blob: 470b5bf72e66da68ab7b4f7a383ec5d37378ffd7 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "full-codegen.h"
#include "parser.h"
#include "scopes.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right, with the
// return address on top of them. The actual argument count matches the
// formal parameter count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called (ie, ourselves)
// o rsi: our context
// o rbp: our caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-x64.h for its layout.
void FullCodeGenerator::Generate(CompilationInfo* info) {
ASSERT(info_ == NULL);
info_ = info;
SetFunctionPosition(function());
Comment cmnt(masm_, "[ function compiled by full code generator");
__ push(rbp); // Caller's frame pointer.
__ movq(rbp, rsp);
__ push(rsi); // Callee's context.
__ push(rdi); // Callee's JS Function.
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = scope()->num_stack_slots();
if (locals_count == 1) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
} else if (locals_count > 1) {
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
for (int i = 0; i < locals_count; i++) {
__ push(rdx);
}
}
}
bool function_in_register = true;
// Possibly allocate a local context.
int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment cmnt(masm_, "[ Allocate local context");
// Argument to NewContext is the function, which is still in rdi.
__ push(rdi);
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
__ CallStub(&stub);
} else {
__ CallRuntime(Runtime::kNewContext, 1);
}
function_in_register = false;
// Context is returned in both rax and rsi. It replaces the context
// passed to us. It's saved in the stack and kept live in rsi.
__ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Slot* slot = scope()->parameter(i)->slot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ movq(rax, Operand(rbp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(slot->index());
__ movq(Operand(rsi, context_offset), rax);
// Update the write barrier. This clobbers all involved
// registers, so we have use a third register to avoid
// clobbering rsi.
__ movq(rcx, rsi);
__ RecordWrite(rcx, context_offset, rax, rbx);
}
}
}
// Possibly allocate an arguments object.
Variable* arguments = scope()->arguments()->AsVariable();
if (arguments != NULL) {
// Arguments object must be allocated after the context object, in
// case the "arguments" or ".arguments" variables are in the context.
Comment cmnt(masm_, "[ Allocate arguments object");
if (function_in_register) {
__ push(rdi);
} else {
__ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
// The receiver is just before the parameters on the caller's stack.
int offset = scope()->num_parameters() * kPointerSize;
__ lea(rdx,
Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset));
__ push(rdx);
__ Push(Smi::FromInt(scope()->num_parameters()));
// Arguments to ArgumentsAccessStub:
// function, receiver address, parameter count.
// The stub will rewrite receiver and parameter count if the previous
// stack frame was an arguments adapter frame.
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
__ CallStub(&stub);
// Store new arguments object in both "arguments" and ".arguments" slots.
__ movq(rcx, rax);
Move(arguments->slot(), rax, rbx, rdx);
Slot* dot_arguments_slot =
scope()->arguments_shadow()->AsVariable()->slot();
Move(dot_arguments_slot, rcx, rbx, rdx);
}
{ Comment cmnt(masm_, "[ Declarations");
// For named function expressions, declare the function name as a
// constant.
if (scope()->is_function_scope() && scope()->function() != NULL) {
EmitDeclaration(scope()->function(), Variable::CONST, NULL);
}
// Visit all the explicit declarations unless there is an illegal
// redeclaration.
if (scope()->HasIllegalRedeclaration()) {
scope()->VisitIllegalRedeclaration(this);
} else {
VisitDeclarations(scope()->declarations());
}
}
{ Comment cmnt(masm_, "[ Stack check");
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
StackCheckStub stub;
__ CallStub(&stub);
__ bind(&ok);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
{ Comment cmnt(masm_, "[ Body");
ASSERT(loop_depth() == 0);
VisitStatements(function()->body());
ASSERT(loop_depth() == 0);
}
{ Comment cmnt(masm_, "[ return <undefined>;");
// Emit a 'return undefined' in case control fell off the end of the body.
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
EmitReturnSequence();
}
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ jmp(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
__ push(rax);
__ CallRuntime(Runtime::kTraceExit, 1);
}
#ifdef DEBUG
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
#endif
CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
__ RecordJSReturn();
// Do not use the leave instruction here because it is too short to
// patch with the code required by the debugger.
__ movq(rsp, rbp);
__ pop(rbp);
__ ret((scope()->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint. We
// have just generated "movq rsp, rbp; pop rbp; ret k" with length 7
// (3 + 1 + 3).
const int kPadding = Assembler::kJSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
// Check that the size of the code used for returning matches what is
// expected by the debugger.
ASSERT_EQ(Assembler::kJSReturnSequenceLength,
masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
#endif
}
}
void FullCodeGenerator::Apply(Expression::Context context, Register reg) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Nothing to do.
break;
case Expression::kValue:
// Move value into place.
switch (location_) {
case kAccumulator:
if (!reg.is(result_register())) __ movq(result_register(), reg);
break;
case kStack:
__ push(reg);
break;
}
break;
case Expression::kTest:
// For simplicity we always test the accumulator register.
if (!reg.is(result_register())) __ movq(result_register(), reg);
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
if (!reg.is(result_register())) __ movq(result_register(), reg);
switch (location_) {
case kAccumulator:
break;
case kStack:
__ push(result_register());
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context, Slot* slot) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Nothing to do.
break;
case Expression::kValue: {
MemOperand slot_operand = EmitSlotSearch(slot, result_register());
switch (location_) {
case kAccumulator:
__ movq(result_register(), slot_operand);
break;
case kStack:
// Memory operands can be pushed directly.
__ push(slot_operand);
break;
}
break;
}
case Expression::kTest:
Move(result_register(), slot);
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
Move(result_register(), slot);
switch (location_) {
case kAccumulator:
break;
case kStack:
__ push(result_register());
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context, Literal* lit) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Nothing to do.
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ Move(result_register(), lit->handle());
break;
case kStack:
__ Push(lit->handle());
break;
}
break;
case Expression::kTest:
__ Move(result_register(), lit->handle());
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
__ Move(result_register(), lit->handle());
switch (location_) {
case kAccumulator:
break;
case kStack:
__ push(result_register());
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::ApplyTOS(Expression::Context context) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
__ Drop(1);
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ pop(result_register());
break;
case kStack:
break;
}
break;
case Expression::kTest:
__ pop(result_register());
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
__ pop(result_register());
break;
case kStack:
__ movq(result_register(), Operand(rsp, 0));
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::DropAndApply(int count,
Expression::Context context,
Register reg) {
ASSERT(count > 0);
ASSERT(!reg.is(rsp));
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
__ Drop(count);
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ Drop(count);
if (!reg.is(result_register())) __ movq(result_register(), reg);
break;
case kStack:
if (count > 1) __ Drop(count - 1);
__ movq(Operand(rsp, 0), reg);
break;
}
break;
case Expression::kTest:
__ Drop(count);
if (!reg.is(result_register())) __ movq(result_register(), reg);
DoTest(context);
break;
case Expression::kValueTest:
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
__ Drop(count);
if (!reg.is(result_register())) __ movq(result_register(), reg);
break;
case kStack:
if (count > 1) __ Drop(count - 1);
__ movq(result_register(), reg);
__ movq(Operand(rsp, 0), result_register());
break;
}
DoTest(context);
break;
}
}
void FullCodeGenerator::PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false) {
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
// In an effect context, the true and the false case branch to the
// same label.
