| // Copyright 2006-2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "codegen-inl.h" |
| #include "debug.h" |
| #include "runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define __ ACCESS_MASM(masm) |
| |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, |
| CFunctionId id, |
| BuiltinExtraArguments extra_args) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments excluding receiver |
| // -- r1 : called function (only guaranteed when |
| // extra_args requires it) |
| // -- cp : context |
| // -- sp[0] : last argument |
| // -- ... |
| // -- sp[4 * (argc - 1)] : first argument (argc == r0) |
| // -- sp[4 * argc] : receiver |
| // ----------------------------------- |
| |
| // Insert extra arguments. |
| int num_extra_args = 0; |
| if (extra_args == NEEDS_CALLED_FUNCTION) { |
| num_extra_args = 1; |
| __ push(r1); |
| } else { |
| ASSERT(extra_args == NO_EXTRA_ARGUMENTS); |
| } |
| |
| // JumpToExternalReference expects r0 to contain the number of arguments |
| // including the receiver and the extra arguments. |
| __ add(r0, r0, Operand(num_extra_args + 1)); |
| __ JumpToExternalReference(ExternalReference(id)); |
| } |
| |
| |
| // Load the built-in Array function from the current context. |
| static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { |
| // Load the global context. |
| |
| __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(result, |
| FieldMemOperand(result, GlobalObject::kGlobalContextOffset)); |
| // Load the Array function from the global context. |
| __ ldr(result, |
| MemOperand(result, |
| Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); |
| } |
| |
| |
| // This constant has the same value as JSArray::kPreallocatedArrayElements and |
| // if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding |
| // below should be reconsidered. |
| static const int kLoopUnfoldLimit = 4; |
| |
| |
| // Allocate an empty JSArray. The allocated array is put into the result |
| // register. An elements backing store is allocated with size initial_capacity |
| // and filled with the hole values. |
| static void AllocateEmptyJSArray(MacroAssembler* masm, |
| Register array_function, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| int initial_capacity, |
| Label* gc_required) { |
| ASSERT(initial_capacity > 0); |
| // Load the initial map from the array function. |
| __ ldr(scratch1, FieldMemOperand(array_function, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Allocate the JSArray object together with space for a fixed array with the |
| // requested elements. |
| int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity); |
| __ AllocateInNewSpace(size, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Allocated the JSArray. Now initialize the fields except for the elements |
| // array. |
| // result: JSObject |
| // scratch1: initial map |
| // scratch2: start of next object |
| __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset)); |
| __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex); |
| __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset)); |
| // Field JSArray::kElementsOffset is initialized later. |
| __ mov(scratch3, Operand(0)); |
| __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset)); |
| |
| // Calculate the location of the elements array and set elements array member |
| // of the JSArray. |
| // result: JSObject |
| // scratch2: start of next object |
| __ add(scratch1, result, Operand(JSArray::kSize)); |
| __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset)); |
| |
| // Clear the heap tag on the elements array. |
| ASSERT(kSmiTag == 0); |
| __ sub(scratch1, scratch1, Operand(kHeapObjectTag)); |
| |
| // Initialize the FixedArray and fill it with holes. FixedArray length is |
| // stored as a smi. |
| // result: JSObject |
| // scratch1: elements array (untagged) |
| // scratch2: start of next object |
| __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex); |
| ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset); |
| __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex)); |
| __ mov(scratch3, Operand(Smi::FromInt(initial_capacity))); |
| ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); |
| __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex)); |
| |
| // Fill the FixedArray with the hole value. |
| ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); |
| ASSERT(initial_capacity <= kLoopUnfoldLimit); |
| __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex); |
| for (int i = 0; i < initial_capacity; i++) { |
| __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex)); |
| } |
| } |
| |
| // Allocate a JSArray with the number of elements stored in a register. The |
| // register array_function holds the built-in Array function and the register |
| // array_size holds the size of the array as a smi. The allocated array is put |
| // into the result register and beginning and end of the FixedArray elements |
| // storage is put into registers elements_array_storage and elements_array_end |
| // (see below for when that is not the case). If the parameter fill_with_holes |
| // is true the allocated elements backing store is filled with the hole values |
| // otherwise it is left uninitialized. When the backing store is filled the |
| // register elements_array_storage is scratched. |
| static void AllocateJSArray(MacroAssembler* masm, |
