blob: 8875de9eb2316cb27511cd7b9a9408bc08fd4f41 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_JSREGEXP_H_
#define V8_JSREGEXP_H_
#include "allocation.h"
#include "assembler.h"
#include "zone-inl.h"
namespace v8 {
namespace internal {
class NodeVisitor;
class RegExpCompiler;
class RegExpMacroAssembler;
class RegExpNode;
class RegExpTree;
class RegExpImpl {
public:
// Whether V8 is compiled with native regexp support or not.
static bool UsesNativeRegExp() {
#ifdef V8_INTERPRETED_REGEXP
return false;
#else
return true;
#endif
}
// Creates a regular expression literal in the old space.
// This function calls the garbage collector if necessary.
static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
Handle<String> pattern,
Handle<String> flags,
bool* has_pending_exception);
// Returns a string representation of a regular expression.
// Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
// This function calls the garbage collector if necessary.
static Handle<String> ToString(Handle<Object> value);
// Parses the RegExp pattern and prepares the JSRegExp object with
// generic data and choice of implementation - as well as what
// the implementation wants to store in the data field.
// Returns false if compilation fails.
static Handle<Object> Compile(Handle<JSRegExp> re,
Handle<String> pattern,
Handle<String> flags);
// See ECMA-262 section 15.10.6.2.
// This function calls the garbage collector if necessary.
static Handle<Object> Exec(Handle<JSRegExp> regexp,
Handle<String> subject,
int index,
Handle<JSArray> lastMatchInfo);
// Prepares a JSRegExp object with Irregexp-specific data.
static void IrregexpInitialize(Handle<JSRegExp> re,
Handle<String> pattern,
JSRegExp::Flags flags,
int capture_register_count);
static void AtomCompile(Handle<JSRegExp> re,
Handle<String> pattern,
JSRegExp::Flags flags,
Handle<String> match_pattern);
static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
Handle<String> subject,
int index,
Handle<JSArray> lastMatchInfo);
enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
// Prepare a RegExp for being executed one or more times (using
// IrregexpExecOnce) on the subject.
// This ensures that the regexp is compiled for the subject, and that
// the subject is flat.
// Returns the number of integer spaces required by IrregexpExecOnce
// as its "registers" argument. If the regexp cannot be compiled,
// an exception is set as pending, and this function returns negative.
static int IrregexpPrepare(Handle<JSRegExp> regexp,
Handle<String> subject);
// Execute a regular expression once on the subject, starting from
// character "index".
// If successful, returns RE_SUCCESS and set the capture positions
// in the first registers.
// If matching fails, returns RE_FAILURE.
// If execution fails, sets a pending exception and returns RE_EXCEPTION.
static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp,
Handle<String> subject,
int index,
Vector<int> registers);
// Execute an Irregexp bytecode pattern.
// On a successful match, the result is a JSArray containing
// captured positions. On a failure, the result is the null value.
// Returns an empty handle in case of an exception.
static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
Handle<String> subject,
int index,
Handle<JSArray> lastMatchInfo);
// Array index in the lastMatchInfo array.
static const int kLastCaptureCount = 0;
static const int kLastSubject = 1;
static const int kLastInput = 2;
static const int kFirstCapture = 3;
static const int kLastMatchOverhead = 3;
// Direct offset into the lastMatchInfo array.
static const int kLastCaptureCountOffset =
FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
static const int kLastSubjectOffset =
FixedArray::kHeaderSize + kLastSubject * kPointerSize;
static const int kLastInputOffset =
FixedArray::kHeaderSize + kLastInput * kPointerSize;
static const int kFirstCaptureOffset =
FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
// Used to access the lastMatchInfo array.
static int GetCapture(FixedArray* array, int index) {
return Smi::cast(array->get(index + kFirstCapture))->value();
}
static void SetLastCaptureCount(FixedArray* array, int to) {
array->set(kLastCaptureCount, Smi::FromInt(to));
}
static void SetLastSubject(FixedArray* array, String* to) {
array->set(kLastSubject, to);
}
static void SetLastInput(FixedArray* array, String* to) {
array->set(kLastInput, to);
}
static void SetCapture(FixedArray* array, int index, int to) {
array->set(index + kFirstCapture, Smi::FromInt(to));
}
static int GetLastCaptureCount(FixedArray* array) {
return Smi::cast(array->get(kLastCaptureCount))->value();
}
// For acting on the JSRegExp data FixedArray.
static int IrregexpMaxRegisterCount(FixedArray* re);
static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
static int IrregexpNumberOfCaptures(FixedArray* re);
static int IrregexpNumberOfRegisters(FixedArray* re);
static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
// Limit the space regexps take up on the heap. In order to limit this we
// would like to keep track of the amount of regexp code on the heap. This
// is not tracked, however. As a conservative approximation we track the
// total regexp code compiled including code that has subsequently been freed
// and the total executable memory at any point.
static const int kRegExpExecutableMemoryLimit = 16 * MB;
static const int kRegWxpCompiledLimit = 1 * MB;
private:
static String* last_ascii_string_;
static String* two_byte_cached_string_;
static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
// Set the subject cache. The previous string buffer is not deleted, so the
// caller should ensure that it doesn't leak.
static void SetSubjectCache(String* subject,
char* utf8_subject,
int uft8_length,
int character_position,
int utf8_position);
// A one element cache of the last utf8_subject string and its length. The
// subject JS String object is cached in the heap. We also cache a
// translation between position and utf8 position.
static char* utf8_subject_cache_;
static int utf8_length_cache_;
static int utf8_position_;
static int character_position_;
};
// Represents the location of one element relative to the intersection of
// two sets. Corresponds to the four areas of a Venn diagram.
enum ElementInSetsRelation {
kInsideNone = 0,
kInsideFirst = 1,
kInsideSecond = 2,
kInsideBoth = 3
};
// Represents the relation of two sets.
// Sets can be either disjoint, partially or fully overlapping, or equal.
class SetRelation BASE_EMBEDDED {
public:
// Relation is represented by a bit saying whether there are elements in
// one set that is not in the other, and a bit saying that there are elements
// that are in both sets.
// Location of an element. Corresponds to the internal areas of
// a Venn diagram.
enum {
kInFirst = 1 << kInsideFirst,
kInSecond = 1 << kInsideSecond,
kInBoth = 1 << kInsideBoth
};
SetRelation() : bits_(0) {}
~SetRelation() {}
// Add the existence of objects in a particular
void SetElementsInFirstSet() { bits_ |= kInFirst; }
void SetElementsInSecondSet() { bits_ |= kInSecond; }
void SetElementsInBothSets() { bits_ |= kInBoth; }
// Check the currently known relation of the sets (common functions only,
// for other combinations, use value() to get the bits and check them
// manually).
// Sets are completely disjoint.
bool Disjoint() { return (bits_ & kInBoth) == 0; }
// Sets are equal.
bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
// First set contains second.
bool Contains() { return (bits_ & kInSecond) == 0; }
// Second set contains first.
bool ContainedIn() { return (bits_ & kInFirst) == 0; }
bool NonTrivialIntersection() {
return (bits_ == (kInFirst | kInSecond | kInBoth));
}
int value() { return bits_; }
private:
int bits_;
};
class CharacterRange {
public:
CharacterRange() : from_(0), to_(0) { }
// For compatibility with the CHECK_OK macro
CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT
CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
static Vector<const uc16> GetWordBounds();
static inline CharacterRange Singleton(uc16 value) {
return CharacterRange(value, value);
}
static inline CharacterRange Range(uc16 from, uc16 to) {
ASSERT(from <= to);
return CharacterRange(from, to);
}
static inline CharacterRange Everything() {
return CharacterRange(0, 0xFFFF);
}
bool Contains(uc16 i) { return from_ <= i && i <= to_; }
uc16 from() const { return from_; }
void set_from(uc16 value) { from_ = value; }
uc16 to() const { return to_; }
void set_to(uc16 value) { to_ = value; }
bool is_valid() { return from_ <= to_; }
bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
bool IsSingleton() { return (from_ == to_); }
void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
static void Split(ZoneList<CharacterRange>* base,
Vector<const uc16> overlay,
ZoneList<CharacterRange>** included,
ZoneList<CharacterRange>** excluded);
// Whether a range list is in canonical form: Ranges ordered by from value,
// and ranges non-overlapping and non-adjacent.
static bool IsCanonical(ZoneList<CharacterRange>* ranges);
// Convert range list to canonical form. The characters covered by the ranges
// will still be the same, but no character is in more than one range, and
// adjacent ranges are merged. The resulting list may be shorter than the
// original, but cannot be longer.
static void Canonicalize(ZoneList<CharacterRange>* ranges);
// Check how the set of characters defined by a CharacterRange list relates
// to the set of word characters. List must be in canonical form.
static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
// Takes two character range lists (representing character sets) in canonical
// form and merges them.
// The characters that are only covered by the first set are added to
// first_set_only_out. the characters that are only in the second set are
// added to second_set_only_out, and the characters that are in both are
// added to both_sets_out.
// The pointers to first_set_only_out, second_set_only_out and both_sets_out
// should be to empty lists, but they need not be distinct, and may be NULL.
// If NULL, the characters are dropped, and if two arguments are the same
// pointer, the result is the union of the two sets that would be created
// if the pointers had been distinct.
// This way, the Merge function can compute all the usual set operations:
// union (all three out-sets are equal), intersection (only both_sets_out is
// non-NULL), and set difference (only first_set is non-NULL).
static void Merge(ZoneList<CharacterRange>* first_set,
ZoneList<CharacterRange>* second_set,
ZoneList<CharacterRange>* first_set_only_out,
ZoneList<CharacterRange>* second_set_only_out,
ZoneList<CharacterRange>* both_sets_out);
// Negate the contents of a character range in canonical form.
static void Negate(ZoneList<CharacterRange>* src,
ZoneList<CharacterRange>* dst);
static const int kStartMarker = (1 << 24);
static const int kPayloadMask = (1 << 24) - 1;
private:
uc16 from_;
uc16 to_;
};
// A set of unsigned integers that behaves especially well on small
// integers (< 32). May do zone-allocation.
class OutSet: public ZoneObject {
public:
OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
OutSet* Extend(unsigned value);
bool Get(unsigned value);
static const unsigned kFirstLimit = 32;
private:
// Destructively set a value in this set. In most cases you want
// to use Extend instead to ensure that only one instance exists
// that contains the same values.
void Set(unsigned value);
// The successors are a list of sets that contain the same values
// as this set and the one more value that is not present in this
// set.
ZoneList<OutSet*>* successors() { return successors_; }
OutSet(uint32_t first, ZoneList<unsigned>* remaining)
: first_(first), remaining_(remaining), successors_(NULL) { }
uint32_t first_;
ZoneList<unsigned>* remaining_;
ZoneList<OutSet*>* successors_;
friend class Trace;
};
// A mapping from integers, specified as ranges, to a set of integers.
// Used for mapping character ranges to choices.
class DispatchTable : public ZoneObject {
public:
class Entry {
public:
Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from, uc16 to, OutSet* out_set)
: from_(from), to_(to), out_set_(out_set) { }
uc16 from() { return from_; }
uc16 to() { return to_; }
void set_to(uc16 value) { to_ = value; }
void AddValue(int value) { out_set_ = out_set_->Extend(value); }
OutSet* out_set() { return out_set_; }
private:
uc16 from_;
uc16 to_;
OutSet* out_set_;
};
class Config {
public:
typedef uc16 Key;
typedef Entry Value;
static const uc16 kNoKey;
static const Entry NoValue() { return Value(); }
static inline int Compare(uc16 a, uc16 b) {
if (a == b)
return 0;
else if (a < b)
return -1;
else
return 1;
}
};
void AddRange(CharacterRange range, int value);
OutSet* Get(uc16 value);
void Dump();
template <typename Callback>
void ForEach(Callback* callback) { return tree()->ForEach(callback); }
private:
// There can't be a static empty set since it allocates its
// successors in a zone and caches them.
OutSet* empty() { return &empty_; }
OutSet empty_;
ZoneSplayTree<Config>* tree() { return &tree_; }
ZoneSplayTree<Config> tree_;
};
#define FOR_EACH_NODE_TYPE(VISIT) \
VISIT(End) \
VISIT(Action) \
VISIT(Choice) \
VISIT(BackReference) \
VISIT(Assertion) \
VISIT(Text)
#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
VISIT(Disjunction) \
VISIT(Alternative) \
VISIT(Assertion) \
VISIT(CharacterClass) \
VISIT(Atom) \
VISIT(Quantifier) \
VISIT(Capture) \
VISIT(Lookahead) \
VISIT(BackReference) \
VISIT(Empty) \
VISIT(Text)
#define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
#undef FORWARD_DECLARE
class TextElement {
public:
enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
TextElement() : type(UNINITIALIZED) { }
explicit TextElement(Type t) : type(t), cp_offset(-1) { }
static TextElement Atom(RegExpAtom* atom);
static TextElement CharClass(RegExpCharacterClass* char_class);
int length();
Type type;
union {
RegExpAtom* u_atom;
RegExpCharacterClass* u_char_class;
} data;
int cp_offset;
};
class Trace;
struct NodeInfo {
NodeInfo()
: being_analyzed(false),
been_analyzed(false),
follows_word_interest(false),
follows_newline_interest(false),
follows_start_interest(false),
at_end(false),
visited(false) { }
// Returns true if the interests and assumptions of this node
// matches the given one.
bool Matches(NodeInfo* that) {
return (at_end == that->at_end) &&
(follows_word_interest == that->follows_word_interest) &&
(follows_newline_interest == that->follows_newline_interest) &&
(follows_start_interest == that->follows_start_interest);
}
// Updates the interests of this node given the interests of the
// node preceding it.
void AddFromPreceding(NodeInfo* that) {
at_end |= that->at_end;
follows_word_interest |= that->follows_word_interest;
follows_newline_interest |= that->follows_newline_interest;
follows_start_interest |= that->follows_start_interest;
}
bool HasLookbehind() {
return follows_word_interest ||
follows_newline_interest ||
follows_start_interest;
}
// Sets the interests of this node to include the interests of the
// following node.
void AddFromFollowing(NodeInfo* that) {
follows_word_interest |= that->follows_word_interest;
follows_newline_interest |= that->follows_newline_interest;
follows_start_interest |= that->follows_start_interest;
}
void ResetCompilationState() {
being_analyzed = false;
been_analyzed = false;
}
bool being_analyzed: 1;
bool been_analyzed: 1;
// These bits are set of this node has to know what the preceding
// character was.
bool follows_word_interest: 1;
bool follows_newline_interest: 1;
bool follows_start_interest: 1;
bool at_end: 1;
bool visited: 1;
};
class SiblingList {
public:
SiblingList() : list_(NULL) { }
int length() {
return list_ == NULL ? 0 : list_->length();
}
void Ensure(RegExpNode* parent) {
if (list_ == NULL) {
list_ = new ZoneList<RegExpNode*>(2);
list_->Add(parent);
}
}
void Add(RegExpNode* node) { list_->Add(node); }
RegExpNode* Get(int index) { return list_->at(index); }
private:
ZoneList<RegExpNode*>* list_;
};
// Details of a quick mask-compare check that can look ahead in the
// input stream.
class QuickCheckDetails {
public:
QuickCheckDetails()
: characters_(0),
mask_(0),
value_(0),
cannot_match_(false) { }
explicit QuickCheckDetails(int characters)
: characters_(characters),
mask_(0),
value_(0),
cannot_match_(false) { }
bool Rationalize(bool ascii);
// Merge in the information from another branch of an alternation.
void Merge(QuickCheckDetails* other, int from_index);
// Advance the current position by some amount.
void Advance(int by, bool ascii);
void Clear();
bool cannot_match() { return cannot_match_; }
void set_cannot_match() { cannot_match_ = true; }
struct Position {
Position() : mask(0), value(0), determines_perfectly(false) { }
uc16 mask;
uc16 value;
bool determines_perfectly;
};
int characters() { return characters_; }
void set_characters(int characters) { characters_ = characters; }
Position* positions(int index) {
ASSERT(index >= 0);
ASSERT(index < characters_);
return positions_ + index;
}
uint32_t mask() { return mask_; }
uint32_t value() { return value_; }
private:
// How many characters do we have quick check information from. This is
// the same for all branches of a choice node.
int characters_;
Position positions_[4];
// These values are the condensate of the above array after Rationalize().
uint32_t mask_;
uint32_t value_;
// If set to true, there is no way this quick check can match at all.
// E.g., if it requires to be at the start of the input, and isn't.
bool cannot_match_;
};
class RegExpNode: public ZoneObject {
public:
RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
virtual ~RegExpNode();
virtual void Accept(NodeVisitor* visitor) = 0;
// Generates a goto to this node or actually generates the code at this point.
virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
// How many characters must this node consume at a minimum in order to
// succeed. If we have found at least 'still_to_find' characters that
// must be consumed there is no need to ask any following nodes whether
// they are sure to eat any more characters. The not_at_start argument is
// used to indicate that we know we are not at the start of the input. In
// this case anchored branches will always fail and can be ignored when
// determining how many characters are consumed on success.
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start) = 0;
// Emits some quick code that checks whether the preloaded characters match.
// Falls through on certain failure, jumps to the label on possible success.
// If the node cannot make a quick check it does nothing and returns false.
bool EmitQuickCheck(RegExpCompiler* compiler,
Trace* trace,
bool preload_has_checked_bounds,
Label* on_possible_success,
QuickCheckDetails* details_return,
bool fall_through_on_failure);
// For a given number of characters this returns a mask and a value. The
// next n characters are anded with the mask and compared with the value.
// A comparison failure indicates the node cannot match the next n characters.
// A comparison success indicates the node may match.
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int characters_filled_in,
bool not_at_start) = 0;
static const int kNodeIsTooComplexForGreedyLoops = -1;
virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
Label* label() { return &label_; }
// If non-generic code is generated for a node (i.e. the node is not at the
// start of the trace) then it cannot be reused. This variable sets a limit
// on how often we allow that to happen before we insist on starting a new
// trace and generating generic code for a node that can be reused by flushing
// the deferred actions in the current trace and generating a goto.
static const int kMaxCopiesCodeGenerated = 10;
NodeInfo* info() { return &info_; }
void AddSibling(RegExpNode* node) { siblings_.Add(node); }
// Static version of EnsureSibling that expresses the fact that the
// result has the same type as the input.
template <class C>
static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
return static_cast<C*>(node->EnsureSibling(info, cloned));
}
SiblingList* siblings() { return &siblings_; }
void set_siblings(SiblingList* other) { siblings_ = *other; }
// Return the set of possible next characters recognized by the regexp
// (or a safe subset, potentially the set of all characters).
ZoneList<CharacterRange>* FirstCharacterSet();
// Compute (if possible within the budget of traversed nodes) the
// possible first characters of the input matched by this node and
// its continuation. Returns the remaining budget after the computation.
// If the budget is spent, the result is negative, and the cached
// first_character_set_ value isn't set.
virtual int ComputeFirstCharacterSet(int budget);
// Get and set the cached first character set value.
ZoneList<CharacterRange>* first_character_set() {
return first_character_set_;
}
void set_first_character_set(ZoneList<CharacterRange>* character_set) {
first_character_set_ = character_set;
}
protected:
enum LimitResult { DONE, CONTINUE };
static const int kComputeFirstCharacterSetFail = -1;
LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
// Returns a sibling of this node whose interests and assumptions
// match the ones in the given node info. If no sibling exists NULL
// is returned.
RegExpNode* TryGetSibling(NodeInfo* info);
// Returns a sibling of this node whose interests match the ones in
// the given node info. The info must not contain any assertions.
// If no node exists a new one will be created by cloning the current
// node. The result will always be an instance of the same concrete
// class as this node.
RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
// Returns a clone of this node initialized using the copy constructor
// of its concrete class. Note that the node may have to be pre-
// processed before it is on a usable state.
virtual RegExpNode* Clone() = 0;
private:
static const int kFirstCharBudget = 10;
Label label_;
NodeInfo info_;
SiblingList siblings_;
ZoneList<CharacterRange>* first_character_set_;
// This variable keeps track of how many times code has been generated for
// this node (in different traces). We don't keep track of where the
// generated code is located unless the code is generated at the start of
// a trace, in which case it is generic and can be reused by flushing the
// deferred operations in the current trace and generating a goto.
int trace_count_;
};
// A simple closed interval.
class Interval {
public:
Interval() : from_(kNone), to_(kNone) { }
Interval(int from, int to) : from_(from), to_(to) { }
Interval Union(Interval that) {
if (that.from_ == kNone)
return *this;
else if (from_ == kNone)
return that;
else
return Interval(Min(from_, that.from_), Max(to_, that.to_));
}
bool Contains(int value) {
return (from_ <= value) && (value <= to_);
}
bool is_empty() { return from_ == kNone; }
int from() { return from_; }
int to() { return to_; }
static Interval Empty() { return Interval(); }
static const int kNone = -1;
private:
int from_;
int to_;
};
class SeqRegExpNode: public RegExpNode {
public:
explicit SeqRegExpNode(RegExpNode* on_success)
: on_success_(on_success) { }
RegExpNode* on_success() { return on_success_; }
void set_on_success(RegExpNode* node) { on_success_ = node; }
private:
RegExpNode* on_success_;
};
class ActionNode: public SeqRegExpNode {
public:
enum Type {
SET_REGISTER,
INCREMENT_REGISTER,
STORE_POSITION,
BEGIN_SUBMATCH,
POSITIVE_SUBMATCH_SUCCESS,
EMPTY_MATCH_CHECK,
CLEAR_CAPTURES
};
static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
static ActionNode* StorePosition(int reg,
bool is_capture,
RegExpNode* on_success);
static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
static ActionNode* BeginSubmatch(int stack_pointer_reg,
int position_reg,
RegExpNode* on_success);
static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
int restore_reg,
int clear_capture_count,
int clear_capture_from,
RegExpNode* on_success);
static ActionNode* EmptyMatchCheck(int start_register,
int repetition_register,
int repetition_limit,
RegExpNode* on_success);
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int filled_in,
bool not_at_start) {
return on_success()->GetQuickCheckDetails(
details, compiler, filled_in, not_at_start);
}
Type type() { return type_; }
// TODO(erikcorry): We should allow some action nodes in greedy loops.
virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
virtual ActionNode* Clone() { return new ActionNode(*this); }
virtual int ComputeFirstCharacterSet(int budget);
private:
union {
struct {
int reg;
int value;
} u_store_register;
struct {
int reg;
} u_increment_register;
struct {
int reg;
bool is_capture;
} u_position_register;
struct {
int stack_pointer_register;
int current_position_register;
int clear_register_count;
int clear_register_from;
} u_submatch;
struct {
int start_register;
int repetition_register;
int repetition_limit;
} u_empty_match_check;
struct {
int range_from;
int range_to;
} u_clear_captures;
} data_;
ActionNode(Type type, RegExpNode* on_success)
: SeqRegExpNode(on_success),
type_(type) { }
Type type_;
friend class DotPrinter;
};
class TextNode: public SeqRegExpNode {
public:
TextNode(ZoneList<TextElement>* elms,
RegExpNode* on_success)
: SeqRegExpNode(on_success),
elms_(elms) { }
TextNode(RegExpCharacterClass* that,
RegExpNode* on_success)
: SeqRegExpNode(on_success),
elms_(new ZoneList<TextElement>(1)) {
elms_->Add(TextElement::CharClass(that));
}
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int characters_filled_in,
bool not_at_start);
ZoneList<TextElement>* elements() { return elms_; }
void MakeCaseIndependent(bool is_ascii);
virtual int GreedyLoopTextLength();
virtual TextNode* Clone() {
TextNode* result = new TextNode(*this);
result->CalculateOffsets();
return result;
}
void CalculateOffsets();
virtual int ComputeFirstCharacterSet(int budget);
private:
enum TextEmitPassType {
NON_ASCII_MATCH, // Check for characters that can't match.
SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
CASE_CHARACTER_MATCH, // Case-independent single character check.
CHARACTER_CLASS_MATCH // Character class.
};
static bool SkipPass(int pass, bool ignore_case);
static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
static const int kLastPass = CHARACTER_CLASS_MATCH;
void TextEmitPass(RegExpCompiler* compiler,
TextEmitPassType pass,
bool preloaded,
Trace* trace,
bool first_element_checked,
int* checked_up_to);
int Length();
ZoneList<TextElement>* elms_;
};
class AssertionNode: public SeqRegExpNode {
public:
enum AssertionNodeType {
AT_END,
AT_START,
AT_BOUNDARY,
AT_NON_BOUNDARY,
AFTER_NEWLINE,
// Types not directly expressible in regexp syntax.
// Used for modifying a boundary node if its following character is
// known to be word and/or non-word.
AFTER_NONWORD_CHARACTER,
AFTER_WORD_CHARACTER
};
static AssertionNode* AtEnd(RegExpNode* on_success) {
return new AssertionNode(AT_END, on_success);
}
static AssertionNode* AtStart(RegExpNode* on_success) {
return new AssertionNode(AT_START, on_success);
}
static AssertionNode* AtBoundary(RegExpNode* on_success) {
return new AssertionNode(AT_BOUNDARY, on_success);
}
static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
return new AssertionNode(AT_NON_BOUNDARY, on_success);
}
static AssertionNode* AfterNewline(RegExpNode* on_success) {
return new AssertionNode(AFTER_NEWLINE, on_success);
}
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int filled_in,
bool not_at_start);
virtual int ComputeFirstCharacterSet(int budget);
virtual AssertionNode* Clone() { return new AssertionNode(*this); }
AssertionNodeType type() { return type_; }
void set_type(AssertionNodeType type) { type_ = type; }
private:
AssertionNode(AssertionNodeType t, RegExpNode* on_success)
: SeqRegExpNode(on_success), type_(t) { }
AssertionNodeType type_;
};
class BackReferenceNode: public SeqRegExpNode {
public:
BackReferenceNode(int start_reg,
int end_reg,
RegExpNode* on_success)
: SeqRegExpNode(on_success),
start_reg_(start_reg),
end_reg_(end_reg) { }
virtual void Accept(NodeVisitor* visitor);
int start_register() { return start_reg_; }
int end_register() { return end_reg_; }
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int characters_filled_in,
bool not_at_start) {
return;
}
virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
virtual int ComputeFirstCharacterSet(int budget);
private:
int start_reg_;
int end_reg_;
};
class EndNode: public RegExpNode {
public:
enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
explicit EndNode(Action action) : action_(action) { }
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start) { return 0; }
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int characters_filled_in,
bool not_at_start) {
// Returning 0 from EatsAtLeast should ensure we never get here.
UNREACHABLE();
}
virtual EndNode* Clone() { return new EndNode(*this); }
private:
Action action_;
};
class NegativeSubmatchSuccess: public EndNode {
public:
NegativeSubmatchSuccess(int stack_pointer_reg,
int position_reg,
int clear_capture_count,
int clear_capture_start)
: EndNode(NEGATIVE_SUBMATCH_SUCCESS),
stack_pointer_register_(stack_pointer_reg),
current_position_register_(position_reg),
clear_capture_count_(clear_capture_count),
clear_capture_start_(clear_capture_start) { }
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
private:
int stack_pointer_register_;
int current_position_register_;
int clear_capture_count_;
int clear_capture_start_;
};
class Guard: public ZoneObject {
public:
enum Relation { LT, GEQ };
Guard(int reg, Relation op, int value)
: reg_(reg),
op_(op),
value_(value) { }
int reg() { return reg_; }
Relation op() { return op_; }
int value() { return value_; }
private:
int reg_;
Relation op_;
int value_;
};
class GuardedAlternative {
public:
explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
void AddGuard(Guard* guard);
RegExpNode* node() { return node_; }
void set_node(RegExpNode* node) { node_ = node; }
ZoneList<Guard*>* guards() { return guards_; }
private:
RegExpNode* node_;
ZoneList<Guard*>* guards_;
};
class AlternativeGeneration;
class ChoiceNode: public RegExpNode {
public:
explicit ChoiceNode(int expected_size)
: alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
table_(NULL),
not_at_start_(false),
being_calculated_(false) { }
virtual void Accept(NodeVisitor* visitor);
void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
DispatchTable* GetTable(bool ignore_case);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start);
int EatsAtLeastHelper(int still_to_find,
int recursion_depth,
RegExpNode* ignore_this_node,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int characters_filled_in,
bool not_at_start);
virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
bool being_calculated() { return being_calculated_; }
bool not_at_start() { return not_at_start_; }
void set_not_at_start() { not_at_start_ = true; }
void set_being_calculated(bool b) { being_calculated_ = b; }
virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
protected:
int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
ZoneList<GuardedAlternative>* alternatives_;
private:
friend class DispatchTableConstructor;
friend class Analysis;
void GenerateGuard(RegExpMacroAssembler* macro_assembler,
Guard* guard,
Trace* trace);
int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start);
void EmitOutOfLineContinuation(RegExpCompiler* compiler,
Trace* trace,
GuardedAlternative alternative,
AlternativeGeneration* alt_gen,
int preload_characters,
bool next_expects_preload);
DispatchTable* table_;
// If true, this node is never checked at the start of the input.