*if_true = *if_false = materialize_true;
break;
case Expression::kValue:
*if_true = materialize_true;
*if_false = materialize_false;
break;
case Expression::kTest:
*if_true = true_label_;
*if_false = false_label_;
break;
case Expression::kValueTest:
*if_true = materialize_true;
*if_false = false_label_;
break;
case Expression::kTestValue:
*if_true = true_label_;
*if_false = materialize_false;
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context,
Label* materialize_true,
Label* materialize_false) {
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
ASSERT_EQ(materialize_true, materialize_false);
__ bind(materialize_true);
break;
case Expression::kValue: {
Label done;
switch (location_) {
case kAccumulator:
__ bind(materialize_true);
__ Move(result_register(), Factory::true_value());
__ jmp(&done);
__ bind(materialize_false);
__ Move(result_register(), Factory::false_value());
break;
case kStack:
__ bind(materialize_true);
__ Push(Factory::true_value());
__ jmp(&done);
__ bind(materialize_false);
__ Push(Factory::false_value());
break;
}
__ bind(&done);
break;
}
case Expression::kTest:
break;
case Expression::kValueTest:
__ bind(materialize_true);
switch (location_) {
case kAccumulator:
__ Move(result_register(), Factory::true_value());
break;
case kStack:
__ Push(Factory::true_value());
break;
}
__ jmp(true_label_);
break;
case Expression::kTestValue:
__ bind(materialize_false);
switch (location_) {
case kAccumulator:
__ Move(result_register(), Factory::false_value());
break;
case kStack:
__ Push(Factory::false_value());
break;
}
__ jmp(false_label_);
break;
}
}
// Convert constant control flow (true or false) to the result expected for
// a given expression context.
void FullCodeGenerator::Apply(Expression::Context context, bool flag) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
break;
case Expression::kValue: {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
switch (location_) {
case kAccumulator:
__ LoadRoot(result_register(), value_root_index);
break;
case kStack:
__ PushRoot(value_root_index);
break;
}
break;
}
case Expression::kTest:
__ jmp(flag ? true_label_ : false_label_);
break;
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
// If value is false it's needed.
if (!flag) __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
break;
case kStack:
// If value is false it's needed.
if (!flag) __ PushRoot(Heap::kFalseValueRootIndex);
break;
}
__ jmp(flag ? true_label_ : false_label_);
break;
case Expression::kValueTest:
switch (location_) {
case kAccumulator:
// If value is true it's needed.
if (flag) __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
break;
case kStack:
// If value is true it's needed.
if (flag) __ PushRoot(Heap::kTrueValueRootIndex);
break;
}
__ jmp(flag ? true_label_ : false_label_);
break;
}
}
void FullCodeGenerator::DoTest(Expression::Context context) {
// The value to test is in the accumulator. If the value might be needed
// on the stack (value/test and test/value contexts with a stack location
// desired), then the value is already duplicated on the stack.
ASSERT_NE(NULL, true_label_);
ASSERT_NE(NULL, false_label_);
// In value/test and test/value expression contexts with stack as the
// desired location, there is already an extra value on the stack. Use a
// label to discard it if unneeded.
Label discard;
Label* if_true = true_label_;
Label* if_false = false_label_;
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
case Expression::kValue:
UNREACHABLE();
case Expression::kTest:
break;
case Expression::kValueTest:
switch (location_) {
case kAccumulator:
break;
case kStack:
if_false = &discard;
break;
}
break;
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
break;
case kStack:
if_true = &discard;
break;
}
break;
}
// Emit the inlined tests assumed by the stub.
__ CompareRoot(result_register(), Heap::kUndefinedValueRootIndex);
__ j(equal, if_false);
__ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
__ j(equal, if_true);
__ CompareRoot(result_register(), Heap::kFalseValueRootIndex);
__ j(equal, if_false);
ASSERT_EQ(0, kSmiTag);
__ SmiCompare(result_register(), Smi::FromInt(0));
__ j(equal, if_false);
Condition is_smi = masm_->CheckSmi(result_register());
__ j(is_smi, if_true);
// Save a copy of the value if it may be needed and isn't already saved.
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
case Expression::kValue:
UNREACHABLE();
case Expression::kTest:
break;
case Expression::kValueTest:
switch (location_) {
case kAccumulator:
__ push(result_register());
break;
case kStack:
break;
}
break;
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
__ push(result_register());
break;
case kStack:
break;
}
break;
}
// Call the ToBoolean stub for all other cases.
ToBooleanStub stub;
__ push(result_register());
__ CallStub(&stub);
__ testq(rax, rax);
// The stub returns nonzero for true. Complete based on the context.
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
case Expression::kValue:
UNREACHABLE();
case Expression::kTest:
__ j(not_zero, true_label_);
__ jmp(false_label_);
break;
case Expression::kValueTest:
switch (location_) {
case kAccumulator:
__ j(zero, &discard);
__ pop(result_register());
__ jmp(true_label_);
break;
case kStack:
__ j(not_zero, true_label_);
break;
}
__ bind(&discard);
__ Drop(1);
__ jmp(false_label_);
break;
case Expression::kTestValue:
switch (location_) {
case kAccumulator:
__ j(not_zero, &discard);
__ pop(result_register());
__ jmp(false_label_);
break;
case kStack:
__ j(zero, false_label_);
break;
}
__ bind(&discard);
__ Drop(1);
__ jmp(true_label_);
break;
}
}
MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) {
switch (slot->type()) {
case Slot::PARAMETER:
case Slot::LOCAL:
return Operand(rbp, SlotOffset(slot));
case Slot::CONTEXT: {
int context_chain_length =
scope()->ContextChainLength(slot->var()->scope());
__ LoadContext(scratch, context_chain_length);
return CodeGenerator::ContextOperand(scratch, slot->index());
}
case Slot::LOOKUP:
UNREACHABLE();
}
UNREACHABLE();
return Operand(rax, 0);
}
void FullCodeGenerator::Move(Register destination, Slot* source) {
MemOperand location = EmitSlotSearch(source, destination);
__ movq(destination, location);
}
void FullCodeGenerator::Move(Slot* dst,
Register src,
Register scratch1,
Register scratch2) {
ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented.
ASSERT(!scratch1.is(src) && !scratch2.is(src));
MemOperand location = EmitSlotSearch(dst, scratch1);
__ movq(location, src);
// Emit the write barrier code if the location is in the heap.
if (dst->type() == Slot::CONTEXT) {
int offset = FixedArray::kHeaderSize + dst->index() * kPointerSize;
__ RecordWrite(scratch1, offset, src, scratch2);
}
}
void FullCodeGenerator::EmitDeclaration(Variable* variable,
Variable::Mode mode,
FunctionLiteral* function) {
Comment cmnt(masm_, "[ Declaration");
ASSERT(variable != NULL); // Must have been resolved.
Slot* slot = variable->slot();
Property* prop = variable->AsProperty();
if (slot != NULL) {
switch (slot->type()) {
case Slot::PARAMETER:
case Slot::LOCAL:
if (mode == Variable::CONST) {
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
__ movq(Operand(rbp, SlotOffset(slot)), kScratchRegister);
} else if (function != NULL) {
VisitForValue(function, kAccumulator);
__ movq(Operand(rbp, SlotOffset(slot)), result_register());
}
break;
case Slot::CONTEXT:
// We bypass the general EmitSlotSearch because we know more about
// this specific context.
// The variable in the decl always resides in the current context.
ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
if (FLAG_debug_code) {
// Check if we have the correct context pointer.
__ movq(rbx,
CodeGenerator::ContextOperand(rsi, Context::FCONTEXT_INDEX));
__ cmpq(rbx, rsi);
__ Check(equal, "Unexpected declaration in current context.");
}
if (mode == Variable::CONST) {
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
__ movq(CodeGenerator::ContextOperand(rsi, slot->index()),
kScratchRegister);
// No write barrier since the hole value is in old space.
} else if (function != NULL) {
VisitForValue(function, kAccumulator);
__ movq(CodeGenerator::ContextOperand(rsi, slot->index()),
result_register());
int offset = Context::SlotOffset(slot->index());
__ movq(rbx, rsi);
__ RecordWrite(rbx, offset, result_register(), rcx);
}
break;
case Slot::LOOKUP: {
__ push(rsi);
__ Push(variable->name());
// Declaration nodes are always introduced in one of two modes.
ASSERT(mode == Variable::VAR || mode == Variable::CONST);
PropertyAttributes attr = (mode == Variable::VAR) ? NONE : READ_ONLY;
__ Push(Smi::FromInt(attr));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (mode == Variable::CONST) {
__ PushRoot(Heap::kTheHoleValueRootIndex);
} else if (function != NULL) {
VisitForValue(function, kStack);
} else {
__ Push(Smi::FromInt(0)); // no initial value!
}
__ CallRuntime(Runtime::kDeclareContextSlot, 4);
break;
}
}
} else if (prop != NULL) {
if (function != NULL || mode == Variable::CONST) {
// We are declaring a function or constant that rewrites to a
// property. Use (keyed) IC to set the initial value.
VisitForValue(prop->obj(), kStack);
if (function != NULL) {
VisitForValue(prop->key(), kStack);
VisitForValue(function, kAccumulator);
__ pop(rcx);
} else {
VisitForValue(prop->key(), kAccumulator);
__ movq(rcx, result_register());
__ LoadRoot(result_register(), Heap::kTheHoleValueRootIndex);
}
__ pop(rdx);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// Absence of a test rax instruction following the call
// indicates that none of the load was inlined.