| Register array_function, // Array function. |
| Register array_size, // As a smi. |
| Register result, |
| Register elements_array_storage, |
| Register elements_array_end, |
| Register scratch1, |
| Register scratch2, |
| bool fill_with_hole, |
| Label* gc_required) { |
| Label not_empty, allocated; |
| |
| // Load the initial map from the array function. |
| __ ldr(elements_array_storage, |
| FieldMemOperand(array_function, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Check whether an empty sized array is requested. |
| __ tst(array_size, array_size); |
| __ b(nz, ¬_empty); |
| |
| // If an empty array is requested allocate a small elements array anyway. This |
| // keeps the code below free of special casing for the empty array. |
| int size = JSArray::kSize + |
| FixedArray::SizeFor(JSArray::kPreallocatedArrayElements); |
| __ AllocateInNewSpace(size, |
| result, |
| elements_array_end, |
| scratch1, |
| gc_required, |
| TAG_OBJECT); |
| __ jmp(&allocated); |
| |
| // Allocate the JSArray object together with space for a FixedArray with the |
| // requested number of elements. |
| __ bind(¬_empty); |
| ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ mov(elements_array_end, |
| Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize)); |
| __ add(elements_array_end, |
| elements_array_end, |
| Operand(array_size, ASR, kSmiTagSize)); |
| __ AllocateInNewSpace( |
| elements_array_end, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| |
| // Allocated the JSArray. Now initialize the fields except for the elements |
| // array. |
| // result: JSObject |
| // elements_array_storage: initial map |
| // array_size: size of array (smi) |
| __ bind(&allocated); |
| __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset)); |
| __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex); |
| __ str(elements_array_storage, |
| FieldMemOperand(result, JSArray::kPropertiesOffset)); |
| // Field JSArray::kElementsOffset is initialized later. |
| __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset)); |
| |
| // Calculate the location of the elements array and set elements array member |
| // of the JSArray. |
| // result: JSObject |
| // array_size: size of array (smi) |
| __ add(elements_array_storage, result, Operand(JSArray::kSize)); |
| __ str(elements_array_storage, |
| FieldMemOperand(result, JSArray::kElementsOffset)); |
| |
| // Clear the heap tag on the elements array. |
| ASSERT(kSmiTag == 0); |
| __ sub(elements_array_storage, |
| elements_array_storage, |
| Operand(kHeapObjectTag)); |
| // Initialize the fixed array and fill it with holes. FixedArray length is |
| // stored as a smi. |
| // result: JSObject |
| // elements_array_storage: elements array (untagged) |
| // array_size: size of array (smi) |
| __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex); |
| ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset); |
| __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex)); |
| ASSERT(kSmiTag == 0); |
| __ tst(array_size, array_size); |
| // Length of the FixedArray is the number of pre-allocated elements if |
| // the actual JSArray has length 0 and the size of the JSArray for non-empty |
| // JSArrays. The length of a FixedArray is stored as a smi. |
| __ mov(array_size, |
| Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)), |
| LeaveCC, |
| eq); |
| ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); |
| __ str(array_size, |
| MemOperand(elements_array_storage, kPointerSize, PostIndex)); |
| |
| // Calculate elements array and elements array end. |
| // result: JSObject |
| // elements_array_storage: elements array element storage |
| // array_size: smi-tagged size of elements array |
| ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); |
| __ add(elements_array_end, |
| elements_array_storage, |
| Operand(array_size, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| |
| // Fill the allocated FixedArray with the hole value if requested. |
| // result: JSObject |
| // elements_array_storage: elements array element storage |
| // elements_array_end: start of next object |
| if (fill_with_hole) { |
| Label loop, entry; |
| __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ str(scratch1, |
| MemOperand(elements_array_storage, kPointerSize, PostIndex)); |
| __ bind(&entry); |
| __ cmp(elements_array_storage, elements_array_end); |
| __ b(lt, &loop); |
| } |
| } |
| |
| // Create a new array for the built-in Array function. This function allocates |
| // the JSArray object and the FixedArray elements array and initializes these. |
| // If the Array cannot be constructed in native code the runtime is called. This |
| // function assumes the following state: |
| // r0: argc |
| // r1: constructor (built-in Array function) |
| // lr: return address |
| // sp[0]: last argument |
| // This function is used for both construct and normal calls of Array. The only |
| // difference between handling a construct call and a normal call is that for a |
| // construct call the constructor function in r1 needs to be preserved for |
| // entering the generic code. In both cases argc in r0 needs to be preserved. |
| // Both registers are preserved by this code so no need to differentiate between |
| // construct call and normal call. |
| static void ArrayNativeCode(MacroAssembler* masm, |
| Label* call_generic_code) { |
| Label argc_one_or_more, argc_two_or_more; |
| |
