| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| |
| #include "v8.h" |
| |
| #include "accessors.h" |
| #include "api.h" |
| #include "arguments.h" |
| #include "bootstrapper.h" |
| #include "codegen.h" |
| #include "compilation-cache.h" |
| #include "compiler.h" |
| #include "cpu.h" |
| #include "dateparser-inl.h" |
| #include "debug.h" |
| #include "deoptimizer.h" |
| #include "date.h" |
| #include "execution.h" |
| #include "global-handles.h" |
| #include "isolate-inl.h" |
| #include "jsregexp.h" |
| #include "json-parser.h" |
| #include "liveedit.h" |
| #include "liveobjectlist-inl.h" |
| #include "misc-intrinsics.h" |
| #include "parser.h" |
| #include "platform.h" |
| #include "runtime-profiler.h" |
| #include "runtime.h" |
| #include "scopeinfo.h" |
| #include "smart-array-pointer.h" |
| #include "string-search.h" |
| #include "stub-cache.h" |
| #include "v8threads.h" |
| #include "vm-state-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define RUNTIME_ASSERT(value) \ |
| if (!(value)) return isolate->ThrowIllegalOperation(); |
| |
| // Cast the given object to a value of the specified type and store |
| // it in a variable with the given name. If the object is not of the |
| // expected type call IllegalOperation and return. |
| #define CONVERT_ARG_CHECKED(Type, name, index) \ |
| RUNTIME_ASSERT(args[index]->Is##Type()); \ |
| Type* name = Type::cast(args[index]); |
| |
| #define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \ |
| RUNTIME_ASSERT(args[index]->Is##Type()); \ |
| Handle<Type> name = args.at<Type>(index); |
| |
| // Cast the given object to a boolean and store it in a variable with |
| // the given name. If the object is not a boolean call IllegalOperation |
| // and return. |
| #define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \ |
| RUNTIME_ASSERT(args[index]->IsBoolean()); \ |
| bool name = args[index]->IsTrue(); |
| |
| // Cast the given argument to a Smi and store its value in an int variable |
| // with the given name. If the argument is not a Smi call IllegalOperation |
| // and return. |
| #define CONVERT_SMI_ARG_CHECKED(name, index) \ |
| RUNTIME_ASSERT(args[index]->IsSmi()); \ |
| int name = args.smi_at(index); |
| |
| // Cast the given argument to a double and store it in a variable with |
| // the given name. If the argument is not a number (as opposed to |
| // the number not-a-number) call IllegalOperation and return. |
| #define CONVERT_DOUBLE_ARG_CHECKED(name, index) \ |
| RUNTIME_ASSERT(args[index]->IsNumber()); \ |
| double name = args.number_at(index); |
| |
| // Call the specified converter on the object *comand store the result in |
| // a variable of the specified type with the given name. If the |
| // object is not a Number call IllegalOperation and return. |
| #define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \ |
| RUNTIME_ASSERT(obj->IsNumber()); \ |
| type name = NumberTo##Type(obj); |
| |
| |
| // Cast the given argument to PropertyDetails and store its value in a |
| // variable with the given name. If the argument is not a Smi call |
| // IllegalOperation and return. |
| #define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \ |
| RUNTIME_ASSERT(args[index]->IsSmi()); \ |
| PropertyDetails name = PropertyDetails(Smi::cast(args[index])); |
| |
| |
| // Assert that the given argument has a valid value for a StrictModeFlag |
| // and store it in a StrictModeFlag variable with the given name. |
| #define CONVERT_STRICT_MODE_ARG_CHECKED(name, index) \ |
| RUNTIME_ASSERT(args[index]->IsSmi()); \ |
| RUNTIME_ASSERT(args.smi_at(index) == kStrictMode || \ |
| args.smi_at(index) == kNonStrictMode); \ |
| StrictModeFlag name = \ |
| static_cast<StrictModeFlag>(args.smi_at(index)); |
| |
| |
| // Assert that the given argument has a valid value for a LanguageMode |
| // and store it in a LanguageMode variable with the given name. |
| #define CONVERT_LANGUAGE_MODE_ARG(name, index) \ |
| ASSERT(args[index]->IsSmi()); \ |
| ASSERT(args.smi_at(index) == CLASSIC_MODE || \ |
| args.smi_at(index) == STRICT_MODE || \ |
| args.smi_at(index) == EXTENDED_MODE); \ |
| LanguageMode name = \ |
| static_cast<LanguageMode>(args.smi_at(index)); |
| |
| |
| MUST_USE_RESULT static MaybeObject* DeepCopyBoilerplate(Isolate* isolate, |
| JSObject* boilerplate) { |
| StackLimitCheck check(isolate); |
| if (check.HasOverflowed()) return isolate->StackOverflow(); |
| |
| Heap* heap = isolate->heap(); |
| Object* result; |
| { MaybeObject* maybe_result = heap->CopyJSObject(boilerplate); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| JSObject* copy = JSObject::cast(result); |
| |
| // Deep copy local properties. |
| if (copy->HasFastProperties()) { |
| FixedArray* properties = copy->properties(); |
| for (int i = 0; i < properties->length(); i++) { |
| Object* value = properties->get(i); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| properties->set(i, result); |
| } |
| } |
| int nof = copy->map()->inobject_properties(); |
| for (int i = 0; i < nof; i++) { |
| Object* value = copy->InObjectPropertyAt(i); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| copy->InObjectPropertyAtPut(i, result); |
| } |
| } |
| } else { |
| { MaybeObject* maybe_result = |
| heap->AllocateFixedArray(copy->NumberOfLocalProperties()); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| FixedArray* names = FixedArray::cast(result); |
| copy->GetLocalPropertyNames(names, 0); |
| for (int i = 0; i < names->length(); i++) { |
| ASSERT(names->get(i)->IsString()); |
| String* key_string = String::cast(names->get(i)); |
| PropertyAttributes attributes = |
| copy->GetLocalPropertyAttribute(key_string); |
| // Only deep copy fields from the object literal expression. |
| // In particular, don't try to copy the length attribute of |
| // an array. |
| if (attributes != NONE) continue; |
| Object* value = |
| copy->GetProperty(key_string, &attributes)->ToObjectUnchecked(); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| { MaybeObject* maybe_result = |
| // Creating object copy for literals. No strict mode needed. |
| copy->SetProperty(key_string, result, NONE, kNonStrictMode); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| } |
| } |
| } |
| |
| // Deep copy local elements. |
| // Pixel elements cannot be created using an object literal. |
| ASSERT(!copy->HasExternalArrayElements()); |
| switch (copy->GetElementsKind()) { |
| case FAST_SMI_ONLY_ELEMENTS: |
| case FAST_ELEMENTS: { |
| FixedArray* elements = FixedArray::cast(copy->elements()); |
| if (elements->map() == heap->fixed_cow_array_map()) { |
| isolate->counters()->cow_arrays_created_runtime()->Increment(); |
| #ifdef DEBUG |
| for (int i = 0; i < elements->length(); i++) { |
| ASSERT(!elements->get(i)->IsJSObject()); |
| } |
| #endif |
| } else { |
| for (int i = 0; i < elements->length(); i++) { |
| Object* value = elements->get(i); |
| ASSERT(value->IsSmi() || |
| value->IsTheHole() || |
| (copy->GetElementsKind() == FAST_ELEMENTS)); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, |
| js_object); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| elements->set(i, result); |
| } |
| } |
| } |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| SeededNumberDictionary* element_dictionary = copy->element_dictionary(); |
| int capacity = element_dictionary->Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Object* k = element_dictionary->KeyAt(i); |
| if (element_dictionary->IsKey(k)) { |
| Object* value = element_dictionary->ValueAt(i); |
| if (value->IsJSObject()) { |
| JSObject* js_object = JSObject::cast(value); |
| { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, |
| js_object); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| element_dictionary->ValueAtPut(i, result); |
| } |
| } |
| } |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNIMPLEMENTED(); |
| break; |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| // No contained objects, nothing to do. |
| break; |
| } |
| return copy; |
| } |
| |
| |
| static Handle<Map> ComputeObjectLiteralMap( |
| Handle<Context> context, |