__ nop();
}
}
}
void FullCodeGenerator::VisitDeclaration(Declaration* decl) {
EmitDeclaration(decl->proxy()->var(), decl->mode(), decl->fun());
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
__ push(rsi); // The context is the first argument.
__ Push(pairs);
__ Push(Smi::FromInt(is_eval() ? 1 : 0));
__ CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForValue(stmt->tag(), kStack);
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForValue(clause->label(), kAccumulator);
// Perform the comparison as if via '==='. The comparison stub expects
// the smi vs. smi case to be handled before it is called.
Label slow_case;
__ movq(rdx, Operand(rsp, 0)); // Switch value.
__ JumpIfNotBothSmi(rdx, rax, &slow_case);
__ SmiCompare(rdx, rax);
__ j(not_equal, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ jmp(clause->body_target()->entry_label());
__ bind(&slow_case);
CompareStub stub(equal, true);
__ CallStub(&stub);
__ testq(rax, rax);
__ j(not_equal, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ jmp(clause->body_target()->entry_label());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ bind(&next_test);
__ Drop(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ jmp(nested_statement.break_target());
} else {
__ jmp(default_clause->body_target()->entry_label());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ bind(clause->body_target()->entry_label());
VisitStatements(clause->statements());
}
__ bind(nested_statement.break_target());
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
Comment cmnt(masm_, "[ ForInStatement");
SetStatementPosition(stmt);
Label loop, exit;
ForIn loop_statement(this, stmt);
increment_loop_depth();
// Get the object to enumerate over. Both SpiderMonkey and JSC
// ignore null and undefined in contrast to the specification; see
// ECMA-262 section 12.6.4.
VisitForValue(stmt->enumerable(), kAccumulator);
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(equal, &exit);
__ CompareRoot(rax, Heap::kNullValueRootIndex);
__ j(equal, &exit);
// Convert the object to a JS object.
Label convert, done_convert;
__ JumpIfSmi(rax, &convert);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, &done_convert);
__ bind(&convert);
__ push(rax);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ bind(&done_convert);
__ push(rax);
// TODO(kasperl): Check cache validity in generated code. This is a
// fast case for the JSObject::IsSimpleEnum cache validity
// checks. If we cannot guarantee cache validity, call the runtime
// system to check cache validity or get the property names in a
// fixed array.
// Get the set of properties to enumerate.
__ push(rax); // Duplicate the enumerable object on the stack.
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
Label fixed_array;
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kMetaMapRootIndex);
__ j(not_equal, &fixed_array);
// We got a map in register rax. Get the enumeration cache from it.
__ movq(rcx, FieldOperand(rax, Map::kInstanceDescriptorsOffset));
__ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset));
__ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Setup the four remaining stack slots.
__ push(rax); // Map.
__ push(rdx); // Enumeration cache.
__ movq(rax, FieldOperand(rdx, FixedArray::kLengthOffset));
__ push(rax); // Enumeration cache length (as smi).
__ Push(Smi::FromInt(0)); // Initial index.
__ jmp(&loop);
// We got a fixed array in register rax. Iterate through that.
__ bind(&fixed_array);
__ Push(Smi::FromInt(0)); // Map (0) - force slow check.
__ push(rax);
__ movq(rax, FieldOperand(rax, FixedArray::kLengthOffset));
__ push(rax); // Fixed array length (as smi).
__ Push(Smi::FromInt(0)); // Initial index.
// Generate code for doing the condition check.
__ bind(&loop);
__ movq(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index.
__ cmpq(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length.
__ j(above_equal, loop_statement.break_target());
// Get the current entry of the array into register rbx.
__ movq(rbx, Operand(rsp, 2 * kPointerSize));
SmiIndex index = __ SmiToIndex(rax, rax, kPointerSizeLog2);
__ movq(rbx, FieldOperand(rbx,
index.reg,
index.scale,
FixedArray::kHeaderSize));
// Get the expected map from the stack or a zero map in the
// permanent slow case into register rdx.
__ movq(rdx, Operand(rsp, 3 * kPointerSize));
// Check if the expected map still matches that of the enumerable.
// If not, we have to filter the key.
Label update_each;
__ movq(rcx, Operand(rsp, 4 * kPointerSize));
__ cmpq(rdx, FieldOperand(rcx, HeapObject::kMapOffset));
__ j(equal, &update_each);
// Convert the entry to a string or null if it isn't a property
// anymore. If the property has been removed while iterating, we
// just skip it.
__ push(rcx); // Enumerable.
__ push(rbx); // Current entry.
__ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
__ SmiCompare(rax, Smi::FromInt(0));
__ j(equal, loop_statement.continue_target());
__ movq(rbx, rax);
// Update the 'each' property or variable from the possibly filtered
// entry in register rbx.
__ bind(&update_each);
__ movq(result_register(), rbx);
// Perform the assignment as if via '='.
EmitAssignment(stmt->each());
// Generate code for the body of the loop.
Label stack_limit_hit, stack_check_done;
Visit(stmt->body());
__ StackLimitCheck(&stack_limit_hit);
__ bind(&stack_check_done);
// Generate code for going to the next element by incrementing the
// index (smi) stored on top of the stack.
__ bind(loop_statement.continue_target());
__ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1));
__ jmp(&loop);
// Slow case for the stack limit check.
StackCheckStub stack_check_stub;
__ bind(&stack_limit_hit);
__ CallStub(&stack_check_stub);
__ jmp(&stack_check_done);
// Remove the pointers stored on the stack.
__ bind(loop_statement.break_target());
__ addq(rsp, Immediate(5 * kPointerSize));
// Exit and decrement the loop depth.
__ bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
if (scope()->is_function_scope() && info->num_literals() == 0) {
FastNewClosureStub stub;
__ Push(info);
__ CallStub(&stub);
} else {
__ push(rsi);
__ Push(info);
__ CallRuntime(Runtime::kNewClosure, 2);
}
Apply(context_, rax);
}
void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
EmitVariableLoad(expr->var(), context_);
}
void FullCodeGenerator::EmitVariableLoad(Variable* var,
Expression::Context context) {
// Four cases: non-this global variables, lookup slots, all other
// types of slots, and parameters that rewrite to explicit property
// accesses on the arguments object.
Slot* slot = var->slot();
Property* property = var->AsProperty();
if (var->is_global() && !var->is_this()) {
Comment cmnt(masm_, "Global variable");
// Use inline caching. Variable name is passed in rcx and the global
// object on the stack.
__ Move(rcx, var->name());
__ movq(rax, CodeGenerator::GlobalObject());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
// A test rax instruction following the call is used by the IC to
// indicate that the inobject property case was inlined. Ensure there
// is no test rax instruction here.
__ nop();
Apply(context, rax);
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
Comment cmnt(masm_, "Lookup slot");
__ push(rsi); // Context.
__ Push(var->name());
__ CallRuntime(Runtime::kLoadContextSlot, 2);
Apply(context, rax);
} else if (slot != NULL) {
Comment cmnt(masm_, (slot->type() == Slot::CONTEXT)
? "Context slot"
: "Stack slot");
if (var->mode() == Variable::CONST) {
// Constants may be the hole value if they have not been initialized.
// Unhole them.
Label done;
MemOperand slot_operand = EmitSlotSearch(slot, rax);
__ movq(rax, slot_operand);
__ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &done);
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ bind(&done);
Apply(context, rax);
} else {
Apply(context, slot);
}
} else {
Comment cmnt(masm_, "Rewritten parameter");
ASSERT_NOT_NULL(property);
// Rewritten parameter accesses are of the form "slot[literal]".
// Assert that the object is in a slot.
Variable* object_var = property->obj()->AsVariableProxy()->AsVariable();
ASSERT_NOT_NULL(object_var);
Slot* object_slot = object_var->slot();
ASSERT_NOT_NULL(object_slot);
// Load the object.
MemOperand object_loc = EmitSlotSearch(object_slot, rax);
__ movq(rdx, object_loc);
// Assert that the key is a smi.
Literal* key_literal = property->key()->AsLiteral();
ASSERT_NOT_NULL(key_literal);
ASSERT(key_literal->handle()->IsSmi());
// Load the key.