| // Check for array construction with zero arguments or one. |
| __ cmp(r0, Operand(0)); |
| __ b(ne, &argc_one_or_more); |
| |
| // Handle construction of an empty array. |
| AllocateEmptyJSArray(masm, |
| r1, |
| r2, |
| r3, |
| r4, |
| r5, |
| JSArray::kPreallocatedArrayElements, |
| call_generic_code); |
| __ IncrementCounter(&Counters::array_function_native, 1, r3, r4); |
| // Setup return value, remove receiver from stack and return. |
| __ mov(r0, r2); |
| __ add(sp, sp, Operand(kPointerSize)); |
| __ Jump(lr); |
| |
| // Check for one argument. Bail out if argument is not smi or if it is |
| // negative. |
| __ bind(&argc_one_or_more); |
| __ cmp(r0, Operand(1)); |
| __ b(ne, &argc_two_or_more); |
| ASSERT(kSmiTag == 0); |
| __ ldr(r2, MemOperand(sp)); // Get the argument from the stack. |
| __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC); |
| __ b(ne, call_generic_code); |
| |
| // Handle construction of an empty array of a certain size. Bail out if size |
| // is too large to actually allocate an elements array. |
| ASSERT(kSmiTag == 0); |
| __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize)); |
| __ b(ge, call_generic_code); |
| |
| // r0: argc |
| // r1: constructor |
| // r2: array_size (smi) |
| // sp[0]: argument |
| AllocateJSArray(masm, |
| r1, |
| r2, |
| r3, |
| r4, |
| r5, |
| r6, |
| r7, |
| true, |
| call_generic_code); |
| __ IncrementCounter(&Counters::array_function_native, 1, r2, r4); |
| // Setup return value, remove receiver and argument from stack and return. |
| __ mov(r0, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Jump(lr); |
| |
| // Handle construction of an array from a list of arguments. |
| __ bind(&argc_two_or_more); |
| __ mov(r2, Operand(r0, LSL, kSmiTagSize)); // Convet argc to a smi. |
| |
| // r0: argc |
| // r1: constructor |
| // r2: array_size (smi) |
| // sp[0]: last argument |
| AllocateJSArray(masm, |
| r1, |
| r2, |
| r3, |
| r4, |
| r5, |
| r6, |
| r7, |
| false, |
| call_generic_code); |
| __ IncrementCounter(&Counters::array_function_native, 1, r2, r6); |
| |
| // Fill arguments as array elements. Copy from the top of the stack (last |
| // element) to the array backing store filling it backwards. Note: |
| // elements_array_end points after the backing store therefore PreIndex is |
| // used when filling the backing store. |
| // r0: argc |
| // r3: JSArray |
| // r4: elements_array storage start (untagged) |
| // r5: elements_array_end (untagged) |
| // sp[0]: last argument |
| Label loop, entry; |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ ldr(r2, MemOperand(sp, kPointerSize, PostIndex)); |
| __ str(r2, MemOperand(r5, -kPointerSize, PreIndex)); |
| __ bind(&entry); |
| __ cmp(r4, r5); |
| __ b(lt, &loop); |
| |
| // Remove caller arguments and receiver from the stack, setup return value and |
| // return. |
| // r0: argc |
| // r3: JSArray |
| // sp[0]: receiver |
| __ add(sp, sp, Operand(kPointerSize)); |
| __ mov(r0, r3); |
| __ Jump(lr); |
| } |
| |
| |
| void Builtins::Generate_ArrayCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| Label generic_array_code, one_or_more_arguments, two_or_more_arguments; |
| |
| // Get the Array function. |
| GenerateLoadArrayFunction(masm, r1); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin Array function shoud be a map. |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ Assert(ne, "Unexpected initial map for Array function"); |
| __ CompareObjectType(r2, r3, r4, MAP_TYPE); |
| __ Assert(eq, "Unexpected initial map for Array function"); |
| } |
| |
| // Run the native code for the Array function called as a normal function. |
| ArrayNativeCode(masm, &generic_array_code); |
| |
| // Jump to the generic array code if the specialized code cannot handle |
| // the construction. |
| __ bind(&generic_array_code); |
| Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric); |
| Handle<Code> array_code(code); |
| __ Jump(array_code, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments |
| // -- r1 : constructor function |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| Label generic_constructor; |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the builtin Array function which |
| // always have a map. |
| GenerateLoadArrayFunction(masm, r2); |
| __ cmp(r1, r2); |
| __ Assert(eq, "Unexpected Array function"); |
| // Initial map for the builtin Array function should be a map. |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ Assert(ne, "Unexpected initial map for Array function"); |
| __ CompareObjectType(r2, r3, r4, MAP_TYPE); |
| __ Assert(eq, "Unexpected initial map for Array function"); |
| } |
| |
| // Run the native code for the Array function called as a constructor. |
| ArrayNativeCode(masm, &generic_constructor); |
| |
| // Jump to the generic construct code in case the specialized code cannot |
| // handle the construction. |
| __ bind(&generic_constructor); |
| Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric); |
| Handle<Code> generic_construct_stub(code); |
| __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments |
| // -- r1 : constructor function |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| Label non_function_call; |
| // Check that the function is not a smi. |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &non_function_call); |
| // Check that the function is a JSFunction. |