| Handle<FixedArray> constant_properties, |
| bool* is_result_from_cache) { |
| Isolate* isolate = context->GetIsolate(); |
| int properties_length = constant_properties->length(); |
| int number_of_properties = properties_length / 2; |
| // Check that there are only symbols and array indices among keys. |
| int number_of_symbol_keys = 0; |
| for (int p = 0; p != properties_length; p += 2) { |
| Object* key = constant_properties->get(p); |
| uint32_t element_index = 0; |
| if (key->IsSymbol()) { |
| number_of_symbol_keys++; |
| } else if (key->ToArrayIndex(&element_index)) { |
| // An index key does not require space in the property backing store. |
| number_of_properties--; |
| } else { |
| // Bail out as a non-symbol non-index key makes caching impossible. |
| // ASSERT to make sure that the if condition after the loop is false. |
| ASSERT(number_of_symbol_keys != number_of_properties); |
| break; |
| } |
| } |
| // If we only have symbols and array indices among keys then we can |
| // use the map cache in the global context. |
| const int kMaxKeys = 10; |
| if ((number_of_symbol_keys == number_of_properties) && |
| (number_of_symbol_keys < kMaxKeys)) { |
| // Create the fixed array with the key. |
| Handle<FixedArray> keys = |
| isolate->factory()->NewFixedArray(number_of_symbol_keys); |
| if (number_of_symbol_keys > 0) { |
| int index = 0; |
| for (int p = 0; p < properties_length; p += 2) { |
| Object* key = constant_properties->get(p); |
| if (key->IsSymbol()) { |
| keys->set(index++, key); |
| } |
| } |
| ASSERT(index == number_of_symbol_keys); |
| } |
| *is_result_from_cache = true; |
| return isolate->factory()->ObjectLiteralMapFromCache(context, keys); |
| } |
| *is_result_from_cache = false; |
| return isolate->factory()->CopyMap( |
| Handle<Map>(context->object_function()->initial_map()), |
| number_of_properties); |
| } |
| |
| |
| static Handle<Object> CreateLiteralBoilerplate( |
| Isolate* isolate, |
| Handle<FixedArray> literals, |
| Handle<FixedArray> constant_properties); |
| |
| |
| static Handle<Object> CreateObjectLiteralBoilerplate( |
| Isolate* isolate, |
| Handle<FixedArray> literals, |
| Handle<FixedArray> constant_properties, |
| bool should_have_fast_elements, |
| bool has_function_literal) { |
| // Get the global context from the literals array. This is the |
| // context in which the function was created and we use the object |
| // function from this context to create the object literal. We do |
| // not use the object function from the current global context |
| // because this might be the object function from another context |
| // which we should not have access to. |
| Handle<Context> context = |
| Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals)); |
| |
| // In case we have function literals, we want the object to be in |
| // slow properties mode for now. We don't go in the map cache because |
| // maps with constant functions can't be shared if the functions are |
| // not the same (which is the common case). |
| bool is_result_from_cache = false; |
| Handle<Map> map = has_function_literal |
| ? Handle<Map>(context->object_function()->initial_map()) |
| : ComputeObjectLiteralMap(context, |
| constant_properties, |
| &is_result_from_cache); |
| |
| Handle<JSObject> boilerplate = isolate->factory()->NewJSObjectFromMap(map); |
| |
| // Normalize the elements of the boilerplate to save space if needed. |
| if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate); |
| |
| // Add the constant properties to the boilerplate. |
| int length = constant_properties->length(); |
| bool should_transform = |
| !is_result_from_cache && boilerplate->HasFastProperties(); |
| if (should_transform || has_function_literal) { |
| // Normalize the properties of object to avoid n^2 behavior |
| // when extending the object multiple properties. Indicate the number of |
| // properties to be added. |
| JSObject::NormalizeProperties( |
| boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2); |
| } |
| |
| for (int index = 0; index < length; index +=2) { |
| Handle<Object> key(constant_properties->get(index+0), isolate); |
| Handle<Object> value(constant_properties->get(index+1), isolate); |
| if (value->IsFixedArray()) { |
| // The value contains the constant_properties of a |
| // simple object or array literal. |
| Handle<FixedArray> array = Handle<FixedArray>::cast(value); |
| value = CreateLiteralBoilerplate(isolate, literals, array); |
| if (value.is_null()) return value; |
| } |
| Handle<Object> result; |
| uint32_t element_index = 0; |
| if (key->IsSymbol()) { |
| if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) { |
| // Array index as string (uint32). |
| result = JSObject::SetOwnElement( |
| boilerplate, element_index, value, kNonStrictMode); |
| } else { |
| Handle<String> name(String::cast(*key)); |
| ASSERT(!name->AsArrayIndex(&element_index)); |
| result = JSObject::SetLocalPropertyIgnoreAttributes( |
| boilerplate, name, value, NONE); |
| } |
| } else if (key->ToArrayIndex(&element_index)) { |
| // Array index (uint32). |
| result = JSObject::SetOwnElement( |
| boilerplate, element_index, value, kNonStrictMode); |
| } else { |
| // Non-uint32 number. |
| ASSERT(key->IsNumber()); |
| double num = key->Number(); |
| char arr[100]; |
| Vector<char> buffer(arr, ARRAY_SIZE(arr)); |
| const char* str = DoubleToCString(num, buffer); |
| Handle<String> name = |
| isolate->factory()->NewStringFromAscii(CStrVector(str)); |
| result = JSObject::SetLocalPropertyIgnoreAttributes( |
| boilerplate, name, value, NONE); |
| } |
| // If setting the property on the boilerplate throws an |
| // exception, the exception is converted to an empty handle in |
| // the handle based operations. In that case, we need to |
| // convert back to an exception. |
| if (result.is_null()) return result; |
| } |
| |
| // Transform to fast properties if necessary. For object literals with |
| // containing function literals we defer this operation until after all |
| // computed properties have been assigned so that we can generate |
| // constant function properties. |
| if (should_transform && !has_function_literal) { |
| JSObject::TransformToFastProperties( |
| boilerplate, boilerplate->map()->unused_property_fields()); |
| } |
| |
| return boilerplate; |
| } |
| |
| |
| MaybeObject* TransitionElements(Handle<Object> object, |
| ElementsKind to_kind, |
| Isolate* isolate) { |
| HandleScope scope(isolate); |
| if (!object->IsJSObject()) return isolate->ThrowIllegalOperation(); |
| ElementsKind from_kind = |
| Handle<JSObject>::cast(object)->map()->elements_kind(); |
| if (Map::IsValidElementsTransition(from_kind, to_kind)) { |
| Handle<Object> result = JSObject::TransitionElementsKind( |
| Handle<JSObject>::cast(object), to_kind); |
| if (result.is_null()) return isolate->ThrowIllegalOperation(); |
| return *result; |
| } |
| return isolate->ThrowIllegalOperation(); |
| } |
| |
| |
| static const int kSmiOnlyLiteralMinimumLength = 1024; |
| |
| |
| Handle<Object> Runtime::CreateArrayLiteralBoilerplate( |
| Isolate* isolate, |
| Handle<FixedArray> literals, |
| Handle<FixedArray> elements) { |
| // Create the JSArray. |
| Handle<JSFunction> constructor( |
| JSFunction::GlobalContextFromLiterals(*literals)->array_function()); |
| Handle<JSArray> object = |
| Handle<JSArray>::cast(isolate->factory()->NewJSObject(constructor)); |
| |
| ElementsKind constant_elements_kind = |
| static_cast<ElementsKind>(Smi::cast(elements->get(0))->value()); |
| Handle<FixedArrayBase> constant_elements_values( |
| FixedArrayBase::cast(elements->get(1))); |
| |
| Context* global_context = isolate->context()->global_context(); |
| if (constant_elements_kind == FAST_SMI_ONLY_ELEMENTS) { |
| object->set_map(Map::cast(global_context->smi_js_array_map())); |
| } else if (constant_elements_kind == FAST_DOUBLE_ELEMENTS) { |
| object->set_map(Map::cast(global_context->double_js_array_map())); |
| } else { |
| object->set_map(Map::cast(global_context->object_js_array_map())); |
| } |
| |
| Handle<FixedArrayBase> copied_elements_values; |
