blob: a9fab43f391407ccead23424c6fc20a571b670e6 [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "oprofile-agent.h"
#include "prettyprinter.h"
#include "register-allocator-inl.h"
#include "rewriter.h"
#include "runtime.h"
#include "scopeinfo.h"
#include "stub-cache.h"
#include "virtual-frame-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
#ifdef DEBUG
Comment::Comment(MacroAssembler* masm, const char* msg)
: masm_(masm), msg_(msg) {
__ RecordComment(msg);
}
Comment::~Comment() {
if (msg_[0] == '[') __ RecordComment("]");
}
#endif // DEBUG
#undef __
CodeGenerator* CodeGeneratorScope::top_ = NULL;
void CodeGenerator::ProcessDeferred() {
while (!deferred_.is_empty()) {
DeferredCode* code = deferred_.RemoveLast();
ASSERT(masm_ == code->masm());
// Record position of deferred code stub.
masm_->RecordStatementPosition(code->statement_position());
if (code->position() != RelocInfo::kNoPosition) {
masm_->RecordPosition(code->position());
}
// Generate the code.
Comment cmnt(masm_, code->comment());
masm_->bind(code->entry_label());
if (code->AutoSaveAndRestore()) {
code->SaveRegisters();
}
code->Generate();
if (code->AutoSaveAndRestore()) {
code->RestoreRegisters();
code->Exit();
}
}
}
void DeferredCode::Exit() {
masm_->jmp(exit_label());
}
void CodeGenerator::SetFrame(VirtualFrame* new_frame,
RegisterFile* non_frame_registers) {
RegisterFile saved_counts;
if (has_valid_frame()) {
frame_->DetachFromCodeGenerator();
// The remaining register reference counts are the non-frame ones.
allocator_->SaveTo(&saved_counts);
}
if (new_frame != NULL) {
// Restore the non-frame register references that go with the new frame.
allocator_->RestoreFrom(non_frame_registers);
new_frame->AttachToCodeGenerator();
}
frame_ = new_frame;
saved_counts.CopyTo(non_frame_registers);
}
void CodeGenerator::DeleteFrame() {
if (has_valid_frame()) {
frame_->DetachFromCodeGenerator();
frame_ = NULL;
}
}
void CodeGenerator::MakeCodePrologue(CompilationInfo* info) {
#ifdef DEBUG
bool print_source = false;
bool print_ast = false;
bool print_json_ast = false;
const char* ftype;
if (Bootstrapper::IsActive()) {
print_source = FLAG_print_builtin_source;
print_ast = FLAG_print_builtin_ast;
print_json_ast = FLAG_print_builtin_json_ast;
ftype = "builtin";
} else {
print_source = FLAG_print_source;
print_ast = FLAG_print_ast;
print_json_ast = FLAG_print_json_ast;
ftype = "user-defined";
}
if (FLAG_trace_codegen || print_source || print_ast) {
PrintF("*** Generate code for %s function: ", ftype);
info->function()->name()->ShortPrint();
PrintF(" ***\n");
}
if (print_source) {
PrintF("--- Source from AST ---\n%s\n",
PrettyPrinter().PrintProgram(info->function()));
}
if (print_ast) {
PrintF("--- AST ---\n%s\n",
AstPrinter().PrintProgram(info->function()));
}
if (print_json_ast) {
JsonAstBuilder builder;
PrintF("%s", builder.BuildProgram(info->function()));
}
#endif // DEBUG
}
Handle<Code> CodeGenerator::MakeCodeEpilogue(MacroAssembler* masm,
Code::Flags flags,
CompilationInfo* info) {
// Allocate and install the code.
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = Factory::NewCode(desc, flags, masm->CodeObject());
#ifdef ENABLE_DISASSEMBLER
bool print_code = Bootstrapper::IsActive()
? FLAG_print_builtin_code
: FLAG_print_code;
if (print_code) {
// Print the source code if available.
Handle<Script> script = info->script();
FunctionLiteral* function = info->function();
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
PrintF("--- Raw source ---\n");
StringInputBuffer stream(String::cast(script->source()));
stream.Seek(function->start_position());
// fun->end_position() points to the last character in the stream. We
// need to compensate by adding one to calculate the length.
int source_len =
function->end_position() - function->start_position() + 1;
for (int i = 0; i < source_len; i++) {
if (stream.has_more()) PrintF("%c", stream.GetNext());
}
PrintF("\n\n");
}
PrintF("--- Code ---\n");
code->Disassemble(*function->name()->ToCString());
}
#endif // ENABLE_DISASSEMBLER
if (!code.is_null()) {
Counters::total_compiled_code_size.Increment(code->instruction_size());
}
return code;
}
// Generate the code. Takes a function literal, generates code for it, assemble
// all the pieces into a Code object. This function is only to be called by
// the compiler.cc code.
Handle<Code> CodeGenerator::MakeCode(CompilationInfo* info) {
Handle<Script> script = info->script();
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
int len = String::cast(script->source())->length();
Counters::total_old_codegen_source_size.Increment(len);
}
MakeCodePrologue(info);
// Generate code.
const int kInitialBufferSize = 4 * KB;
MacroAssembler masm(NULL, kInitialBufferSize);
CodeGenerator cgen(&masm);
CodeGeneratorScope scope(&cgen);
cgen.Generate(info);
if (cgen.HasStackOverflow()) {
ASSERT(!Top::has_pending_exception());
return Handle<Code>::null();
}
InLoopFlag in_loop = (cgen.loop_nesting() != 0) ? IN_LOOP : NOT_IN_LOOP;
Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, in_loop);
return MakeCodeEpilogue(cgen.masm(), flags, info);
}
#ifdef ENABLE_LOGGING_AND_PROFILING
bool CodeGenerator::ShouldGenerateLog(Expression* type) {
ASSERT(type != NULL);
if (!Logger::is_logging() && !CpuProfiler::is_profiling()) return false;
Handle<String> name = Handle<String>::cast(type->AsLiteral()->handle());
if (FLAG_log_regexp) {
static Vector<const char> kRegexp = CStrVector("regexp");
if (name->IsEqualTo(kRegexp))
return true;
}
return false;
}
#endif
Handle<Code> CodeGenerator::ComputeCallInitialize(
int argc,
InLoopFlag in_loop) {
if (in_loop == IN_LOOP) {
// Force the creation of the corresponding stub outside loops,
// because it may be used when clearing the ICs later - it is
// possible for a series of IC transitions to lose the in-loop
// information, and the IC clearing code can't generate a stub
// that it needs so we need to ensure it is generated already.
ComputeCallInitialize(argc, NOT_IN_LOOP);
}
CALL_HEAP_FUNCTION(
StubCache::ComputeCallInitialize(argc, in_loop, Code::CALL_IC),
Code);
}
Handle<Code> CodeGenerator::ComputeKeyedCallInitialize(
int argc,
InLoopFlag in_loop) {
if (in_loop == IN_LOOP) {
// Force the creation of the corresponding stub outside loops,
// because it may be used when clearing the ICs later - it is
// possible for a series of IC transitions to lose the in-loop
// information, and the IC clearing code can't generate a stub
// that it needs so we need to ensure it is generated already.
ComputeKeyedCallInitialize(argc, NOT_IN_LOOP);
}
CALL_HEAP_FUNCTION(
StubCache::ComputeCallInitialize(argc, in_loop, Code::KEYED_CALL_IC),
Code);
}
void CodeGenerator::ProcessDeclarations(ZoneList<Declaration*>* declarations) {
int length = declarations->length();
int globals = 0;
for (int i = 0; i < length; i++) {
Declaration* node = declarations->at(i);
Variable* var = node->proxy()->var();
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile
// time, we need to "declare" it at runtime to make sure it
// actually exists in the local context.
if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
VisitDeclaration(node);
} else {
// Count global variables and functions for later processing
globals++;
}
}
// Return in case of no declared global functions or variables.
if (globals == 0) return;
// Compute array of global variable and function declarations.
Handle<FixedArray> array = Factory::NewFixedArray(2 * globals, TENURED);
for (int j = 0, i = 0; i < length; i++) {
Declaration* node = declarations->at(i);
Variable* var = node->proxy()->var();
Slot* slot = var->slot();
if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
// Skip - already processed.
} else {
array->set(j++, *(var->name()));
if (node->fun() == NULL) {
if (var->mode() == Variable::CONST) {
// In case this is const property use the hole.
array->set_the_hole(j++);
} else {
array->set_undefined(j++);
}
} else {
Handle<SharedFunctionInfo> function =
Compiler::BuildFunctionInfo(node->fun(), script(), this);
// Check for stack-overflow exception.
if (HasStackOverflow()) return;
array->set(j++, *function);
}
}
}
// Invoke the platform-dependent code generator to do the actual
// declaration the global variables and functions.
DeclareGlobals(array);
}
// List of special runtime calls which are generated inline. For some of these
// functions the code will be generated inline, and for others a call to a code
// stub will be inlined.
#define INLINE_RUNTIME_ENTRY(Name, argc, ressize) \
{&CodeGenerator::Generate##Name, "_" #Name, argc}, \
CodeGenerator::InlineRuntimeLUT CodeGenerator::kInlineRuntimeLUT[] = {
INLINE_RUNTIME_FUNCTION_LIST(INLINE_RUNTIME_ENTRY)
};
#undef INLINE_RUNTIME_ENTRY
CodeGenerator::InlineRuntimeLUT* CodeGenerator::FindInlineRuntimeLUT(
Handle<String> name) {
const int entries_count =
sizeof(kInlineRuntimeLUT) / sizeof(InlineRuntimeLUT);
for (int i = 0; i < entries_count; i++) {
InlineRuntimeLUT* entry = &kInlineRuntimeLUT[i];
if (name->IsEqualTo(CStrVector(entry->name))) {
return entry;
}
}
return NULL;
}
bool CodeGenerator::CheckForInlineRuntimeCall(CallRuntime* node) {
ZoneList<Expression*>* args = node->arguments();
Handle<String> name = node->name();
if (name->length() > 0 && name->Get(0) == '_') {
InlineRuntimeLUT* entry = FindInlineRuntimeLUT(name);
if (entry != NULL) {
((*this).*(entry->method))(args);
return true;
}
}
return false;
}
bool CodeGenerator::PatchInlineRuntimeEntry(Handle<String> name,
const CodeGenerator::InlineRuntimeLUT& new_entry,
CodeGenerator::InlineRuntimeLUT* old_entry) {
InlineRuntimeLUT* entry = FindInlineRuntimeLUT(name);
if (entry == NULL) return false;
if (old_entry != NULL) {
old_entry->name = entry->name;
old_entry->method = entry->method;
}
entry->name = new_entry.name;
entry->method = new_entry.method;
return true;
}
int CodeGenerator::InlineRuntimeCallArgumentsCount(Handle<String> name) {
CodeGenerator::InlineRuntimeLUT* f =
CodeGenerator::FindInlineRuntimeLUT(name);
if (f != NULL) return f->nargs;
return -1;
}
// Simple condition analysis. ALWAYS_TRUE and ALWAYS_FALSE represent a
// known result for the test expression, with no side effects.
CodeGenerator::ConditionAnalysis CodeGenerator::AnalyzeCondition(
Expression* cond) {
if (cond == NULL) return ALWAYS_TRUE;
Literal* lit = cond->AsLiteral();
if (lit == NULL) return DONT_KNOW;
if (lit->IsTrue()) {
return ALWAYS_TRUE;
} else if (lit->IsFalse()) {
return ALWAYS_FALSE;
}
return DONT_KNOW;
}
bool CodeGenerator::RecordPositions(MacroAssembler* masm,
int pos,
bool right_here) {
if (pos != RelocInfo::kNoPosition) {
masm->RecordStatementPosition(pos);
masm->RecordPosition(pos);
if (right_here) {
return masm->WriteRecordedPositions();
}
}
return false;
}
void CodeGenerator::CodeForFunctionPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) RecordPositions(masm(), fun->start_position(), false);
}
void CodeGenerator::CodeForReturnPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) RecordPositions(masm(), fun->end_position() - 1, false);
}
void CodeGenerator::CodeForStatementPosition(Statement* stmt) {
if (FLAG_debug_info) RecordPositions(masm(), stmt->statement_pos(), false);
}
void CodeGenerator::CodeForDoWhileConditionPosition(DoWhileStatement* stmt) {
if (FLAG_debug_info)
RecordPositions(masm(), stmt->condition_position(), false);
}
void CodeGenerator::CodeForSourcePosition(int pos) {
if (FLAG_debug_info && pos != RelocInfo::kNoPosition) {
masm()->RecordPosition(pos);
}
}
const char* GenericUnaryOpStub::GetName() {
switch (op_) {
case Token::SUB:
if (negative_zero_ == kStrictNegativeZero) {
return overwrite_ == UNARY_OVERWRITE
? "GenericUnaryOpStub_SUB_Overwrite_Strict0"
: "GenericUnaryOpStub_SUB_Alloc_Strict0";
} else {
return overwrite_ == UNARY_OVERWRITE
? "GenericUnaryOpStub_SUB_Overwrite_Ignore0"
: "GenericUnaryOpStub_SUB_Alloc_Ignore0";
}
case Token::BIT_NOT:
return overwrite_ == UNARY_OVERWRITE
? "GenericUnaryOpStub_BIT_NOT_Overwrite"
: "GenericUnaryOpStub_BIT_NOT_Alloc";
default:
UNREACHABLE();
return "<unknown>";
}
}
void ArgumentsAccessStub::Generate(MacroAssembler* masm) {
switch (type_) {
case READ_ELEMENT: GenerateReadElement(masm); break;
case NEW_OBJECT: GenerateNewObject(masm); break;
}
}
int CEntryStub::MinorKey() {
ASSERT(result_size_ <= 2);
#ifdef _WIN64
return ExitFrameModeBits::encode(mode_)
| IndirectResultBits::encode(result_size_ > 1);
#else
return ExitFrameModeBits::encode(mode_);
#endif
}
bool ApiGetterEntryStub::GetCustomCache(Code** code_out) {
Object* cache = info()->load_stub_cache();
if (cache->IsUndefined()) {
return false;
} else {
*code_out = Code::cast(cache);
return true;
}
}
void ApiGetterEntryStub::SetCustomCache(Code* value) {
info()->set_load_stub_cache(value);
}
} } // namespace v8::internal