| __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); |
| __ b(ne, &non_function_call); |
| |
| // Jump to the function-specific construct stub. |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset)); |
| __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| |
| // r0: number of arguments |
| // r1: called object |
| __ bind(&non_function_call); |
| // CALL_NON_FUNCTION expects the non-function constructor as receiver |
| // (instead of the original receiver from the call site). The receiver is |
| // stack element argc. |
| __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| // Set expected number of arguments to zero (not changing r0). |
| __ mov(r2, Operand(0)); |
| __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
| __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| |
| static void Generate_JSConstructStubHelper(MacroAssembler* masm, |
| bool is_api_function) { |
| // Enter a construct frame. |
| __ EnterConstructFrame(); |
| |
| // Preserve the two incoming parameters on the stack. |
| __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| __ push(r0); // Smi-tagged arguments count. |
| __ push(r1); // Constructor function. |
| |
| // Use r7 for holding undefined which is used in several places below. |
| __ LoadRoot(r7, Heap::kUndefinedValueRootIndex); |
| |
| // Try to allocate the object without transitioning into C code. If any of the |
| // preconditions is not met, the code bails out to the runtime call. |
| Label rt_call, allocated; |
| if (FLAG_inline_new) { |
| Label undo_allocation; |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ExternalReference debug_step_in_fp = |
| ExternalReference::debug_step_in_fp_address(); |
| __ mov(r2, Operand(debug_step_in_fp)); |
| __ ldr(r2, MemOperand(r2)); |
| __ tst(r2, r2); |
| __ b(nz, &rt_call); |
| #endif |
| |
| // Load the initial map and verify that it is in fact a map. |
| // r1: constructor function |
| // r7: undefined value |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(eq, &rt_call); |
| __ CompareObjectType(r2, r3, r4, MAP_TYPE); |
| __ b(ne, &rt_call); |
| |
| // Check that the constructor is not constructing a JSFunction (see comments |
| // in Runtime_NewObject in runtime.cc). In which case the initial map's |
| // instance type would be JS_FUNCTION_TYPE. |
| // r1: constructor function |
| // r2: initial map |
| // r7: undefined value |
| __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE); |
| __ b(eq, &rt_call); |
| |
| // Now allocate the JSObject on the heap. |
| // r1: constructor function |
| // r2: initial map |
| // r7: undefined value |
| __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset)); |
| __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS); |
| |
| // Allocated the JSObject, now initialize the fields. Map is set to initial |
| // map and properties and elements are set to empty fixed array. |
| // r1: constructor function |
| // r2: initial map |
| // r3: object size |
| // r4: JSObject (not tagged) |
| // r7: undefined value |
| __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); |
| __ mov(r5, r4); |
| ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); |
| __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); |
| ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); |
| __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); |
| ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); |
| __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); |
| |
| // Fill all the in-object properties with undefined. |
| // r1: constructor function |
| // r2: initial map |
| // r3: object size (in words) |
| // r4: JSObject (not tagged) |
| // r5: First in-object property of JSObject (not tagged) |
| // r7: undefined value |
| __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object. |
| ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize); |
| { Label loop, entry; |
| __ b(&entry); |
| __ bind(&loop); |
| __ str(r7, MemOperand(r5, kPointerSize, PostIndex)); |
| __ bind(&entry); |
| __ cmp(r5, r6); |
| __ b(lt, &loop); |
| } |
| |
| // Add the object tag to make the JSObject real, so that we can continue and |
| // jump into the continuation code at any time from now on. Any failures |
| // need to undo the allocation, so that the heap is in a consistent state |
| // and verifiable. |
| __ add(r4, r4, Operand(kHeapObjectTag)); |
| |
| // Check if a non-empty properties array is needed. Continue with allocated |
| // object if not fall through to runtime call if it is. |
| // r1: constructor function |
| // r4: JSObject |
| // r5: start of next object (not tagged) |
| // r7: undefined value |
| __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset)); |
| // The field instance sizes contains both pre-allocated property fields and |
| // in-object properties. |
| __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset)); |
| __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * 8, 8); |
| __ add(r3, r3, Operand(r6)); |
| __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * 8, 8); |
| __ sub(r3, r3, Operand(r6), SetCC); |
| |
| // Done if no extra properties are to be allocated. |
| __ b(eq, &allocated); |
| __ Assert(pl, "Property allocation count failed."); |
| |
| // Scale the number of elements by pointer size and add the header for |
| // FixedArrays to the start of the next object calculation from above. |
| // r1: constructor |