| if (constant_elements_kind == FAST_DOUBLE_ELEMENTS) { |
| ASSERT(FLAG_smi_only_arrays); |
| copied_elements_values = isolate->factory()->CopyFixedDoubleArray( |
| Handle<FixedDoubleArray>::cast(constant_elements_values)); |
| } else { |
| ASSERT(constant_elements_kind == FAST_SMI_ONLY_ELEMENTS || |
| constant_elements_kind == FAST_ELEMENTS); |
| const bool is_cow = |
| (constant_elements_values->map() == |
| isolate->heap()->fixed_cow_array_map()); |
| if (is_cow) { |
| copied_elements_values = constant_elements_values; |
| #if DEBUG |
| Handle<FixedArray> fixed_array_values = |
| Handle<FixedArray>::cast(copied_elements_values); |
| for (int i = 0; i < fixed_array_values->length(); i++) { |
| ASSERT(!fixed_array_values->get(i)->IsFixedArray()); |
| } |
| #endif |
| } else { |
| Handle<FixedArray> fixed_array_values = |
| Handle<FixedArray>::cast(constant_elements_values); |
| Handle<FixedArray> fixed_array_values_copy = |
| isolate->factory()->CopyFixedArray(fixed_array_values); |
| copied_elements_values = fixed_array_values_copy; |
| for (int i = 0; i < fixed_array_values->length(); i++) { |
| Object* current = fixed_array_values->get(i); |
| if (current->IsFixedArray()) { |
| // The value contains the constant_properties of a |
| // simple object or array literal. |
| Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i))); |
| Handle<Object> result = |
| CreateLiteralBoilerplate(isolate, literals, fa); |
| if (result.is_null()) return result; |
| fixed_array_values_copy->set(i, *result); |
| } |
| } |
| } |
| } |
| object->set_elements(*copied_elements_values); |
| object->set_length(Smi::FromInt(copied_elements_values->length())); |
| |
| // Ensure that the boilerplate object has FAST_ELEMENTS, unless the flag is |
| // on or the object is larger than the threshold. |
| if (!FLAG_smi_only_arrays && |
| constant_elements_values->length() < kSmiOnlyLiteralMinimumLength) { |
| if (object->GetElementsKind() != FAST_ELEMENTS) { |
| CHECK(!TransitionElements(object, FAST_ELEMENTS, isolate)->IsFailure()); |
| } |
| } |
| |
| return object; |
| } |
| |
| |
| static Handle<Object> CreateLiteralBoilerplate( |
| Isolate* isolate, |
| Handle<FixedArray> literals, |
| Handle<FixedArray> array) { |
| Handle<FixedArray> elements = CompileTimeValue::GetElements(array); |
| const bool kHasNoFunctionLiteral = false; |
| switch (CompileTimeValue::GetType(array)) { |
| case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS: |
| return CreateObjectLiteralBoilerplate(isolate, |
| literals, |
| elements, |
| true, |
| kHasNoFunctionLiteral); |
| case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS: |
| return CreateObjectLiteralBoilerplate(isolate, |
| literals, |
| elements, |
| false, |
| kHasNoFunctionLiteral); |
| case CompileTimeValue::ARRAY_LITERAL: |
| return Runtime::CreateArrayLiteralBoilerplate( |
| isolate, literals, elements); |
| default: |
| UNREACHABLE(); |
| return Handle<Object>::null(); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteral) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 4); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_ARG_CHECKED(literals_index, 1); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2); |
| CONVERT_SMI_ARG_CHECKED(flags, 3); |
| bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0; |
| bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0; |
| |
| // Check if boilerplate exists. If not, create it first. |
| Handle<Object> boilerplate(literals->get(literals_index), isolate); |
| if (*boilerplate == isolate->heap()->undefined_value()) { |
| boilerplate = CreateObjectLiteralBoilerplate(isolate, |
| literals, |
| constant_properties, |
| should_have_fast_elements, |
| has_function_literal); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *boilerplate); |
| } |
| return DeepCopyBoilerplate(isolate, JSObject::cast(*boilerplate)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteralShallow) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 4); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_ARG_CHECKED(literals_index, 1); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2); |
| CONVERT_SMI_ARG_CHECKED(flags, 3); |
| bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0; |
| bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0; |
| |
| // Check if boilerplate exists. If not, create it first. |
| Handle<Object> boilerplate(literals->get(literals_index), isolate); |
| if (*boilerplate == isolate->heap()->undefined_value()) { |
| boilerplate = CreateObjectLiteralBoilerplate(isolate, |
| literals, |
| constant_properties, |
| should_have_fast_elements, |
| has_function_literal); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *boilerplate); |
| } |
| return isolate->heap()->CopyJSObject(JSObject::cast(*boilerplate)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteral) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_ARG_CHECKED(literals_index, 1); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2); |
| |
| // Check if boilerplate exists. If not, create it first. |
| Handle<Object> boilerplate(literals->get(literals_index), isolate); |
| if (*boilerplate == isolate->heap()->undefined_value()) { |
| boilerplate = |
| Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *boilerplate); |
| } |
| return DeepCopyBoilerplate(isolate, JSObject::cast(*boilerplate)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteralShallow) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); |
| CONVERT_SMI_ARG_CHECKED(literals_index, 1); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2); |
| |
| // Check if boilerplate exists. If not, create it first. |
| Handle<Object> boilerplate(literals->get(literals_index), isolate); |
| if (*boilerplate == isolate->heap()->undefined_value()) { |
| ASSERT(*elements != isolate->heap()->empty_fixed_array()); |
| boilerplate = |
| Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements); |
| if (boilerplate.is_null()) return Failure::Exception(); |
| // Update the functions literal and return the boilerplate. |
| literals->set(literals_index, *boilerplate); |
| } |
| if (JSObject::cast(*boilerplate)->elements()->map() == |
| isolate->heap()->fixed_cow_array_map()) { |
| isolate->counters()->cow_arrays_created_runtime()->Increment(); |
| } |
| return isolate->heap()->CopyJSObject(JSObject::cast(*boilerplate)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateJSProxy) { |
| ASSERT(args.length() == 2); |
| Object* handler = args[0]; |
| Object* prototype = args[1]; |
| Object* used_prototype = |
| prototype->IsJSReceiver() ? prototype : isolate->heap()->null_value(); |
| return isolate->heap()->AllocateJSProxy(handler, used_prototype); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateJSFunctionProxy) { |
| ASSERT(args.length() == 4); |
| Object* handler = args[0]; |
| Object* call_trap = args[1]; |
| Object* construct_trap = args[2]; |
| Object* prototype = args[3]; |
| Object* used_prototype = |
| prototype->IsJSReceiver() ? prototype : isolate->heap()->null_value(); |
| return isolate->heap()->AllocateJSFunctionProxy( |
| handler, call_trap, construct_trap, used_prototype); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IsJSProxy) { |
| ASSERT(args.length() == 1); |
| Object* obj = args[0]; |
| return isolate->heap()->ToBoolean(obj->IsJSProxy()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IsJSFunctionProxy) { |
| ASSERT(args.length() == 1); |
| Object* obj = args[0]; |
| return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetHandler) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSProxy, proxy, 0); |
| return proxy->handler(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetCallTrap) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0); |
| return proxy->call_trap(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetConstructTrap) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0); |
| return proxy->construct_trap(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Fix) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSProxy, proxy, 0); |
