASSERT_EQ(0, kSmiShift % kBitsPerByte); |
| addl(dst, Operand(src, kSmiShift / kBitsPerByte)); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotString(Register object, |
| Register object_map, |
| Label* not_string, |
| Label::Distance near_jump) { |
| Condition is_smi = CheckSmi(object); |
| j(is_smi, not_string, near_jump); |
| CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map); |
| j(above_equal, not_string, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothSequentialAsciiStrings( |
| Register first_object, |
| Register second_object, |
| Register scratch1, |
| Register scratch2, |
| Label* on_fail, |
| Label::Distance near_jump) { |
| // Check that both objects are not smis. |
| Condition either_smi = CheckEitherSmi(first_object, second_object); |
| j(either_smi, on_fail, near_jump); |
| |
| // Load instance type for both strings. |
| movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset)); |
| movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset)); |
| movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); |
| movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); |
| |
| // Check that both are flat ASCII strings. |
| ASSERT(kNotStringTag != 0); |
| const int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| const int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| |
| andl(scratch1, Immediate(kFlatAsciiStringMask)); |
| andl(scratch2, Immediate(kFlatAsciiStringMask)); |
| // Interleave the bits to check both scratch1 and scratch2 in one test. |
| ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); |
| lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); |
| cmpl(scratch1, |
| Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); |
| j(not_equal, on_fail, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( |
| Register instance_type, |
| Register scratch, |
| Label* failure, |
| Label::Distance near_jump) { |
| if (!scratch.is(instance_type)) { |
| movl(scratch, instance_type); |
| } |
| |
| const int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| |
| andl(scratch, Immediate(kFlatAsciiStringMask)); |
| cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); |
| j(not_equal, failure, near_jump); |
| } |
| |
| |
| void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( |
| Register first_object_instance_type, |
| Register second_object_instance_type, |
| Register scratch1, |
| Register scratch2, |
| Label* on_fail, |
| Label::Distance near_jump) { |
| // Load instance type for both strings. |
| movq(scratch1, first_object_instance_type); |
| movq(scratch2, second_object_instance_type); |
| |
| // Check that both are flat ASCII strings. |
| ASSERT(kNotStringTag != 0); |
| const int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| const int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| |
| andl(scratch1, Immediate(kFlatAsciiStringMask)); |
| andl(scratch2, Immediate(kFlatAsciiStringMask)); |
| // Interleave the bits to check both scratch1 and scratch2 in one test. |
| ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); |
| lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); |
| cmpl(scratch1, |
| Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); |
| j(not_equal, on_fail, near_jump); |
| } |
| |
| |
| |
| void MacroAssembler::Move(Register dst, Register src) { |
| if (!dst.is(src)) { |
| movq(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::Move(Register dst, Handle<Object> source) { |
| ASSERT(!source->IsFailure()); |
| if (source->IsSmi()) { |
| Move(dst, Smi::cast(*source)); |
| } else { |
| movq(dst, source, RelocInfo::EMBEDDED_OBJECT); |
| } |
| } |
| |
| |
| void MacroAssembler::Move(const Operand& dst, Handle<Object> source) { |
| ASSERT(!source->IsFailure()); |
| if (source->IsSmi()) { |
| Move(dst, Smi::cast(*source)); |
| } else { |
| movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); |
| movq(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Cmp(Register dst, Handle<Object> source) { |
| if (source->IsSmi()) { |
| Cmp(dst, Smi::cast(*source)); |
| } else { |
| Move(kScratchRegister, source); |
| cmpq(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) { |
| if (source->IsSmi()) { |
| Cmp(dst, Smi::cast(*source)); |
| } else { |
| ASSERT(source->IsHeapObject()); |
| movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); |
| cmpq(dst, kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::Push(Handle<Object> source) { |
| if (source->IsSmi()) { |
| Push(Smi::cast(*source)); |
| } else { |
| ASSERT(source->IsHeapObject()); |
| movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); |
| push(kScratchRegister); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadHeapObject(Register result, |
| Handle<HeapObject> object) { |
| if (isolate()->heap()->InNewSpace(*object)) { |
| Handle<JSGlobalPropertyCell> cell = |
| isolate()->factory()->NewJSGlobalPropertyCell(object); |
| movq(result, cell, RelocInfo::GLOBAL_PROPERTY_CELL); |
| movq(result, Operand(result, 0)); |
| } else { |
| Move(result, object); |
| } |
| } |
| |
| |
| void MacroAssembler::PushHeapObject(Handle<HeapObject> object) { |
| if (isolate()->heap()->InNewSpace(*object)) { |
| Handle<JSGlobalPropertyCell> cell = |
| isolate()->factory()->NewJSGlobalPropertyCell(object); |
| movq(kScratchRegister, cell, RelocInfo::GLOBAL_PROPERTY_CELL); |
| movq(kScratchRegister, Operand(kScratchRegister, 0)); |
| push(kScratchRegister); |
| } else { |
| Push(object); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadGlobalCell(Register dst, |
| Handle<JSGlobalPropertyCell> cell) { |
| if (dst.is(rax)) { |
| load_rax(cell.location(), RelocInfo::GLOBAL_PROPERTY_CELL); |
| } else { |
| movq(dst, cell, RelocInfo::GLOBAL_PROPERTY_CELL); |
| movq(dst, Operand(dst, 0)); |
| } |
| } |
| |
| |
| void MacroAssembler::Push(Smi* source) { |
| intptr_t smi = reinterpret_cast<intptr_t>(source); |
| if (is_int32(smi)) { |
| push(Immediate(static_cast<int32_t>(smi))); |
| } else { |
| Register constant = GetSmiConstant(source); |
| push(constant); |
| } |
| } |
| |
| |
| void MacroAssembler::Drop(int stack_elements) { |
| if (stack_elements > 0) { |
| addq(rsp, Immediate(stack_elements * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::Test(const Operand& src, Smi* source) { |
| testl(Operand(src, kIntSize), Immediate(source->value())); |
| } |
| |
| |
| void MacroAssembler::TestBit(const Operand& src, int bits) { |
| int byte_offset = bits / kBitsPerByte; |
| int bit_in_byte = bits & (kBitsPerByte - 1); |
| testb(Operand(src, byte_offset), Immediate(1 << bit_in_byte)); |
| } |
| |
| |
| void MacroAssembler::Jump(ExternalReference ext) { |
| LoadAddress(kScratchRegister, ext); |
| jmp(kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) { |
| movq(kScratchRegister, destination, rmode); |
| jmp(kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) { |
| // TODO(X64): Inline this |
| jmp(code_object, rmode); |
| } |
| |
| |
| int MacroAssembler::CallSize(ExternalReference ext) { |
| // Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes). |
| const int kCallInstructionSize = 3; |
| return LoadAddressSize(ext) + kCallInstructionSize; |
| } |
| |
| |
| void MacroAssembler::Call(ExternalReference ext) { |
| #ifdef DEBUG |
| int end_position = pc_offset() + CallSize(ext); |
| #endif |
| LoadAddress(kScratchRegister, ext); |
| call(kScratchRegister); |
| #ifdef DEBUG |
| CHECK_EQ(end_position, pc_offset()); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) { |
| #ifdef DEBUG |
| int end_position = pc_offset() + CallSize(destination, rmode); |
| #endif |
| movq(kScratchRegister, destination, rmode); |
| call(kScratchRegister); |
| #ifdef DEBUG |
| CHECK_EQ(pc_offset(), end_position); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Call(Handle<Code> code_object, |
| RelocInfo::Mode rmode, |
| unsigned ast_id) { |
| #ifdef DEBUG |
| int end_position = pc_offset() + CallSize(code_object); |
| #endif |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| call(code_object, rmode, ast_id); |
| #ifdef DEBUG |
| CHECK_EQ(end_position, pc_offset()); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Pushad() { |
| push(rax); |
| push(rcx); |
| push(rdx); |
| push(rbx); |
| // Not pushing rsp or rbp. |
| push(rsi); |
| push(rdi); |
| push(r8); |
| push(r9); |
| // r10 is kScratchRegister. |
| push(r11); |
| // r12 is kSmiConstantRegister. |
| // r13 is kRootRegister. |