| // r3: number of elements in properties array |
| // r4: JSObject |
| // r5: start of next object |
| // r7: undefined value |
| __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize)); |
| __ AllocateInNewSpace( |
| r0, |
| r5, |
| r6, |
| r2, |
| &undo_allocation, |
| static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); |
| |
| // Initialize the FixedArray. |
| // r1: constructor |
| // r3: number of elements in properties array |
| // r4: JSObject |
| // r5: FixedArray (not tagged) |
| // r7: undefined value |
| __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex); |
| __ mov(r2, r5); |
| ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); |
| __ str(r6, MemOperand(r2, kPointerSize, PostIndex)); |
| ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); |
| __ mov(r0, Operand(r3, LSL, kSmiTagSize)); |
| __ str(r0, MemOperand(r2, kPointerSize, PostIndex)); |
| |
| // Initialize the fields to undefined. |
| // r1: constructor function |
| // r2: First element of FixedArray (not tagged) |
| // r3: number of elements in properties array |
| // r4: JSObject |
| // r5: FixedArray (not tagged) |
| // r7: undefined |
| __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2)); // End of object. |
| ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); |
| { Label loop, entry; |
| __ b(&entry); |
| __ bind(&loop); |
| __ str(r7, MemOperand(r2, kPointerSize, PostIndex)); |
| __ bind(&entry); |
| __ cmp(r2, r6); |
| __ b(lt, &loop); |
| } |
| |
| // Store the initialized FixedArray into the properties field of |
| // the JSObject |
| // r1: constructor function |
| // r4: JSObject |
| // r5: FixedArray (not tagged) |
| __ add(r5, r5, Operand(kHeapObjectTag)); // Add the heap tag. |
| __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset)); |
| |
| // Continue with JSObject being successfully allocated |
| // r1: constructor function |
| // r4: JSObject |
| __ jmp(&allocated); |
| |
| // Undo the setting of the new top so that the heap is verifiable. For |
| // example, the map's unused properties potentially do not match the |
| // allocated objects unused properties. |
| // r4: JSObject (previous new top) |
| __ bind(&undo_allocation); |
| __ UndoAllocationInNewSpace(r4, r5); |
| } |
| |
| // Allocate the new receiver object using the runtime call. |
| // r1: constructor function |
| __ bind(&rt_call); |
| __ push(r1); // argument for Runtime_NewObject |
| __ CallRuntime(Runtime::kNewObject, 1); |
| __ mov(r4, r0); |
| |
| // Receiver for constructor call allocated. |
| // r4: JSObject |
| __ bind(&allocated); |
| __ push(r4); |
| |
| // Push the function and the allocated receiver from the stack. |
| // sp[0]: receiver (newly allocated object) |
| // sp[1]: constructor function |
| // sp[2]: number of arguments (smi-tagged) |
| __ ldr(r1, MemOperand(sp, kPointerSize)); |
| __ push(r1); // Constructor function. |
| __ push(r4); // Receiver. |
| |
| // Reload the number of arguments from the stack. |
| // r1: constructor function |
| // sp[0]: receiver |
| // sp[1]: constructor function |
| // sp[2]: receiver |
| // sp[3]: constructor function |
| // sp[4]: number of arguments (smi-tagged) |
| __ ldr(r3, MemOperand(sp, 4 * kPointerSize)); |
| |
| // Setup pointer to last argument. |
| __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); |
| |
| // Setup number of arguments for function call below |
| __ mov(r0, Operand(r3, LSR, kSmiTagSize)); |
| |
| // Copy arguments and receiver to the expression stack. |
| // r0: number of arguments |
| // r2: address of last argument (caller sp) |
| // r1: constructor function |
| // r3: number of arguments (smi-tagged) |
| // sp[0]: receiver |
| // sp[1]: constructor function |
| // sp[2]: receiver |
| // sp[3]: constructor function |
| // sp[4]: number of arguments (smi-tagged) |
| Label loop, entry; |
| __ b(&entry); |
| __ bind(&loop); |
| __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1)); |
| __ push(ip); |
| __ bind(&entry); |
| __ sub(r3, r3, Operand(2), SetCC); |
| __ b(ge, &loop); |
| |
| // Call the function. |
| // r0: number of arguments |
| // r1: constructor function |
| if (is_api_function) { |
| __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| Handle<Code> code = Handle<Code>( |
| Builtins::builtin(Builtins::HandleApiCallConstruct)); |
| ParameterCount expected(0); |
| __ InvokeCode(code, expected, expected, |
| RelocInfo::CODE_TARGET, CALL_FUNCTION); |
| } else { |
| ParameterCount actual(r0); |
| __ InvokeFunction(r1, actual, CALL_FUNCTION); |
| } |
| |
| // Pop the function from the stack. |
| // sp[0]: constructor function |
| // sp[2]: receiver |
| // sp[3]: constructor function |
| // sp[4]: number of arguments (smi-tagged) |
| __ pop(); |
| |
| // Restore context from the frame. |
| // r0: result |
| // sp[0]: receiver |
| // sp[1]: constructor function |
| // sp[2]: number of arguments (smi-tagged) |
| __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, exit; |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| // r0: result |
| // sp[0]: receiver (newly allocated object) |
| // sp[1]: constructor function |
| // sp[2]: number of arguments (smi-tagged) |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &use_receiver); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense. |
| __ CompareObjectType(r0, r3, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &exit); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ ldr(r0, MemOperand(sp)); |