| proxy->Fix(); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetInitialize) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); |
| Handle<ObjectHashSet> table = isolate->factory()->NewObjectHashSet(0); |
| holder->set_table(*table); |
| return *holder; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetAdd) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); |
| Handle<Object> key(args[1]); |
| Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table())); |
| table = ObjectHashSetAdd(table, key); |
| holder->set_table(*table); |
| return isolate->heap()->undefined_symbol(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetHas) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); |
| Handle<Object> key(args[1]); |
| Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table())); |
| return isolate->heap()->ToBoolean(table->Contains(*key)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDelete) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); |
| Handle<Object> key(args[1]); |
| Handle<ObjectHashSet> table(ObjectHashSet::cast(holder->table())); |
| table = ObjectHashSetRemove(table, key); |
| holder->set_table(*table); |
| return isolate->heap()->undefined_symbol(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MapInitialize) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); |
| Handle<ObjectHashTable> table = isolate->factory()->NewObjectHashTable(0); |
| holder->set_table(*table); |
| return *holder; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MapGet) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); |
| Handle<Object> key(args[1]); |
| return ObjectHashTable::cast(holder->table())->Lookup(*key); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MapSet) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); |
| Handle<Object> key(args[1]); |
| Handle<Object> value(args[2]); |
| Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table())); |
| Handle<ObjectHashTable> new_table = PutIntoObjectHashTable(table, key, value); |
| holder->set_table(*new_table); |
| return *value; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakMapInitialize) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSWeakMap, weakmap, 0); |
| ASSERT(weakmap->map()->inobject_properties() == 0); |
| Handle<ObjectHashTable> table = isolate->factory()->NewObjectHashTable(0); |
| weakmap->set_table(*table); |
| weakmap->set_next(Smi::FromInt(0)); |
| return *weakmap; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakMapGet) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSWeakMap, weakmap, 0); |
| CONVERT_ARG_HANDLE_CHECKED(JSReceiver, key, 1); |
| return ObjectHashTable::cast(weakmap->table())->Lookup(*key); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_WeakMapSet) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_HANDLE_CHECKED(JSWeakMap, weakmap, 0); |
| CONVERT_ARG_HANDLE_CHECKED(JSReceiver, key, 1); |
| Handle<Object> value(args[2]); |
| Handle<ObjectHashTable> table(ObjectHashTable::cast(weakmap->table())); |
| Handle<ObjectHashTable> new_table = PutIntoObjectHashTable(table, key, value); |
| weakmap->set_table(*new_table); |
| return *value; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ClassOf) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| Object* obj = args[0]; |
| if (!obj->IsJSObject()) return isolate->heap()->null_value(); |
| return JSObject::cast(obj)->class_name(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPrototype) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSReceiver, input_obj, 0); |
| Object* obj = input_obj; |
| // We don't expect access checks to be needed on JSProxy objects. |
| ASSERT(!obj->IsAccessCheckNeeded() || obj->IsJSObject()); |
| do { |
| if (obj->IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(JSObject::cast(obj), |
| isolate->heap()->Proto_symbol(), |
| v8::ACCESS_GET)) { |
| isolate->ReportFailedAccessCheck(JSObject::cast(obj), v8::ACCESS_GET); |
| return isolate->heap()->undefined_value(); |
| } |
| obj = obj->GetPrototype(); |
| } while (obj->IsJSObject() && |
| JSObject::cast(obj)->map()->is_hidden_prototype()); |
| return obj; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IsInPrototypeChain) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8). |
| Object* O = args[0]; |
| Object* V = args[1]; |
| while (true) { |
| Object* prototype = V->GetPrototype(); |
| if (prototype->IsNull()) return isolate->heap()->false_value(); |
| if (O == prototype) return isolate->heap()->true_value(); |
| V = prototype; |
| } |
| } |
| |
| |
| // Recursively traverses hidden prototypes if property is not found |
| static void GetOwnPropertyImplementation(JSObject* obj, |
| String* name, |
| LookupResult* result) { |
| obj->LocalLookupRealNamedProperty(name, result); |
| |
| if (!result->IsProperty()) { |
| Object* proto = obj->GetPrototype(); |
| if (proto->IsJSObject() && |
| JSObject::cast(proto)->map()->is_hidden_prototype()) |
| GetOwnPropertyImplementation(JSObject::cast(proto), |
| name, result); |
| } |
| } |
| |
| |
| static bool CheckAccessException(LookupResult* result, |
| v8::AccessType access_type) { |
| if (result->type() == CALLBACKS) { |
| Object* callback = result->GetCallbackObject(); |
| if (callback->IsAccessorInfo()) { |
| AccessorInfo* info = AccessorInfo::cast(callback); |
| bool can_access = |
| (access_type == v8::ACCESS_HAS && |
| (info->all_can_read() || info->all_can_write())) || |
| (access_type == v8::ACCESS_GET && info->all_can_read()) || |
| (access_type == v8::ACCESS_SET && info->all_can_write()); |
| return can_access; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| static bool CheckAccess(JSObject* obj, |
| String* name, |
| LookupResult* result, |
| v8::AccessType access_type) { |
| ASSERT(result->IsProperty()); |
| |
| JSObject* holder = result->holder(); |
| JSObject* current = obj; |
| Isolate* isolate = obj->GetIsolate(); |
| while (true) { |
| if (current->IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(current, name, access_type)) { |
| // Access check callback denied the access, but some properties |
| // can have a special permissions which override callbacks descision |
| // (currently see v8::AccessControl). |
| break; |
| } |
| |
| if (current == holder) { |
| return true; |
| } |
| |
| current = JSObject::cast(current->GetPrototype()); |
| } |
| |
| // API callbacks can have per callback access exceptions. |
| switch (result->type()) { |
| case CALLBACKS: { |
| if (CheckAccessException(result, access_type)) { |
| return true; |
| } |
| break; |
| } |
| case INTERCEPTOR: { |
| // If the object has an interceptor, try real named properties. |
| // Overwrite the result to fetch the correct property later. |
| holder->LookupRealNamedProperty(name, result); |
| if (result->IsProperty()) { |
| if (CheckAccessException(result, access_type)) { |
| return true; |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| |
| isolate->ReportFailedAccessCheck(current, access_type); |
| return false; |
| } |
| |
| |
| // TODO(1095): we should traverse hidden prototype hierachy as well. |
| static bool CheckElementAccess(JSObject* obj, |
| uint32_t index, |
| v8::AccessType access_type) { |
| if (obj->IsAccessCheckNeeded() && |
| !obj->GetIsolate()->MayIndexedAccess(obj, index, access_type)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // Enumerator used as indices into the array returned from GetOwnProperty |
| enum PropertyDescriptorIndices { |
| IS_ACCESSOR_INDEX, |
| VALUE_INDEX, |
| GETTER_INDEX, |
| SETTER_INDEX, |
| WRITABLE_INDEX, |
| ENUMERABLE_INDEX, |
| CONFIGURABLE_INDEX, |
| DESCRIPTOR_SIZE |
| }; |
| |
| |
| static MaybeObject* GetOwnProperty(Isolate* isolate, |
| Handle<JSObject> obj, |
| Handle<String> name) { |
| Heap* heap = isolate->heap(); |
| Handle<FixedArray> elms = isolate->factory()->NewFixedArray(DESCRIPTOR_SIZE); |
| Handle<JSArray> desc = isolate->factory()->NewJSArrayWithElements(elms); |
| LookupResult result(isolate); |
| // This could be an element. |
| uint32_t index; |
| if (name->AsArrayIndex(&index)) { |
| switch (obj->HasLocalElement(index)) { |
| case JSObject::UNDEFINED_ELEMENT: |