__ Move(rax, key_literal->handle());
// Do a keyed property load.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// Notice: We must not have a "test rax, ..." instruction after the
// call. It is treated specially by the LoadIC code.
__ nop();
Apply(context, rax);
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
Label materialized;
// Registers will be used as follows:
// rdi = JS function.
// rcx = literals array.
// rbx = regexp literal.
// rax = regexp literal clone.
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ movq(rbx, FieldOperand(rcx, literal_offset));
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &materialized);
// Create regexp literal using runtime function
// Result will be in rax.
__ push(rcx);
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->pattern());
__ Push(expr->flags());
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
__ movq(rbx, rax);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ push(rbx);
__ Push(Smi::FromInt(size));
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
__ pop(rbx);
__ bind(&allocated);
// Copy the content into the newly allocated memory.
// (Unroll copy loop once for better throughput).
for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
__ movq(rdx, FieldOperand(rbx, i));
__ movq(rcx, FieldOperand(rbx, i + kPointerSize));
__ movq(FieldOperand(rax, i), rdx);
__ movq(FieldOperand(rax, i + kPointerSize), rcx);
}
if ((size % (2 * kPointerSize)) != 0) {
__ movq(rdx, FieldOperand(rbx, size - kPointerSize));
__ movq(FieldOperand(rax, size - kPointerSize), rdx);
}
Apply(context_, rax);
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(rdi, JSFunction::kLiteralsOffset));
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->constant_properties());
__ Push(Smi::FromInt(expr->fast_elements() ? 1 : 0));
if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCreateObjectLiteral, 4);
} else {
__ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
}
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in rax.
bool result_saved = false;
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ push(rax); // Save result on the stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
VisitForValue(value, kAccumulator);
__ Move(rcx, key->handle());
__ movq(rdx, Operand(rsp, 0));
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
__ nop();
break;
}
// Fall through.
case ObjectLiteral::Property::PROTOTYPE:
__ push(Operand(rsp, 0)); // Duplicate receiver.
VisitForValue(key, kStack);
VisitForValue(value, kStack);
__ CallRuntime(Runtime::kSetProperty, 3);
break;
case ObjectLiteral::Property::SETTER:
case ObjectLiteral::Property::GETTER:
__ push(Operand(rsp, 0)); // Duplicate receiver.
VisitForValue(key, kStack);
__ Push(property->kind() == ObjectLiteral::Property::SETTER ?
Smi::FromInt(1) :
Smi::FromInt(0));
VisitForValue(value, kStack);
__ CallRuntime(Runtime::kDefineAccessor, 4);
break;
}
}
if (result_saved) {
ApplyTOS(context_);
} else {
Apply(context_, rax);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
__ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->constant_elements());
if (expr->constant_elements()->map() == Heap::fixed_cow_array_map()) {
FastCloneShallowArrayStub stub(
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
__ CallStub(&stub);
__ IncrementCounter(&Counters::cow_arrays_created_stub, 1);
} else if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCreateArrayLiteral, 3);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
__ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
} else {
FastCloneShallowArrayStub stub(
FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
__ CallStub(&stub);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (subexpr->AsLiteral() != NULL ||
CompileTimeValue::IsCompileTimeValue(subexpr)) {
continue;
}
if (!result_saved) {
__ push(rax);
result_saved = true;
}
VisitForValue(subexpr, kAccumulator);
// Store the subexpression value in the array's elements.
__ movq(rbx, Operand(rsp, 0)); // Copy of array literal.
__ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ movq(FieldOperand(rbx, offset), result_register());
// Update the write barrier for the array store.
__ RecordWrite(rbx, offset, result_register(), rcx);
}
if (result_saved) {
ApplyTOS(context_);
} else {
Apply(context_, rax);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
Comment cmnt(masm_, "[ Assignment");
// Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
// on the left-hand side.
if (!expr->target()->IsValidLeftHandSide()) {
VisitForEffect(expr->target());
return;
}
// Left-hand side can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->target()->AsProperty();
if (prop != NULL) {
assign_type =
(prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
}
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the accumulator.
VisitForValue(prop->obj(), kAccumulator);
__ push(result_register());
} else {
VisitForValue(prop->obj(), kStack);
}
break;
case KEYED_PROPERTY:
if (expr->is_compound()) {
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kAccumulator);
__ movq(rdx, Operand(rsp, 0));
__ push(rax);
} else {
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kStack);
}
break;
}
// If we have a compound assignment: Get value of LHS expression and
// store in on top of the stack.
if (expr->is_compound()) {
Location saved_location = location_;
location_ = kStack;
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy()->var(),
Expression::kValue);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(prop);
__ push(result_register());
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(prop);
__ push(result_register());
break;
}
location_ = saved_location;
}
// Evaluate RHS expression.
Expression* rhs = expr->value();
VisitForValue(rhs, kAccumulator);
// If we have a compound assignment: Apply operator.
if (expr->is_compound()) {
Location saved_location = location_;
location_ = kAccumulator;
EmitBinaryOp(expr->binary_op(), Expression::kValue);
location_ = saved_location;
}
// Record source position before possible IC call.
SetSourcePosition(expr->position());
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
expr->op(),
context_);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
__ Move(rcx, key->handle());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
__ nop();
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
__ nop();
}
void FullCodeGenerator::EmitBinaryOp(Token::Value op,
Expression::Context context) {
__ push(result_register());
GenericBinaryOpStub stub(op,
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS);
__ CallStub(&stub);
Apply(context, rax);
}
void FullCodeGenerator::EmitAssignment(Expression* expr) {
// Invalid left-hand sides are rewritten to have a 'throw
// ReferenceError' on the left-hand side.
if (!expr->IsValidLeftHandSide()) {
VisitForEffect(expr);
return;
}
// Left-hand side can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->AsProperty();
if (prop != NULL) {
assign_type = (prop->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
switch (assign_type) {
case VARIABLE: {
Variable* var = expr->AsVariableProxy()->var();
EmitVariableAssignment(var, Token::ASSIGN, Expression::kEffect);
break;
}
case NAMED_PROPERTY: {
__ push(rax); // Preserve value.
VisitForValue(prop->obj(), kAccumulator);
__ movq(rdx, rax);
__ pop(rax); // Restore value.
__ Move(rcx, prop->key()->AsLiteral()->handle());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
__ nop(); // Signal no inlined code.
break;
}
case KEYED_PROPERTY: {
__ push(rax); // Preserve value.
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kAccumulator);
__ movq(rcx, rax);
__ pop(rdx);
__ pop(rax);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
__ nop(); // Signal no inlined code.
break;
}
}
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var,
Token::Value op,
Expression::Context context) {
// Left-hand sides that rewrite to explicit property accesses do not reach
// here.
ASSERT(var != NULL);
ASSERT(var->is_global() || var->slot() != NULL);
if (var->is_global()) {
ASSERT(!var->is_this());
// Assignment to a global variable. Use inline caching for the
// assignment. Right-hand-side value is passed in rax, variable name in
// rcx, and the global object on the stack.
__ Move(rcx, var->name());
__ movq(rdx, CodeGenerator::GlobalObject());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
__ nop();
} else if (var->mode() != Variable::CONST || op == Token::INIT_CONST) {
// Perform the assignment for non-const variables and for initialization
// of const variables. Const assignments are simply skipped.
Label done;
Slot* slot = var->slot();
switch (slot->type()) {
case Slot::PARAMETER:
case Slot::LOCAL:
if (op == Token::INIT_CONST) {
// Detect const reinitialization by checking for the hole value.
__ movq(rdx, Operand(rbp, SlotOffset(slot)));
__ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &done);
}
// Perform the assignment.
__ movq(Operand(rbp, SlotOffset(slot)), rax);
break;
case Slot::CONTEXT: {
MemOperand target = EmitSlotSearch(slot, rcx);
if (op == Token::INIT_CONST) {
// Detect const reinitialization by checking for the hole value.
__ movq(rdx, target);
__ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &done);
}
// Perform the assignment and issue the write barrier.
__ movq(target, rax);
// The value of the assignment is in rax. RecordWrite clobbers its
// register arguments.
__ movq(rdx, rax);
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ RecordWrite(rcx, offset, rdx, rbx);
break;
}
case Slot::LOOKUP:
// Call the runtime for the assignment. The runtime will ignore
// const reinitialization.