| |
| // Remove receiver from the stack, remove caller arguments, and |
| // return. |
| __ bind(&exit); |
| // r0: result |
| // sp[0]: receiver (newly allocated object) |
| // sp[1]: constructor function |
| // sp[2]: number of arguments (smi-tagged) |
| __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); |
| __ LeaveConstructFrame(); |
| __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1)); |
| __ add(sp, sp, Operand(kPointerSize)); |
| __ IncrementCounter(&Counters::constructed_objects, 1, r1, r2); |
| __ Jump(lr); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, true); |
| } |
| |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Called from Generate_JS_Entry |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| // r5-r7, cp may be clobbered |
| |
| // Clear the context before we push it when entering the JS frame. |
| __ mov(cp, Operand(0)); |
| |
| // Enter an internal frame. |
| __ EnterInternalFrame(); |
| |
| // Set up the context from the function argument. |
| __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| |
| // Set up the roots register. |
| ExternalReference roots_address = ExternalReference::roots_address(); |
| __ mov(r10, Operand(roots_address)); |
| |
| // Push the function and the receiver onto the stack. |
| __ push(r1); |
| __ push(r2); |
| |
| // Copy arguments to the stack in a loop. |
| // r1: function |
| // r3: argc |
| // r4: argv, i.e. points to first arg |
| Label loop, entry; |
| __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2)); |
| // r2 points past last arg. |
| __ b(&entry); |
| __ bind(&loop); |
| __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter |
| __ ldr(r0, MemOperand(r0)); // dereference handle |
| __ push(r0); // push parameter |
| __ bind(&entry); |
| __ cmp(r4, r2); |
| __ b(ne, &loop); |
| |
| // Initialize all JavaScript callee-saved registers, since they will be seen |
| // by the garbage collector as part of handlers. |
| __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); |
| __ mov(r5, Operand(r4)); |
| __ mov(r6, Operand(r4)); |
| __ mov(r7, Operand(r4)); |
| if (kR9Available == 1) { |
| __ mov(r9, Operand(r4)); |
| } |
| |
| // Invoke the code and pass argc as r0. |
| __ mov(r0, Operand(r3)); |
| if (is_construct) { |
| __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)), |
| RelocInfo::CODE_TARGET); |
| } else { |
| ParameterCount actual(r0); |
| __ InvokeFunction(r1, actual, CALL_FUNCTION); |
| } |
| |
| // Exit the JS frame and remove the parameters (except function), and return. |
| // Respect ABI stack constraint. |
| __ LeaveInternalFrame(); |
| __ Jump(lr); |
| |
| // r0: result |
| } |
| |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| |
| void Builtins::Generate_LazyCompile(MacroAssembler* masm) { |
| // Enter an internal frame. |
| __ EnterInternalFrame(); |
| |
| // Preserve the function. |
| __ push(r1); |
| |
| // Push the function on the stack as the argument to the runtime function. |
| __ push(r1); |
| __ CallRuntime(Runtime::kLazyCompile, 1); |
| // Calculate the entry point. |
| __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| // Restore saved function. |
| __ pop(r1); |
| |
| // Tear down temporary frame. |
| __ LeaveInternalFrame(); |
| |
| // Do a tail-call of the compiled function. |
| __ Jump(r2); |
| } |
| |
| |
| void Builtins::Generate_FunctionCall(MacroAssembler* masm) { |
| // 1. Make sure we have at least one argument. |
| // r0: actual number of arguments |
| { Label done; |
| __ tst(r0, Operand(r0)); |
| __ b(ne, &done); |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| __ push(r2); |
| __ add(r0, r0, Operand(1)); |
| __ bind(&done); |
| } |
| |
| // 2. Get the function to call (passed as receiver) from the stack, check |
| // if it is a function. |
| // r0: actual number of arguments |
| Label non_function; |
| __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &non_function); |
| __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); |
| __ b(ne, &non_function); |
| |
| // 3a. Patch the first argument if necessary when calling a function. |
| // r0: actual number of arguments |
| // r1: function |
| Label shift_arguments; |
| { Label convert_to_object, use_global_receiver, patch_receiver; |
| // Change context eagerly in case we need the global receiver. |
| __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| |
| __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| __ ldr(r2, MemOperand(r2, -kPointerSize)); |
| // r0: actual number of arguments |
| // r1: function |
| // r2: first argument |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(eq, &convert_to_object); |
| |
| __ LoadRoot(r3, Heap::kNullValueRootIndex); |
| __ cmp(r2, r3); |
| __ b(eq, &use_global_receiver); |
| __ LoadRoot(r3, Heap::kUndefinedValueRootIndex); |
| __ cmp(r2, r3); |
| __ b(eq, &use_global_receiver); |
| |
| __ CompareObjectType(r2, r3, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &convert_to_object); |
| __ cmp(r3, Operand(LAST_JS_OBJECT_TYPE)); |
| __ b(le, &shift_arguments); |
| |
| __ bind(&convert_to_object); |
| __ EnterInternalFrame(); // In order to preserve argument count. |
| __ mov(r0, Operand(r0, LSL, kSmiTagSize)); // Smi-tagged. |
| __ push(r0); |
| |
| __ push(r2); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); |
| __ mov(r2, r0); |
| |
| __ pop(r0); |