| push(r14); |
| push(r15); |
| STATIC_ASSERT(11 == kNumSafepointSavedRegisters); |
| // Use lea for symmetry with Popad. |
| int sp_delta = |
| (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize; |
| lea(rsp, Operand(rsp, -sp_delta)); |
| } |
| |
| |
| void MacroAssembler::Popad() { |
| // Popad must not change the flags, so use lea instead of addq. |
| int sp_delta = |
| (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize; |
| lea(rsp, Operand(rsp, sp_delta)); |
| pop(r15); |
| pop(r14); |
| pop(r11); |
| pop(r9); |
| pop(r8); |
| pop(rdi); |
| pop(rsi); |
| pop(rbx); |
| pop(rdx); |
| pop(rcx); |
| pop(rax); |
| } |
| |
| |
| void MacroAssembler::Dropad() { |
| addq(rsp, Immediate(kNumSafepointRegisters * kPointerSize)); |
| } |
| |
| |
| // Order general registers are pushed by Pushad: |
| // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15. |
| const int |
| MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = { |
| 0, |
| 1, |
| 2, |
| 3, |
| -1, |
| -1, |
| 4, |
| 5, |
| 6, |
| 7, |
| -1, |
| 8, |
| -1, |
| -1, |
| 9, |
| 10 |
| }; |
| |
| |
| void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) { |
| movq(SafepointRegisterSlot(dst), src); |
| } |
| |
| |
| void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { |
| movq(dst, SafepointRegisterSlot(src)); |
| } |
| |
| |
| Operand MacroAssembler::SafepointRegisterSlot(Register reg) { |
| return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); |
| } |
| |
| |
| void MacroAssembler::PushTryHandler(StackHandler::Kind kind, |
| int handler_index) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // We will build up the handler from the bottom by pushing on the stack. |
| // First push the frame pointer and context. |
| if (kind == StackHandler::JS_ENTRY) { |
| // The frame pointer does not point to a JS frame so we save NULL for |
| // rbp. We expect the code throwing an exception to check rbp before |
| // dereferencing it to restore the context. |
| push(Immediate(0)); // NULL frame pointer. |
| Push(Smi::FromInt(0)); // No context. |
| } else { |
| push(rbp); |
| push(rsi); |
| } |
| |
| // Push the state and the code object. |
| unsigned state = |
| StackHandler::IndexField::encode(handler_index) | |
| StackHandler::KindField::encode(kind); |
| push(Immediate(state)); |
| Push(CodeObject()); |
| |
| // Link the current handler as the next handler. |
| ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); |
| push(ExternalOperand(handler_address)); |
| // Set this new handler as the current one. |
| movq(ExternalOperand(handler_address), rsp); |
| } |
| |
| |
| void MacroAssembler::PopTryHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); |
| pop(ExternalOperand(handler_address)); |
| addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| } |
| |
| |
| void MacroAssembler::JumpToHandlerEntry() { |
| // Compute the handler entry address and jump to it. The handler table is |
| // a fixed array of (smi-tagged) code offsets. |
| // rax = exception, rdi = code object, rdx = state. |
| movq(rbx, FieldOperand(rdi, Code::kHandlerTableOffset)); |
| shr(rdx, Immediate(StackHandler::kKindWidth)); |
| movq(rdx, FieldOperand(rbx, rdx, times_8, FixedArray::kHeaderSize)); |
| SmiToInteger64(rdx, rdx); |
| lea(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize)); |
| jmp(rdi); |
| } |
| |
| |
| void MacroAssembler::Throw(Register value) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // The exception is expected in rax. |
| if (!value.is(rax)) { |
| movq(rax, value); |
| } |
| // Drop the stack pointer to the top of the top handler. |
| ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); |
| movq(rsp, ExternalOperand(handler_address)); |
| // Restore the next handler. |
| pop(ExternalOperand(handler_address)); |
| |
| // Remove the code object and state, compute the handler address in rdi. |
| pop(rdi); // Code object. |
| pop(rdx); // Offset and state. |
| |
| // Restore the context and frame pointer. |
| pop(rsi); // Context. |
| pop(rbp); // Frame pointer. |
| |
| // If the handler is a JS frame, restore the context to the frame. |
| // (kind == ENTRY) == (rbp == 0) == (rsi == 0), so we could test either |
| // rbp or rsi. |
| Label skip; |
| testq(rsi, rsi); |
| j(zero, &skip, Label::kNear); |
| movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); |
| bind(&skip); |
| |
| JumpToHandlerEntry(); |
| } |
| |
| |
| void MacroAssembler::ThrowUncatchable(Register value) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // The exception is expected in rax. |
| if (!value.is(rax)) { |
| movq(rax, value); |
| } |
| // Drop the stack pointer to the top of the top stack handler. |
| ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); |
| Load(rsp, handler_address); |
| |
| // Unwind the handlers until the top ENTRY handler is found. |
| Label fetch_next, check_kind; |
| jmp(&check_kind, Label::kNear); |
| bind(&fetch_next); |
| movq(rsp, Operand(rsp, StackHandlerConstants::kNextOffset)); |
| |
| bind(&check_kind); |
| STATIC_ASSERT(StackHandler::JS_ENTRY == 0); |
| testl(Operand(rsp, StackHandlerConstants::kStateOffset), |
| Immediate(StackHandler::KindField::kMask)); |
| j(not_zero, &fetch_next); |
| |
| // Set the top handler address to next handler past the top ENTRY handler. |
| pop(ExternalOperand(handler_address)); |
| |
| // Remove the code object and state, compute the handler address in rdi. |
| pop(rdi); // Code object. |
| pop(rdx); // Offset and state. |
| |
| // Clear the context pointer and frame pointer (0 was saved in the handler). |
| pop(rsi); |
| pop(rbp); |
| |
| JumpToHandlerEntry(); |
| } |
| |
| |
| void MacroAssembler::Ret() { |
| ret(0); |
| } |
| |
| |
| void MacroAssembler::Ret(int bytes_dropped, Register scratch) { |
| if (is_uint16(bytes_dropped)) { |
| ret(bytes_dropped); |
| } else { |
| pop(scratch); |
| addq(rsp, Immediate(bytes_dropped)); |
| push(scratch); |
| ret(0); |
| } |
| } |
| |
| |
| void MacroAssembler::FCmp() { |
| fucomip(); |
| fstp(0); |
| } |
| |
| |
| void MacroAssembler::CmpObjectType(Register heap_object, |
| InstanceType type, |
| Register map) { |
| movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| CmpInstanceType(map, type); |
| } |
| |
| |
| void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { |
| cmpb(FieldOperand(map, Map::kInstanceTypeOffset), |
| Immediate(static_cast<int8_t>(type))); |
| } |
| |
| |
| void MacroAssembler::CheckFastElements(Register map, |
| Label* fail, |
| Label::Distance distance) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| STATIC_ASSERT(FAST_ELEMENTS == 1); |
| cmpb(FieldOperand(map, Map::kBitField2Offset), |
| Immediate(Map::kMaximumBitField2FastElementValue)); |
| j(above, fail, distance); |
| } |
| |
| |
| void MacroAssembler::CheckFastObjectElements(Register map, |
| Label* fail, |
| Label::Distance distance) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| STATIC_ASSERT(FAST_ELEMENTS == 1); |
| cmpb(FieldOperand(map, Map::kBitField2Offset), |
| Immediate(Map::kMaximumBitField2FastSmiOnlyElementValue)); |
| j(below_equal, fail, distance); |
| cmpb(FieldOperand(map, Map::kBitField2Offset), |
| Immediate(Map::kMaximumBitField2FastElementValue)); |
| j(above, fail, distance); |
| } |
| |
| |
| void MacroAssembler::CheckFastSmiOnlyElements(Register map, |
| Label* fail, |
| Label::Distance distance) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| cmpb(FieldOperand(map, Map::kBitField2Offset), |
| Immediate(Map::kMaximumBitField2FastSmiOnlyElementValue)); |
| j(above, fail, distance); |
| } |
| |
| |
| void MacroAssembler::StoreNumberToDoubleElements( |
| Register maybe_number, |
| Register elements, |
| Register index, |
| XMMRegister xmm_scratch, |
| Label* fail) { |
| Label smi_value, is_nan, maybe_nan, not_nan, have_double_value, done; |
| |
| JumpIfSmi(maybe_number, &smi_value, Label::kNear); |
| |
| CheckMap(maybe_number, |
| isolate()->factory()->heap_number_map(), |
| fail, |
| DONT_DO_SMI_CHECK); |
| |
| // Double value, canonicalize NaN. |
| uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32); |
| cmpl(FieldOperand(maybe_number, offset), |
| Immediate(kNaNOrInfinityLowerBoundUpper32)); |
| j(greater_equal, &maybe_nan, Label::kNear); |
| |
| bind(¬_nan); |
| movsd(xmm_scratch, FieldOperand(maybe_number, HeapNumber::kValueOffset)); |
| bind(&have_double_value); |
| movsd(FieldOperand(elements, index, times_8, FixedDoubleArray::kHeaderSize), |