__ push(rax); // Value.
__ push(rsi); // Context.
__ Push(var->name());
if (op == Token::INIT_CONST) {
// The runtime will ignore const redeclaration.
__ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
__ CallRuntime(Runtime::kStoreContextSlot, 3);
}
break;
}
__ bind(&done);
}
Apply(context, rax);
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->AsLiteral() != NULL);
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(result_register());
__ push(Operand(rsp, kPointerSize)); // Receiver is now under value.
__ CallRuntime(Runtime::kToSlowProperties, 1);
__ pop(result_register());
}
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ Move(rcx, prop->key()->AsLiteral()->handle());
if (expr->ends_initialization_block()) {
__ movq(rdx, Operand(rsp, 0));
} else {
__ pop(rdx);
}
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
__ nop();
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(rax); // Result of assignment, saved even if not needed.
__ push(Operand(rsp, kPointerSize)); // Receiver is under value.
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(rax);
DropAndApply(1, context_, rax);
} else {
Apply(context_, rax);
}
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(result_register());
// Receiver is now under the key and value.
__ push(Operand(rsp, 2 * kPointerSize));
__ CallRuntime(Runtime::kToSlowProperties, 1);
__ pop(result_register());
}
__ pop(rcx);
if (expr->ends_initialization_block()) {
__ movq(rdx, Operand(rsp, 0)); // Leave receiver on the stack for later.
} else {
__ pop(rdx);
}
// Record source code position before IC call.
SetSourcePosition(expr->position());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// This nop signals to the IC that there is no inlined code at the call
// site for it to patch.
__ nop();
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ pop(rdx);
__ push(rax); // Result of assignment, saved even if not needed.
__ push(rdx);
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(rax);
}
Apply(context_, rax);
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
if (key->IsPropertyName()) {
VisitForValue(expr->obj(), kAccumulator);
EmitNamedPropertyLoad(expr);
Apply(context_, rax);
} else {
VisitForValue(expr->obj(), kStack);
VisitForValue(expr->key(), kAccumulator);
__ pop(rdx);
EmitKeyedPropertyLoad(expr);
Apply(context_, rax);
}
}
void FullCodeGenerator::EmitCallWithIC(Call* expr,
Handle<Object> name,
RelocInfo::Mode mode) {
// Code common for calls using the IC.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
__ Move(rcx, name);
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the IC initialization code.
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count,
in_loop);
__ Call(ic, mode);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
Apply(context_, rax);
}
void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
Expression* key,
RelocInfo::Mode mode) {
// Code common for calls using the IC.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
VisitForValue(key, kAccumulator);
__ movq(rcx, rax);
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the IC initialization code.
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic = CodeGenerator::ComputeKeyedCallInitialize(arg_count,
in_loop);
__ Call(ic, mode);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
Apply(context_, rax);
}
void FullCodeGenerator::EmitCallWithStub(Call* expr) {
// Code common for calls using the call stub.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
// Record source position for debugger.
SetSourcePosition(expr->position());
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
__ CallStub(&stub);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// Discard the function left on TOS.
DropAndApply(1, context_, rax);
}
void FullCodeGenerator::VisitCall(Call* expr) {
Comment cmnt(masm_, "[ Call");
Expression* fun = expr->expression();
Variable* var = fun->AsVariableProxy()->AsVariable();
if (var != NULL && var->is_possibly_eval()) {
// In a call to eval, we first call %ResolvePossiblyDirectEval to
// resolve the function we need to call and the receiver of the
// call. The we call the resolved function using the given
// arguments.
VisitForValue(fun, kStack);
__ PushRoot(Heap::kUndefinedValueRootIndex); // Reserved receiver slot.
// Push the arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
// Push copy of the function - found below the arguments.
__ push(Operand(rsp, (arg_count + 1) * kPointerSize));
// Push copy of the first argument or undefined if it doesn't exist.
if (arg_count > 0) {
__ push(Operand(rsp, arg_count * kPointerSize));
} else {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
// Push the receiver of the enclosing function and do runtime call.
__ push(Operand(rbp, (2 + scope()->num_parameters()) * kPointerSize));
__ CallRuntime(Runtime::kResolvePossiblyDirectEval, 3);
// The runtime call returns a pair of values in rax (function) and
// rdx (receiver). Touch up the stack with the right values.
__ movq(Operand(rsp, (arg_count + 0) * kPointerSize), rdx);
__ movq(Operand(rsp, (arg_count + 1) * kPointerSize), rax);
// Record source position for debugger.
SetSourcePosition(expr->position());
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
__ CallStub(&stub);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
DropAndApply(1, context_, rax);
} else if (var != NULL && !var->is_this() && var->is_global()) {
// Call to a global variable.
// Push global object as receiver for the call IC lookup.
__ push(CodeGenerator::GlobalObject());
EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// Call to a lookup slot (dynamically introduced variable). Call
// the runtime to find the function to call (returned in rax) and
// the object holding it (returned in rdx).
__ push(context_register());
__ Push(var->name());
__ CallRuntime(Runtime::kLoadContextSlot, 2);
__ push(rax); // Function.
__ push(rdx); // Receiver.
EmitCallWithStub(expr);
} else if (fun->AsProperty() != NULL) {
// Call to an object property.
Property* prop = fun->AsProperty();
Literal* key = prop->key()->AsLiteral();
if (key != NULL && key->handle()->IsSymbol()) {
// Call to a named property, use call IC.
VisitForValue(prop->obj(), kStack);
EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET);
} else {
// Call to a keyed property.
// For a synthetic property use keyed load IC followed by function call,
// for a regular property use KeyedCallIC.
VisitForValue(prop->obj(), kStack);
if (prop->is_synthetic()) {
VisitForValue(prop->key(), kAccumulator);
__ movq(rdx, Operand(rsp, 0));
// Record source code position for IC call.
SetSourcePosition(prop->position());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// By emitting a nop we make sure that we do not have a "test rax,..."
// instruction after the call as it is treated specially
// by the LoadIC code.
__ nop();
// Pop receiver.
__ pop(rbx);
// Push result (function).
__ push(rax);
// Push receiver object on stack.
__ movq(rcx, CodeGenerator::GlobalObject());
__ push(FieldOperand(rcx, GlobalObject::kGlobalReceiverOffset));
EmitCallWithStub(expr);
} else {
EmitKeyedCallWithIC(expr, prop->key(), RelocInfo::CODE_TARGET);
}
}
} else {
// Call to some other expression. If the expression is an anonymous
// function literal not called in a loop, mark it as one that should
// also use the fast code generator.
FunctionLiteral* lit = fun->AsFunctionLiteral();
if (lit != NULL &&
lit->name()->Equals(Heap::empty_string()) &&
loop_depth() == 0) {
lit->set_try_full_codegen(true);
}
VisitForValue(fun, kStack);
// Load global receiver object.
__ movq(rbx, CodeGenerator::GlobalObject());
__ push(FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
// Emit function call.
EmitCallWithStub(expr);
}
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push function on the stack.
VisitForValue(expr->expression(), kStack);
// Push global object (receiver).
__ push(CodeGenerator::GlobalObject());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(expr->position());
// Load function, arg_count into rdi and rax.
__ Set(rax, arg_count);
// Function is in rsp[arg_count + 1].
__ movq(rdi, Operand(rsp, rax, times_pointer_size, kPointerSize));
Handle<Code> construct_builtin(Builtins::builtin(Builtins::JSConstructCall));
__ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
// Replace function on TOS with result in rax, or pop it.
DropAndApply(1, context_, rax);
}
void FullCodeGenerator::EmitIsSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
__ JumpIfSmi(rax, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
Condition positive_smi = __ CheckPositiveSmi(rax);
__ j(positive_smi, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
__ JumpIfSmi(rax, if_false);
__ CompareRoot(rax, Heap::kNullValueRootIndex);
__ j(equal, if_true);
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, if_false);
__ movzxbq(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
__ cmpq(rbx, Immediate(FIRST_JS_OBJECT_TYPE));
__ j(below, if_false);
__ cmpq(rbx, Immediate(LAST_JS_OBJECT_TYPE));
__ j(below_equal, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsSpecObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx);
__ j(above_equal, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsUndetectableObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
__ JumpIfSmi(rax, if_false);
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
// Just indicate false, as %_IsStringWrapperSafeForDefaultValueOf() is only
// used in a few functions in runtime.js which should not normally be hit by
// this compiler.