| return heap->undefined_value(); |
| |
| case JSObject::STRING_CHARACTER_ELEMENT: { |
| // Special handling of string objects according to ECMAScript 5 |
| // 15.5.5.2. Note that this might be a string object with elements |
| // other than the actual string value. This is covered by the |
| // subsequent cases. |
| Handle<JSValue> js_value = Handle<JSValue>::cast(obj); |
| Handle<String> str(String::cast(js_value->value())); |
| Handle<String> substr = SubString(str, index, index + 1, NOT_TENURED); |
| |
| elms->set(IS_ACCESSOR_INDEX, heap->false_value()); |
| elms->set(VALUE_INDEX, *substr); |
| elms->set(WRITABLE_INDEX, heap->false_value()); |
| elms->set(ENUMERABLE_INDEX, heap->true_value()); |
| elms->set(CONFIGURABLE_INDEX, heap->false_value()); |
| return *desc; |
| } |
| |
| case JSObject::INTERCEPTED_ELEMENT: |
| case JSObject::FAST_ELEMENT: { |
| elms->set(IS_ACCESSOR_INDEX, heap->false_value()); |
| Handle<Object> value = Object::GetElement(obj, index); |
| RETURN_IF_EMPTY_HANDLE(isolate, value); |
| elms->set(VALUE_INDEX, *value); |
| elms->set(WRITABLE_INDEX, heap->true_value()); |
| elms->set(ENUMERABLE_INDEX, heap->true_value()); |
| elms->set(CONFIGURABLE_INDEX, heap->true_value()); |
| return *desc; |
| } |
| |
| case JSObject::DICTIONARY_ELEMENT: { |
| Handle<JSObject> holder = obj; |
| if (obj->IsJSGlobalProxy()) { |
| Object* proto = obj->GetPrototype(); |
| if (proto->IsNull()) return heap->undefined_value(); |
| ASSERT(proto->IsJSGlobalObject()); |
| holder = Handle<JSObject>(JSObject::cast(proto)); |
| } |
| FixedArray* elements = FixedArray::cast(holder->elements()); |
| SeededNumberDictionary* dictionary = NULL; |
| if (elements->map() == heap->non_strict_arguments_elements_map()) { |
| dictionary = SeededNumberDictionary::cast(elements->get(1)); |
| } else { |
| dictionary = SeededNumberDictionary::cast(elements); |
| } |
| int entry = dictionary->FindEntry(index); |
| ASSERT(entry != SeededNumberDictionary::kNotFound); |
| PropertyDetails details = dictionary->DetailsAt(entry); |
| switch (details.type()) { |
| case CALLBACKS: { |
| // This is an accessor property with getter and/or setter. |
| AccessorPair* accessors = |
| AccessorPair::cast(dictionary->ValueAt(entry)); |
| elms->set(IS_ACCESSOR_INDEX, heap->true_value()); |
| if (CheckElementAccess(*obj, index, v8::ACCESS_GET)) { |
| elms->set(GETTER_INDEX, accessors->GetComponent(ACCESSOR_GETTER)); |
| } |
| if (CheckElementAccess(*obj, index, v8::ACCESS_SET)) { |
| elms->set(SETTER_INDEX, accessors->GetComponent(ACCESSOR_SETTER)); |
| } |
| break; |
| } |
| case NORMAL: { |
| // This is a data property. |
| elms->set(IS_ACCESSOR_INDEX, heap->false_value()); |
| Handle<Object> value = Object::GetElement(obj, index); |
| ASSERT(!value.is_null()); |
| elms->set(VALUE_INDEX, *value); |
| elms->set(WRITABLE_INDEX, heap->ToBoolean(!details.IsReadOnly())); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| elms->set(ENUMERABLE_INDEX, heap->ToBoolean(!details.IsDontEnum())); |
| elms->set(CONFIGURABLE_INDEX, heap->ToBoolean(!details.IsDontDelete())); |
| return *desc; |
| } |
| } |
| } |
| |
| // Use recursive implementation to also traverse hidden prototypes |
| GetOwnPropertyImplementation(*obj, *name, &result); |
| |
| if (!result.IsProperty()) { |
| return heap->undefined_value(); |
| } |
| |
| if (!CheckAccess(*obj, *name, &result, v8::ACCESS_HAS)) { |
| return heap->false_value(); |
| } |
| |
| elms->set(ENUMERABLE_INDEX, heap->ToBoolean(!result.IsDontEnum())); |
| elms->set(CONFIGURABLE_INDEX, heap->ToBoolean(!result.IsDontDelete())); |
| |
| bool is_js_accessor = (result.type() == CALLBACKS) && |
| (result.GetCallbackObject()->IsAccessorPair()); |
| |
| if (is_js_accessor) { |
| // __defineGetter__/__defineSetter__ callback. |
| elms->set(IS_ACCESSOR_INDEX, heap->true_value()); |
| |
| AccessorPair* accessors = AccessorPair::cast(result.GetCallbackObject()); |
| if (CheckAccess(*obj, *name, &result, v8::ACCESS_GET)) { |
| elms->set(GETTER_INDEX, accessors->GetComponent(ACCESSOR_GETTER)); |
| } |
| if (CheckAccess(*obj, *name, &result, v8::ACCESS_SET)) { |
| elms->set(SETTER_INDEX, accessors->GetComponent(ACCESSOR_SETTER)); |
| } |
| } else { |
| elms->set(IS_ACCESSOR_INDEX, heap->false_value()); |
| elms->set(WRITABLE_INDEX, heap->ToBoolean(!result.IsReadOnly())); |
| |
| PropertyAttributes attrs; |
| Object* value; |
| // GetProperty will check access and report any violations. |
| { MaybeObject* maybe_value = obj->GetProperty(*obj, &result, *name, &attrs); |
| if (!maybe_value->ToObject(&value)) return maybe_value; |
| } |
| elms->set(VALUE_INDEX, value); |
| } |
| |
| return *desc; |
| } |
| |
| |
| // Returns an array with the property description: |
| // if args[1] is not a property on args[0] |
| // returns undefined |
| // if args[1] is a data property on args[0] |
| // [false, value, Writeable, Enumerable, Configurable] |
| // if args[1] is an accessor on args[0] |
| // [true, GetFunction, SetFunction, Enumerable, Configurable] |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOwnProperty) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 1); |
| return GetOwnProperty(isolate, obj, name); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_PreventExtensions) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| return obj->PreventExtensions(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IsExtensible) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| if (obj->IsJSGlobalProxy()) { |
| Object* proto = obj->GetPrototype(); |
| if (proto->IsNull()) return isolate->heap()->false_value(); |
| ASSERT(proto->IsJSGlobalObject()); |
| obj = JSObject::cast(proto); |
| } |
| return isolate->heap()->ToBoolean(obj->map()->is_extensible()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpCompile) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_HANDLE_CHECKED(JSRegExp, re, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1); |
| CONVERT_ARG_HANDLE_CHECKED(String, flags, 2); |
| Handle<Object> result = RegExpImpl::Compile(re, pattern, flags); |
| if (result.is_null()) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateApiFunction) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0); |
| return *isolate->factory()->CreateApiFunction(data); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IsTemplate) { |
| ASSERT(args.length() == 1); |
| Object* arg = args[0]; |
| bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo(); |
| return isolate->heap()->ToBoolean(result); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetTemplateField) { |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(HeapObject, templ, 0); |
| CONVERT_SMI_ARG_CHECKED(index, 1) |
| int offset = index * kPointerSize + HeapObject::kHeaderSize; |
| InstanceType type = templ->map()->instance_type(); |
| RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE || |
| type == OBJECT_TEMPLATE_INFO_TYPE); |
| RUNTIME_ASSERT(offset > 0); |
| if (type == FUNCTION_TEMPLATE_INFO_TYPE) { |
| RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize); |
| } else { |
| RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize); |
| } |
| return *HeapObject::RawField(templ, offset); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DisableAccessChecks) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(HeapObject, object, 0); |
| Map* old_map = object->map(); |
| bool needs_access_checks = old_map->is_access_check_needed(); |
| if (needs_access_checks) { |
| // Copy map so it won't interfere constructor's initial map. |
| Object* new_map; |
| { MaybeObject* maybe_new_map = old_map->CopyDropTransitions(); |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| } |
| |
| Map::cast(new_map)->set_is_access_check_needed(false); |
| object->set_map(Map::cast(new_map)); |
| } |
| return isolate->heap()->ToBoolean(needs_access_checks); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_EnableAccessChecks) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(HeapObject, object, 0); |
| Map* old_map = object->map(); |
| if (!old_map->is_access_check_needed()) { |
| // Copy map so it won't interfere constructor's initial map. |
| Object* new_map; |
| { MaybeObject* maybe_new_map = old_map->CopyDropTransitions(); |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| } |
| |
| Map::cast(new_map)->set_is_access_check_needed(true); |
| object->set_map(Map::cast(new_map)); |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| static Failure* ThrowRedeclarationError(Isolate* isolate, |
| const char* type, |
| Handle<String> name) { |
| HandleScope scope(isolate); |
| Handle<Object> type_handle = |
| isolate->factory()->NewStringFromAscii(CStrVector(type)); |
| Handle<Object> args[2] = { type_handle, name }; |
| Handle<Object> error = |
| isolate->factory()->NewTypeError("redeclaration", HandleVector(args, 2)); |
| return isolate->Throw(*error); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareGlobals) { |
| ASSERT(args.length() == 3); |
| HandleScope scope(isolate); |
| Handle<GlobalObject> global = Handle<GlobalObject>( |
| isolate->context()->global()); |
| |
| Handle<Context> context = args.at<Context>(0); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1); |
| CONVERT_SMI_ARG_CHECKED(flags, 2); |
| |
| // Traverse the name/value pairs and set the properties. |
| int length = pairs->length(); |
| for (int i = 0; i < length; i += 2) { |
| HandleScope scope(isolate); |
| Handle<String> name(String::cast(pairs->get(i))); |
| Handle<Object> value(pairs->get(i + 1), isolate); |
| |
| // We have to declare a global const property. To capture we only |
| // assign to it when evaluating the assignment for "const x = |
| // <expr>" the initial value is the hole. |
| bool is_const_property = value->IsTheHole(); |
| bool is_function_declaration = false; |
| if (value->IsUndefined() || is_const_property) { |
| // Lookup the property in the global object, and don't set the |
| // value of the variable if the property is already there. |
| LookupResult lookup(isolate); |
| global->Lookup(*name, &lookup); |
| if (lookup.IsProperty()) { |
| // We found an existing property. Unless it was an interceptor |
| // that claims the property is absent, skip this declaration. |
| if (lookup.type() != INTERCEPTOR) { |
| continue; |
| } |
| PropertyAttributes attributes = global->GetPropertyAttribute(*name); |
| if (attributes != ABSENT) { |
| continue; |
| } |
| // Fall-through and introduce the absent property by using |
| // SetProperty. |
| } |
| } else { |
| is_function_declaration = true; |
| // Copy the function and update its context. Use it as value. |
| Handle<SharedFunctionInfo> shared = |
| Handle<SharedFunctionInfo>::cast(value); |
| Handle<JSFunction> function = |
| isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, |
| context, |
| TENURED); |
| value = function; |
| } |
| |
| LookupResult lookup(isolate); |
| global->LocalLookup(*name, &lookup); |
| |
| // Compute the property attributes. According to ECMA-262, section |
| // 13, page 71, the property must be read-only and |
| // non-deletable. However, neither SpiderMonkey nor KJS creates the |
| // property as read-only, so we don't either. |
| int attr = NONE; |
| if (!DeclareGlobalsEvalFlag::decode(flags)) { |
| attr |= DONT_DELETE; |
| } |
| bool is_native = DeclareGlobalsNativeFlag::decode(flags); |
| if (is_const_property || (is_native && is_function_declaration)) { |
| attr |= READ_ONLY; |
| } |
| |
| LanguageMode language_mode = DeclareGlobalsLanguageMode::decode(flags); |
| |
| // Safari does not allow the invocation of callback setters for |
| // function declarations. To mimic this behavior, we do not allow |
| // the invocation of setters for function values. This makes a |
| // difference for global functions with the same names as event |
| // handlers such as "function onload() {}". Firefox does call the |
| // onload setter in those case and Safari does not. We follow |
| // Safari for compatibility. |
| if (is_function_declaration) { |
| if (lookup.IsProperty() && (lookup.type() != INTERCEPTOR)) { |
| // Do not overwrite READ_ONLY properties. |
| if (lookup.GetAttributes() & READ_ONLY) { |
| if (language_mode != CLASSIC_MODE) { |
| Handle<Object> args[] = { name }; |
| return isolate->Throw(*isolate->factory()->NewTypeError( |
| "strict_cannot_assign", HandleVector(args, ARRAY_SIZE(args)))); |
| } |
| continue; |
| } |
| // Do not change DONT_DELETE to false from true. |
| attr |= lookup.GetAttributes() & DONT_DELETE; |
| } |
| PropertyAttributes attributes = static_cast<PropertyAttributes>(attr); |
| |
| RETURN_IF_EMPTY_HANDLE( |
| isolate, |
| JSObject::SetLocalPropertyIgnoreAttributes(global, name, value, |
| attributes)); |
| } else { |
| RETURN_IF_EMPTY_HANDLE( |
| isolate, |
| JSReceiver::SetProperty(global, name, value, |
| static_cast<PropertyAttributes>(attr), |
| language_mode == CLASSIC_MODE |
| ? kNonStrictMode : kStrictMode)); |
| } |
| } |
| |
| ASSERT(!isolate->has_pending_exception()); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareContextSlot) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 4); |
| |
| // Declarations are always made in a function or global context. In the |
| // case of eval code, the context passed is the context of the caller, |
| // which may be some nested context and not the declaration context. |
| RUNTIME_ASSERT(args[0]->IsContext()); |
| Handle<Context> context(Context::cast(args[0])->declaration_context()); |
| |
| Handle<String> name(String::cast(args[1])); |
| PropertyAttributes mode = static_cast<PropertyAttributes>(args.smi_at(2)); |
| RUNTIME_ASSERT(mode == READ_ONLY || mode == NONE); |
| Handle<Object> initial_value(args[3], isolate); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = DONT_FOLLOW_CHAINS; |
| BindingFlags binding_flags; |
| Handle<Object> holder = |
| context->Lookup(name, flags, &index, &attributes, &binding_flags); |
| |
| if (attributes != ABSENT) { |
| // The name was declared before; check for conflicting re-declarations. |
| if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) { |
| // Functions are not read-only. |
| ASSERT(mode != READ_ONLY || initial_value->IsTheHole()); |
| const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var"; |
| return ThrowRedeclarationError(isolate, type, name); |
| } |
| |
| // Initialize it if necessary. |
| if (*initial_value != NULL) { |
| if (index >= 0) { |
| ASSERT(holder.is_identical_to(context)); |
| if (((attributes & READ_ONLY) == 0) || |
| context->get(index)->IsTheHole()) { |
| context->set(index, *initial_value); |
| } |
| } else { |
| // Slow case: The property is in the context extension object of a |
| // function context or the global object of a global context. |
| Handle<JSObject> object = Handle<JSObject>::cast(holder); |
| RETURN_IF_EMPTY_HANDLE( |
| isolate, |
| JSReceiver::SetProperty(object, name, initial_value, mode, |
| kNonStrictMode)); |
| } |
| } |
| |
| } else { |
| // The property is not in the function context. It needs to be |
| // "declared" in the function context's extension context or as a |
| // property of the the global object. |
| Handle<JSObject> object; |
| if (context->has_extension()) { |
| object = Handle<JSObject>(JSObject::cast(context->extension())); |
| } else { |
| // Context extension objects are allocated lazily. |
| ASSERT(context->IsFunctionContext()); |
| object = isolate->factory()->NewJSObject( |
| isolate->context_extension_function()); |
| context->set_extension(*object); |
| } |
| ASSERT(*object != NULL); |
| |
| // Declare the property by setting it to the initial value if provided, |
| // or undefined, and use the correct mode (e.g. READ_ONLY attribute for |
| // constant declarations). |
| ASSERT(!object->HasLocalProperty(*name)); |
| Handle<Object> value(isolate->heap()->undefined_value(), isolate); |
| if (*initial_value != NULL) value = initial_value; |
| // Declaring a const context slot is a conflicting declaration if |
| // there is a callback with that name in a prototype. It is |
| // allowed to introduce const variables in |
| // JSContextExtensionObjects. They are treated specially in |