| xmm_scratch); |
| jmp(&done); |
| |
| bind(&maybe_nan); |
| // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise |
| // it's an Infinity, and the non-NaN code path applies. |
| j(greater, &is_nan, Label::kNear); |
| cmpl(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0)); |
| j(zero, ¬_nan); |
| bind(&is_nan); |
| // Convert all NaNs to the same canonical NaN value when they are stored in |
| // the double array. |
| Set(kScratchRegister, BitCast<uint64_t>( |
| FixedDoubleArray::canonical_not_the_hole_nan_as_double())); |
| movq(xmm_scratch, kScratchRegister); |
| jmp(&have_double_value, Label::kNear); |
| |
| bind(&smi_value); |
| // Value is a smi. convert to a double and store. |
| // Preserve original value. |
| SmiToInteger32(kScratchRegister, maybe_number); |
| cvtlsi2sd(xmm_scratch, kScratchRegister); |
| movsd(FieldOperand(elements, index, times_8, FixedDoubleArray::kHeaderSize), |
| xmm_scratch); |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::CompareMap(Register obj, |
| Handle<Map> map, |
| Label* early_success, |
| CompareMapMode mode) { |
| Cmp(FieldOperand(obj, HeapObject::kMapOffset), map); |
| if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) { |
| Map* transitioned_fast_element_map( |
| map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL)); |
| ASSERT(transitioned_fast_element_map == NULL || |
| map->elements_kind() != FAST_ELEMENTS); |
| if (transitioned_fast_element_map != NULL) { |
| j(equal, early_success, Label::kNear); |
| Cmp(FieldOperand(obj, HeapObject::kMapOffset), |
| Handle<Map>(transitioned_fast_element_map)); |
| } |
| |
| Map* transitioned_double_map( |
| map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL)); |
| ASSERT(transitioned_double_map == NULL || |
| map->elements_kind() == FAST_SMI_ONLY_ELEMENTS); |
| if (transitioned_double_map != NULL) { |
| j(equal, early_success, Label::kNear); |
| Cmp(FieldOperand(obj, HeapObject::kMapOffset), |
| Handle<Map>(transitioned_double_map)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::CheckMap(Register obj, |
| Handle<Map> map, |
| Label* fail, |
| SmiCheckType smi_check_type, |
| CompareMapMode mode) { |
| if (smi_check_type == DO_SMI_CHECK) { |
| JumpIfSmi(obj, fail); |
| } |
| |
| Label success; |
| CompareMap(obj, map, &success, mode); |
| j(not_equal, fail); |
| bind(&success); |
| } |
| |
| |
| void MacroAssembler::ClampUint8(Register reg) { |
| Label done; |
| testl(reg, Immediate(0xFFFFFF00)); |
| j(zero, &done, Label::kNear); |
| setcc(negative, reg); // 1 if negative, 0 if positive. |
| decb(reg); // 0 if negative, 255 if positive. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg, |
| XMMRegister temp_xmm_reg, |
| Register result_reg, |
| Register temp_reg) { |
| Label done; |
| Set(result_reg, 0); |
| xorps(temp_xmm_reg, temp_xmm_reg); |
| ucomisd(input_reg, temp_xmm_reg); |
| j(below, &done, Label::kNear); |
| uint64_t one_half = BitCast<uint64_t, double>(0.5); |
| Set(temp_reg, one_half); |
| movq(temp_xmm_reg, temp_reg); |
| addsd(temp_xmm_reg, input_reg); |
| cvttsd2si(result_reg, temp_xmm_reg); |
| testl(result_reg, Immediate(0xFFFFFF00)); |
| j(zero, &done, Label::kNear); |
| Set(result_reg, 255); |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::LoadInstanceDescriptors(Register map, |
| Register descriptors) { |
| movq(descriptors, FieldOperand(map, |
| Map::kInstanceDescriptorsOrBitField3Offset)); |
| Label not_smi; |
| JumpIfNotSmi(descriptors, ¬_smi, Label::kNear); |
| Move(descriptors, isolate()->factory()->empty_descriptor_array()); |
| bind(¬_smi); |
| } |
| |
| |
| void MacroAssembler::DispatchMap(Register obj, |
| Handle<Map> map, |
| Handle<Code> success, |
| SmiCheckType smi_check_type) { |
| Label fail; |
| if (smi_check_type == DO_SMI_CHECK) { |
| JumpIfSmi(obj, &fail); |
| } |
| Cmp(FieldOperand(obj, HeapObject::kMapOffset), map); |
| j(equal, success, RelocInfo::CODE_TARGET); |
| |
| bind(&fail); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotNumber(Register object) { |
| Label ok; |
| Condition is_smi = CheckSmi(object); |
| j(is_smi, &ok, Label::kNear); |
| Cmp(FieldOperand(object, HeapObject::kMapOffset), |
| isolate()->factory()->heap_number_map()); |
| Assert(equal, "Operand not a number"); |
| bind(&ok); |
| } |
| |
| |
| void MacroAssembler::AbortIfSmi(Register object) { |
| Condition is_smi = CheckSmi(object); |
| Assert(NegateCondition(is_smi), "Operand is a smi"); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotSmi(Register object) { |
| Condition is_smi = CheckSmi(object); |
| Assert(is_smi, "Operand is not a smi"); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotSmi(const Operand& object) { |
| Condition is_smi = CheckSmi(object); |
| Assert(is_smi, "Operand is not a smi"); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotZeroExtended(Register int32_register) { |
| ASSERT(!int32_register.is(kScratchRegister)); |
| movq(kScratchRegister, 0x100000000l, RelocInfo::NONE); |
| cmpq(kScratchRegister, int32_register); |
| Assert(above_equal, "32 bit value in register is not zero-extended"); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotString(Register object) { |
| testb(object, Immediate(kSmiTagMask)); |
| Assert(not_equal, "Operand is not a string"); |
| push(object); |
| movq(object, FieldOperand(object, HeapObject::kMapOffset)); |
| CmpInstanceType(object, FIRST_NONSTRING_TYPE); |
| pop(object); |
| Assert(below, "Operand is not a string"); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotRootValue(Register src, |
| Heap::RootListIndex root_value_index, |
| const char* message) { |
| ASSERT(!src.is(kScratchRegister)); |
| LoadRoot(kScratchRegister, root_value_index); |
| cmpq(src, kScratchRegister); |
| Check(equal, message); |
| } |
| |
| |
| |
| Condition MacroAssembler::IsObjectStringType(Register heap_object, |
| Register map, |
| Register instance_type) { |
| movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); |
| STATIC_ASSERT(kNotStringTag != 0); |
| testb(instance_type, Immediate(kIsNotStringMask)); |
| return zero; |
| } |
| |
| |
| void MacroAssembler::TryGetFunctionPrototype(Register function, |
| Register result, |
| Label* miss, |
| bool miss_on_bound_function) { |
| // Check that the receiver isn't a smi. |
| testl(function, Immediate(kSmiTagMask)); |
| j(zero, miss); |
| |
| // Check that the function really is a function. |
| CmpObjectType(function, JS_FUNCTION_TYPE, result); |
| j(not_equal, miss); |
| |
| if (miss_on_bound_function) { |
| movq(kScratchRegister, |
| FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| // It's not smi-tagged (stored in the top half of a smi-tagged 8-byte |
| // field). |
| TestBit(FieldOperand(kScratchRegister, |
| SharedFunctionInfo::kCompilerHintsOffset), |
| SharedFunctionInfo::kBoundFunction); |
| j(not_zero, miss); |
| } |
| |
| // Make sure that the function has an instance prototype. |
| Label non_instance; |
| testb(FieldOperand(result, Map::kBitFieldOffset), |
| Immediate(1 << Map::kHasNonInstancePrototype)); |
| j(not_zero, &non_instance, Label::kNear); |
| |
| // Get the prototype or initial map from the function. |
| movq(result, |
| FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // If the prototype or initial map is the hole, don't return it and |
| // simply miss the cache instead. This will allow us to allocate a |
| // prototype object on-demand in the runtime system. |
| CompareRoot(result, Heap::kTheHoleValueRootIndex); |
| j(equal, miss); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| CmpObjectType(result, MAP_TYPE, kScratchRegister); |
| j(not_equal, &done, Label::kNear); |
| |
| // Get the prototype from the initial map. |
| movq(result, FieldOperand(result, Map::kPrototypeOffset)); |
| jmp(&done, Label::kNear); |
| |
| // Non-instance prototype: Fetch prototype from constructor field |
| // in initial map. |
| bind(&non_instance); |
| movq(result, FieldOperand(result, Map::kConstructorOffset)); |
| |
| // All done. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::SetCounter(StatsCounter* counter, int value) { |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand counter_operand = ExternalOperand(ExternalReference(counter)); |
| movl(counter_operand, Immediate(value)); |
| } |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand counter_operand = ExternalOperand(ExternalReference(counter)); |
| if (value == 1) { |
| incl(counter_operand); |
| } else { |
| addl(counter_operand, Immediate(value)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand counter_operand = ExternalOperand(ExternalReference(counter)); |
| if (value == 1) { |
| decl(counter_operand); |
| } else { |
| subl(counter_operand, Immediate(value)); |
| } |
| } |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| void MacroAssembler::DebugBreak() { |
| Set(rax, 0); // No arguments. |
| LoadAddress(rbx, ExternalReference(Runtime::kDebugBreak, isolate())); |
| CEntryStub ces(1); |
| ASSERT(AllowThisStubCall(&ces)); |
| Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); |
| } |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) { |
| // This macro takes the dst register to make the code more readable |
| // at the call sites. However, the dst register has to be rcx to |
| // follow the calling convention which requires the call type to be |
| // in rcx. |
| ASSERT(dst.is(rcx)); |
| if (call_kind == CALL_AS_FUNCTION) { |
| LoadSmiConstant(dst, Smi::FromInt(1)); |
| } else { |
| LoadSmiConstant(dst, Smi::FromInt(0)); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| Label done; |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, |
| actual, |
| Handle<Code>::null(), |
| code, |
| &done, |
| &definitely_mismatches, |
| flag, |
| Label::kNear, |
| call_wrapper, |
| call_kind); |
| if (!definitely_mismatches) { |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(code)); |
| SetCallKind(rcx, call_kind); |
| call(code); |
| call_wrapper.AfterCall(); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| SetCallKind(rcx, call_kind); |
| jmp(code); |
| } |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| Label done; |
| bool definitely_mismatches = false; |
| Register dummy = rax; |
| InvokePrologue(expected, |
| actual, |
| code, |
| dummy, |
| &done, |
| &definitely_mismatches, |
| flag, |
| Label::kNear, |
| call_wrapper, |
| call_kind); |
| if (!definitely_mismatches) { |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(code)); |
| SetCallKind(rcx, call_kind); |
| Call(code, rmode); |
| call_wrapper.AfterCall(); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| SetCallKind(rcx, call_kind); |
| Jump(code, rmode); |
| } |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| ASSERT(function.is(rdi)); |
| movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| movq(rsi, FieldOperand(function, JSFunction::kContextOffset)); |
| movsxlq(rbx, |
| FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // Advances rdx to the end of the Code object header, to the start of |
| // the executable code. |
| movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); |
| |
| ParameterCount expected(rbx); |
| InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind); |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Get the function and setup the context. |
| LoadHeapObject(rdi, function); |
| movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); |
| ParameterCount expected(function->shared()->formal_parameter_count()); |
| InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind); |
| } |
| |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_register, |
| Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag, |
| Label::Distance near_jump, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| bool definitely_matches = false; |
| *definitely_mismatches = false; |
| Label invoke; |
| if (expected.is_immediate()) { |
| ASSERT(actual.is_immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| Set(rax, actual.immediate()); |
| if (expected.immediate() == |
| SharedFunctionInfo::kDontAdaptArgumentsSentinel) { |
| // Don't worry about adapting arguments for built-ins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| *definitely_mismatches = true; |
| Set(rbx, expected.immediate()); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| // Expected is in register, actual is immediate. This is the |
| // case when we invoke function values without going through the |
| // IC mechanism. |
| cmpq(expected.reg(), Immediate(actual.immediate())); |
| j(equal, &invoke, Label::kNear); |
| ASSERT(expected.reg().is(rbx)); |
| Set(rax, actual.immediate()); |
| } else if (!expected.reg().is(actual.reg())) { |
| // Both expected and actual are in (different) registers. This |
| // is the case when we invoke functions using call and apply. |
| cmpq(expected.reg(), actual.reg()); |
| j(equal, &invoke, Label::kNear); |
| ASSERT(actual.reg().is(rax)); |
| ASSERT(expected.reg().is(rbx)); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
| if (!code_constant.is_null()) { |
| movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); |
| addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| } else if (!code_register.is(rdx)) { |
| movq(rdx, code_register); |
| } |
| |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(adaptor)); |
| SetCallKind(rcx, call_kind); |
| Call(adaptor, RelocInfo::CODE_TARGET); |
| call_wrapper.AfterCall(); |
| if (!*definitely_mismatches) { |
| jmp(done, near_jump); |
| } |
| } else { |
| SetCallKind(rcx, call_kind); |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(&invoke); |
| } |
| } |
| |
| |
| void MacroAssembler::EnterFrame(StackFrame::Type type) { |
| push(rbp); |
| movq(rbp, rsp); |
| push(rsi); // Context. |
| Push(Smi::FromInt(type)); |
| movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); |
| push(kScratchRegister); |
| if (emit_debug_code()) { |
| movq(kScratchRegister, |
| isolate()->factory()->undefined_value(), |
| RelocInfo::EMBEDDED_OBJECT); |
| cmpq(Operand(rsp, 0), kScratchRegister); |
| Check(not_equal, "code object not properly patched"); |
| } |
| } |
| |
| |
| void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
| if (emit_debug_code()) { |
| Move(kScratchRegister, Smi::FromInt(type)); |
| cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister); |
| Check(equal, "stack frame types must match"); |
| } |
| movq(rsp, rbp); |
| pop(rbp); |
| } |
| |
| |
| void MacroAssembler::EnterExitFramePrologue(bool save_rax) { |
| // Set up the frame structure on the stack. |
| // All constants are relative to the frame pointer of the exit frame. |
| ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); |
| ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); |
| ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); |
| push(rbp); |
| movq(rbp, rsp); |
| |
| // Reserve room for entry stack pointer and push the code object. |
| ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); |
| push(Immediate(0)); // Saved entry sp, patched before call. |
| movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); |
| push(kScratchRegister); // Accessed from EditFrame::code_slot. |
| |
| // Save the frame pointer and the context in top. |
| if (save_rax) { |
| movq(r14, rax); // Backup rax in callee-save register. |
| } |
| |
| Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp); |
| Store(ExternalReference(Isolate::kContextAddress, isolate()), rsi); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space, |
| bool save_doubles) { |
| #ifdef _WIN64 |
| const int kShadowSpace = 4; |
| arg_stack_space += kShadowSpace; |
| #endif |
| // Optionally save all XMM registers. |
| if (save_doubles) { |
| int space = XMMRegister::kNumRegisters * kDoubleSize + |
| arg_stack_space * kPointerSize; |
| subq(rsp, Immediate(space)); |
| int offset = -2 * kPointerSize; |
| for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) { |
| XMMRegister reg = XMMRegister::FromAllocationIndex(i); |
| movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg); |
| } |
| } else if (arg_stack_space > 0) { |
| subq(rsp, Immediate(arg_stack_space * kPointerSize)); |
| } |
| |
| // Get the required frame alignment for the OS. |
| const int kFrameAlignment = OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| ASSERT(IsPowerOf2(kFrameAlignment)); |
| ASSERT(is_int8(kFrameAlignment)); |
| and_(rsp, Immediate(-kFrameAlignment)); |
| } |
| |
| // Patch the saved entry sp. |
| movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) { |
| EnterExitFramePrologue(true); |
| |
| // Set up argv in callee-saved register r15. It is reused in LeaveExitFrame, |
| // so it must be retained across the C-call. |
| int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| lea(r15, Operand(rbp, r14, times_pointer_size, offset)); |
| |
| EnterExitFrameEpilogue(arg_stack_space, save_doubles); |
| } |
| |
| |
| void MacroAssembler::EnterApiExitFrame(int arg_stack_space) { |
| EnterExitFramePrologue(false); |
| EnterExitFrameEpilogue(arg_stack_space, false); |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles) { |
| // Registers: |
| // r15 : argv |
| if (save_doubles) { |
| int offset = -2 * kPointerSize; |
| for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) { |
| XMMRegister reg = XMMRegister::FromAllocationIndex(i); |
| movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize))); |
| } |
| } |
| // Get the return address from the stack and restore the frame pointer. |
| movq(rcx, Operand(rbp, 1 * kPointerSize)); |
| movq(rbp, Operand(rbp, 0 * kPointerSize)); |
| |
| // Drop everything up to and including the arguments and the receiver |
| // from the caller stack. |
| lea(rsp, Operand(r15, 1 * kPointerSize)); |
| |
| // Push the return address to get ready to return. |
| push(rcx); |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| |
| void MacroAssembler::LeaveApiExitFrame() { |
| movq(rsp, rbp); |
| pop(rbp); |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrameEpilogue() { |
| // Restore current context from top and clear it in debug mode. |
| ExternalReference context_address(Isolate::kContextAddress, isolate()); |
| Operand context_operand = ExternalOperand(context_address); |
| movq(rsi, context_operand); |
| #ifdef DEBUG |
| movq(context_operand, Immediate(0)); |
| #endif |
| |
| // Clear the top frame. |
| ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, |
| isolate()); |
| Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address); |
| movq(c_entry_fp_operand, Immediate(0)); |
| } |
| |
| |
| void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss) { |
| Label same_contexts; |
| |
| ASSERT(!holder_reg.is(scratch)); |
| ASSERT(!scratch.is(kScratchRegister)); |
| // Load current lexical context from the stack frame. |
| movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset)); |
| |
| // When generating debug code, make sure the lexical context is set. |
| if (emit_debug_code()) { |
| cmpq(scratch, Immediate(0)); |
| Check(not_equal, "we should not have an empty lexical context"); |
| } |
| // Load the global context of the current context. |
| int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| movq(scratch, FieldOperand(scratch, offset)); |
| movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check the context is a global context. |
| if (emit_debug_code()) { |
| Cmp(FieldOperand(scratch, HeapObject::kMapOffset), |
| isolate()->factory()->global_context_map()); |
| Check(equal, "JSGlobalObject::global_context should be a global context."); |
| } |
| |
| // Check if both contexts are the same. |
| cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| j(equal, &same_contexts); |
| |
| // Compare security tokens. |
| // Check that the security token in the calling global object is |
| // compatible with the security token in the receiving global |
| // object. |
| |
| // Check the context is a global context. |
| if (emit_debug_code()) { |
| // Preserve original value of holder_reg. |
| push(holder_reg); |
| movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| CompareRoot(holder_reg, Heap::kNullValueRootIndex); |
| Check(not_equal, "JSGlobalProxy::context() should not be null."); |
| |
| // Read the first word and compare to global_context_map(), |
| movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); |
| CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex); |
| Check(equal, "JSGlobalObject::global_context should be a global context."); |
| pop(holder_reg); |
| } |
| |
| movq(kScratchRegister, |
| FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| int token_offset = |
| Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; |
| movq(scratch, FieldOperand(scratch, token_offset)); |
| cmpq(scratch, FieldOperand(kScratchRegister, token_offset)); |
| j(not_equal, miss); |
| |
| bind(&same_contexts); |
| } |
| |
| |
| void MacroAssembler::GetNumberHash(Register r0, Register scratch) { |
| // First of all we assign the hash seed to scratch. |
| LoadRoot(scratch, Heap::kHashSeedRootIndex); |
| SmiToInteger32(scratch, scratch); |
| |
| // Xor original key with a seed. |
| xorl(r0, scratch); |
| |
| // Compute the hash code from the untagged key. This must be kept in sync |
| // with ComputeIntegerHash in utils.h. |
| // |
| // hash = ~hash + (hash << 15); |
| movl(scratch, r0); |
| notl(r0); |
| shll(scratch, Immediate(15)); |
| addl(r0, scratch); |
| // hash = hash ^ (hash >> 12); |
| movl(scratch, r0); |
| shrl(scratch, Immediate(12)); |
| xorl(r0, scratch); |
| // hash = hash + (hash << 2); |
| leal(r0, Operand(r0, r0, times_4, 0)); |
| // hash = hash ^ (hash >> 4); |
| movl(scratch, r0); |
| shrl(scratch, Immediate(4)); |
| xorl(r0, scratch); |
| // hash = hash * 2057; |
| imull(r0, r0, Immediate(2057)); |
| // hash = hash ^ (hash >> 16); |
| movl(scratch, r0); |
| shrl(scratch, Immediate(16)); |
| xorl(r0, scratch); |
| } |
| |
| |
| |
| void MacroAssembler::LoadFromNumberDictionary(Label* miss, |
| Register elements, |
| Register key, |
| Register r0, |
| Register r1, |
| Register r2, |
| Register result) { |
| // Register use: |
| // |
| // elements - holds the slow-case elements of the receiver on entry. |
| // Unchanged unless 'result' is the same register. |
| // |
| // key - holds the smi key on entry. |
| // Unchanged unless 'result' is the same register. |
| // |
| // Scratch registers: |
| // |
| // r0 - holds the untagged key on entry and holds the hash once computed. |
| // |
| // r1 - used to hold the capacity mask of the dictionary |
| // |
| // r2 - used for the index into the dictionary. |
| // |
| // result - holds the result on exit if the load succeeded. |
| // Allowed to be the same as 'key' or 'result'. |
| // Unchanged on bailout so 'key' or 'result' can be used |
| // in further computation. |
| |
| Label done; |
| |
| GetNumberHash(r0, r1); |
| |
| // Compute capacity mask. |
| SmiToInteger32(r1, FieldOperand(elements, |
| SeededNumberDictionary::kCapacityOffset)); |
| decl(r1); |
| |
| // Generate an unrolled loop that performs a few probes before giving up. |
| const int kProbes = 4; |
| for (int i = 0; i < kProbes; i++) { |
| // Use r2 for index calculations and keep the hash intact in r0. |
| movq(r2, r0); |
| // Compute the masked index: (hash + i + i * i) & mask. |
| if (i > 0) { |
| addl(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i))); |
| } |
| and_(r2, r1); |
| |
| // Scale the index by multiplying by the entry size. |
| ASSERT(SeededNumberDictionary::kEntrySize == 3); |
| lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3 |
| |
| // Check if the key matches. |
| cmpq(key, FieldOperand(elements, |
| r2, |
| times_pointer_size, |
| SeededNumberDictionary::kElementsStartOffset)); |
| if (i != (kProbes - 1)) { |
| j(equal, &done); |
| } else { |
| j(not_equal, miss); |
| } |
| } |
| |
| bind(&done); |
| // Check that the value is a normal propety. |
| const int kDetailsOffset = |
| SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; |
| ASSERT_EQ(NORMAL, 0); |
| Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset), |
| Smi::FromInt(PropertyDetails::TypeField::kMask)); |
| j(not_zero, miss); |
| |
| // Get the value at the masked, scaled index. |
| const int kValueOffset = |
| SeededNumberDictionary::kElementsStartOffset + kPointerSize; |
| movq(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset)); |
| } |
| |
| |
| void MacroAssembler::LoadAllocationTopHelper(Register result, |
| Register scratch, |
| AllocationFlags flags) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| |
| // Just return if allocation top is already known. |
| if ((flags & RESULT_CONTAINS_TOP) != 0) { |
| // No use of scratch if allocation top is provided. |
| ASSERT(!scratch.is_valid()); |
| #ifdef DEBUG |
| // Assert that result actually contains top on entry. |
| Operand top_operand = ExternalOperand(new_space_allocation_top); |
| cmpq(result, top_operand); |
| Check(equal, "Unexpected allocation top"); |
| #endif |
| return; |
| } |
| |
| // Move address of new object to result. Use scratch register if available, |
| // and keep address in scratch until call to UpdateAllocationTopHelper. |
| if (scratch.is_valid()) { |
| LoadAddress(scratch, new_space_allocation_top); |
| movq(result, Operand(scratch, 0)); |
| } else { |
| Load(result, new_space_allocation_top); |
| } |
| } |
| |
| |
| void MacroAssembler::UpdateAllocationTopHelper(Register result_end, |
| Register scratch) { |
| if (emit_debug_code()) { |
| testq(result_end, Immediate(kObjectAlignmentMask)); |
| Check(zero, "Unaligned allocation in new space"); |
| } |
| |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| |
| // Update new top. |
| if (scratch.is_valid()) { |
| // Scratch already contains address of allocation top. |
| movq(Operand(scratch, 0), result_end); |
| } else { |
| Store(new_space_allocation_top, result_end); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (emit_debug_code()) { |
| // Trash the registers to simulate an allocation failure. |
| movl(result, Immediate(0x7091)); |
| if (result_end.is_valid()) { |
| movl(result_end, Immediate(0x7191)); |
| } |
| if (scratch.is_valid()) { |
| movl(scratch, Immediate(0x7291)); |
| } |
| } |
| jmp(gc_required); |
| return; |
| } |
| ASSERT(!result.is(result_end)); |
| |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, scratch, flags); |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(isolate()); |
| |
| Register top_reg = result_end.is_valid() ? result_end : result; |
| |
| if (!top_reg.is(result)) { |
| movq(top_reg, result); |
| } |
| addq(top_reg, Immediate(object_size)); |
| j(carry, gc_required); |
| Operand limit_operand = ExternalOperand(new_space_allocation_limit); |
| cmpq(top_reg, limit_operand); |
| j(above, gc_required); |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(top_reg, scratch); |
| |
| if (top_reg.is(result)) { |
| if ((flags & TAG_OBJECT) != 0) { |
| subq(result, Immediate(object_size - kHeapObjectTag)); |
| } else { |
| subq(result, Immediate(object_size)); |
| } |
| } else if ((flags & TAG_OBJECT) != 0) { |
| // Tag the result if requested. |
| addq(result, Immediate(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int header_size, |
| ScaleFactor element_size, |
| Register element_count, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (emit_debug_code()) { |
| // Trash the registers to simulate an allocation failure. |
| movl(result, Immediate(0x7091)); |
| movl(result_end, Immediate(0x7191)); |
| if (scratch.is_valid()) { |
| movl(scratch, Immediate(0x7291)); |
| } |
| // Register element_count is not modified by the function. |
| } |
| jmp(gc_required); |
| return; |
| } |
| ASSERT(!result.is(result_end)); |
| |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, scratch, flags); |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(isolate()); |
| |
| // We assume that element_count*element_size + header_size does not |
| // overflow. |
| lea(result_end, Operand(element_count, element_size, header_size)); |
| addq(result_end, result); |
| j(carry, gc_required); |
| Operand limit_operand = ExternalOperand(new_space_allocation_limit); |
| cmpq(result_end, limit_operand); |
| j(above, gc_required); |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(result_end, scratch); |
| |
| // Tag the result if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| addq(result, Immediate(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(Register object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (emit_debug_code()) { |
| // Trash the registers to simulate an allocation failure. |
| movl(result, Immediate(0x7091)); |
| movl(result_end, Immediate(0x7191)); |
| if (scratch.is_valid()) { |
| movl(scratch, Immediate(0x7291)); |
| } |
| // object_size is left unchanged by this function. |
| } |
| jmp(gc_required); |
| return; |
| } |
| ASSERT(!result.is(result_end)); |
| |
| // Load address of new object into result. |
| LoadAllocationTopHelper(result, scratch, flags); |
| |
| // Calculate new top and bail out if new space is exhausted. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(isolate()); |
| if (!object_size.is(result_end)) { |
| movq(result_end, object_size); |
| } |
| addq(result_end, result); |
| j(carry, gc_required); |
| Operand limit_operand = ExternalOperand(new_space_allocation_limit); |
| cmpq(result_end, limit_operand); |
| j(above, gc_required); |
| |
| // Update allocation top. |
| UpdateAllocationTopHelper(result_end, scratch); |
| |
| // Tag the result if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| addq(result, Immediate(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::UndoAllocationInNewSpace(Register object) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| |
| // Make sure the object has no tag before resetting top. |
| and_(object, Immediate(~kHeapObjectTagMask)); |
| Operand top_operand = ExternalOperand(new_space_allocation_top); |
| #ifdef DEBUG |
| cmpq(object, top_operand); |
| Check(below, "Undo allocation of non allocated memory"); |
| #endif |
| movq(top_operand, object); |
| } |
| |
| |
| void MacroAssembler::AllocateHeapNumber(Register result, |
| Register scratch, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(HeapNumber::kSize, |
| result, |
| scratch, |
| no_reg, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. |
| LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| const int kHeaderAlignment = SeqTwoByteString::kHeaderSize & |
| kObjectAlignmentMask; |
| ASSERT(kShortSize == 2); |
| // scratch1 = length * 2 + kObjectAlignmentMask. |
| lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask + |
| kHeaderAlignment)); |
| and_(scratch1, Immediate(~kObjectAlignmentMask)); |
| if (kHeaderAlignment > 0) { |
| subq(scratch1, Immediate(kHeaderAlignment)); |
| } |
| |
| // Allocate two byte string in new space. |
| AllocateInNewSpace(SeqTwoByteString::kHeaderSize, |
| times_1, |
| scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| LoadRoot(kScratchRegister, Heap::kStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| Integer32ToSmi(scratch1, length); |
| movq(FieldOperand(result, String::kLengthOffset), scratch1); |
| movq(FieldOperand(result, String::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| const int kHeaderAlignment = SeqAsciiString::kHeaderSize & |
| kObjectAlignmentMask; |
| movl(scratch1, length); |
| ASSERT(kCharSize == 1); |
| addq(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment)); |
| and_(scratch1, Immediate(~kObjectAlignmentMask)); |
| if (kHeaderAlignment > 0) { |
| subq(scratch1, Immediate(kHeaderAlignment)); |
| } |
| |
| // Allocate ASCII string in new space. |
| AllocateInNewSpace(SeqAsciiString::kHeaderSize, |
| times_1, |
| scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| Integer32ToSmi(scratch1, length); |
| movq(FieldOperand(result, String::kLengthOffset), scratch1); |
| movq(FieldOperand(result, String::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteSlicedString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(SlicedString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| LoadRoot(kScratchRegister, Heap::kSlicedStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiSlicedString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| // Allocate heap number in new space. |
| AllocateInNewSpace(SlicedString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. The other fields are left uninitialized. |
| LoadRoot(kScratchRegister, Heap::kSlicedAsciiStringMapRootIndex); |
| movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); |
| } |
| |
| |
| // Copy memory, byte-by-byte, from source to destination. Not optimized for |
| // long or aligned copies. The contents of scratch and length are destroyed. |
| // Destination is incremented by length, source, length and scratch are |
| // clobbered. |
| // A simpler loop is faster on small copies, but slower on large ones. |
| // The cld() instruction must have been emitted, to set the direction flag(), |
| // before calling this function. |
| void MacroAssembler::CopyBytes(Register destination, |
| Register source, |
| Register length, |
| int min_length, |
| Register scratch) { |
| ASSERT(min_length >= 0); |
| if (FLAG_debug_code) { |
| cmpl(length, Immediate(min_length)); |
| Assert(greater_equal, "Invalid min_length"); |
| } |
| Label loop, done, short_string, short_loop; |
| |
| const int kLongStringLimit = 20; |
| if (min_length <= kLongStringLimit) { |
| cmpl(length, Immediate(kLongStringLimit)); |
| j(less_equal, &short_string); |
| } |
| |
| ASSERT(source.is(rsi)); |
| ASSERT(destination.is(rdi)); |
| ASSERT(length.is(rcx)); |
| |
| // Because source is 8-byte aligned in our uses of this function, |
| // we keep source aligned for the rep movs operation by copying the odd bytes |
| // at the end of the ranges. |
| movq(scratch, length); |
| shrl(length, Immediate(3)); |
| repmovsq(); |
| // Move remaining bytes of length. |
| andl(scratch, Immediate(0x7)); |
| movq(length, Operand(source, scratch, times_1, -8)); |
| movq(Operand(destination, scratch, times_1, -8), length); |
| addq(destination, scratch); |
| |
| if (min_length <= kLongStringLimit) { |
| jmp(&done); |
| |
| bind(&short_string); |
| if (min_length == 0) { |
| testl(length, length); |
| j(zero, &done); |
| } |
| lea(scratch, Operand(destination, length, times_1, 0)); |
| |
| bind(&short_loop); |
| movb(length, Operand(source, 0)); |
| movb(Operand(destination, 0), length); |
| incq(source); |
| incq(destination); |
| cmpq(destination, scratch); |
| j(not_equal, &short_loop); |
| |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, |
| Register end_offset, |
| Register filler) { |
| Label loop, entry; |
| jmp(&entry); |
| bind(&loop); |
| movq(Operand(start_offset, 0), filler); |
| addq(start_offset, Immediate(kPointerSize)); |
| bind(&entry); |
| cmpq(start_offset, end_offset); |
| j(less, &loop); |
| } |
| |
| |
| void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
| if (context_chain_length > 0) { |
| // Move up the chain of contexts to the context containing the slot. |
| movq(dst, Operand(rsi, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| for (int i = 1; i < context_chain_length; i++) { |
| movq(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| } |
| } else { |
| // Slot is in the current function context. Move it into the |
| // destination register in case we store into it (the write barrier |
| // cannot be allowed to destroy the context in rsi). |
| movq(dst, rsi); |
| } |
| |
| // We should not have found a with context by walking the context |
| // chain (i.e., the static scope chain and runtime context chain do |
| // not agree). A variable occurring in such a scope should have |
| // slot type LOOKUP and not CONTEXT. |
| if (emit_debug_code()) { |
| CompareRoot(FieldOperand(dst, HeapObject::kMapOffset), |
| Heap::kWithContextMapRootIndex); |
| Check(not_equal, "Variable resolved to with context."); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadTransitionedArrayMapConditional( |
| ElementsKind expected_kind, |
| ElementsKind transitioned_kind, |
| Register map_in_out, |
| Register scratch, |
| Label* no_map_match) { |
| // Load the global or builtins object from the current context. |
| movq(scratch, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check that the function's map is the same as the expected cached map. |
| int expected_index = |
| Context::GetContextMapIndexFromElementsKind(expected_kind); |
| cmpq(map_in_out, Operand(scratch, Context::SlotOffset(expected_index))); |
| j(not_equal, no_map_match); |
| |
| // Use the transitioned cached map. |
| int trans_index = |
| Context::GetContextMapIndexFromElementsKind(transitioned_kind); |
| movq(map_in_out, Operand(scratch, Context::SlotOffset(trans_index))); |
| } |
| |
| |
| void MacroAssembler::LoadInitialArrayMap( |
| Register function_in, Register scratch, Register map_out) { |
| ASSERT(!function_in.is(map_out)); |
| Label done; |
| movq(map_out, FieldOperand(function_in, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| if (!FLAG_smi_only_arrays) { |
| LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS, |
| FAST_ELEMENTS, |
| map_out, |
| scratch, |
| &done); |
| } |
| bind(&done); |
| } |
| |
| #ifdef _WIN64 |
| static const int kRegisterPassedArguments = 4; |
| #else |
| static const int kRegisterPassedArguments = 6; |
| #endif |
| |
| void MacroAssembler::LoadGlobalFunction(int index, Register function) { |
| // Load the global or builtins object from the current context. |
| movq(function, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| // Load the global context from the global or builtins object. |
| movq(function, FieldOperand(function, GlobalObject::kGlobalContextOffset)); |
| // Load the function from the global context. |
| movq(function, Operand(function, Context::SlotOffset(index))); |
| } |
| |
| |
| void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, |
| Register map) { |
| // Load the initial map. The global functions all have initial maps. |
| movq(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| if (emit_debug_code()) { |
| Label ok, fail; |
| CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK); |
| jmp(&ok); |
| bind(&fail); |
| Abort("Global functions must have initial map"); |
| bind(&ok); |
| } |
| } |
| |
| |
| int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) { |
| // On Windows 64 stack slots are reserved by the caller for all arguments |
| // including the ones passed in registers, and space is always allocated for |
| // the four register arguments even if the function takes fewer than four |
| // arguments. |
| // On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers |
| // and the caller does not reserve stack slots for them. |
| ASSERT(num_arguments >= 0); |
| #ifdef _WIN64 |
| const int kMinimumStackSlots = kRegisterPassedArguments; |
| if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots; |
| return num_arguments; |
| #else |
| if (num_arguments < kRegisterPassedArguments) return 0; |
| return num_arguments - kRegisterPassedArguments; |
| #endif |
| } |
| |
| |
| void MacroAssembler::PrepareCallCFunction(int num_arguments) { |
| int frame_alignment = OS::ActivationFrameAlignment(); |
| ASSERT(frame_alignment != 0); |
| ASSERT(num_arguments >= 0); |
| |
| // Make stack end at alignment and allocate space for arguments and old rsp. |
| movq(kScratchRegister, rsp); |
| ASSERT(IsPowerOf2(frame_alignment)); |
| int argument_slots_on_stack = |
| ArgumentStackSlotsForCFunctionCall(num_arguments); |
| subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize)); |
| and_(rsp, Immediate(-frame_alignment)); |
| movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| LoadAddress(rax, function); |
| CallCFunction(rax, num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(Register function, int num_arguments) { |
| ASSERT(has_frame()); |
| // Check stack alignment. |
| if (emit_debug_code()) { |
| CheckStackAlignment(); |
| } |
| |
| call(function); |
| ASSERT(OS::ActivationFrameAlignment() != 0); |
| ASSERT(num_arguments >= 0); |
| int argument_slots_on_stack = |
| ArgumentStackSlotsForCFunctionCall(num_arguments); |
| movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize)); |
| } |
| |
| |
| bool AreAliased(Register r1, Register r2, Register r3, Register r4) { |
| if (r1.is(r2)) return true; |
| if (r1.is(r3)) return true; |
| if (r1.is(r4)) return true; |
| if (r2.is(r3)) return true; |
| if (r2.is(r4)) return true; |
| if (r3.is(r4)) return true; |
| return false; |
| } |
| |
| |
| CodePatcher::CodePatcher(byte* address, int size) |
| : address_(address), |
| size_(size), |
| masm_(Isolate::Current(), address, size + Assembler::kGap) { |
| // Create a new macro assembler pointing to the address of the code to patch. |
| // The size is adjusted with kGap on order for the assembler to generate size |
| // bytes of instructions without failing with buffer size constraints. |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| CodePatcher::~CodePatcher() { |
| // Indicate that code has changed. |
| CPU::FlushICache(address_, size_); |
| |
| // Check that the code was patched as expected. |
| ASSERT(masm_.pc_ == address_ + size_); |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| void MacroAssembler::CheckPageFlag( |
| Register object, |
| Register scratch, |
| int mask, |
| Condition cc, |
| Label* condition_met, |
| Label::Distance condition_met_distance) { |
| ASSERT(cc == zero || cc == not_zero); |
| if (scratch.is(object)) { |
| and_(scratch, Immediate(~Page::kPageAlignmentMask)); |
| } else { |
| movq(scratch, Immediate(~Page::kPageAlignmentMask)); |
| and_(scratch, object); |
| } |
| if (mask < (1 << kBitsPerByte)) { |
| testb(Operand(scratch, MemoryChunk::kFlagsOffset), |
| Immediate(static_cast<uint8_t>(mask))); |
| } else { |
| testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); |
| } |
| j(cc, condition_met, condition_met_distance); |
| } |
| |
| |
| void MacroAssembler::JumpIfBlack(Register object, |
| Register bitmap_scratch, |
| Register mask_scratch, |
| Label* on_black, |
| Label::Distance on_black_distance) { |
| ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, rcx)); |
| GetMarkBits(object, bitmap_scratch, mask_scratch); |
| |
| ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
| // The mask_scratch register contains a 1 at the position of the first bit |
| // and a 0 at all other positions, including the position of the second bit. |
| movq(rcx, mask_scratch); |
| // Make rcx into a mask that covers both marking bits using the operation |
| // rcx = mask | (mask << 1). |
| lea(rcx, Operand(mask_scratch, mask_scratch, times_2, 0)); |
| // Note that we are using a 4-byte aligned 8-byte load. |
| and_(rcx, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| cmpq(mask_scratch, rcx); |
| j(equal, on_black, on_black_distance); |
| } |
| |
| |
| // Detect some, but not all, common pointer-free objects. This is used by the |
| // incremental write barrier which doesn't care about oddballs (they are always |
| // marked black immediately so this code is not hit). |
| void MacroAssembler::JumpIfDataObject( |
| Register value, |
| Register scratch, |
| Label* not_data_object, |
| Label::Distance not_data_object_distance) { |
| Label is_data_object; |
| movq(scratch, FieldOperand(value, HeapObject::kMapOffset)); |
| CompareRoot(scratch, Heap::kHeapNumberMapRootIndex); |
| j(equal, &is_data_object, Label::kNear); |
| ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
| ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
| // If it's a string and it's not a cons string then it's an object containing |
| // no GC pointers. |
| testb(FieldOperand(scratch, Map::kInstanceTypeOffset), |
| Immediate(kIsIndirectStringMask | kIsNotStringMask)); |
| j(not_zero, not_data_object, not_data_object_distance); |
| bind(&is_data_object); |
| } |
| |
| |
| void MacroAssembler::GetMarkBits(Register addr_reg, |
| Register bitmap_reg, |
| Register mask_reg) { |
| ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, rcx)); |
| movq(bitmap_reg, addr_reg); |
| // Sign extended 32 bit immediate. |
| and_(bitmap_reg, Immediate(~Page::kPageAlignmentMask)); |
| movq(rcx, addr_reg); |
| int shift = |
| Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2; |
| shrl(rcx, Immediate(shift)); |
| and_(rcx, |
| Immediate((Page::kPageAlignmentMask >> shift) & |
| ~(Bitmap::kBytesPerCell - 1))); |
| |
| addq(bitmap_reg, rcx); |
| movq(rcx, addr_reg); |
| shrl(rcx, Immediate(kPointerSizeLog2)); |
| and_(rcx, Immediate((1 << Bitmap::kBitsPerCellLog2) - 1)); |
| movl(mask_reg, Immediate(1)); |
| shl_cl(mask_reg); |
| } |
| |
| |
| void MacroAssembler::EnsureNotWhite( |
| Register value, |
| Register bitmap_scratch, |
| Register mask_scratch, |
| Label* value_is_white_and_not_data, |
| Label::Distance distance) { |
| ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, rcx)); |
| GetMarkBits(value, bitmap_scratch, mask_scratch); |
| |
| // If the value is black or grey we don't need to do anything. |
| ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); |
| ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
| ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); |
| ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); |
| |
| Label done; |
| |
| // Since both black and grey have a 1 in the first position and white does |
| // not have a 1 there we only need to check one bit. |
| testq(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch); |
| j(not_zero, &done, Label::kNear); |
| |
| if (FLAG_debug_code) { |
| // Check for impossible bit pattern. |
| Label ok; |
| push(mask_scratch); |
| // shl. May overflow making the check conservative. |
| addq(mask_scratch, mask_scratch); |
| testq(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch); |
| j(zero, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| pop(mask_scratch); |
| } |
| |
| // Value is white. We check whether it is data that doesn't need scanning. |
| // Currently only checks for HeapNumber and non-cons strings. |
| Register map = rcx; // Holds map while checking type. |
| Register length = rcx; // Holds length of object after checking type. |
| Label not_heap_number; |
| Label is_data_object; |
| |
| // Check for heap-number |
| movq(map, FieldOperand(value, HeapObject::kMapOffset)); |
| CompareRoot(map, Heap::kHeapNumberMapRootIndex); |
| j(not_equal, ¬_heap_number, Label::kNear); |
| movq(length, Immediate(HeapNumber::kSize)); |
| jmp(&is_data_object, Label::kNear); |
| |
| bind(¬_heap_number); |
| // Check for strings. |
| ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
| ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
| // If it's a string and it's not a cons string then it's an object containing |
| // no GC pointers. |
| Register instance_type = rcx; |
| movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); |
| testb(instance_type, Immediate(kIsIndirectStringMask | kIsNotStringMask)); |
| j(not_zero, value_is_white_and_not_data); |
| // It's a non-indirect (non-cons and non-slice) string. |
| // If it's external, the length is just ExternalString::kSize. |
| // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). |
| Label not_external; |
| // External strings are the only ones with the kExternalStringTag bit |
| // set. |
| ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); |
| ASSERT_EQ(0, kConsStringTag & kExternalStringTag); |
| testb(instance_type, Immediate(kExternalStringTag)); |
| j(zero, ¬_external, Label::kNear); |
| movq(length, Immediate(ExternalString::kSize)); |
| jmp(&is_data_object, Label::kNear); |
| |
| bind(¬_external); |
| // Sequential string, either ASCII or UC16. |
| ASSERT(kAsciiStringTag == 0x04); |
| and_(length, Immediate(kStringEncodingMask)); |
| xor_(length, Immediate(kStringEncodingMask)); |
| addq(length, Immediate(0x04)); |
| // Value now either 4 (if ASCII) or 8 (if UC16), i.e. char-size shifted by 2. |
| imul(length, FieldOperand(value, String::kLengthOffset)); |
| shr(length, Immediate(2 + kSmiTagSize + kSmiShiftSize)); |
| addq(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask)); |
| and_(length, Immediate(~kObjectAlignmentMask)); |
| |
| bind(&is_data_object); |
| // Value is a data object, and it is white. Mark it black. Since we know |
| // that the object is white we can make it black by flipping one bit. |
| or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch); |
| |
| and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask)); |
| addl(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset), length); |
| |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { |
| Label next; |
| Register empty_fixed_array_value = r8; |
| LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); |
| Register empty_descriptor_array_value = r9; |
| LoadRoot(empty_descriptor_array_value, |
| Heap::kEmptyDescriptorArrayRootIndex); |
| movq(rcx, rax); |
| bind(&next); |
| |
| // Check that there are no elements. Register rcx contains the |
| // current JS object we've reached through the prototype chain. |
| cmpq(empty_fixed_array_value, |
| FieldOperand(rcx, JSObject::kElementsOffset)); |
| j(not_equal, call_runtime); |
| |
| // Check that instance descriptors are not empty so that we can |
| // check for an enum cache. Leave the map in rbx for the subsequent |
| // prototype load. |
| movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset)); |
| movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOrBitField3Offset)); |
| JumpIfSmi(rdx, call_runtime); |
| |
| // Check that there is an enum cache in the non-empty instance |
| // descriptors (rdx). This is the case if the next enumeration |
| // index field does not contain a smi. |
| movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset)); |
| JumpIfSmi(rdx, call_runtime); |
| |
| // For all objects but the receiver, check that the cache is empty. |
| Label check_prototype; |
| cmpq(rcx, rax); |
| j(equal, &check_prototype, Label::kNear); |
| movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| cmpq(rdx, empty_fixed_array_value); |
| j(not_equal, call_runtime); |
| |
| // Load the prototype from the map and loop if non-null. |
| bind(&check_prototype); |
| movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset)); |
| cmpq(rcx, null_value); |
| j(not_equal, &next); |
| } |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_X64 |