| __ mov(r0, Operand(r0, ASR, kSmiTagSize)); |
| __ LeaveInternalFrame(); |
| // Restore the function to r1. |
| __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| __ jmp(&patch_receiver); |
| |
| // Use the global receiver object from the called function as the |
| // receiver. |
| __ bind(&use_global_receiver); |
| const int kGlobalIndex = |
| Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| __ ldr(r2, FieldMemOperand(cp, kGlobalIndex)); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r2, FieldMemOperand(r2, kGlobalIndex)); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset)); |
| |
| __ bind(&patch_receiver); |
| __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| __ str(r2, MemOperand(r3, -kPointerSize)); |
| |
| __ jmp(&shift_arguments); |
| } |
| |
| // 3b. Patch the first argument when calling a non-function. The |
| // CALL_NON_FUNCTION builtin expects the non-function callee as |
| // receiver, so overwrite the first argument which will ultimately |
| // become the receiver. |
| // r0: actual number of arguments |
| // r1: function |
| __ bind(&non_function); |
| __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| __ str(r1, MemOperand(r2, -kPointerSize)); |
| // Clear r1 to indicate a non-function being called. |
| __ mov(r1, Operand(0)); |
| |
| // 4. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| // r0: actual number of arguments |
| // r1: function |
| __ bind(&shift_arguments); |
| { Label loop; |
| // Calculate the copy start address (destination). Copy end address is sp. |
| __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| |
| __ bind(&loop); |
| __ ldr(ip, MemOperand(r2, -kPointerSize)); |
| __ str(ip, MemOperand(r2)); |
| __ sub(r2, r2, Operand(kPointerSize)); |
| __ cmp(r2, sp); |
| __ b(ne, &loop); |
| // Adjust the actual number of arguments and remove the top element |
| // (which is a copy of the last argument). |
| __ sub(r0, r0, Operand(1)); |
| __ pop(); |
| } |
| |
| // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin. |
| // r0: actual number of arguments |
| // r1: function |
| { Label function; |
| __ tst(r1, r1); |
| __ b(ne, &function); |
| __ mov(r2, Operand(0)); // expected arguments is 0 for CALL_NON_FUNCTION |
| __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); |
| __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET); |
| __ bind(&function); |
| } |
| |
| // 5b. Get the code to call from the function and check that the number of |
| // expected arguments matches what we're providing. If so, jump |
| // (tail-call) to the code in register edx without checking arguments. |
| // r0: actual number of arguments |
| // r1: function |
| __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r2, |
| FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ mov(r2, Operand(r2, ASR, kSmiTagSize)); |
| __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); |
| __ cmp(r2, r0); // Check formal and actual parameter counts. |
| __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET, ne); |
| |
| ParameterCount expected(0); |
| __ InvokeCode(r3, expected, expected, JUMP_FUNCTION); |
| } |
| |
| |
| void Builtins::Generate_FunctionApply(MacroAssembler* masm) { |
| const int kIndexOffset = -5 * kPointerSize; |
| const int kLimitOffset = -4 * kPointerSize; |
| const int kArgsOffset = 2 * kPointerSize; |
| const int kRecvOffset = 3 * kPointerSize; |
| const int kFunctionOffset = 4 * kPointerSize; |
| |
| __ EnterInternalFrame(); |
| |
| __ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function |
| __ push(r0); |
| __ ldr(r0, MemOperand(fp, kArgsOffset)); // get the args array |
| __ push(r0); |
| __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_JS); |
| |
| // Check the stack for overflow. We are not trying need to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| Label okay; |
| __ LoadRoot(r2, Heap::kRealStackLimitRootIndex); |
| // Make r2 the space we have left. The stack might already be overflowed |
| // here which will cause r2 to become negative. |
| __ sub(r2, sp, r2); |
| // Check if the arguments will overflow the stack. |
| __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ b(gt, &okay); // Signed comparison. |
| |
| // Out of stack space. |
| __ ldr(r1, MemOperand(fp, kFunctionOffset)); |
| __ push(r1); |
| __ push(r0); |
| __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_JS); |
| // End of stack check. |
| |
| // Push current limit and index. |
| __ bind(&okay); |
| __ push(r0); // limit |
| __ mov(r1, Operand(0)); // initial index |
| __ push(r1); |
| |
| // Change context eagerly to get the right global object if necessary. |
| __ ldr(r0, MemOperand(fp, kFunctionOffset)); |
| __ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset)); |
| |
| // Compute the receiver. |
| Label call_to_object, use_global_receiver, push_receiver; |
| __ ldr(r0, MemOperand(fp, kRecvOffset)); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &call_to_object); |
| __ LoadRoot(r1, Heap::kNullValueRootIndex); |
| __ cmp(r0, r1); |
| __ b(eq, &use_global_receiver); |
| __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, r1); |
| __ b(eq, &use_global_receiver); |
| |
| // Check if the receiver is already a JavaScript object. |
| // r0: receiver |
| __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &call_to_object); |
| __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE)); |