// Allows a new trace to start with at_start() set to false.
bool not_at_start_;
bool being_calculated_;
};
class NegativeLookaheadChoiceNode: public ChoiceNode {
public:
explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
GuardedAlternative then_do_this)
: ChoiceNode(2) {
AddAlternative(this_must_fail);
AddAlternative(then_do_this);
}
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int characters_filled_in,
bool not_at_start);
// For a negative lookahead we don't emit the quick check for the
// alternative that is expected to fail. This is because quick check code
// starts by loading enough characters for the alternative that takes fewest
// characters, but on a negative lookahead the negative branch did not take
// part in that calculation (EatsAtLeast) so the assumptions don't hold.
virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
virtual int ComputeFirstCharacterSet(int budget);
};
class LoopChoiceNode: public ChoiceNode {
public:
explicit LoopChoiceNode(bool body_can_be_zero_length)
: ChoiceNode(2),
loop_node_(NULL),
continue_node_(NULL),
body_can_be_zero_length_(body_can_be_zero_length) { }
void AddLoopAlternative(GuardedAlternative alt);
void AddContinueAlternative(GuardedAlternative alt);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find,
int recursion_depth,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
int characters_filled_in,
bool not_at_start);
virtual int ComputeFirstCharacterSet(int budget);
virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
RegExpNode* loop_node() { return loop_node_; }
RegExpNode* continue_node() { return continue_node_; }
bool body_can_be_zero_length() { return body_can_be_zero_length_; }
virtual void Accept(NodeVisitor* visitor);
private:
// AddAlternative is made private for loop nodes because alternatives
// should not be added freely, we need to keep track of which node
// goes back to the node itself.
void AddAlternative(GuardedAlternative node) {
ChoiceNode::AddAlternative(node);
}
RegExpNode* loop_node_;
RegExpNode* continue_node_;
bool body_can_be_zero_length_;
};
// There are many ways to generate code for a node. This class encapsulates
// the current way we should be generating. In other words it encapsulates
// the current state of the code generator. The effect of this is that we
// generate code for paths that the matcher can take through the regular
// expression. A given node in the regexp can be code-generated several times
// as it can be part of several traces. For example for the regexp:
// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
// to match foo is generated only once (the traces have a common prefix). The
// code to store the capture is deferred and generated (twice) after the places
// where baz has been matched.
class Trace {
public:
// A value for a property that is either known to be true, know to be false,
// or not known.
enum TriBool {
UNKNOWN = -1, FALSE = 0, TRUE = 1
};
class DeferredAction {
public:
DeferredAction(ActionNode::Type type, int reg)
: type_(type), reg_(reg), next_(NULL) { }
DeferredAction* next() { return next_; }
bool Mentions(int reg);
int reg() { return reg_; }
ActionNode::Type type() { return type_; }
private:
ActionNode::Type type_;
int reg_;
DeferredAction* next_;
friend class Trace;
};
class DeferredCapture : public DeferredAction {
public:
DeferredCapture(int reg, bool is_capture, Trace* trace)
: DeferredAction(ActionNode::STORE_POSITION, reg),
cp_offset_(trace->cp_offset()),
is_capture_(is_capture) { }
int cp_offset() { return cp_offset_; }
bool is_capture() { return is_capture_; }
private:
int cp_offset_;
bool is_capture_;
void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
};
class DeferredSetRegister : public DeferredAction {
public:
DeferredSetRegister(int reg, int value)
: DeferredAction(ActionNode::SET_REGISTER, reg),
value_(value) { }
int value() { return value_; }
private:
int value_;
};
class DeferredClearCaptures : public DeferredAction {
public:
explicit DeferredClearCaptures(Interval range)
: DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
range_(range) { }
Interval range() { return range_; }
private:
Interval range_;
};
class DeferredIncrementRegister : public DeferredAction {
public:
explicit DeferredIncrementRegister(int reg)
: DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
};
Trace()
: cp_offset_(0),
actions_(NULL),
backtrack_(NULL),
stop_node_(NULL),
loop_label_(NULL),
characters_preloaded_(0),
bound_checked_up_to_(0),
flush_budget_(100),
at_start_(UNKNOWN) { }
// End the trace. This involves flushing the deferred actions in the trace
// and pushing a backtrack location onto the backtrack stack. Once this is
// done we can start a new trace or go to one that has already been
// generated.
void Flush(RegExpCompiler* compiler, RegExpNode* successor);
int cp_offset() { return cp_offset_; }
DeferredAction* actions() { return actions_; }
// A trivial trace is one that has no deferred actions or other state that
// affects the assumptions used when generating code. There is no recorded
// backtrack location in a trivial trace, so with a trivial trace we will
// generate code that, on a failure to match, gets the backtrack location
// from the backtrack stack rather than using a direct jump instruction. We
// always start code generation with a trivial trace and non-trivial traces
// are created as we emit code for nodes or add to the list of deferred
// actions in the trace. The location of the code generated for a node using
// a trivial trace is recorded in a label in the node so that gotos can be
// generated to that code.
bool is_trivial() {
return backtrack_ == NULL &&
actions_ == NULL &&
cp_offset_ == 0 &&
characters_preloaded_ == 0 &&
bound_checked_up_to_ == 0 &&
quick_check_performed_.characters() == 0 &&
at_start_ == UNKNOWN;
}
TriBool at_start() { return at_start_; }
void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
Label* backtrack() { return backtrack_; }
Label* loop_label() { return loop_label_; }
RegExpNode* stop_node() { return stop_node_; }
int characters_preloaded() { return characters_preloaded_; }
int bound_checked_up_to() { return bound_checked_up_to_; }
int flush_budget() { return flush_budget_; }
QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
bool mentions_reg(int reg);
// Returns true if a deferred position store exists to the specified
// register and stores the offset in the out-parameter. Otherwise
// returns false.
bool GetStoredPosition(int reg, int* cp_offset);
// These set methods and AdvanceCurrentPositionInTrace should be used only on
// new traces - the intention is that traces are immutable after creation.
void add_action(DeferredAction* new_action) {
ASSERT(new_action->next_ == NULL);
new_action->next_ = actions_;
actions_ = new_action;
}
void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
void set_stop_node(RegExpNode* node) { stop_node_ = node; }
void set_loop_label(Label* label) { loop_label_ = label; }
void set_characters_preloaded(int count) { characters_preloaded_ = count; }
void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
void set_flush_budget(int to) { flush_budget_ = to; }
void set_quick_check_performed(QuickCheckDetails* d) {
quick_check_performed_ = *d;
}
void InvalidateCurrentCharacter();
void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
private:
int FindAffectedRegisters(OutSet* affected_registers);
void PerformDeferredActions(RegExpMacroAssembler* macro,
int max_register,
OutSet& affected_registers,
OutSet* registers_to_pop,
OutSet* registers_to_clear);
void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
int max_register,
OutSet& registers_to_pop,
OutSet& registers_to_clear);
int cp_offset_;
DeferredAction* actions_;
Label* backtrack_;
RegExpNode* stop_node_;
Label* loop_label_;
int characters_preloaded_;
int bound_checked_up_to_;
QuickCheckDetails quick_check_performed_;
int flush_budget_;
TriBool at_start_;
};
class NodeVisitor {
public:
virtual ~NodeVisitor() { }
#define DECLARE_VISIT(Type) \
virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
#undef DECLARE_VISIT
virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
};
// Node visitor used to add the start set of the alternatives to the
// dispatch table of a choice node.
class DispatchTableConstructor: public NodeVisitor {
public:
DispatchTableConstructor(DispatchTable* table, bool ignore_case)
: table_(table),
choice_index_(-1),
ignore_case_(ignore_case) { }
void BuildTable(ChoiceNode* node);
void AddRange(CharacterRange range) {
table()->AddRange(range, choice_index_);
}
void AddInverse(ZoneList<CharacterRange>* ranges);
#define DECLARE_VISIT(Type) \
virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
#undef DECLARE_VISIT
DispatchTable* table() { return table_; }
void set_choice_index(int value) { choice_index_ = value; }
protected:
DispatchTable* table_;
int choice_index_;
bool ignore_case_;
};
// Assertion propagation moves information about assertions such as
// \b to the affected nodes. For instance, in /.\b./ information must
// be propagated to the first '.' that whatever follows needs to know
// if it matched a word or a non-word, and to the second '.' that it
// has to check if it succeeds a word or non-word. In this case the
// result will be something like:
//
// +-------+ +------------+
// | . | | . |
// +-------+ ---> +------------+
// | word? | | check word |
// +-------+ +------------+
class Analysis: public NodeVisitor {
public:
Analysis(bool ignore_case, bool is_ascii)
: ignore_case_(ignore_case),
is_ascii_(is_ascii),
error_message_(NULL) { }
void EnsureAnalyzed(RegExpNode* node);
#define DECLARE_VISIT(Type) \
virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
#undef DECLARE_VISIT
virtual void VisitLoopChoice(LoopChoiceNode* that);
bool has_failed() { return error_message_ != NULL; }
const char* error_message() {
ASSERT(error_message_ != NULL);
return error_message_;
}
void fail(const char* error_message) {
error_message_ = error_message;
}
private:
bool ignore_case_;
bool is_ascii_;
const char* error_message_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
};
struct RegExpCompileData {
RegExpCompileData()
: tree(NULL),
node(NULL),
simple(true),
contains_anchor(false),
capture_count(0) { }
RegExpTree* tree;
RegExpNode* node;
bool simple;
bool contains_anchor;
Handle<String> error;
int capture_count;
};
class RegExpEngine: public AllStatic {
public:
struct CompilationResult {
explicit CompilationResult(const char* error_message)
: error_message(error_message),
code(HEAP->the_hole_value()),
num_registers(0) {}
CompilationResult(Object* code, int registers)
: error_message(NULL),
code(code),
num_registers(registers) {}
const char* error_message;
Object* code;
int num_registers;
};
static CompilationResult Compile(RegExpCompileData* input,
bool ignore_case,
bool multiline,
Handle<String> pattern,
bool is_ascii);
static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
};
class OffsetsVector {
public:
inline OffsetsVector(int num_registers, Isolate* isolate)
: offsets_vector_length_(num_registers) {
if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
vector_ = NewArray<int>(offsets_vector_length_);
} else {
vector_ = isolate->jsregexp_static_offsets_vector();
}
}
inline ~OffsetsVector() {
if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
DeleteArray(vector_);
vector_ = NULL;
}
}
inline int* vector() { return vector_; }
inline int length() { return offsets_vector_length_; }
static const int kStaticOffsetsVectorSize = 50;
private:
static Address static_offsets_vector_address(Isolate* isolate) {
return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector());
}
int* vector_;
int offsets_vector_length_;
friend class ExternalReference;
};
} } // namespace v8::internal
#endif // V8_JSREGEXP_H_