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsFunction(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
__ j(equal, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, JS_ARRAY_TYPE, rbx);
__ j(equal, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsRegExp(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
__ JumpIfSmi(rax, if_false);
__ CmpObjectType(rax, JS_REGEXP_TYPE, rbx);
__ j(equal, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsConstructCall(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
// Get the frame pointer for the calling frame.
__ movq(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ SmiCompare(Operand(rax, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &check_frame_marker);
__ movq(rax, Operand(rax, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ SmiCompare(Operand(rax, StandardFrameConstants::kMarkerOffset),
Smi::FromInt(StackFrame::CONSTRUCT));
__ j(equal, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitObjectEquals(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
__ pop(rbx);
__ cmpq(rax, rbx);
__ j(equal, if_true);
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitArguments(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
// ArgumentsAccessStub expects the key in edx and the formal
// parameter count in eax.
VisitForValue(args->at(0), kAccumulator);
__ movq(rdx, rax);
__ Move(rax, Smi::FromInt(scope()->num_parameters()));
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
__ CallStub(&stub);
Apply(context_, rax);
}
void FullCodeGenerator::EmitArgumentsLength(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Label exit;
// Get the number of formal parameters.
__ Move(rax, Smi::FromInt(scope()->num_parameters()));
// Check if the calling frame is an arguments adaptor frame.
__ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &exit);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ movq(rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ bind(&exit);
if (FLAG_debug_code) __ AbortIfNotSmi(rax);
Apply(context_, rax);
}
void FullCodeGenerator::EmitClassOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForValue(args->at(0), kAccumulator);
// If the object is a smi, we return null.
__ JumpIfSmi(rax, &null);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); // Map is now in rax.
__ j(below, &null);
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpInstanceType(rax, JS_FUNCTION_TYPE);
__ j(equal, &function);
// Check if the constructor in the map is a function.
__ movq(rax, FieldOperand(rax, Map::kConstructorOffset));
__ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
__ j(not_equal, &non_function_constructor);
// rax now contains the constructor function. Grab the
// instance class name from there.
__ movq(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
__ movq(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset));
__ jmp(&done);
// Functions have class 'Function'.
__ bind(&function);
__ Move(rax, Factory::function_class_symbol());
__ jmp(&done);
// Objects with a non-function constructor have class 'Object'.
__ bind(&non_function_constructor);
__ Move(rax, Factory::Object_symbol());
__ jmp(&done);
// Non-JS objects have class null.
__ bind(&null);
__ LoadRoot(rax, Heap::kNullValueRootIndex);
// All done.
__ bind(&done);
Apply(context_, rax);
}
void FullCodeGenerator::EmitLog(ZoneList<Expression*>* args) {
// Conditionally generate a log call.
// Args:
// 0 (literal string): The type of logging (corresponds to the flags).
// This is used to determine whether or not to generate the log call.
// 1 (string): Format string. Access the string at argument index 2
// with '%2s' (see Logger::LogRuntime for all the formats).
// 2 (array): Arguments to the format string.
ASSERT_EQ(args->length(), 3);
#ifdef ENABLE_LOGGING_AND_PROFILING
if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
__ CallRuntime(Runtime::kLog, 2);
}
#endif
// Finally, we're expected to leave a value on the top of the stack.
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
Apply(context_, rax);
}
void FullCodeGenerator::EmitRandomHeapNumber(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Label slow_allocate_heapnumber;
Label heapnumber_allocated;
__ AllocateHeapNumber(rbx, rcx, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
// Allocate a heap number.
__ CallRuntime(Runtime::kNumberAlloc, 0);
__ movq(rbx, rax);
__ bind(&heapnumber_allocated);
// Return a random uint32 number in rax.
// The fresh HeapNumber is in rbx, which is callee-save on both x64 ABIs.
__ PrepareCallCFunction(0);
__ CallCFunction(ExternalReference::random_uint32_function(), 0);
// Convert 32 random bits in rax to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
__ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single.
__ movd(xmm1, rcx);
__ movd(xmm0, rax);
__ cvtss2sd(xmm1, xmm1);
__ xorpd(xmm0, xmm1);
__ subsd(xmm0, xmm1);
__ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rbx);
Apply(context_, rax);
}
void FullCodeGenerator::EmitSubString(ZoneList<Expression*>* args) {
// Load the arguments on the stack and call the stub.
SubStringStub stub;
ASSERT(args->length() == 3);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
__ CallStub(&stub);
Apply(context_, rax);
}
void FullCodeGenerator::EmitRegExpExec(ZoneList<Expression*>* args) {
// Load the arguments on the stack and call the stub.
RegExpExecStub stub;
ASSERT(args->length() == 4);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
VisitForValue(args->at(3), kStack);
__ CallStub(&stub);
Apply(context_, rax);
}
void FullCodeGenerator::EmitValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator); // Load the object.
Label done;
// If the object is a smi return the object.
__ JumpIfSmi(rax, &done);
// If the object is not a value type, return the object.
__ CmpObjectType(rax, JS_VALUE_TYPE, rbx);
__ j(not_equal, &done);
__ movq(rax, FieldOperand(rax, JSValue::kValueOffset));
__ bind(&done);
Apply(context_, rax);
}
void FullCodeGenerator::EmitMathPow(ZoneList<Expression*>* args) {
// Load the arguments on the stack and call the runtime function.
ASSERT(args->length() == 2);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
__ CallRuntime(Runtime::kMath_pow, 2);
Apply(context_, rax);
}
void FullCodeGenerator::EmitSetValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
VisitForValue(args->at(0), kStack); // Load the object.
VisitForValue(args->at(1), kAccumulator); // Load the value.
__ pop(rbx); // rax = value. ebx = object.
Label done;
// If the object is a smi, return the value.
__ JumpIfSmi(rbx, &done);
// If the object is not a value type, return the value.
__ CmpObjectType(rbx, JS_VALUE_TYPE, rcx);
__ j(not_equal, &done);
// Store the value.
__ movq(FieldOperand(rbx, JSValue::kValueOffset), rax);
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
__ movq(rdx, rax);
__ RecordWrite(rbx, JSValue::kValueOffset, rdx, rcx);
__ bind(&done);
Apply(context_, rax);
}
void FullCodeGenerator::EmitNumberToString(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and call the stub.
VisitForValue(args->at(0), kStack);
NumberToStringStub stub;
__ CallStub(&stub);
Apply(context_, rax);
}
void FullCodeGenerator::EmitStringCharFromCode(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label done;
StringCharFromCodeGenerator generator(rax, rbx);
generator.GenerateFast(masm_);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
Apply(context_, rbx);
}
void FullCodeGenerator::EmitStringCharCodeAt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kAccumulator);
Register object = rbx;
Register index = rax;
Register scratch = rcx;
Register result = rdx;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object,
index,
scratch,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result, Heap::kNanValueRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Move the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
Apply(context_, result);
}
void FullCodeGenerator::EmitStringCharAt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kAccumulator);
Register object = rbx;
Register index = rax;
Register scratch1 = rcx;
Register scratch2 = rdx;
Register result = rax;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharAtGenerator generator(object,
index,
scratch1,
scratch2,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result, Heap::kEmptyStringRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Move smi zero into the result register, which will trigger
// conversion.
__ Move(result, Smi::FromInt(0));
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
Apply(context_, result);
}
void FullCodeGenerator::EmitStringAdd(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
StringAddStub stub(NO_STRING_ADD_FLAGS);
__ CallStub(&stub);
Apply(context_, rax);
}
void FullCodeGenerator::EmitStringCompare(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
StringCompareStub stub;
__ CallStub(&stub);
Apply(context_, rax);
}
void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::SIN);
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kStack);
__ CallStub(&stub);
Apply(context_, rax);
}
void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::COS);
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kStack);
__ CallStub(&stub);
Apply(context_, rax);
}
void FullCodeGenerator::EmitMathSqrt(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the runtime function.
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kStack);
__ CallRuntime(Runtime::kMath_sqrt, 1);
Apply(context_, rax);
}
void FullCodeGenerator::EmitCallFunction(ZoneList<Expression*>* args) {
ASSERT(args->length() >= 2);
int arg_count = args->length() - 2; // For receiver and function.
VisitForValue(args->at(0), kStack); // Receiver.
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i + 1), kStack);
}
VisitForValue(args->at(arg_count + 1), kAccumulator); // Function.
// InvokeFunction requires function in rdi. Move it in there.
if (!result_register().is(rdi)) __ movq(rdi, result_register());
ParameterCount count(arg_count);
__ InvokeFunction(rdi, count, CALL_FUNCTION);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
Apply(context_, rax);
}
void FullCodeGenerator::EmitRegExpConstructResult(ZoneList<Expression*>* args) {
ASSERT(args->length() == 3);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
__ CallRuntime(Runtime::kRegExpConstructResult, 3);
Apply(context_, rax);
}
void FullCodeGenerator::EmitRegExpCloneResult(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kStack);
__ CallRuntime(Runtime::kRegExpCloneResult, 1);
Apply(context_, rax);
}
void FullCodeGenerator::EmitSwapElements(ZoneList<Expression*>* args) {
ASSERT(args->length() == 3);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
__ CallRuntime(Runtime::kSwapElements, 3);
Apply(context_, rax);
}
void FullCodeGenerator::EmitGetFromCache(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
ASSERT_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
Handle<FixedArray> jsfunction_result_caches(
Top::global_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort("Attempt to use undefined cache.");
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
Apply(context_, rax);
return;
}
VisitForValue(args->at(1), kAccumulator);
Register key = rax;
Register cache = rbx;
Register tmp = rcx;
__ movq(cache, CodeGenerator::ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(cache,
FieldOperand(cache, GlobalObject::kGlobalContextOffset));
__ movq(cache,
CodeGenerator::ContextOperand(
cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ movq(cache,
FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
Label done, not_found;
// tmp now holds finger offset as a smi.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ movq(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset));
SmiIndex index =
__ SmiToIndex(kScratchRegister, tmp, kPointerSizeLog2);
__ cmpq(key, FieldOperand(cache,
index.reg,
index.scale,
FixedArray::kHeaderSize));
__ j(not_equal, &not_found);
__ movq(rax, FieldOperand(cache,
index.reg,
index.scale,
FixedArray::kHeaderSize + kPointerSize));
__ jmp(&done);
__ bind(&not_found);
// Call runtime to perform the lookup.
__ push(cache);
__ push(key);
__ CallRuntime(Runtime::kGetFromCache, 2);
__ bind(&done);
Apply(context_, rax);
}
void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Register right = rax;
Register left = rbx;
Register tmp = rcx;
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kAccumulator);
__ pop(left);
Label done, fail, ok;
__ cmpq(left, right);
__ j(equal, &ok);
// Fail if either is a non-HeapObject.
Condition either_smi = masm()->CheckEitherSmi(left, right, tmp);
__ j(either_smi, &fail);
__ j(zero, &fail);
__ movq(tmp, FieldOperand(left, HeapObject::kMapOffset));
__ cmpb(FieldOperand(tmp, Map::kInstanceTypeOffset),
Immediate(JS_REGEXP_TYPE));
__ j(not_equal, &fail);
__ cmpq(tmp, FieldOperand(right, HeapObject::kMapOffset));
__ j(not_equal, &fail);
__ movq(tmp, FieldOperand(left, JSRegExp::kDataOffset));
__ cmpq(tmp, FieldOperand(right, JSRegExp::kDataOffset));
__ j(equal, &ok);
__ bind(&fail);
__ Move(rax, Factory::false_value());
__ jmp(&done);
__ bind(&ok);
__ Move(rax, Factory::true_value());
__ bind(&done);
Apply(context_, rax);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
Handle<String> name = expr->name();
if (name->length() > 0 && name->Get(0) == '_') {
Comment cmnt(masm_, "[ InlineRuntimeCall");
EmitInlineRuntimeCall(expr);
return;
}
Comment cmnt(masm_, "[ CallRuntime");
ZoneList<Expression*>* args = expr->arguments();
if (expr->is_jsruntime()) {
// Prepare for calling JS runtime function.
__ movq(rax, CodeGenerator::GlobalObject());
__ push(FieldOperand(rax, GlobalObject::kBuiltinsOffset));
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
if (expr->is_jsruntime()) {
// Call the JS runtime function using a call IC.
__ Move(rcx, expr->name());
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop);
__ call(ic, RelocInfo::CODE_TARGET);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
} else {
__ CallRuntime(expr->function(), arg_count);
}
Apply(context_, rax);
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* prop = expr->expression()->AsProperty();
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (prop == NULL && var == NULL) {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
Apply(context_, true);
} else if (var != NULL &&
!var->is_global() &&
var->slot() != NULL &&
var->slot()->type() != Slot::LOOKUP) {
// Result of deleting non-global, non-dynamic variables is false.
// The subexpression does not have side effects.
Apply(context_, false);
} else {
// Property or variable reference. Call the delete builtin with
// object and property name as arguments.
if (prop != NULL) {
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kStack);
} else if (var->is_global()) {
__ push(CodeGenerator::GlobalObject());
__ Push(var->name());
} else {
// Non-global variable. Call the runtime to look up the context
// where the variable was introduced.
__ push(context_register());
__ Push(var->name());
__ CallRuntime(Runtime::kLookupContext, 2);
__ push(rax);
__ Push(var->name());
}
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
Apply(context_, rax);
}
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex);
break;
case kStack:
__ PushRoot(Heap::kUndefinedValueRootIndex);
break;
}
break;
case Expression::kTestValue:
// Value is false so it's needed.
switch (location_) {
case kAccumulator:
__ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex);
break;
case kStack:
__ PushRoot(Heap::kUndefinedValueRootIndex);
break;
}
// Fall through.
case Expression::kTest:
case Expression::kValueTest:
__ jmp(false_label_);
break;
}
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
// Notice that the labels are swapped.
PrepareTest(&materialize_true, &materialize_false, &if_false, &if_true);
VisitForControl(expr->expression(), if_true, if_false);
Apply(context_, if_false, if_true); // Labels swapped.
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (proxy != NULL &&
!proxy->var()->is_this() &&
proxy->var()->is_global()) {
Comment cmnt(masm_, "Global variable");
__ Move(rcx, proxy->name());
__ movq(rax, CodeGenerator::GlobalObject());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
// Use a regular load, not a contextual load, to avoid a reference
// error.
__ Call(ic, RelocInfo::CODE_TARGET);
__ push(rax);
} else if (proxy != NULL &&
proxy->var()->slot() != NULL &&
proxy->var()->slot()->type() == Slot::LOOKUP) {
__ push(rsi);
__ Push(proxy->name());
__ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
__ push(rax);
} else {
// This expression cannot throw a reference error at the top level.
VisitForValue(expr->expression(), kStack);
}
__ CallRuntime(Runtime::kTypeof, 1);
Apply(context_, rax);
break;
}
case Token::ADD: {
Comment cmt(masm_, "[ UnaryOperation (ADD)");
VisitForValue(expr->expression(), kAccumulator);
Label no_conversion;
Condition is_smi = masm_->CheckSmi(result_register());
__ j(is_smi, &no_conversion);
__ push(result_register());
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
__ bind(&no_conversion);
Apply(context_, result_register());
break;
}
case Token::SUB: {
Comment cmt(masm_, "[ UnaryOperation (SUB)");
bool can_overwrite =
(expr->expression()->AsBinaryOperation() != NULL &&
expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
UnaryOverwriteMode overwrite =
can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
GenericUnaryOpStub stub(Token::SUB, overwrite);
// GenericUnaryOpStub expects the argument to be in the
// accumulator register rax.
VisitForValue(expr->expression(), kAccumulator);
__ CallStub(&stub);
Apply(context_, rax);
break;
}
case Token::BIT_NOT: {
Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)");
bool can_overwrite =
(expr->expression()->AsBinaryOperation() != NULL &&
expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
UnaryOverwriteMode overwrite =
can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
// GenericUnaryOpStub expects the argument to be in the
// accumulator register rax.
VisitForValue(expr->expression(), kAccumulator);
// Avoid calling the stub for Smis.
Label smi, done;
Condition is_smi = masm_->CheckSmi(result_register());
__ j(is_smi, &smi);
// Non-smi: call stub leaving result in accumulator register.
__ CallStub(&stub);
__ jmp(&done);
// Perform operation directly on Smis.
__ bind(&smi);
__ SmiNot(result_register(), result_register());
__ bind(&done);
Apply(context_, result_register());
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
Comment cmnt(masm_, "[ CountOperation");
// Invalid left-hand-sides are rewritten to have a 'throw
// ReferenceError' as the left-hand side.
if (!expr->expression()->IsValidLeftHandSide()) {
VisitForEffect(expr->expression());
return;
}
// Expression can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->expression()->AsProperty();
// In case of a property we use the uninitialized expression context
// of the key to detect a named property.
if (prop != NULL) {
assign_type =
(prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
}
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
Location saved_location = location_;
location_ = kAccumulator;
EmitVariableLoad(expr->expression()->AsVariableProxy()->var(),
Expression::kValue);
location_ = saved_location;
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && context_ != Expression::kEffect) {
__ Push(Smi::FromInt(0));
}
if (assign_type == NAMED_PROPERTY) {
VisitForValue(prop->obj(), kAccumulator);
__ push(rax); // Copy of receiver, needed for later store.
EmitNamedPropertyLoad(prop);
} else {
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kAccumulator);
__ movq(rdx, Operand(rsp, 0)); // Leave receiver on stack
__ push(rax); // Copy of key, needed for later store.
EmitKeyedPropertyLoad(prop);
}
}
// Call ToNumber only if operand is not a smi.
Label no_conversion;
Condition is_smi;
is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &no_conversion);
__ push(rax);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
__ bind(&no_conversion);
// Save result for postfix expressions.
if (expr->is_postfix()) {
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Do not save result.
break;
case Expression::kValue:
case Expression::kTest:
case Expression::kValueTest:
case Expression::kTestValue:
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(rax);
break;
case NAMED_PROPERTY:
__ movq(Operand(rsp, kPointerSize), rax);
break;
case KEYED_PROPERTY:
__ movq(Operand(rsp, 2 * kPointerSize), rax);
break;
}
break;
}
}
// Inline smi case if we are in a loop.
Label stub_call, done;
if (loop_depth() > 0) {
if (expr->op() == Token::INC) {
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
} else {
__ SmiSubConstant(rax, rax, Smi::FromInt(1));
}
__ j(overflow, &stub_call);
// We could eliminate this smi check if we split the code at
// the first smi check before calling ToNumber.
is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &done);
__ bind(&stub_call);
// Call stub. Undo operation first.
if (expr->op() == Token::INC) {
__ SmiSubConstant(rax, rax, Smi::FromInt(1));
} else {
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
}
}
// Call stub for +1/-1.
GenericBinaryOpStub stub(expr->binary_op(),
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS);
stub.GenerateCall(masm_, rax, Smi::FromInt(1));
__ bind(&done);
// Store the value returned in rax.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
// Perform the assignment as if via '='.
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN,
Expression::kEffect);
// For all contexts except kEffect: We have the result on
// top of the stack.
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
// Perform the assignment as if via '='.
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN,
context_);
}
break;
case NAMED_PROPERTY: {
__ Move(rcx, prop->key()->AsLiteral()->handle());
__ pop(rdx);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// This nop signals to the IC that there is no inlined code at the call
// site for it to patch.
__ nop();
if (expr->is_postfix()) {
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
Apply(context_, rax);
}
break;
}
case KEYED_PROPERTY: {
__ pop(rcx);
__ pop(rdx);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// This nop signals to the IC that there is no inlined code at the call
// site for it to patch.
__ nop();
if (expr->is_postfix()) {
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
Apply(context_, rax);
}
break;
}
}
}
void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
Comment cmnt(masm_, "[ BinaryOperation");
switch (expr->op()) {
case Token::COMMA:
VisitForEffect(expr->left());
Visit(expr->right());
break;
case Token::OR:
case Token::AND:
EmitLogicalOperation(expr);
break;
case Token::ADD:
case Token::SUB:
case Token::DIV:
case Token::MOD:
case Token::MUL:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SHL:
case Token::SHR:
case Token::SAR:
VisitForValue(expr->left(), kStack);
VisitForValue(expr->right(), kAccumulator);
EmitBinaryOp(expr->op(), context_);
break;
default:
UNREACHABLE();
}
}
void FullCodeGenerator::EmitNullCompare(bool strict,
Register obj,
Register null_const,
Label* if_true,
Label* if_false,
Register scratch) {
__ cmpq(obj, null_const);
if (strict) {
__ j(equal, if_true);
} else {
__ j(equal, if_true);
__ CompareRoot(obj, Heap::kUndefinedValueRootIndex);
__ j(equal, if_true);
__ JumpIfSmi(obj, if_false);
// It can be an undetectable object.
__ movq(scratch, FieldOperand(obj, HeapObject::kMapOffset));
__ testb(FieldOperand(scratch, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, if_true);
}
__ jmp(if_false);
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false);
VisitForValue(expr->left(), kStack);
switch (expr->op()) {
case Token::IN:
VisitForValue(expr->right(), kStack);
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
__ j(equal, if_true);
__ jmp(if_false);
break;
case Token::INSTANCEOF: {
VisitForValue(expr->right(), kStack);
InstanceofStub stub;
__ CallStub(&stub);
__ testq(rax, rax);
__ j(zero, if_true); // The stub returns 0 for true.
__ jmp(if_false);
break;
}
default: {
VisitForValue(expr->right(), kAccumulator);
Condition cc = no_condition;
bool strict = false;
switch (expr->op()) {
case Token::EQ_STRICT:
strict = true;
// Fall through.
case Token::EQ: {
cc = equal;
__ pop(rdx);
// If either operand is constant null we do a fast compare
// against null.
Literal* right_literal = expr->right()->AsLiteral();
Literal* left_literal = expr->left()->AsLiteral();
if (right_literal != NULL && right_literal->handle()->IsNull()) {
EmitNullCompare(strict, rdx, rax, if_true, if_false, rcx);
Apply(context_, if_true, if_false);
return;
} else if (left_literal != NULL && left_literal->handle()->IsNull()) {
EmitNullCompare(strict, rax, rdx, if_true, if_false, rcx);
Apply(context_, if_true, if_false);
return;
}
break;
}
case Token::LT:
cc = less;
__ pop(rdx);
break;
case Token::GT:
// Reverse left and right sizes to obtain ECMA-262 conversion order.
cc = less;
__ movq(rdx, result_register());
__ pop(rax);
break;
case Token::LTE:
// Reverse left and right sizes to obtain ECMA-262 conversion order.
cc = greater_equal;
__ movq(rdx, result_register());
__ pop(rax);
break;
case Token::GTE:
cc = greater_equal;
__ pop(rdx);
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
// The comparison stub expects the smi vs. smi case to be handled
// before it is called.
Label slow_case;
__ JumpIfNotBothSmi(rax, rdx, &slow_case);
__ SmiCompare(rdx, rax);
__ j(cc, if_true);
__ jmp(if_false);
__ bind(&slow_case);
CompareStub stub(cc, strict);
__ CallStub(&stub);
__ testq(rax, rax);
__ j(cc, if_true);
__ jmp(if_false);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
Apply(context_, rax);
}
Register FullCodeGenerator::result_register() { return rax; }
Register FullCodeGenerator::context_register() { return rsi; }
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
ASSERT(IsAligned(frame_offset, kPointerSize));
__ movq(Operand(rbp, frame_offset), value);
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ movq(dst, CodeGenerator::ContextOperand(rsi, context_index));
}
// ----------------------------------------------------------------------------
// Non-local control flow support.
void FullCodeGenerator::EnterFinallyBlock() {
ASSERT(!result_register().is(rdx));
ASSERT(!result_register().is(rcx));
// Cook return address on top of stack (smi encoded Code* delta)
__ movq(rdx, Operand(rsp, 0));
__ Move(rcx, masm_->CodeObject());
__ subq(rdx, rcx);
__ Integer32ToSmi(rdx, rdx);
__ movq(Operand(rsp, 0), rdx);
// Store result register while executing finally block.
__ push(result_register());
}
void FullCodeGenerator::ExitFinallyBlock() {
ASSERT(!result_register().is(rdx));
ASSERT(!result_register().is(rcx));
// Restore result register from stack.
__ pop(result_register());
// Uncook return address.
__ movq(rdx, Operand(rsp, 0));
__ SmiToInteger32(rdx, rdx);
__ Move(rcx, masm_->CodeObject());
__ addq(rdx, rcx);
__ movq(Operand(rsp, 0), rdx);
// And return.
__ ret(0);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64