| __ b(le, &push_receiver); |
| |
| // Convert the receiver to a regular object. |
| // r0: receiver |
| __ bind(&call_to_object); |
| __ push(r0); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); |
| __ b(&push_receiver); |
| |
| // Use the current global receiver object as the receiver. |
| __ bind(&use_global_receiver); |
| const int kGlobalOffset = |
| Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| __ ldr(r0, FieldMemOperand(cp, kGlobalOffset)); |
| __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r0, FieldMemOperand(r0, kGlobalOffset)); |
| __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset)); |
| |
| // Push the receiver. |
| // r0: receiver |
| __ bind(&push_receiver); |
| __ push(r0); |
| |
| // Copy all arguments from the array to the stack. |
| Label entry, loop; |
| __ ldr(r0, MemOperand(fp, kIndexOffset)); |
| __ b(&entry); |
| |
| // Load the current argument from the arguments array and push it to the |
| // stack. |
| // r0: current argument index |
| __ bind(&loop); |
| __ ldr(r1, MemOperand(fp, kArgsOffset)); |
| __ push(r1); |
| __ push(r0); |
| |
| // Call the runtime to access the property in the arguments array. |
| __ CallRuntime(Runtime::kGetProperty, 2); |
| __ push(r0); |
| |
| // Use inline caching to access the arguments. |
| __ ldr(r0, MemOperand(fp, kIndexOffset)); |
| __ add(r0, r0, Operand(1 << kSmiTagSize)); |
| __ str(r0, MemOperand(fp, kIndexOffset)); |
| |
| // Test if the copy loop has finished copying all the elements from the |
| // arguments object. |
| __ bind(&entry); |
| __ ldr(r1, MemOperand(fp, kLimitOffset)); |
| __ cmp(r0, r1); |
| __ b(ne, &loop); |
| |
| // Invoke the function. |
| ParameterCount actual(r0); |
| __ mov(r0, Operand(r0, ASR, kSmiTagSize)); |
| __ ldr(r1, MemOperand(fp, kFunctionOffset)); |
| __ InvokeFunction(r1, actual, CALL_FUNCTION); |
| |
| // Tear down the internal frame and remove function, receiver and args. |
| __ LeaveInternalFrame(); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Jump(lr); |
| } |
| |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
| __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit()); |
| __ add(fp, sp, Operand(3 * kPointerSize)); |
| } |
| |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : result being passed through |
| // ----------------------------------- |
| // Get the number of arguments passed (as a smi), tear down the frame and |
| // then tear down the parameters. |
| __ ldr(r1, MemOperand(fp, -3 * kPointerSize)); |
| __ mov(sp, fp); |
| __ ldm(ia_w, sp, fp.bit() | lr.bit()); |
| __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(sp, sp, Operand(kPointerSize)); // adjust for receiver |
| } |
| |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : actual number of arguments |
| // -- r1 : function (passed through to callee) |
| // -- r2 : expected number of arguments |
| // -- r3 : code entry to call |
| // ----------------------------------- |
| |
| Label invoke, dont_adapt_arguments; |
| |
| Label enough, too_few; |
| __ cmp(r0, r2); |
| __ b(lt, &too_few); |
| __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); |
| __ b(eq, &dont_adapt_arguments); |
| |
| { // Enough parameters: actual >= expected |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| // Calculate copy start address into r0 and copy end address into r2. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: code entry to call |
| __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| // adjust for return address and receiver |
| __ add(r0, r0, Operand(2 * kPointerSize)); |
| __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2)); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // r0: copy start address |
| // r1: function |
| // r2: copy end address |
| // r3: code entry to call |
| |
| Label copy; |
| __ bind(©); |
| __ ldr(ip, MemOperand(r0, 0)); |
| __ push(ip); |
| __ cmp(r0, r2); // Compare before moving to next argument. |
| __ sub(r0, r0, Operand(kPointerSize)); |
| __ b(ne, ©); |
| |
| __ b(&invoke); |
| } |
| |
| { // Too few parameters: Actual < expected |
| __ bind(&too_few); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| // Calculate copy start address into r0 and copy end address is fp. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: code entry to call |
| __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // r0: copy start address |
| // r1: function |
| // r2: expected number of arguments |
| // r3: code entry to call |
| Label copy; |
| __ bind(©); |
| // Adjust load for return address and receiver. |
| __ ldr(ip, MemOperand(r0, 2 * kPointerSize)); |
| __ push(ip); |
| __ cmp(r0, fp); // Compare before moving to next argument. |
| __ sub(r0, r0, Operand(kPointerSize)); |
| __ b(ne, ©); |
| |
| // Fill the remaining expected arguments with undefined. |
| // r1: function |
| // r2: expected number of arguments |
| // r3: code entry to call |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2)); |
| __ sub(r2, r2, Operand(4 * kPointerSize)); // Adjust for frame. |
| |
| Label fill; |
| __ bind(&fill); |
| __ push(ip); |
| __ cmp(sp, r2); |
| __ b(ne, &fill); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| __ Call(r3); |
| |
| // Exit frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ Jump(lr); |
| |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| __ Jump(r3); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |