| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "accessors.h" |
| #include "api.h" |
| #include "arguments.h" |
| #include "codegen.h" |
| #include "execution.h" |
| #include "ic-inl.h" |
| #include "runtime.h" |
| #include "stub-cache.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #ifdef DEBUG |
| char IC::TransitionMarkFromState(IC::State state) { |
| switch (state) { |
| case UNINITIALIZED: return '0'; |
| case PREMONOMORPHIC: return 'P'; |
| case MONOMORPHIC: return '1'; |
| case MONOMORPHIC_PROTOTYPE_FAILURE: return '^'; |
| case MEGAMORPHIC: return IsGeneric() ? 'G' : 'N'; |
| |
| // We never see the debugger states here, because the state is |
| // computed from the original code - not the patched code. Let |
| // these cases fall through to the unreachable code below. |
| case DEBUG_BREAK: break; |
| case DEBUG_PREPARE_STEP_IN: break; |
| } |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| void IC::TraceIC(const char* type, |
| Handle<Object> name, |
| State old_state, |
| Code* new_target) { |
| if (FLAG_trace_ic) { |
| State new_state = StateFrom(new_target, |
| HEAP->undefined_value(), |
| HEAP->undefined_value()); |
| PrintF("[%s in ", type); |
| StackFrameIterator it; |
| while (it.frame()->fp() != this->fp()) it.Advance(); |
| StackFrame* raw_frame = it.frame(); |
| if (raw_frame->is_internal()) { |
| Isolate* isolate = new_target->GetIsolate(); |
| Code* apply_builtin = isolate->builtins()->builtin( |
| Builtins::kFunctionApply); |
| if (raw_frame->unchecked_code() == apply_builtin) { |
| PrintF("apply from "); |
| it.Advance(); |
| raw_frame = it.frame(); |
| } |
| } |
| JavaScriptFrame::PrintTop(stdout, false, true); |
| bool new_can_grow = |
| Code::GetKeyedAccessGrowMode(new_target->extra_ic_state()) == |
| ALLOW_JSARRAY_GROWTH; |
| PrintF(" (%c->%c%s)", |
| TransitionMarkFromState(old_state), |
| TransitionMarkFromState(new_state), |
| new_can_grow ? ".GROW" : ""); |
| name->Print(); |
| PrintF("]\n"); |
| } |
| } |
| |
| #define TRACE_GENERIC_IC(type, reason) \ |
| do { \ |
| if (FLAG_trace_ic) { \ |
| PrintF("[%s patching generic stub in ", type); \ |
| JavaScriptFrame::PrintTop(stdout, false, true); \ |
| PrintF(" (%s)]\n", reason); \ |
| } \ |
| } while (false) |
| |
| #else |
| #define TRACE_GENERIC_IC(type, reason) |
| #endif // DEBUG |
| |
| #define TRACE_IC(type, name, old_state, new_target) \ |
| ASSERT((TraceIC(type, name, old_state, new_target), true)) |
| |
| IC::IC(FrameDepth depth, Isolate* isolate) : isolate_(isolate) { |
| ASSERT(isolate == Isolate::Current()); |
| // To improve the performance of the (much used) IC code, we unfold |
| // a few levels of the stack frame iteration code. This yields a |
| // ~35% speedup when running DeltaBlue with the '--nouse-ic' flag. |
| const Address entry = |
| Isolate::c_entry_fp(isolate->thread_local_top()); |
| Address* pc_address = |
| reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset); |
| Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); |
| // If there's another JavaScript frame on the stack, we need to look |
| // one frame further down the stack to find the frame pointer and |
| // the return address stack slot. |
| if (depth == EXTRA_CALL_FRAME) { |
| const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset; |
| pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset); |
| fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); |
| } |
| #ifdef DEBUG |
| StackFrameIterator it; |
| for (int i = 0; i < depth + 1; i++) it.Advance(); |
| StackFrame* frame = it.frame(); |
| ASSERT(fp == frame->fp() && pc_address == frame->pc_address()); |
| #endif |
| fp_ = fp; |
| pc_address_ = pc_address; |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| Address IC::OriginalCodeAddress() const { |
| HandleScope scope; |
| // Compute the JavaScript frame for the frame pointer of this IC |
| // structure. We need this to be able to find the function |
| // corresponding to the frame. |
| StackFrameIterator it; |
| while (it.frame()->fp() != this->fp()) it.Advance(); |
| JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame()); |
| // Find the function on the stack and both the active code for the |
| // function and the original code. |
| JSFunction* function = JSFunction::cast(frame->function()); |
| Handle<SharedFunctionInfo> shared(function->shared()); |
| Code* code = shared->code(); |
| ASSERT(Debug::HasDebugInfo(shared)); |
| Code* original_code = Debug::GetDebugInfo(shared)->original_code(); |
| ASSERT(original_code->IsCode()); |
| // Get the address of the call site in the active code. This is the |
| // place where the call to DebugBreakXXX is and where the IC |
| // normally would be. |
| Address addr = pc() - Assembler::kCallTargetAddressOffset; |
| // Return the address in the original code. This is the place where |
| // the call which has been overwritten by the DebugBreakXXX resides |
| // and the place where the inline cache system should look. |
| intptr_t delta = |
| original_code->instruction_start() - code->instruction_start(); |
| return addr + delta; |
| } |
| #endif |
| |
| |
| static bool HasNormalObjectsInPrototypeChain(Isolate* isolate, |
| LookupResult* lookup, |
| Object* receiver) { |
| Object* end = lookup->IsProperty() |
| ? lookup->holder() : Object::cast(isolate->heap()->null_value()); |
| for (Object* current = receiver; |
| current != end; |
| current = current->GetPrototype()) { |
| if (current->IsJSObject() && |
| !JSObject::cast(current)->HasFastProperties() && |
| !current->IsJSGlobalProxy() && |
| !current->IsJSGlobalObject()) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| static bool TryRemoveInvalidPrototypeDependentStub(Code* target, |
| Object* receiver, |
| Object* name) { |
| InlineCacheHolderFlag cache_holder = |
| Code::ExtractCacheHolderFromFlags(target->flags()); |
| |
| if (cache_holder == OWN_MAP && !receiver->IsJSObject()) { |
| // The stub was generated for JSObject but called for non-JSObject. |
| // IC::GetCodeCacheHolder is not applicable. |
| return false; |
| } else if (cache_holder == PROTOTYPE_MAP && |
| receiver->GetPrototype()->IsNull()) { |
| // IC::GetCodeCacheHolder is not applicable. |
| return false; |
| } |
| Map* map = IC::GetCodeCacheHolder(receiver, cache_holder)->map(); |
| |
| // Decide whether the inline cache failed because of changes to the |
| // receiver itself or changes to one of its prototypes. |
| // |
| // If there are changes to the receiver itself, the map of the |
| // receiver will have changed and the current target will not be in |
| // the receiver map's code cache. Therefore, if the current target |
| // is in the receiver map's code cache, the inline cache failed due |
| // to prototype check failure. |
| int index = map->IndexInCodeCache(name, target); |
| if (index >= 0) { |
| map->RemoveFromCodeCache(String::cast(name), target, index); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) { |
| IC::State state = target->ic_state(); |
| |
| if (state != MONOMORPHIC || !name->IsString()) return state; |
| if (receiver->IsUndefined() || receiver->IsNull()) return state; |
| |
| // For keyed load/store/call, the most likely cause of cache failure is |
| // that the key has changed. We do not distinguish between |
| // prototype and non-prototype failures for keyed access. |
| Code::Kind kind = target->kind(); |
| if (kind == Code::KEYED_LOAD_IC || |
| kind == Code::KEYED_STORE_IC || |
| kind == Code::KEYED_CALL_IC) { |
| return MONOMORPHIC; |
| } |
| |
| // Remove the target from the code cache if it became invalid |
| // because of changes in the prototype chain to avoid hitting it |
| // again. |
| // Call stubs handle this later to allow extra IC state |
| // transitions. |
| if (kind != Code::CALL_IC && |
| TryRemoveInvalidPrototypeDependentStub(target, receiver, name)) { |
| return MONOMORPHIC_PROTOTYPE_FAILURE; |
| } |
| |
| // The builtins object is special. It only changes when JavaScript |
| // builtins are loaded lazily. It is important to keep inline |
| // caches for the builtins object monomorphic. Therefore, if we get |
| // an inline cache miss for the builtins object after lazily loading |
| // JavaScript builtins, we return uninitialized as the state to |
| // force the inline cache back to monomorphic state. |
| if (receiver->IsJSBuiltinsObject()) { |
| return UNINITIALIZED; |
| } |
| |
| return MONOMORPHIC; |
| } |
| |
| |
| RelocInfo::Mode IC::ComputeMode() { |
| Address addr = address(); |
| Code* code = Code::cast(isolate()->heap()->FindCodeObject(addr)); |
| for (RelocIterator it(code, RelocInfo::kCodeTargetMask); |
| !it.done(); it.next()) { |
| RelocInfo* info = it.rinfo(); |
| if (info->pc() == addr) return info->rmode(); |
| } |
| UNREACHABLE(); |
| return RelocInfo::NONE; |
| } |
| |
| |
| Failure* IC::TypeError(const char* type, |
| Handle<Object> object, |
| Handle<Object> key) { |
| HandleScope scope(isolate()); |
| Handle<Object> args[2] = { key, object }; |
| Handle<Object> error = isolate()->factory()->NewTypeError( |
| type, HandleVector(args, 2)); |
| return isolate()->Throw(*error); |
| } |
| |
| |
| Failure* IC::ReferenceError(const char* type, Handle<String> name) { |
| HandleScope scope(isolate()); |
| Handle<Object> error = isolate()->factory()->NewReferenceError( |
| type, HandleVector(&name, 1)); |
| return isolate()->Throw(*error); |
| } |
| |
| |
| static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) { |
| bool was_uninitialized = |
| old_state == UNINITIALIZED || old_state == PREMONOMORPHIC; |
| bool is_uninitialized = |
| new_state == UNINITIALIZED || new_state == PREMONOMORPHIC; |
| return (was_uninitialized && !is_uninitialized) ? 1 : |
| (!was_uninitialized && is_uninitialized) ? -1 : 0; |
| } |
| |
| |
| void IC::PostPatching(Address address, Code* target, Code* old_target) { |
| if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) { |
| return; |
| } |
| Code* host = target->GetHeap()->isolate()-> |
| inner_pointer_to_code_cache()->GetCacheEntry(address)->code; |
| if (host->kind() != Code::FUNCTION) return; |
| |
| if (FLAG_type_info_threshold > 0 && |
| old_target->is_inline_cache_stub() && |
| target->is_inline_cache_stub()) { |
| int delta = ComputeTypeInfoCountDelta(old_target->ic_state(), |
| target->ic_state()); |
| // Not all Code objects have TypeFeedbackInfo. |
| if (delta != 0 && host->type_feedback_info()->IsTypeFeedbackInfo()) { |
| TypeFeedbackInfo* info = |
| TypeFeedbackInfo::cast(host->type_feedback_info()); |
| info->set_ic_with_type_info_count( |
| info->ic_with_type_info_count() + delta); |
| } |
| } |
| if (FLAG_watch_ic_patching) { |
| host->set_profiler_ticks(0); |
| Isolate::Current()->runtime_profiler()->NotifyICChanged(); |
| } |
| // TODO(2029): When an optimized function is patched, it would |
| // be nice to propagate the corresponding type information to its |
| // unoptimized version for the benefit of later inlining. |
| } |
| |
| |
| void IC::Clear(Address address) { |
| Code* target = GetTargetAtAddress(address); |
| |
| // Don't clear debug break inline cache as it will remove the break point. |
| if (target->ic_state() == DEBUG_BREAK) return; |
| |
| switch (target->kind()) { |
| case Code::LOAD_IC: return LoadIC::Clear(address, target); |
| case Code::KEYED_LOAD_IC: |
| return KeyedLoadIC::Clear(address, target); |
| case Code::STORE_IC: return StoreIC::Clear(address, target); |
| case Code::KEYED_STORE_IC: |
| return KeyedStoreIC::Clear(address, target); |
| case Code::CALL_IC: return CallIC::Clear(address, target); |
| case Code::KEYED_CALL_IC: return KeyedCallIC::Clear(address, target); |
| case Code::UNARY_OP_IC: |
| case Code::BINARY_OP_IC: |
| case Code::COMPARE_IC: |
| case Code::TO_BOOLEAN_IC: |
| // Clearing these is tricky and does not |
| // make any performance difference. |
| return; |
| default: UNREACHABLE(); |
| } |
| } |
| |
| |
| void CallICBase::Clear(Address address, Code* target) { |
| bool contextual = CallICBase::Contextual::decode(target->extra_ic_state()); |
| State state = target->ic_state(); |
| if (state == UNINITIALIZED) return; |
| Code* code = |
| Isolate::Current()->stub_cache()->FindCallInitialize( |
| target->arguments_count(), |
| contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET, |
| target->kind()); |
| SetTargetAtAddress(address, code); |
| } |
| |
| |
| void KeyedLoadIC::Clear(Address address, Code* target) { |
| if (target->ic_state() == UNINITIALIZED) return; |
| // Make sure to also clear the map used in inline fast cases. If we |
| // do not clear these maps, cached code can keep objects alive |
| // through the embedded maps. |
| SetTargetAtAddress(address, initialize_stub()); |
| } |
| |
| |
| void LoadIC::Clear(Address address, Code* target) { |
| if (target->ic_state() == UNINITIALIZED) return; |
| SetTargetAtAddress(address, initialize_stub()); |
| } |
| |
| |
| void StoreIC::Clear(Address address, Code* target) { |
| if (target->ic_state() == UNINITIALIZED) return; |
| SetTargetAtAddress(address, |
| (Code::GetStrictMode(target->extra_ic_state()) == kStrictMode) |
| ? initialize_stub_strict() |
| : initialize_stub()); |
| } |
| |
| |
| void KeyedStoreIC::Clear(Address address, Code* target) { |
| if (target->ic_state() == UNINITIALIZED) return; |
| SetTargetAtAddress(address, |
| (Code::GetStrictMode(target->extra_ic_state()) == kStrictMode) |
| ? initialize_stub_strict() |
| : initialize_stub()); |
| } |
| |
| |
| static bool HasInterceptorGetter(JSObject* object) { |
| return !object->GetNamedInterceptor()->getter()->IsUndefined(); |
| } |
| |
| |
| static void LookupForRead(Handle<Object> object, |
| Handle<String> name, |
| LookupResult* lookup) { |
| // Skip all the objects with named interceptors, but |
| // without actual getter. |
| while (true) { |
| object->Lookup(*name, lookup); |
| // Besides normal conditions (property not found or it's not |
| // an interceptor), bail out if lookup is not cacheable: we won't |
| // be able to IC it anyway and regular lookup should work fine. |
| if (!lookup->IsFound() |
| || (lookup->type() != INTERCEPTOR) |
| || !lookup->IsCacheable()) { |
| return; |
| } |
| |
| Handle<JSObject> holder(lookup->holder()); |
| if (HasInterceptorGetter(*holder)) { |
| return; |
| } |
| |
| holder->LocalLookupRealNamedProperty(*name, lookup); |
| if (lookup->IsProperty()) { |
| ASSERT(lookup->type() != INTERCEPTOR); |
| return; |
| } |
| |
| Handle<Object> proto(holder->GetPrototype()); |
| if (proto->IsNull()) { |
| lookup->NotFound(); |
| return; |
| } |
| |
| object = proto; |
| } |
| } |
| |
| |
| Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) { |
| Handle<Object> delegate = Execution::GetFunctionDelegate(object); |
| |
| if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) { |
| // Patch the receiver and use the delegate as the function to |
| // invoke. This is used for invoking objects as if they were functions. |
| const int argc = target()->arguments_count(); |
| StackFrameLocator locator; |
| JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); |
| int index = frame->ComputeExpressionsCount() - (argc + 1); |
| frame->SetExpression(index, *object); |
| } |
| |
| return delegate; |
| } |
| |
| |
| void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee, |
| Handle<Object> object) { |
| while (callee->IsJSFunctionProxy()) { |
| callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap()); |
| } |
| |
| if (callee->IsJSFunction()) { |
| Handle<JSFunction> function = Handle<JSFunction>::cast(callee); |
| if (!function->shared()->is_classic_mode() || function->IsBuiltin()) { |
| // Do not wrap receiver for strict mode functions or for builtins. |
| return; |
| } |
| } |
| |
| // And only wrap string, number or boolean. |
| if (object->IsString() || object->IsNumber() || object->IsBoolean()) { |
| // Change the receiver to the result of calling ToObject on it. |
| const int argc = this->target()->arguments_count(); |
| StackFrameLocator locator; |
| JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); |
| int index = frame->ComputeExpressionsCount() - (argc + 1); |
| frame->SetExpression(index, *isolate()->factory()->ToObject(object)); |
| } |
| } |
| |
| |
| MaybeObject* CallICBase::LoadFunction(State state, |
| Code::ExtraICState extra_ic_state, |
| Handle<Object> object, |
| Handle<String> name) { |
| // If the object is undefined or null it's illegal to try to get any |
| // of its properties; throw a TypeError in that case. |
| if (object->IsUndefined() || object->IsNull()) { |
| return TypeError("non_object_property_call", object, name); |
| } |
| |
| // Check if the name is trivially convertible to an index and get |
| // the element if so. |
| uint32_t index; |
| if (name->AsArrayIndex(&index)) { |
| Handle<Object> result = Object::GetElement(object, index); |
| RETURN_IF_EMPTY_HANDLE(isolate(), result); |
| if (result->IsJSFunction()) return *result; |
| |
| // Try to find a suitable function delegate for the object at hand. |
| result = TryCallAsFunction(result); |
| if (result->IsJSFunction()) return *result; |
| |
| // Otherwise, it will fail in the lookup step. |
| } |
| |
| // Lookup the property in the object. |
| LookupResult lookup(isolate()); |
| LookupForRead(object, name, &lookup); |
| |
| if (!lookup.IsProperty()) { |
| // If the object does not have the requested property, check which |
| // exception we need to throw. |
| return IsContextual(object) |
| ? ReferenceError("not_defined", name) |
| : TypeError("undefined_method", object, name); |
| } |
| |
| // Lookup is valid: Update inline cache and stub cache. |
| if (FLAG_use_ic) { |
| UpdateCaches(&lookup, state, extra_ic_state, object, name); |
| } |
| |
| // Get the property. |
| PropertyAttributes attr; |
| Handle<Object> result = |
| Object::GetProperty(object, object, &lookup, name, &attr); |
| RETURN_IF_EMPTY_HANDLE(isolate(), result); |
| |
| if (lookup.type() == INTERCEPTOR && attr == ABSENT) { |
| // If the object does not have the requested property, check which |
| // exception we need to throw. |
| return IsContextual(object) |
| ? ReferenceError("not_defined", name) |
| : TypeError("undefined_method", object, name); |
| } |
| |
| ASSERT(!result->IsTheHole()); |
| |
| // Make receiver an object if the callee requires it. Strict mode or builtin |
| // functions do not wrap the receiver, non-strict functions and objects |
| // called as functions do. |
| ReceiverToObjectIfRequired(result, object); |
| |
| if (result->IsJSFunction()) { |
| Handle<JSFunction> function = Handle<JSFunction>::cast(result); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Handle stepping into a function if step into is active. |
| Debug* debug = isolate()->debug(); |
| if (debug->StepInActive()) { |
| // Protect the result in a handle as the debugger can allocate and might |
| // cause GC. |
| debug->HandleStepIn(function, object, fp(), false); |
| } |
| #endif |
| return *function; |
| } |
| |
| // Try to find a suitable function delegate for the object at hand. |
| result = TryCallAsFunction(result); |
| if (result->IsJSFunction()) return *result; |
| |
| return TypeError("property_not_function", object, name); |
| } |
| |
| |
| bool CallICBase::TryUpdateExtraICState(LookupResult* lookup, |
| Handle<Object> object, |
| Code::ExtraICState* extra_ic_state) { |
| ASSERT(kind_ == Code::CALL_IC); |
| if (lookup->type() != CONSTANT_FUNCTION) return false; |
| JSFunction* function = lookup->GetConstantFunction(); |
| if (!function->shared()->HasBuiltinFunctionId()) return false; |
| |
| // Fetch the arguments passed to the called function. |
| const int argc = target()->arguments_count(); |
| Address entry = isolate()->c_entry_fp(isolate()->thread_local_top()); |
| Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); |
| Arguments args(argc + 1, |
| &Memory::Object_at(fp + |
| StandardFrameConstants::kCallerSPOffset + |
| argc * kPointerSize)); |
| switch (function->shared()->builtin_function_id()) { |
| case kStringCharCodeAt: |
| case kStringCharAt: |
| if (object->IsString()) { |
| String* string = String::cast(*object); |
| // Check there's the right string value or wrapper in the receiver slot. |
| ASSERT(string == args[0] || string == JSValue::cast(args[0])->value()); |
| // If we're in the default (fastest) state and the index is |
| // out of bounds, update the state to record this fact. |
| if (StringStubState::decode(*extra_ic_state) == DEFAULT_STRING_STUB && |
| argc >= 1 && args[1]->IsNumber()) { |
| double index = DoubleToInteger(args.number_at(1)); |
| if (index < 0 || index >= string->length()) { |
| *extra_ic_state = |
| StringStubState::update(*extra_ic_state, |
| STRING_INDEX_OUT_OF_BOUNDS); |
| return true; |
| } |
| } |
| } |
| break; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| |
| Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup, |
| State state, |
| Code::ExtraICState extra_state, |
| Handle<Object> object, |
| Handle<String> name) { |
| int argc = target()->arguments_count(); |
| Handle<JSObject> holder(lookup->holder()); |
| switch (lookup->type()) { |
| case FIELD: { |
| int index = lookup->GetFieldIndex(); |
| return isolate()->stub_cache()->ComputeCallField( |
| argc, kind_, extra_state, name, object, holder, index); |
| } |
| case CONSTANT_FUNCTION: { |
| // Get the constant function and compute the code stub for this |
| // call; used for rewriting to monomorphic state and making sure |
| // that the code stub is in the stub cache. |
| Handle<JSFunction> function(lookup->GetConstantFunction()); |
| return isolate()->stub_cache()->ComputeCallConstant( |
| argc, kind_, extra_state, name, object, holder, function); |
| } |
| case NORMAL: { |
| // If we return a null handle, the IC will not be patched. |
| if (!object->IsJSObject()) return Handle<Code>::null(); |
| Handle<JSObject> receiver = Handle<JSObject>::cast(object); |
| |
| if (holder->IsGlobalObject()) { |
| Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder); |
| Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup)); |
| if (!cell->value()->IsJSFunction()) return Handle<Code>::null(); |
| Handle<JSFunction> function(JSFunction::cast(cell->value())); |
| return isolate()->stub_cache()->ComputeCallGlobal( |
| argc, kind_, extra_state, name, receiver, global, cell, function); |
| } else { |
| // There is only one shared stub for calling normalized |
| // properties. It does not traverse the prototype chain, so the |
| // property must be found in the receiver for the stub to be |
| // applicable. |
| if (!holder.is_identical_to(receiver)) return Handle<Code>::null(); |
| return isolate()->stub_cache()->ComputeCallNormal( |
| argc, kind_, extra_state); |
| } |
| break; |
| } |
| case INTERCEPTOR: |
| ASSERT(HasInterceptorGetter(*holder)); |
| return isolate()->stub_cache()->ComputeCallInterceptor( |
| argc, kind_, extra_state, name, object, holder); |
| default: |
| return Handle<Code>::null(); |
| } |
| } |
| |
| |
| void CallICBase::UpdateCaches(LookupResult* lookup, |
| State state, |
| Code::ExtraICState extra_ic_state, |
| Handle<Object> object, |
| Handle<String> name) { |
| // Bail out if we didn't find a result. |
| if (!lookup->IsProperty() || !lookup->IsCacheable()) return; |
| |
| if (lookup->holder() != *object && |
| HasNormalObjectsInPrototypeChain( |
| isolate(), lookup, object->GetPrototype())) { |
| // Suppress optimization for prototype chains with slow properties objects |
| // in the middle. |
| return; |
| } |
| |
| // Compute the number of arguments. |
| int argc = target()->arguments_count(); |
| bool had_proto_failure = false; |
| Handle<Code> code; |
| if (state == UNINITIALIZED) { |
| // This is the first time we execute this inline cache. |
| // Set the target to the pre monomorphic stub to delay |
| // setting the monomorphic state. |
| code = isolate()->stub_cache()->ComputeCallPreMonomorphic( |
| argc, kind_, extra_ic_state); |
| } else if (state == MONOMORPHIC) { |
| if (kind_ == Code::CALL_IC && |
| TryUpdateExtraICState(lookup, object, &extra_ic_state)) { |
| code = ComputeMonomorphicStub(lookup, state, extra_ic_state, |
| object, name); |
| } else if (kind_ == Code::CALL_IC && |
| TryRemoveInvalidPrototypeDependentStub(target(), |
| *object, |
| *name)) { |
| had_proto_failure = true; |
| code = ComputeMonomorphicStub(lookup, state, extra_ic_state, |
| object, name); |
| } else { |
| code = isolate()->stub_cache()->ComputeCallMegamorphic( |
| argc, kind_, extra_ic_state); |
| } |
| } else { |
| code = ComputeMonomorphicStub(lookup, state, extra_ic_state, |
| object, name); |
| } |
| |
| // If there's no appropriate stub we simply avoid updating the caches. |
| if (code.is_null()) return; |
| |
| // Patch the call site depending on the state of the cache. |
| if (state == UNINITIALIZED || |
| state == PREMONOMORPHIC || |
| state == MONOMORPHIC || |
| state == MONOMORPHIC_PROTOTYPE_FAILURE) { |
| set_target(*code); |
| } else if (state == MEGAMORPHIC) { |
| // Cache code holding map should be consistent with |
| // GenerateMonomorphicCacheProbe. It is not the map which holds the stub. |
| Handle<JSObject> cache_object = object->IsJSObject() |
| ? Handle<JSObject>::cast(object) |
| : Handle<JSObject>(JSObject::cast(object->GetPrototype())); |
| // Update the stub cache. |
| isolate()->stub_cache()->Set(*name, cache_object->map(), *code); |
| } |
| |
| if (had_proto_failure) state = MONOMORPHIC_PROTOTYPE_FAILURE; |
| TRACE_IC(kind_ == Code::CALL_IC ? "CallIC" : "KeyedCallIC", |
| name, state, target()); |
| } |
| |
| |
| MaybeObject* KeyedCallIC::LoadFunction(State state, |
| Handle<Object> object, |
| Handle<Object> key) { |
| if (key->IsSymbol()) { |
| return CallICBase::LoadFunction(state, |
| Code::kNoExtraICState, |
| object, |
| Handle<String>::cast(key)); |
| } |
| |
| if (object->IsUndefined() || object->IsNull()) { |
| return TypeError("non_object_property_call", object, key); |
| } |
| |
| if (FLAG_use_ic && state != MEGAMORPHIC && object->IsHeapObject()) { |
| int argc = target()->arguments_count(); |
| Handle<Map> map = |
| isolate()->factory()->non_strict_arguments_elements_map(); |
| if (object->IsJSObject() && |
| Handle<JSObject>::cast(object)->elements()->map() == *map) { |
| Handle<Code> code = isolate()->stub_cache()->ComputeCallArguments( |
| argc, Code::KEYED_CALL_IC); |
| set_target(*code); |
| TRACE_IC("KeyedCallIC", key, state, target()); |
| } else if (!object->IsAccessCheckNeeded()) { |
| Handle<Code> code = isolate()->stub_cache()->ComputeCallMegamorphic( |
| argc, Code::KEYED_CALL_IC, Code::kNoExtraICState); |
| set_target(*code); |
| TRACE_IC("KeyedCallIC", key, state, target()); |
| } |
| } |
| |
| Handle<Object> result = GetProperty(object, key); |
| RETURN_IF_EMPTY_HANDLE(isolate(), result); |
| |
| // Make receiver an object if the callee requires it. Strict mode or builtin |
| // functions do not wrap the receiver, non-strict functions and objects |
| // called as functions do. |
| ReceiverToObjectIfRequired(result, object); |
| if (result->IsJSFunction()) return *result; |
| |
| result = TryCallAsFunction(result); |
| if (result->IsJSFunction()) return *result; |
| |
| return TypeError("property_not_function", object, key); |
| } |
| |
| |
| MaybeObject* LoadIC::Load(State state, |
| Handle<Object> object, |
| Handle<String> name) { |
| // If the object is undefined or null it's illegal to try to get any |
| // of its properties; throw a TypeError in that case. |
| if (object->IsUndefined() || object->IsNull()) { |
| return TypeError("non_object_property_load", object, name); |
| } |
| |
| if (FLAG_use_ic) { |
| // Use specialized code for getting the length of strings and |
| // string wrapper objects. The length property of string wrapper |
| // objects is read-only and therefore always returns the length of |
| // the underlying string value. See ECMA-262 15.5.5.1. |
| if ((object->IsString() || object->IsStringWrapper()) && |
| name->Equals(isolate()->heap()->length_symbol())) { |
| Handle<Code> stub; |
| if (state == UNINITIALIZED) { |
| stub = pre_monomorphic_stub(); |
| } else if (state == PREMONOMORPHIC) { |
| stub = object->IsString() |
| ? isolate()->builtins()->LoadIC_StringLength() |
| : isolate()->builtins()->LoadIC_StringWrapperLength(); |
| } else if (state == MONOMORPHIC && object->IsStringWrapper()) { |
| stub = isolate()->builtins()->LoadIC_StringWrapperLength(); |
| } else if (state != MEGAMORPHIC) { |
| stub = megamorphic_stub(); |
| } |
| if (!stub.is_null()) { |
| set_target(*stub); |
| #ifdef DEBUG |
| if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n"); |
| #endif |
| } |
| // Get the string if we have a string wrapper object. |
| Handle<Object> string = object->IsJSValue() |
| ? Handle<Object>(Handle<JSValue>::cast(object)->value()) |
| : object; |
| return Smi::FromInt(String::cast(*string)->length()); |
| } |
| |
| // Use specialized code for getting the length of arrays. |
| if (object->IsJSArray() && |
| name->Equals(isolate()->heap()->length_symbol())) { |
| Handle<Code> stub; |
| if (state == UNINITIALIZED) { |
| stub = pre_monomorphic_stub(); |
| } else if (state == PREMONOMORPHIC) { |
| stub = isolate()->builtins()->LoadIC_ArrayLength(); |
| } else if (state != MEGAMORPHIC) { |
| stub = megamorphic_stub(); |
| } |
| if (!stub.is_null()) { |
| set_target(*stub); |
| #ifdef DEBUG |
| if (FLAG_trace_ic) PrintF("[LoadIC : +#length /array]\n"); |
| #endif |
| } |
| return JSArray::cast(*object)->length(); |
| } |
| |
| // Use specialized code for getting prototype of functions. |
| if (object->IsJSFunction() && |
| name->Equals(isolate()->heap()->prototype_symbol()) && |
| Handle<JSFunction>::cast(object)->should_have_prototype()) { |
| Handle<Code> stub; |
| if (state == UNINITIALIZED) { |
| stub = pre_monomorphic_stub(); |
| } else if (state == PREMONOMORPHIC) { |
| stub = isolate()->builtins()->LoadIC_FunctionPrototype(); |
| } else if (state != MEGAMORPHIC) { |
| stub = megamorphic_stub(); |
| } |
| if (!stub.is_null()) { |
| set_target(*stub); |
| #ifdef DEBUG |
| if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n"); |
| #endif |
| } |
| return Accessors::FunctionGetPrototype(*object, 0); |
| } |
| } |
| |
| // Check if the name is trivially convertible to an index and get |
| // the element if so. |
| uint32_t index; |
| if (name->AsArrayIndex(&index)) return object->GetElement(index); |
| |
| // Named lookup in the object. |
| LookupResult lookup(isolate()); |
| LookupForRead(object, name, &lookup); |
| |
| // If we did not find a property, check if we need to throw an exception. |
| if (!lookup.IsProperty()) { |
| if (IsContextual(object)) { |
| return ReferenceError("not_defined", name); |
| } |
| LOG(isolate(), SuspectReadEvent(*name, *object)); |
| } |
| |
| // Update inline cache and stub cache. |
| if (FLAG_use_ic) { |
| UpdateCaches(&lookup, state, object, name); |
| } |
| |
| PropertyAttributes attr; |
| if (lookup.IsFound() && |
| (lookup.type() == INTERCEPTOR || lookup.type() == HANDLER)) { |
| // Get the property. |
| Handle<Object> result = |
| Object::GetProperty(object, object, &lookup, name, &attr); |
| RETURN_IF_EMPTY_HANDLE(isolate(), result); |
| // If the property is not present, check if we need to throw an |
| // exception. |
| if (attr == ABSENT && IsContextual(object)) { |
| return ReferenceError("not_defined", name); |
| } |
| return *result; |
| } |
| |
| // Get the property. |
| return object->GetProperty(*object, &lookup, *name, &attr); |
| } |
| |
| |
| void LoadIC::UpdateCaches(LookupResult* lookup, |
| State state, |
| Handle<Object> object, |
| Handle<String> name) { |
| // Bail out if the result is not cacheable. |
| if (!lookup->IsCacheable()) return; |
| |
| // Loading properties from values is not common, so don't try to |
| // deal with non-JS objects here. |
| if (!object->IsJSObject()) return; |
| Handle<JSObject> receiver = Handle<JSObject>::cast(object); |
| |
| if (HasNormalObjectsInPrototypeChain(isolate(), lookup, *object)) return; |
| |
| // Compute the code stub for this load. |
| Handle<Code> code; |
| if (state == UNINITIALIZED) { |
| // This is the first time we execute this inline cache. |
| // Set the target to the pre monomorphic stub to delay |
| // setting the monomorphic state. |
| code = pre_monomorphic_stub(); |
| } else if (!lookup->IsProperty()) { |
| // Nonexistent property. The result is undefined. |
| code = isolate()->stub_cache()->ComputeLoadNonexistent(name, receiver); |
| } else { |
| // Compute monomorphic stub. |
| Handle<JSObject> holder(lookup->holder()); |
| switch (lookup->type()) { |
| case FIELD: |
| code = isolate()->stub_cache()->ComputeLoadField( |
| name, receiver, holder, lookup->GetFieldIndex()); |
| break; |
| case CONSTANT_FUNCTION: { |
| Handle<JSFunction> constant(lookup->GetConstantFunction()); |
| code = isolate()->stub_cache()->ComputeLoadConstant( |
| name, receiver, holder, constant); |
| break; |
| } |
| case NORMAL: |
| if (holder->IsGlobalObject()) { |
| Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder); |
| Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup)); |
| code = isolate()->stub_cache()->ComputeLoadGlobal( |
| name, receiver, global, cell, lookup->IsDontDelete()); |
| } else { |
| // There is only one shared stub for loading normalized |
| // properties. It does not traverse the prototype chain, so the |
| // property must be found in the receiver for the stub to be |
| // applicable. |
| if (!holder.is_identical_to(receiver)) return; |
| code = isolate()->stub_cache()->ComputeLoadNormal(); |
| } |
| break; |
| case CALLBACKS: { |
| Handle<Object> callback_object(lookup->GetCallbackObject()); |
| if (!callback_object->IsAccessorInfo()) return; |
| Handle<AccessorInfo> callback = |
| Handle<AccessorInfo>::cast(callback_object); |
| if (v8::ToCData<Address>(callback->getter()) == 0) return; |
| code = isolate()->stub_cache()->ComputeLoadCallback( |
| name, receiver, holder, callback); |
| break; |
| } |
| case INTERCEPTOR: |
| ASSERT(HasInterceptorGetter(*holder)); |
| code = isolate()->stub_cache()->ComputeLoadInterceptor( |
| name, receiver, holder); |
| break; |
| default: |
| return; |
| } |
| } |
| |
| // Patch the call site depending on the state of the cache. |
| if (state == UNINITIALIZED || |
| state == PREMONOMORPHIC || |
| state == MONOMORPHIC_PROTOTYPE_FAILURE) { |
| set_target(*code); |
| } else if (state == MONOMORPHIC) { |
| // We are transitioning from monomorphic to megamorphic case. |
| // Place the current monomorphic stub and stub compiled for |
| // the receiver into stub cache. |
| Map* map = target()->FindFirstMap(); |
| if (map != NULL) { |
| isolate()->stub_cache()->Set(*name, map, target()); |
| } |
| isolate()->stub_cache()->Set(*name, receiver->map(), *code); |
| |
| set_target(*megamorphic_stub()); |
| } else if (state == MEGAMORPHIC) { |
| // Cache code holding map should be consistent with |
| // GenerateMonomorphicCacheProbe. |
| isolate()->stub_cache()->Set(*name, receiver->map(), *code); |
| } |
| |
| TRACE_IC("LoadIC", name, state, target()); |
| } |
| |
| |
| Handle<Code> KeyedLoadIC::GetElementStubWithoutMapCheck( |
| bool is_js_array, |
| ElementsKind elements_kind, |
| KeyedAccessGrowMode grow_mode) { |
| ASSERT(grow_mode == DO_NOT_ALLOW_JSARRAY_GROWTH); |
| return KeyedLoadElementStub(elements_kind).GetCode(); |
| } |
| |
| |
| Handle<Code> KeyedLoadIC::ComputePolymorphicStub( |
| MapHandleList* receiver_maps, |
| StrictModeFlag strict_mode, |
| KeyedAccessGrowMode growth_mode) { |
| CodeHandleList handler_ics(receiver_maps->length()); |
| for (int i = 0; i < receiver_maps->length(); ++i) { |
| Handle<Map> receiver_map = receiver_maps->at(i); |
| Handle<Code> cached_stub = ComputeMonomorphicStubWithoutMapCheck( |
| receiver_map, strict_mode, growth_mode); |
| handler_ics.Add(cached_stub); |
| } |
| KeyedLoadStubCompiler compiler(isolate()); |
| Handle<Code> code = compiler.CompileLoadPolymorphic( |
| receiver_maps, &handler_ics); |
| isolate()->counters()->keyed_load_polymorphic_stubs()->Increment(); |
| PROFILE(isolate(), |
| CodeCreateEvent(Logger::KEYED_LOAD_MEGAMORPHIC_IC_TAG, *code, 0)); |
| return code; |
| } |
| |
| |
| MaybeObject* KeyedLoadIC::Load(State state, |
| Handle<Object> object, |
| Handle<Object> key, |
| bool force_generic_stub) { |
| // Check for values that can be converted into a symbol. |
| // TODO(1295): Remove this code. |
| if (key->IsHeapNumber() && |
| isnan(Handle<HeapNumber>::cast(key)->value())) { |
| key = isolate()->factory()->nan_symbol(); |
| } else if (key->IsUndefined()) { |
| key = isolate()->factory()->undefined_symbol(); |
| } |
| |
| if (key->IsSymbol()) { |
| Handle<String> name = Handle<String>::cast(key); |
| |
| // If the object is undefined or null it's illegal to try to get any |
| // of its properties; throw a TypeError in that case. |
| if (object->IsUndefined() || object->IsNull()) { |
| return TypeError("non_object_property_load", object, name); |
| } |
| |
| if (FLAG_use_ic) { |
| // TODO(1073): don't ignore the current stub state. |
| |
| // Use specialized code for getting the length of strings. |
| if (object->IsString() && |
| name->Equals(isolate()->heap()->length_symbol())) { |
| Handle<String> string = Handle<String>::cast(object); |
| Handle<Code> code = |
| isolate()->stub_cache()->ComputeKeyedLoadStringLength(name, string); |
| ASSERT(!code.is_null()); |
| set_target(*code); |
| TRACE_IC("KeyedLoadIC", name, state, target()); |
| return Smi::FromInt(string->length()); |
| } |
| |
| // Use specialized code for getting the length of arrays. |
| if (object->IsJSArray() && |
| name->Equals(isolate()->heap()->length_symbol())) { |
| Handle<JSArray> array = Handle<JSArray>::cast(object); |
| Handle<Code> code = |
| isolate()->stub_cache()->ComputeKeyedLoadArrayLength(name, array); |
| ASSERT(!code.is_null()); |
| set_target(*code); |
| TRACE_IC("KeyedLoadIC", name, state, target()); |
| return array->length(); |
| } |
| |
| // Use specialized code for getting prototype of functions. |
| if (object->IsJSFunction() && |
| name->Equals(isolate()->heap()->prototype_symbol()) && |
| Handle<JSFunction>::cast(object)->should_have_prototype()) { |
| Handle<JSFunction> function = Handle<JSFunction>::cast(object); |
| Handle<Code> code = |
| isolate()->stub_cache()->ComputeKeyedLoadFunctionPrototype( |
| name, function); |
| ASSERT(!code.is_null()); |
| set_target(*code); |
| TRACE_IC("KeyedLoadIC", name, state, target()); |
| return Accessors::FunctionGetPrototype(*object, 0); |
| } |
| } |
| |
| // Check if the name is trivially convertible to an index and get |
| // the element or char if so. |
| uint32_t index = 0; |
| if (name->AsArrayIndex(&index)) { |
| // Rewrite to the generic keyed load stub. |
| if (FLAG_use_ic) set_target(*generic_stub()); |
| return Runtime::GetElementOrCharAt(isolate(), object, index); |
| } |
| |
| // Named lookup. |
| LookupResult lookup(isolate()); |
| LookupForRead(object, name, &lookup); |
| |
| // If we did not find a property, check if we need to throw an exception. |
| if (!lookup.IsProperty() && IsContextual(object)) { |
| return ReferenceError("not_defined", name); |
| } |
| |
| if (FLAG_use_ic) { |
| UpdateCaches(&lookup, state, object, name); |
| } |
| |
| PropertyAttributes attr; |
| if (lookup.IsFound() && lookup.type() == INTERCEPTOR) { |
| // Get the property. |
| Handle<Object> result = |
| Object::GetProperty(object, object, &lookup, name, &attr); |
| RETURN_IF_EMPTY_HANDLE(isolate(), result); |
| // If the property is not present, check if we need to throw an |
| // exception. |
| if (attr == ABSENT && IsContextual(object)) { |
| return ReferenceError("not_defined", name); |
| } |
| return *result; |
| } |
| |
| return object->GetProperty(*object, &lookup, *name, &attr); |
| } |
| |
| // Do not use ICs for objects that require access checks (including |
| // the global object). |
| bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded(); |
| |
| if (use_ic) { |
| Handle<Code> stub = generic_stub(); |
| if (!force_generic_stub) { |
| if (object->IsString() && key->IsNumber()) { |
| if (state == UNINITIALIZED) { |
| stub = string_stub(); |
| } |
| } else if (object->IsJSObject()) { |
| Handle<JSObject> receiver = Handle<JSObject>::cast(object); |
| if (receiver->elements()->map() == |
| isolate()->heap()->non_strict_arguments_elements_map()) { |
| stub = non_strict_arguments_stub(); |
| } else if (receiver->HasIndexedInterceptor()) { |
| stub = indexed_interceptor_stub(); |
| } else if (key->IsSmi() && (target() != *non_strict_arguments_stub())) { |
| stub = ComputeStub(receiver, LOAD, kNonStrictMode, stub); |
| } |
| } |
| } else { |
| TRACE_GENERIC_IC("KeyedLoadIC", "force generic"); |
| } |
| if (!stub.is_null()) set_target(*stub); |
| } |
| |
| TRACE_IC("KeyedLoadIC", key, state, target()); |
| |
| // Get the property. |
| return Runtime::GetObjectProperty(isolate(), object, key); |
| } |
| |
| |
| void KeyedLoadIC::UpdateCaches(LookupResult* lookup, |
| State state, |
| Handle<Object> object, |
| Handle<String> name) { |
| // Bail out if we didn't find a result. |
| if (!lookup->IsProperty() || !lookup->IsCacheable()) return; |
| |
| if (!object->IsJSObject()) return; |
| Handle<JSObject> receiver = Handle<JSObject>::cast(object); |
| |
| if (HasNormalObjectsInPrototypeChain(isolate(), lookup, *object)) return; |
| |
| // Compute the code stub for this load. |
| Handle<Code> code; |
| |
| if (state == UNINITIALIZED) { |
| // This is the first time we execute this inline cache. |
| // Set the target to the pre monomorphic stub to delay |
| // setting the monomorphic state. |
| code = pre_monomorphic_stub(); |
| } else { |
| // Compute a monomorphic stub. |
| Handle<JSObject> holder(lookup->holder()); |
| switch (lookup->type()) { |
| case FIELD: |
| code = isolate()->stub_cache()->ComputeKeyedLoadField( |
| name, receiver, holder, lookup->GetFieldIndex()); |
| break; |
| case CONSTANT_FUNCTION: { |
| Handle<JSFunction> constant(lookup->GetConstantFunction()); |
| code = isolate()->stub_cache()->ComputeKeyedLoadConstant( |
| name, receiver, holder, constant); |
| break; |
| } |
| case CALLBACKS: { |
| Handle<Object> callback_object(lookup->GetCallbackObject()); |
| if (!callback_object->IsAccessorInfo()) return; |
| Handle<AccessorInfo> callback = |
| Handle<AccessorInfo>::cast(callback_object); |
| if (v8::ToCData<Address>(callback->getter()) == 0) return; |
| code = isolate()->stub_cache()->ComputeKeyedLoadCallback( |
| name, receiver, holder, callback); |
| break; |
| } |
| case INTERCEPTOR: |
| ASSERT(HasInterceptorGetter(lookup->holder())); |
| code = isolate()->stub_cache()->ComputeKeyedLoadInterceptor( |
| name, receiver, holder); |
| break; |
| default: |
| // Always rewrite to the generic case so that we do not |
| // repeatedly try to rewrite. |
| code = generic_stub(); |
| break; |
| } |
| } |
| |
| // Patch the call site depending on the state of the cache. Make |
| // sure to always rewrite from monomorphic to megamorphic. |
| ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE); |
| if (state == UNINITIALIZED || state == PREMONOMORPHIC) { |
| set_target(*code); |
| } else if (state == MONOMORPHIC) { |
| set_target(*megamorphic_stub()); |
| } |
| |
| TRACE_IC("KeyedLoadIC", name, state, target()); |
| } |
| |
| |
| static bool StoreICableLookup(LookupResult* lookup) { |
| // Bail out if we didn't find a result. |
| if (!lookup->IsFound() || lookup->type() == NULL_DESCRIPTOR) return false; |
| |
| // Bail out if inline caching is not allowed. |
| if (!lookup->IsCacheable()) return false; |
| |
| // If the property is read-only, we leave the IC in its current state. |
| if (lookup->IsReadOnly()) return false; |
| |
| return true; |
| } |
| |
| |
| static bool LookupForWrite(Handle<JSObject> receiver, |
| Handle<String> name, |
| LookupResult* lookup) { |
| receiver->LocalLookup(*name, lookup); |
| if (!StoreICableLookup(lookup)) { |
| return false; |
| } |
| |
| if (lookup->type() == INTERCEPTOR && |
| receiver->GetNamedInterceptor()->setter()->IsUndefined()) { |
| receiver->LocalLookupRealNamedProperty(*name, lookup); |
| return StoreICableLookup(lookup); |
| } |
| |
| return true; |
| } |
| |
| |
| MaybeObject* StoreIC::Store(State state, |
| StrictModeFlag strict_mode, |
| Handle<Object> object, |
| Handle<String> name, |
| Handle<Object> value) { |
| if (!object->IsJSObject()) { |
| // Handle proxies. |
| if (object->IsJSProxy()) { |
| return JSProxy::cast(*object)-> |
| SetProperty(*name, *value, NONE, strict_mode); |
| } |
| |
| // If the object is undefined or null it's illegal to try to set any |
| // properties on it; throw a TypeError in that case. |
| if (object->IsUndefined() || object->IsNull()) { |
| return TypeError("non_object_property_store", object, name); |
| } |
| |
| // The length property of string values is read-only. Throw in strict mode. |
| if (strict_mode == kStrictMode && object->IsString() && |
| name->Equals(isolate()->heap()->length_symbol())) { |
| return TypeError("strict_read_only_property", object, name); |
| } |
| // Ignore other stores where the receiver is not a JSObject. |
| // TODO(1475): Must check prototype chains of object wrappers. |
| return *value; |
| } |
| |
| Handle<JSObject> receiver = Handle<JSObject>::cast(object); |
| |
| // Check if the given name is an array index. |
| uint32_t index; |
| if (name->AsArrayIndex(&index)) { |
| Handle<Object> result = |
| JSObject::SetElement(receiver, index, value, NONE, strict_mode); |
| RETURN_IF_EMPTY_HANDLE(isolate(), result); |
| return *value; |
| } |
| |
| // Use specialized code for setting the length of arrays with fast |
| // properties. Slow properties might indicate redefinition of the |
| // length property. |
| if (receiver->IsJSArray() && |
| name->Equals(isolate()->heap()->length_symbol()) && |
| Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() && |
| receiver->HasFastProperties()) { |
| #ifdef DEBUG |
| if (FLAG_trace_ic) PrintF("[StoreIC : +#length /array]\n"); |
| #endif |
| Handle<Code> stub = (strict_mode == kStrictMode) |
| ? isolate()->builtins()->StoreIC_ArrayLength_Strict() |
| : isolate()->builtins()->StoreIC_ArrayLength(); |
| set_target(*stub); |
| return receiver->SetProperty(*name, *value, NONE, strict_mode); |
| } |
| |
| // Lookup the property locally in the receiver. |
| if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) { |
| LookupResult lookup(isolate()); |
| |
| if (LookupForWrite(receiver, name, &lookup)) { |
| // Generate a stub for this store. |
| UpdateCaches(&lookup, state, strict_mode, receiver, name, value); |
| } else { |
| // Strict mode doesn't allow setting non-existent global property |
| // or an assignment to a read only property. |
| if (strict_mode == kStrictMode) { |
| if (lookup.IsProperty() && lookup.IsReadOnly()) { |
| return TypeError("strict_read_only_property", object, name); |
| } else if (IsContextual(object)) { |
| return ReferenceError("not_defined", name); |
| } |
| } |
| } |
| } |
| |
| if (receiver->IsJSGlobalProxy()) { |
| // TODO(ulan): find out why we patch this site even with --no-use-ic |
| // Generate a generic stub that goes to the runtime when we see a global |
| // proxy as receiver. |
| Handle<Code> stub = (strict_mode == kStrictMode) |
| ? global_proxy_stub_strict() |
| : global_proxy_stub(); |
| if (target() != *stub) { |
| set_target(*stub); |
| TRACE_IC("StoreIC", name, state, target()); |
| } |
| } |
| |
| // Set the property. |
| return receiver->SetProperty(*name, *value, NONE, strict_mode); |
| } |
| |
| |
| void StoreIC::UpdateCaches(LookupResult* lookup, |
| State state, |
| StrictModeFlag strict_mode, |
| Handle<JSObject> receiver, |
| Handle<String> name, |
| Handle<Object> value) { |
| ASSERT(!receiver->IsJSGlobalProxy()); |
| ASSERT(StoreICableLookup(lookup)); |
| // These are not cacheable, so we never see such LookupResults here. |
| ASSERT(lookup->type() != HANDLER); |
| // We get only called for properties or transitions, see StoreICableLookup. |
| ASSERT(lookup->type() != NULL_DESCRIPTOR); |
| |
| // If the property has a non-field type allowing map transitions |
| // where there is extra room in the object, we leave the IC in its |
| // current state. |
| PropertyType type = lookup->type(); |
| |
| // Compute the code stub for this store; used for rewriting to |
| // monomorphic state and making sure that the code stub is in the |
| // stub cache. |
| Handle<Code> code; |
| switch (type) { |
| case FIELD: |
| code = isolate()->stub_cache()->ComputeStoreField(name, |
| receiver, |
| lookup->GetFieldIndex(), |
| Handle<Map>::null(), |
| strict_mode); |
| break; |
| case MAP_TRANSITION: { |
| if (lookup->GetAttributes() != NONE) return; |
| Handle<Map> transition(lookup->GetTransitionMap()); |
| int index = transition->PropertyIndexFor(*name); |
| code = isolate()->stub_cache()->ComputeStoreField( |
| name, receiver, index, transition, strict_mode); |
| break; |
| } |
| case NORMAL: |
| if (receiver->IsGlobalObject()) { |
| // The stub generated for the global object picks the value directly |
| // from the property cell. So the property must be directly on the |
| // global object. |
| Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver); |
| Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup)); |
| code = isolate()->stub_cache()->ComputeStoreGlobal( |
| name, global, cell, strict_mode); |
| } else { |
| if (lookup->holder() != *receiver) return; |
| code = isolate()->stub_cache()->ComputeStoreNormal(strict_mode); |
| } |
| break; |
| case CALLBACKS: { |
| Handle<Object> callback_object(lookup->GetCallbackObject()); |
| if (!callback_object->IsAccessorInfo()) return; |
| Handle<AccessorInfo> callback = |
| Handle<AccessorInfo>::cast(callback_object); |
| if (v8::ToCData<Address>(callback->setter()) == 0) return; |
| code = isolate()->stub_cache()->ComputeStoreCallback( |
| name, receiver, callback, strict_mode); |
| break; |
| } |
| case INTERCEPTOR: |
| ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined()); |
| code = isolate()->stub_cache()->ComputeStoreInterceptor( |
| name, receiver, strict_mode); |
| break; |
| case CONSTANT_FUNCTION: |
| case CONSTANT_TRANSITION: |
| case ELEMENTS_TRANSITION: |
| return; |
| case HANDLER: |
| case NULL_DESCRIPTOR: |
| UNREACHABLE(); |
| return; |
| } |
| |
| // Patch the call site depending on the state of the cache. |
| if (state == UNINITIALIZED || state == MONOMORPHIC_PROTOTYPE_FAILURE) { |
| set_target(*code); |
| } else if (state == MONOMORPHIC) { |
| // Only move to megamorphic if the target changes. |
| if (target() != *code) { |
| set_target((strict_mode == kStrictMode) |
| ? megamorphic_stub_strict() |
| : megamorphic_stub()); |
| } |
| } else if (state == MEGAMORPHIC) { |
| // Update the stub cache. |
| isolate()->stub_cache()->Set(*name, receiver->map(), *code); |
| } |
| |
| TRACE_IC("StoreIC", name, state, target()); |
| } |
| |
| |
| static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps, |
| Handle<Map> new_receiver_map) { |
| ASSERT(!new_receiver_map.is_null()); |
| for (int current = 0; current < receiver_maps->length(); ++current) { |
| if (!receiver_maps->at(current).is_null() && |
| receiver_maps->at(current).is_identical_to(new_receiver_map)) { |
| return false; |
| } |
| } |
| receiver_maps->Add(new_receiver_map); |
| return true; |
| } |
| |
| |
| void KeyedIC::GetReceiverMapsForStub(Handle<Code> stub, |
| MapHandleList* result) { |
| ASSERT(stub->is_inline_cache_stub()); |
| if (!string_stub().is_null() && stub.is_identical_to(string_stub())) { |
| return result->Add(isolate()->factory()->string_map()); |
| } else if (stub->is_keyed_load_stub() || stub->is_keyed_store_stub()) { |
| if (stub->ic_state() == MONOMORPHIC) { |
| result->Add(Handle<Map>(stub->FindFirstMap())); |
| } else { |
| ASSERT(stub->ic_state() == MEGAMORPHIC); |
| AssertNoAllocation no_allocation; |
| int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); |
| for (RelocIterator it(*stub, mask); !it.done(); it.next()) { |
| RelocInfo* info = it.rinfo(); |
| Handle<Object> object(info->target_object()); |
| ASSERT(object->IsMap()); |
| AddOneReceiverMapIfMissing(result, Handle<Map>::cast(object)); |
| } |
| } |
| } |
| } |
| |
| |
| Handle<Code> KeyedIC::ComputeStub(Handle<JSObject> receiver, |
| StubKind stub_kind, |
| StrictModeFlag strict_mode, |
| Handle<Code> generic_stub) { |
| State ic_state = target()->ic_state(); |
| KeyedAccessGrowMode grow_mode = IsGrowStubKind(stub_kind) |
| ? ALLOW_JSARRAY_GROWTH |
| : DO_NOT_ALLOW_JSARRAY_GROWTH; |
| |
| // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS |
| // via megamorphic stubs, since they don't have a map in their relocation info |
| // and so the stubs can't be harvested for the object needed for a map check. |
| if (target()->type() != NORMAL) { |
| TRACE_GENERIC_IC("KeyedIC", "non-NORMAL target type"); |
| return generic_stub; |
| } |
| |
| bool monomorphic = false; |
| MapHandleList target_receiver_maps; |
| if (ic_state != UNINITIALIZED && ic_state != PREMONOMORPHIC) { |
| GetReceiverMapsForStub(Handle<Code>(target()), &target_receiver_maps); |
| } |
| if (!IsTransitionStubKind(stub_kind)) { |
| if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) { |
| monomorphic = true; |
| } else { |
| if (ic_state == MONOMORPHIC) { |
| // The first time a receiver is seen that is a transitioned version of |
| // the previous monomorphic receiver type, assume the new ElementsKind |
| // is the monomorphic type. This benefits global arrays that only |
| // transition once, and all call sites accessing them are faster if they |
| // remain monomorphic. If this optimistic assumption is not true, the IC |
| // will miss again and it will become polymorphic and support both the |
| // untransitioned and transitioned maps. |
| monomorphic = IsMoreGeneralElementsKindTransition( |
| target_receiver_maps.at(0)->elements_kind(), |
| receiver->GetElementsKind()); |
| } |
| } |
| } |
| |
| if (monomorphic) { |
| return ComputeMonomorphicStub( |
| receiver, stub_kind, strict_mode, generic_stub); |
| } |
| ASSERT(target() != *generic_stub); |
| |
| // Determine the list of receiver maps that this call site has seen, |
| // adding the map that was just encountered. |
| Handle<Map> receiver_map(receiver->map()); |
| bool map_added = |
| AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map); |
| if (IsTransitionStubKind(stub_kind)) { |
| Handle<Map> new_map = ComputeTransitionedMap(receiver, stub_kind); |
| map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, new_map); |
| } |
| if (!map_added) { |
| // If the miss wasn't due to an unseen map, a polymorphic stub |
| // won't help, use the generic stub. |
| TRACE_GENERIC_IC("KeyedIC", "same map added twice"); |
| return generic_stub; |
| } |
| |
| // If the maximum number of receiver maps has been exceeded, use the generic |
| // version of the IC. |
| if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { |
| TRACE_GENERIC_IC("KeyedIC", "max polymorph exceeded"); |
| return generic_stub; |
| } |
| |
| if ((Code::GetKeyedAccessGrowMode(target()->extra_ic_state()) == |
| ALLOW_JSARRAY_GROWTH)) { |
| grow_mode = ALLOW_JSARRAY_GROWTH; |
| } |
| |
| Handle<PolymorphicCodeCache> cache = |
| isolate()->factory()->polymorphic_code_cache(); |
| Code::ExtraICState extra_state = Code::ComputeExtraICState(grow_mode, |
| strict_mode); |
| Code::Flags flags = Code::ComputeFlags(kind(), MEGAMORPHIC, extra_state); |
| Handle<Object> probe = cache->Lookup(&target_receiver_maps, flags); |
| if (probe->IsCode()) return Handle<Code>::cast(probe); |
| |
| Handle<Code> stub = |
| ComputePolymorphicStub(&target_receiver_maps, strict_mode, grow_mode); |
| PolymorphicCodeCache::Update(cache, &target_receiver_maps, flags, stub); |
| return stub; |
| } |
| |
| |
| Handle<Code> KeyedIC::ComputeMonomorphicStubWithoutMapCheck( |
| Handle<Map> receiver_map, |
| StrictModeFlag strict_mode, |
| KeyedAccessGrowMode grow_mode) { |
| if ((receiver_map->instance_type() & kNotStringTag) == 0) { |
| ASSERT(!string_stub().is_null()); |
| return string_stub(); |
| } else { |
| ASSERT(receiver_map->has_dictionary_elements() || |
| receiver_map->has_fast_elements() || |
| receiver_map->has_fast_smi_only_elements() || |
| receiver_map->has_fast_double_elements() || |
| receiver_map->has_external_array_elements()); |
| bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE; |
| return GetElementStubWithoutMapCheck(is_js_array, |
| receiver_map->elements_kind(), |
| grow_mode); |
| } |
| } |
| |
| |
| Handle<Code> KeyedIC::ComputeMonomorphicStub(Handle<JSObject> receiver, |
| StubKind stub_kind, |
| StrictModeFlag strict_mode, |
| Handle<Code> generic_stub) { |
| if (receiver->HasFastElements() || |
| receiver->HasFastSmiOnlyElements() || |
| receiver->HasExternalArrayElements() || |
| receiver->HasFastDoubleElements() || |
| receiver->HasDictionaryElements()) { |
| return isolate()->stub_cache()->ComputeKeyedLoadOrStoreElement( |
| receiver, stub_kind, strict_mode); |
| } else { |
| return generic_stub; |
| } |
| } |
| |
| |
| Handle<Map> KeyedIC::ComputeTransitionedMap(Handle<JSObject> receiver, |
| StubKind stub_kind) { |
| switch (stub_kind) { |
| case KeyedIC::STORE_TRANSITION_SMI_TO_OBJECT: |
| case KeyedIC::STORE_TRANSITION_DOUBLE_TO_OBJECT: |
| case KeyedIC::STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT: |
| case KeyedIC::STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT: |
| return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS); |
| break; |
| case KeyedIC::STORE_TRANSITION_SMI_TO_DOUBLE: |
| case KeyedIC::STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE: |
| return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS); |
| break; |
| default: |
| UNREACHABLE(); |
| return Handle<Map>::null(); |
| } |
| } |
| |
| |
| Handle<Code> KeyedStoreIC::GetElementStubWithoutMapCheck( |
| bool is_js_array, |
| ElementsKind elements_kind, |
| KeyedAccessGrowMode grow_mode) { |
| return KeyedStoreElementStub(is_js_array, elements_kind, grow_mode).GetCode(); |
| } |
| |
| |
| Handle<Code> KeyedStoreIC::ComputePolymorphicStub( |
| MapHandleList* receiver_maps, |
| StrictModeFlag strict_mode, |
| KeyedAccessGrowMode grow_mode) { |
| // Collect MONOMORPHIC stubs for all target_receiver_maps. |
| CodeHandleList handler_ics(receiver_maps->length()); |
| MapHandleList transitioned_maps(receiver_maps->length()); |
| for (int i = 0; i < receiver_maps->length(); ++i) { |
| Handle<Map> receiver_map(receiver_maps->at(i)); |
| Handle<Code> cached_stub; |
| Handle<Map> transitioned_map = |
| receiver_map->FindTransitionedMap(receiver_maps); |
| if (!transitioned_map.is_null()) { |
| cached_stub = ElementsTransitionAndStoreStub( |
| receiver_map->elements_kind(), // original elements_kind |
| transitioned_map->elements_kind(), |
| receiver_map->instance_type() == JS_ARRAY_TYPE, // is_js_array |
| strict_mode, grow_mode).GetCode(); |
| } else { |
| cached_stub = ComputeMonomorphicStubWithoutMapCheck(receiver_map, |
| strict_mode, |
| grow_mode); |
| } |
| ASSERT(!cached_stub.is_null()); |
| handler_ics.Add(cached_stub); |
| transitioned_maps.Add(transitioned_map); |
| } |
| KeyedStoreStubCompiler compiler(isolate(), strict_mode, grow_mode); |
| Handle<Code> code = compiler.CompileStorePolymorphic( |
| receiver_maps, &handler_ics, &transitioned_maps); |
| isolate()->counters()->keyed_store_polymorphic_stubs()->Increment(); |
| PROFILE(isolate(), |
| CodeCreateEvent(Logger::KEYED_STORE_MEGAMORPHIC_IC_TAG, *code, 0)); |
| return code; |
| } |
| |
| |
| KeyedIC::StubKind KeyedStoreIC::GetStubKind(Handle<JSObject> receiver, |
| Handle<Object> key, |
| Handle<Object> value) { |
| ASSERT(key->IsSmi()); |
| int index = Smi::cast(*key)->value(); |
| bool allow_growth = receiver->IsJSArray() && |
| JSArray::cast(*receiver)->length()->IsSmi() && |
| index >= Smi::cast(JSArray::cast(*receiver)->length())->value(); |
| |
| if (allow_growth) { |
| // Handle growing array in stub if necessary. |
| if (receiver->HasFastSmiOnlyElements()) { |
| if (value->IsHeapNumber()) { |
| return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE; |
| } |
| if (value->IsHeapObject()) { |
| return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT; |
| } |
| } else if (receiver->HasFastDoubleElements()) { |
| if (!value->IsSmi() && !value->IsHeapNumber()) { |
| return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT; |
| } |
| } |
| return STORE_AND_GROW_NO_TRANSITION; |
| } else { |
| // Handle only in-bounds elements accesses. |
| if (receiver->HasFastSmiOnlyElements()) { |
| if (value->IsHeapNumber()) { |
| return STORE_TRANSITION_SMI_TO_DOUBLE; |
| } else if (value->IsHeapObject()) { |
| return STORE_TRANSITION_SMI_TO_OBJECT; |
| } |
| } else if (receiver->HasFastDoubleElements()) { |
| if (!value->IsSmi() && !value->IsHeapNumber()) { |
| return STORE_TRANSITION_DOUBLE_TO_OBJECT; |
| } |
| } |
| return STORE_NO_TRANSITION; |
| } |
| } |
| |
| |
| MaybeObject* KeyedStoreIC::Store(State state, |
| StrictModeFlag strict_mode, |
| Handle<Object> object, |
| Handle<Object> key, |
| Handle<Object> value, |
| bool force_generic) { |
| if (key->IsSymbol()) { |
| Handle<String> name = Handle<String>::cast(key); |
| |
| // Handle proxies. |
| if (object->IsJSProxy()) { |
| return JSProxy::cast(*object)->SetProperty( |
| *name, *value, NONE, strict_mode); |
| } |
| |
| // If the object is undefined or null it's illegal to try to set any |
| // properties on it; throw a TypeError in that case. |
| if (object->IsUndefined() || object->IsNull()) { |
| return TypeError("non_object_property_store", object, name); |
| } |
| |
| // Ignore stores where the receiver is not a JSObject. |
| if (!object->IsJSObject()) return *value; |
| Handle<JSObject> receiver = Handle<JSObject>::cast(object); |
| |
| // Check if the given name is an array index. |
| uint32_t index; |
| if (name->AsArrayIndex(&index)) { |
| Handle<Object> result = |
| JSObject::SetElement(receiver, index, value, NONE, strict_mode); |
| RETURN_IF_EMPTY_HANDLE(isolate(), result); |
| return *value; |
| } |
| |
| // Update inline cache and stub cache. |
| if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) { |
| LookupResult lookup(isolate()); |
| if (LookupForWrite(receiver, name, &lookup)) { |
| UpdateCaches(&lookup, state, strict_mode, receiver, name, value); |
| } |
| } |
| |
| // Set the property. |
| return receiver->SetProperty(*name, *value, NONE, strict_mode); |
| } |
| |
| // Do not use ICs for objects that require access checks (including |
| // the global object). |
| bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded(); |
| ASSERT(!(use_ic && object->IsJSGlobalProxy())); |
| |
| if (use_ic) { |
| Handle<Code> stub = (strict_mode == kStrictMode) |
| ? generic_stub_strict() |
| : generic_stub(); |
| if (object->IsJSObject()) { |
| Handle<JSObject> receiver = Handle<JSObject>::cast(object); |
| if (receiver->elements()->map() == |
| isolate()->heap()->non_strict_arguments_elements_map()) { |
| stub = non_strict_arguments_stub(); |
| } else if (!force_generic) { |
| if (key->IsSmi() && (target() != *non_strict_arguments_stub())) { |
| StubKind stub_kind = GetStubKind(receiver, key, value); |
| stub = ComputeStub(receiver, stub_kind, strict_mode, stub); |
| } |
| } else { |
| TRACE_GENERIC_IC("KeyedStoreIC", "force generic"); |
| } |
| } |
| if (!stub.is_null()) set_target(*stub); |
| } |
| |
| TRACE_IC("KeyedStoreIC", key, state, target()); |
| |
| // Set the property. |
| return Runtime::SetObjectProperty( |
| isolate(), object , key, value, NONE, strict_mode); |
| } |
| |
| |
| void KeyedStoreIC::UpdateCaches(LookupResult* lookup, |
| State state, |
| StrictModeFlag strict_mode, |
| Handle<JSObject> receiver, |
| Handle<String> name, |
| Handle<Object> value) { |
| ASSERT(!receiver->IsJSGlobalProxy()); |
| ASSERT(StoreICableLookup(lookup)); |
| // These are not cacheable, so we never see such LookupResults here. |
| ASSERT(lookup->type() != HANDLER); |
| // We get only called for properties or transitions, see StoreICableLookup. |
| ASSERT(lookup->type() != NULL_DESCRIPTOR); |
| |
| // If the property has a non-field type allowing map transitions |
| // where there is extra room in the object, we leave the IC in its |
| // current state. |
| PropertyType type = lookup->type(); |
| |
| // Compute the code stub for this store; used for rewriting to |
| // monomorphic state and making sure that the code stub is in the |
| // stub cache. |
| Handle<Code> code; |
| |
| switch (type) { |
| case FIELD: |
| code = isolate()->stub_cache()->ComputeKeyedStoreField( |
| name, receiver, lookup->GetFieldIndex(), |
| Handle<Map>::null(), strict_mode); |
| break; |
| case MAP_TRANSITION: |
| if (lookup->GetAttributes() == NONE) { |
| Handle<Map> transition(lookup->GetTransitionMap()); |
| int index = transition->PropertyIndexFor(*name); |
| code = isolate()->stub_cache()->ComputeKeyedStoreField( |
| name, receiver, index, transition, strict_mode); |
| break; |
| } |
| // fall through. |
| case NORMAL: |
| case CONSTANT_FUNCTION: |
| case CALLBACKS: |
| case INTERCEPTOR: |
| case CONSTANT_TRANSITION: |
| case ELEMENTS_TRANSITION: |
| // Always rewrite to the generic case so that we do not |
| // repeatedly try to rewrite. |
| code = (strict_mode == kStrictMode) |
| ? generic_stub_strict() |
| : generic_stub(); |
| break; |
| case HANDLER: |
| case NULL_DESCRIPTOR: |
| UNREACHABLE(); |
| return; |
| } |
| |
| ASSERT(!code.is_null()); |
| |
| // Patch the call site depending on the state of the cache. Make |
| // sure to always rewrite from monomorphic to megamorphic. |
| ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE); |
| if (state == UNINITIALIZED || state == PREMONOMORPHIC) { |
| set_target(*code); |
| } else if (state == MONOMORPHIC) { |
| set_target((strict_mode == kStrictMode) |
| ? *megamorphic_stub_strict() |
| : *megamorphic_stub()); |
| } |
| |
| TRACE_IC("KeyedStoreIC", name, state, target()); |
| } |
| |
| |
| #undef TRACE_IC |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Static IC stub generators. |
| // |
| |
| // Used from ic-<arch>.cc. |
| RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CallIC ic(isolate); |
| IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); |
| Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state(); |
| MaybeObject* maybe_result = ic.LoadFunction(state, |
| extra_ic_state, |
| args.at<Object>(0), |
| args.at<String>(1)); |
| // Result could be a function or a failure. |
| JSFunction* raw_function = NULL; |
| if (!maybe_result->To(&raw_function)) return maybe_result; |
| |
| // The first time the inline cache is updated may be the first time the |
| // function it references gets called. If the function is lazily compiled |
| // then the first call will trigger a compilation. We check for this case |
| // and we do the compilation immediately, instead of waiting for the stub |
| // currently attached to the JSFunction object to trigger compilation. |
| if (raw_function->is_compiled()) return raw_function; |
| |
| Handle<JSFunction> function(raw_function); |
| JSFunction::CompileLazy(function, CLEAR_EXCEPTION); |
| return *function; |
| } |
| |
| |
| // Used from ic-<arch>.cc. |
| RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| KeyedCallIC ic(isolate); |
| IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); |
| MaybeObject* maybe_result = |
| ic.LoadFunction(state, args.at<Object>(0), args.at<Object>(1)); |
| // Result could be a function or a failure. |
| JSFunction* raw_function = NULL; |
| if (!maybe_result->To(&raw_function)) return maybe_result; |
| |
| if (raw_function->is_compiled()) return raw_function; |
| |
| Handle<JSFunction> function(raw_function); |
| JSFunction::CompileLazy(function, CLEAR_EXCEPTION); |
| return *function; |
| } |
| |
| |
| // Used from ic-<arch>.cc. |
| RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| LoadIC ic(isolate); |
| IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); |
| return ic.Load(state, args.at<Object>(0), args.at<String>(1)); |
| } |
| |
| |
| // Used from ic-<arch>.cc |
| RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| KeyedLoadIC ic(isolate); |
| IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); |
| return ic.Load(state, args.at<Object>(0), args.at<Object>(1), false); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissForceGeneric) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| KeyedLoadIC ic(isolate); |
| IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); |
| return ic.Load(state, args.at<Object>(0), args.at<Object>(1), true); |
| } |
| |
| |
| // Used from ic-<arch>.cc. |
| RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) { |
| HandleScope scope; |
| ASSERT(args.length() == 3); |
| StoreIC ic(isolate); |
| IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); |
| Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state(); |
| return ic.Store(state, |
| Code::GetStrictMode(extra_ic_state), |
| args.at<Object>(0), |
| args.at<String>(1), |
| args.at<Object>(2)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) { |
| NoHandleAllocation nha; |
| |
| ASSERT(args.length() == 2); |
| JSArray* receiver = JSArray::cast(args[0]); |
| Object* len = args[1]; |
| |
| // The generated code should filter out non-Smis before we get here. |
| ASSERT(len->IsSmi()); |
| |
| #ifdef DEBUG |
| // The length property has to be a writable callback property. |
| LookupResult debug_lookup(isolate); |
| receiver->LocalLookup(isolate->heap()->length_symbol(), &debug_lookup); |
| ASSERT(debug_lookup.type() == CALLBACKS && !debug_lookup.IsReadOnly()); |
| #endif |
| |
| Object* result; |
| { MaybeObject* maybe_result = receiver->SetElementsLength(len); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| return len; |
| } |
| |
| |
| // Extend storage is called in a store inline cache when |
| // it is necessary to extend the properties array of a |
| // JSObject. |
| RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) { |
| NoHandleAllocation na; |
| ASSERT(args.length() == 3); |
| |
| // Convert the parameters |
| JSObject* object = JSObject::cast(args[0]); |
| Map* transition = Map::cast(args[1]); |
| Object* value = args[2]; |
| |
| // Check the object has run out out property space. |
| ASSERT(object->HasFastProperties()); |
| ASSERT(object->map()->unused_property_fields() == 0); |
| |
| // Expand the properties array. |
| FixedArray* old_storage = object->properties(); |
| int new_unused = transition->unused_property_fields(); |
| int new_size = old_storage->length() + new_unused + 1; |
| Object* result; |
| { MaybeObject* maybe_result = old_storage->CopySize(new_size); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| FixedArray* new_storage = FixedArray::cast(result); |
| new_storage->set(old_storage->length(), value); |
| |
| // Set the new property value and do the map transition. |
| object->set_properties(new_storage); |
| object->set_map(transition); |
| |
| // Return the stored value. |
| return value; |
| } |
| |
| |
| // Used from ic-<arch>.cc. |
| RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| KeyedStoreIC ic(isolate); |
| IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); |
| Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state(); |
| return ic.Store(state, |
| Code::GetStrictMode(extra_ic_state), |
| args.at<Object>(0), |
| args.at<Object>(1), |
| args.at<Object>(2), |
| false); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) { |
| NoHandleAllocation na; |
| ASSERT(args.length() == 3); |
| KeyedStoreIC ic(isolate); |
| Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state(); |
| Handle<Object> object = args.at<Object>(0); |
| Handle<Object> key = args.at<Object>(1); |
| Handle<Object> value = args.at<Object>(2); |
| StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state); |
| return Runtime::SetObjectProperty(isolate, |
| object, |
| key, |
| value, |
| NONE, |
| strict_mode); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissForceGeneric) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| KeyedStoreIC ic(isolate); |
| IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); |
| Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state(); |
| return ic.Store(state, |
| Code::GetStrictMode(extra_ic_state), |
| args.at<Object>(0), |
| args.at<Object>(1), |
| args.at<Object>(2), |
| true); |
| } |
| |
| |
| void UnaryOpIC::patch(Code* code) { |
| set_target(code); |
| } |
| |
| |
| const char* UnaryOpIC::GetName(TypeInfo type_info) { |
| switch (type_info) { |
| case UNINITIALIZED: return "Uninitialized"; |
| case SMI: return "Smi"; |
| case HEAP_NUMBER: return "HeapNumbers"; |
| case GENERIC: return "Generic"; |
| default: return "Invalid"; |
| } |
| } |
| |
| |
| UnaryOpIC::State UnaryOpIC::ToState(TypeInfo type_info) { |
| switch (type_info) { |
| case UNINITIALIZED: |
| return ::v8::internal::UNINITIALIZED; |
| case SMI: |
| case HEAP_NUMBER: |
| return MONOMORPHIC; |
| case GENERIC: |
| return MEGAMORPHIC; |
| } |
| UNREACHABLE(); |
| return ::v8::internal::UNINITIALIZED; |
| } |
| |
| UnaryOpIC::TypeInfo UnaryOpIC::GetTypeInfo(Handle<Object> operand) { |
| ::v8::internal::TypeInfo operand_type = |
| ::v8::internal::TypeInfo::TypeFromValue(operand); |
| if (operand_type.IsSmi()) { |
| return SMI; |
| } else if (operand_type.IsNumber()) { |
| return HEAP_NUMBER; |
| } else { |
| return GENERIC; |
| } |
| } |
| |
| |
| UnaryOpIC::TypeInfo UnaryOpIC::ComputeNewType( |
| UnaryOpIC::TypeInfo current_type, |
| UnaryOpIC::TypeInfo previous_type) { |
| switch (previous_type) { |
| case UnaryOpIC::UNINITIALIZED: |
| return current_type; |
| case UnaryOpIC::SMI: |
| return (current_type == UnaryOpIC::GENERIC) |
| ? UnaryOpIC::GENERIC |
| : UnaryOpIC::HEAP_NUMBER; |
| case UnaryOpIC::HEAP_NUMBER: |
| return UnaryOpIC::GENERIC; |
| case UnaryOpIC::GENERIC: |
| // We should never do patching if we are in GENERIC state. |
| UNREACHABLE(); |
| return UnaryOpIC::GENERIC; |
| } |
| UNREACHABLE(); |
| return UnaryOpIC::GENERIC; |
| } |
| |
| |
| void BinaryOpIC::patch(Code* code) { |
| set_target(code); |
| } |
| |
| |
| const char* BinaryOpIC::GetName(TypeInfo type_info) { |
| switch (type_info) { |
| case UNINITIALIZED: return "Uninitialized"; |
| case SMI: return "SMI"; |
| case INT32: return "Int32s"; |
| case HEAP_NUMBER: return "HeapNumbers"; |
| case ODDBALL: return "Oddball"; |
| case BOTH_STRING: return "BothStrings"; |
| case STRING: return "Strings"; |
| case GENERIC: return "Generic"; |
| default: return "Invalid"; |
| } |
| } |
| |
| |
| BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) { |
| switch (type_info) { |
| case UNINITIALIZED: |
| return ::v8::internal::UNINITIALIZED; |
| case SMI: |
| case INT32: |
| case HEAP_NUMBER: |
| case ODDBALL: |
| case BOTH_STRING: |
| case STRING: |
| return MONOMORPHIC; |
| case GENERIC: |
| return MEGAMORPHIC; |
| } |
| UNREACHABLE(); |
| return ::v8::internal::UNINITIALIZED; |
| } |
| |
| |
| BinaryOpIC::TypeInfo BinaryOpIC::JoinTypes(BinaryOpIC::TypeInfo x, |
| BinaryOpIC::TypeInfo y) { |
| if (x == UNINITIALIZED) return y; |
| if (y == UNINITIALIZED) return x; |
| if (x == y) return x; |
| if (x == BOTH_STRING && y == STRING) return STRING; |
| if (x == STRING && y == BOTH_STRING) return STRING; |
| if (x == STRING || x == BOTH_STRING || y == STRING || y == BOTH_STRING) { |
| return GENERIC; |
| } |
| if (x > y) return x; |
| return y; |
| } |
| |
| |
| BinaryOpIC::TypeInfo BinaryOpIC::GetTypeInfo(Handle<Object> left, |
| Handle<Object> right) { |
| ::v8::internal::TypeInfo left_type = |
| ::v8::internal::TypeInfo::TypeFromValue(left); |
| ::v8::internal::TypeInfo right_type = |
| ::v8::internal::TypeInfo::TypeFromValue(right); |
| |
| if (left_type.IsSmi() && right_type.IsSmi()) { |
| return SMI; |
| } |
| |
| if (left_type.IsInteger32() && right_type.IsInteger32()) { |
| // Platforms with 32-bit Smis have no distinct INT32 type. |
| if (kSmiValueSize == 32) return SMI; |
| return INT32; |
| } |
| |
| if (left_type.IsNumber() && right_type.IsNumber()) { |
| return HEAP_NUMBER; |
| } |
| |
| // Patching for fast string ADD makes sense even if only one of the |
| // arguments is a string. |
| if (left_type.IsString()) { |
| return right_type.IsString() ? BOTH_STRING : STRING; |
| } else if (right_type.IsString()) { |
| return STRING; |
| } |
| |
| // Check for oddball objects. |
| if (left->IsUndefined() && right->IsNumber()) return ODDBALL; |
| if (left->IsNumber() && right->IsUndefined()) return ODDBALL; |
| |
| return GENERIC; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, UnaryOp_Patch) { |
| ASSERT(args.length() == 4); |
| |
| HandleScope scope(isolate); |
| Handle<Object> operand = args.at<Object>(0); |
| Token::Value op = static_cast<Token::Value>(args.smi_at(1)); |
| UnaryOverwriteMode mode = static_cast<UnaryOverwriteMode>(args.smi_at(2)); |
| UnaryOpIC::TypeInfo previous_type = |
| static_cast<UnaryOpIC::TypeInfo>(args.smi_at(3)); |
| |
| UnaryOpIC::TypeInfo type = UnaryOpIC::GetTypeInfo(operand); |
| type = UnaryOpIC::ComputeNewType(type, previous_type); |
| |
| UnaryOpStub stub(op, mode, type); |
| Handle<Code> code = stub.GetCode(); |
| if (!code.is_null()) { |
| if (FLAG_trace_ic) { |
| PrintF("[UnaryOpIC (%s->%s)#%s]\n", |
| UnaryOpIC::GetName(previous_type), |
| UnaryOpIC::GetName(type), |
| Token::Name(op)); |
| } |
| UnaryOpIC ic(isolate); |
| ic.patch(*code); |
| } |
| |
| Handle<JSBuiltinsObject> builtins = Handle<JSBuiltinsObject>( |
| isolate->thread_local_top()->context_->builtins(), isolate); |
| Object* builtin = NULL; // Initialization calms down the compiler. |
| switch (op) { |
| case Token::SUB: |
| builtin = builtins->javascript_builtin(Builtins::UNARY_MINUS); |
| break; |
| case Token::BIT_NOT: |
| builtin = builtins->javascript_builtin(Builtins::BIT_NOT); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate); |
| |
| bool caught_exception; |
| Handle<Object> result = Execution::Call(builtin_function, operand, 0, NULL, |
| &caught_exception); |
| if (caught_exception) { |
| return Failure::Exception(); |
| } |
| return *result; |
| } |
| |
| RUNTIME_FUNCTION(MaybeObject*, BinaryOp_Patch) { |
| ASSERT(args.length() == 5); |
| |
| HandleScope scope(isolate); |
| Handle<Object> left = args.at<Object>(0); |
| Handle<Object> right = args.at<Object>(1); |
| int key = args.smi_at(2); |
| Token::Value op = static_cast<Token::Value>(args.smi_at(3)); |
| BinaryOpIC::TypeInfo previous_type = |
| static_cast<BinaryOpIC::TypeInfo>(args.smi_at(4)); |
| |
| BinaryOpIC::TypeInfo type = BinaryOpIC::GetTypeInfo(left, right); |
| type = BinaryOpIC::JoinTypes(type, previous_type); |
| BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED; |
| if ((type == BinaryOpIC::STRING || type == BinaryOpIC::BOTH_STRING) && |
| op != Token::ADD) { |
| type = BinaryOpIC::GENERIC; |
| } |
| if (type == BinaryOpIC::SMI && previous_type == BinaryOpIC::SMI) { |
| if (op == Token::DIV || |
| op == Token::MUL || |
| op == Token::SHR || |
| kSmiValueSize == 32) { |
| // Arithmetic on two Smi inputs has yielded a heap number. |
| // That is the only way to get here from the Smi stub. |
| // With 32-bit Smis, all overflows give heap numbers, but with |
| // 31-bit Smis, most operations overflow to int32 results. |
| result_type = BinaryOpIC::HEAP_NUMBER; |
| } else { |
| // Other operations on SMIs that overflow yield int32s. |
| result_type = BinaryOpIC::INT32; |
| } |
| } |
| if (type == BinaryOpIC::INT32 && previous_type == BinaryOpIC::INT32) { |
| // We must be here because an operation on two INT32 types overflowed. |
| result_type = BinaryOpIC::HEAP_NUMBER; |
| } |
| |
| BinaryOpStub stub(key, type, result_type); |
| Handle<Code> code = stub.GetCode(); |
| if (!code.is_null()) { |
| if (FLAG_trace_ic) { |
| PrintF("[BinaryOpIC (%s->(%s->%s))#%s]\n", |
| BinaryOpIC::GetName(previous_type), |
| BinaryOpIC::GetName(type), |
| BinaryOpIC::GetName(result_type), |
| Token::Name(op)); |
| } |
| BinaryOpIC ic(isolate); |
| ic.patch(*code); |
| |
| // Activate inlined smi code. |
| if (previous_type == BinaryOpIC::UNINITIALIZED) { |
| PatchInlinedSmiCode(ic.address()); |
| } |
| } |
| |
| Handle<JSBuiltinsObject> builtins = Handle<JSBuiltinsObject>( |
| isolate->thread_local_top()->context_->builtins(), isolate); |
| Object* builtin = NULL; // Initialization calms down the compiler. |
| switch (op) { |
| case Token::ADD: |
| builtin = builtins->javascript_builtin(Builtins::ADD); |
| break; |
| case Token::SUB: |
| builtin = builtins->javascript_builtin(Builtins::SUB); |
| break; |
| case Token::MUL: |
| builtin = builtins->javascript_builtin(Builtins::MUL); |
| break; |
| case Token::DIV: |
| builtin = builtins->javascript_builtin(Builtins::DIV); |
| break; |
| case Token::MOD: |
| builtin = builtins->javascript_builtin(Builtins::MOD); |
| break; |
| case Token::BIT_AND: |
| builtin = builtins->javascript_builtin(Builtins::BIT_AND); |
| break; |
| case Token::BIT_OR: |
| builtin = builtins->javascript_builtin(Builtins::BIT_OR); |
| break; |
| case Token::BIT_XOR: |
| builtin = builtins->javascript_builtin(Builtins::BIT_XOR); |
| break; |
| case Token::SHR: |
| builtin = builtins->javascript_builtin(Builtins::SHR); |
| break; |
| case Token::SAR: |
| builtin = builtins->javascript_builtin(Builtins::SAR); |
| break; |
| case Token::SHL: |
| builtin = builtins->javascript_builtin(Builtins::SHL); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate); |
| |
| bool caught_exception; |
| Handle<Object> builtin_args[] = { right }; |
| Handle<Object> result = Execution::Call(builtin_function, |
| left, |
| ARRAY_SIZE(builtin_args), |
| builtin_args, |
| &caught_exception); |
| if (caught_exception) { |
| return Failure::Exception(); |
| } |
| return *result; |
| } |
| |
| |
| Handle<Code> CompareIC::GetUninitialized(Token::Value op) { |
| ICCompareStub stub(op, UNINITIALIZED); |
| return stub.GetCode(); |
| } |
| |
| |
| CompareIC::State CompareIC::ComputeState(Code* target) { |
| int key = target->major_key(); |
| if (key == CodeStub::Compare) return GENERIC; |
| ASSERT(key == CodeStub::CompareIC); |
| return static_cast<State>(target->compare_state()); |
| } |
| |
| |
| const char* CompareIC::GetStateName(State state) { |
| switch (state) { |
| case UNINITIALIZED: return "UNINITIALIZED"; |
| case SMIS: return "SMIS"; |
| case HEAP_NUMBERS: return "HEAP_NUMBERS"; |
| case OBJECTS: return "OBJECTS"; |
| case KNOWN_OBJECTS: return "OBJECTS"; |
| case SYMBOLS: return "SYMBOLS"; |
| case STRINGS: return "STRINGS"; |
| case GENERIC: return "GENERIC"; |
| default: |
| UNREACHABLE(); |
| return NULL; |
| } |
| } |
| |
| |
| CompareIC::State CompareIC::TargetState(State state, |
| bool has_inlined_smi_code, |
| Handle<Object> x, |
| Handle<Object> y) { |
| switch (state) { |
| case UNINITIALIZED: |
| if (x->IsSmi() && y->IsSmi()) return SMIS; |
| if (x->IsNumber() && y->IsNumber()) return HEAP_NUMBERS; |
| if (Token::IsOrderedRelationalCompareOp(op_)) { |
| // Ordered comparisons treat undefined as NaN, so the |
| // HEAP_NUMBER stub will do the right thing. |
| if ((x->IsNumber() && y->IsUndefined()) || |
| (y->IsNumber() && x->IsUndefined())) { |
| return HEAP_NUMBERS; |
| } |
| } |
| if (x->IsSymbol() && y->IsSymbol()) { |
| // We compare symbols as strings if we need to determine |
| // the order in a non-equality compare. |
| return Token::IsEqualityOp(op_) ? SYMBOLS : STRINGS; |
| } |
| if (x->IsString() && y->IsString()) return STRINGS; |
| if (!Token::IsEqualityOp(op_)) return GENERIC; |
| if (x->IsJSObject() && y->IsJSObject()) { |
| if (Handle<JSObject>::cast(x)->map() == |
| Handle<JSObject>::cast(y)->map() && |
| Token::IsEqualityOp(op_)) { |
| return KNOWN_OBJECTS; |
| } else { |
| return OBJECTS; |
| } |
| } |
| return GENERIC; |
| case SMIS: |
| return has_inlined_smi_code && x->IsNumber() && y->IsNumber() |
| ? HEAP_NUMBERS |
| : GENERIC; |
| case SYMBOLS: |
| ASSERT(Token::IsEqualityOp(op_)); |
| return x->IsString() && y->IsString() ? STRINGS : GENERIC; |
| case HEAP_NUMBERS: |
| case STRINGS: |
| case OBJECTS: |
| case KNOWN_OBJECTS: |
| case GENERIC: |
| return GENERIC; |
| } |
| UNREACHABLE(); |
| return GENERIC; |
| } |
| |
| |
| // Used from ic_<arch>.cc. |
| RUNTIME_FUNCTION(Code*, CompareIC_Miss) { |
| NoHandleAllocation na; |
| ASSERT(args.length() == 3); |
| CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2))); |
| ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1)); |
| return ic.target(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, ToBoolean_Patch) { |
| ASSERT(args.length() == 3); |
| |
| HandleScope scope(isolate); |
| Handle<Object> object = args.at<Object>(0); |
| Register tos = Register::from_code(args.smi_at(1)); |
| ToBooleanStub::Types old_types(args.smi_at(2)); |
| |
| ToBooleanStub::Types new_types(old_types); |
| bool to_boolean_value = new_types.Record(object); |
| old_types.TraceTransition(new_types); |
| |
| ToBooleanStub stub(tos, new_types); |
| Handle<Code> code = stub.GetCode(); |
| ToBooleanIC ic(isolate); |
| ic.patch(*code); |
| return Smi::FromInt(to_boolean_value ? 1 : 0); |
| } |
| |
| |
| void ToBooleanIC::patch(Code* code) { |
| set_target(code); |
| } |
| |
| |
| static const Address IC_utilities[] = { |
| #define ADDR(name) FUNCTION_ADDR(name), |
| IC_UTIL_LIST(ADDR) |
| NULL |
| #undef ADDR |
| }; |
| |
| |
| Address IC::AddressFromUtilityId(IC::UtilityId id) { |
| return IC_utilities[id]; |
| } |
| |
| |
| } } // namespace v8::internal |