| // SetProperty and no setters are invoked for those since they are |
| // not real JSObjects. |
| if (initial_value->IsTheHole() && |
| !object->IsJSContextExtensionObject()) { |
| LookupResult lookup(isolate); |
| object->Lookup(*name, &lookup); |
| if (lookup.IsFound() && (lookup.type() == CALLBACKS)) { |
| return ThrowRedeclarationError(isolate, "const", name); |
| } |
| } |
| RETURN_IF_EMPTY_HANDLE( |
| isolate, |
| JSReceiver::SetProperty(object, name, value, mode, kNonStrictMode)); |
| } |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeVarGlobal) { |
| NoHandleAllocation nha; |
| // args[0] == name |
| // args[1] == language_mode |
| // args[2] == value (optional) |
| |
| // Determine if we need to assign to the variable if it already |
| // exists (based on the number of arguments). |
| RUNTIME_ASSERT(args.length() == 2 || args.length() == 3); |
| bool assign = args.length() == 3; |
| |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 0); |
| GlobalObject* global = isolate->context()->global(); |
| RUNTIME_ASSERT(args[1]->IsSmi()); |
| CONVERT_LANGUAGE_MODE_ARG(language_mode, 1); |
| StrictModeFlag strict_mode_flag = (language_mode == CLASSIC_MODE) |
| ? kNonStrictMode : kStrictMode; |
| |
| // According to ECMA-262, section 12.2, page 62, the property must |
| // not be deletable. |
| PropertyAttributes attributes = DONT_DELETE; |
| |
| // Lookup the property locally in the global object. If it isn't |
| // there, there is a property with this name in the prototype chain. |
| // We follow Safari and Firefox behavior and only set the property |
| // locally if there is an explicit initialization value that we have |
| // to assign to the property. |
| // Note that objects can have hidden prototypes, so we need to traverse |
| // the whole chain of hidden prototypes to do a 'local' lookup. |
| Object* object = global; |
| LookupResult lookup(isolate); |
| while (object->IsJSObject() && |
| JSObject::cast(object)->map()->is_hidden_prototype()) { |
| JSObject* raw_holder = JSObject::cast(object); |
| raw_holder->LocalLookup(*name, &lookup); |
| if (lookup.IsFound() && lookup.type() == INTERCEPTOR) { |
| HandleScope handle_scope(isolate); |
| Handle<JSObject> holder(raw_holder); |
| PropertyAttributes intercepted = holder->GetPropertyAttribute(*name); |
| // Update the raw pointer in case it's changed due to GC. |
| raw_holder = *holder; |
| if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) { |
| // Found an interceptor that's not read only. |
| if (assign) { |
| return raw_holder->SetProperty( |
| &lookup, *name, args[2], attributes, strict_mode_flag); |
| } else { |
| return isolate->heap()->undefined_value(); |
| } |
| } |
| } |
| object = raw_holder->GetPrototype(); |
| } |
| |
| // Reload global in case the loop above performed a GC. |
| global = isolate->context()->global(); |
| if (assign) { |
| return global->SetProperty(*name, args[2], attributes, strict_mode_flag); |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstGlobal) { |
| // All constants are declared with an initial value. The name |
| // of the constant is the first argument and the initial value |
| // is the second. |
| RUNTIME_ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 0); |
| Handle<Object> value = args.at<Object>(1); |
| |
| // Get the current global object from top. |
| GlobalObject* global = isolate->context()->global(); |
| |
| // According to ECMA-262, section 12.2, page 62, the property must |
| // not be deletable. Since it's a const, it must be READ_ONLY too. |
| PropertyAttributes attributes = |
| static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY); |
| |
| // Lookup the property locally in the global object. If it isn't |
| // there, we add the property and take special precautions to always |
| // add it as a local property even in case of callbacks in the |
| // prototype chain (this rules out using SetProperty). |
| // We use SetLocalPropertyIgnoreAttributes instead |
| LookupResult lookup(isolate); |
| global->LocalLookup(*name, &lookup); |
| if (!lookup.IsProperty()) { |
| return global->SetLocalPropertyIgnoreAttributes(*name, |
| *value, |
| attributes); |
| } |
| |
| if (!lookup.IsReadOnly()) { |
| // Restore global object from context (in case of GC) and continue |
| // with setting the value. |
| HandleScope handle_scope(isolate); |
| Handle<GlobalObject> global(isolate->context()->global()); |
| |
| // BUG 1213575: Handle the case where we have to set a read-only |
| // property through an interceptor and only do it if it's |
| // uninitialized, e.g. the hole. Nirk... |
| // Passing non-strict mode because the property is writable. |
| RETURN_IF_EMPTY_HANDLE( |
| isolate, |
| JSReceiver::SetProperty(global, name, value, attributes, |
| kNonStrictMode)); |
| return *value; |
| } |
| |
| // Set the value, but only if we're assigning the initial value to a |
| // constant. For now, we determine this by checking if the |
| // current value is the hole. |
| // Strict mode handling not needed (const is disallowed in strict mode). |
| PropertyType type = lookup.type(); |
| if (type == FIELD) { |
| FixedArray* properties = global->properties(); |
| int index = lookup.GetFieldIndex(); |
| if (properties->get(index)->IsTheHole() || !lookup.IsReadOnly()) { |
| properties->set(index, *value); |
| } |
| } else if (type == NORMAL) { |
| if (global->GetNormalizedProperty(&lookup)->IsTheHole() || |
| !lookup.IsReadOnly()) { |
| global->SetNormalizedProperty(&lookup, *value); |
| } |
| } else { |
| // Ignore re-initialization of constants that have already been |
| // assigned a function value. |
| ASSERT(lookup.IsReadOnly() && type == CONSTANT_FUNCTION); |
| } |
| |
| // Use the set value as the result of the operation. |
| return *value; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstContextSlot) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| |
| Handle<Object> value(args[0], isolate); |
| ASSERT(!value->IsTheHole()); |
| |
| // Initializations are always done in a function or global context. |
| RUNTIME_ASSERT(args[1]->IsContext()); |
| Handle<Context> context(Context::cast(args[1])->declaration_context()); |
| |
| Handle<String> name(String::cast(args[2])); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = FOLLOW_CHAINS; |
| BindingFlags binding_flags; |
| Handle<Object> holder = |
| context->Lookup(name, flags, &index, &attributes, &binding_flags); |
| |
| if (index >= 0) { |
| ASSERT(holder->IsContext()); |
| // Property was found in a context. Perform the assignment if we |
| // found some non-constant or an uninitialized constant. |
| Handle<Context> context = Handle<Context>::cast(holder); |
| if ((attributes & READ_ONLY) == 0 || context->get(index)->IsTheHole()) { |
| context->set(index, *value); |
| } |
| return *value; |
| } |
| |
| // The property could not be found, we introduce it as a property of the |
| // global object. |
| if (attributes == ABSENT) { |
| Handle<JSObject> global = Handle<JSObject>( |
| isolate->context()->global()); |
| // Strict mode not needed (const disallowed in strict mode). |
| RETURN_IF_EMPTY_HANDLE( |
| isolate, |
| JSReceiver::SetProperty(global, name, value, NONE, kNonStrictMode)); |
| return *value; |
| } |
| |
| // The property was present in some function's context extension object, |
| // as a property on the subject of a with, or as a property of the global |
| // object. |
| // |
| // In most situations, eval-introduced consts should still be present in |
| // the context extension object. However, because declaration and |
| // initialization are separate, the property might have been deleted |
| // before we reach the initialization point. |
| // |
| // Example: |
| // |
| // function f() { eval("delete x; const x;"); } |
| // |
| // In that case, the initialization behaves like a normal assignment. |
| Handle<JSObject> object = Handle<JSObject>::cast(holder); |
| |
| if (*object == context->extension()) { |
| // This is the property that was introduced by the const declaration. |
| // Set it if it hasn't been set before. NOTE: We cannot use |
| // GetProperty() to get the current value as it 'unholes' the value. |
| LookupResult lookup(isolate); |
| object->LocalLookupRealNamedProperty(*name, &lookup); |
| ASSERT(lookup.IsFound()); // the property was declared |
| ASSERT(lookup.IsReadOnly()); // and it was declared as read-only |
| |
| PropertyType type = lookup.type(); |
| if (type == FIELD) { |
| FixedArray* properties = object->properties(); |
| int index = lookup.GetFieldIndex(); |
| if (properties->get(index)->IsTheHole()) { |
| properties->set(index, *value); |
| } |
| } else if (type == NORMAL) { |
| if (object->GetNormalizedProperty(&lookup)->IsTheHole()) { |
| object->SetNormalizedProperty(&lookup, *value); |
| } |
| } else { |
| // We should not reach here. Any real, named property should be |
| // either a field or a dictionary slot. |
| UNREACHABLE(); |
| } |
| } else { |
| // The property was found on some other object. Set it if it is not a |
| // read-only property. |
| if ((attributes & READ_ONLY) == 0) { |
| // Strict mode not needed (const disallowed in strict mode). |
| RETURN_IF_EMPTY_HANDLE( |
| isolate, |
| JSReceiver::SetProperty(object, name, value, attributes, |
| kNonStrictMode)); |
| } |
| } |
| |
| return *value; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, |
| Runtime_OptimizeObjectForAddingMultipleProperties) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); |
| CONVERT_SMI_ARG_CHECKED(properties, 1); |
| if (object->HasFastProperties()) { |
| JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties); |
| } |
| return *object; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExec) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 4); |
| CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, subject, 1); |
| // Due to the way the JS calls are constructed this must be less than the |
| // length of a string, i.e. it is always a Smi. We check anyway for security. |
| CONVERT_SMI_ARG_CHECKED(index, 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3); |
| RUNTIME_ASSERT(last_match_info->HasFastElements()); |
| RUNTIME_ASSERT(index >= 0); |
| RUNTIME_ASSERT(index <= subject->length()); |
| isolate->counters()->regexp_entry_runtime()->Increment(); |
| Handle<Object> result = RegExpImpl::Exec(regexp, |
| subject, |
| index, |
| last_match_info); |
| if (result.is_null()) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpConstructResult) { |
| ASSERT(args.length() == 3); |
| CONVERT_SMI_ARG_CHECKED(elements_count, 0); |
| if (elements_count < 0 || |
| elements_count > FixedArray::kMaxLength || |
| !Smi::IsValid(elements_count)) { |
| return isolate->ThrowIllegalOperation(); |
| } |
| Object* new_object; |
| { MaybeObject* maybe_new_object = |
| isolate->heap()->AllocateFixedArrayWithHoles(elements_count); |
| if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object; |
| } |
| FixedArray* elements = FixedArray::cast(new_object); |
| { MaybeObject* maybe_new_object = isolate->heap()->AllocateRaw( |
| JSRegExpResult::kSize, NEW_SPACE, OLD_POINTER_SPACE); |
| if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object; |
| } |
| { |
| AssertNoAllocation no_gc; |
| HandleScope scope(isolate); |
| reinterpret_cast<HeapObject*>(new_object)-> |
| set_map(isolate->global_context()->regexp_result_map()); |
| } |
| JSArray* array = JSArray::cast(new_object); |
| array->set_properties(isolate->heap()->empty_fixed_array()); |
| array->set_elements(elements); |
| array->set_length(Smi::FromInt(elements_count)); |
| // Write in-object properties after the length of the array. |
| array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, args[1]); |
| array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, args[2]); |
| return array; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpInitializeObject) { |
| AssertNoAllocation no_alloc; |
| ASSERT(args.length() == 5); |
| CONVERT_ARG_CHECKED(JSRegExp, regexp, 0); |
| CONVERT_ARG_CHECKED(String, source, 1); |
| |
| Object* global = args[2]; |
| if (!global->IsTrue()) global = isolate->heap()->false_value(); |
| |
| Object* ignoreCase = args[3]; |
| if (!ignoreCase->IsTrue()) ignoreCase = isolate->heap()->false_value(); |
| |
| Object* multiline = args[4]; |
| if (!multiline->IsTrue()) multiline = isolate->heap()->false_value(); |
| |
| Map* map = regexp->map(); |
| Object* constructor = map->constructor(); |
| if (constructor->IsJSFunction() && |
| JSFunction::cast(constructor)->initial_map() == map) { |
| // If we still have the original map, set in-object properties directly. |
| regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, source); |
| // Both true and false are immovable immortal objects so no need for write |
| // barrier. |
| regexp->InObjectPropertyAtPut( |
| JSRegExp::kGlobalFieldIndex, global, SKIP_WRITE_BARRIER); |
| regexp->InObjectPropertyAtPut( |
| JSRegExp::kIgnoreCaseFieldIndex, ignoreCase, SKIP_WRITE_BARRIER); |
| regexp->InObjectPropertyAtPut( |
| JSRegExp::kMultilineFieldIndex, multiline, SKIP_WRITE_BARRIER); |
| regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex, |
| Smi::FromInt(0), |
| SKIP_WRITE_BARRIER); // It's a Smi. |
| return regexp; |
| } |
| |
| // Map has changed, so use generic, but slower, method. |
| PropertyAttributes final = |
| static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE); |
| PropertyAttributes writable = |
| static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE); |
| Heap* heap = isolate->heap(); |
| MaybeObject* result; |
| result = regexp->SetLocalPropertyIgnoreAttributes(heap->source_symbol(), |
| source, |
| final); |
| ASSERT(!result->IsFailure()); |
| result = regexp->SetLocalPropertyIgnoreAttributes(heap->global_symbol(), |
| global, |
| final); |
| ASSERT(!result->IsFailure()); |
| result = |
| regexp->SetLocalPropertyIgnoreAttributes(heap->ignore_case_symbol(), |
| ignoreCase, |
| final); |
| ASSERT(!result->IsFailure()); |
| result = regexp->SetLocalPropertyIgnoreAttributes(heap->multiline_symbol(), |
| multiline, |
| final); |
| ASSERT(!result->IsFailure()); |
| result = |
| regexp->SetLocalPropertyIgnoreAttributes(heap->last_index_symbol(), |
| Smi::FromInt(0), |
| writable); |
| ASSERT(!result->IsFailure()); |
| USE(result); |
| return regexp; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FinishArrayPrototypeSetup) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0); |
| // This is necessary to enable fast checks for absence of elements |
| // on Array.prototype and below. |
| prototype->set_elements(isolate->heap()->empty_fixed_array()); |
| return Smi::FromInt(0); |
| } |
| |
| |
| static Handle<JSFunction> InstallBuiltin(Isolate* isolate, |
| Handle<JSObject> holder, |
| const char* name, |
| Builtins::Name builtin_name) { |
| Handle<String> key = isolate->factory()->LookupAsciiSymbol(name); |
| Handle<Code> code(isolate->builtins()->builtin(builtin_name)); |
| Handle<JSFunction> optimized = |
| isolate->factory()->NewFunction(key, |
| JS_OBJECT_TYPE, |
| JSObject::kHeaderSize, |
| code, |
| false); |
| optimized->shared()->DontAdaptArguments(); |
| JSReceiver::SetProperty(holder, key, optimized, NONE, kStrictMode); |
| return optimized; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SpecialArrayFunctions) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, holder, 0); |
| |
| InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop); |
| InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush); |
| InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift); |
| InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift); |
| InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice); |
| InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice); |
| InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat); |
| |
| return *holder; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetDefaultReceiver) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSReceiver, callable, 0); |
| |
| if (!callable->IsJSFunction()) { |
| HandleScope scope(isolate); |
| bool threw = false; |
| Handle<Object> delegate = |
| Execution::TryGetFunctionDelegate(Handle<JSReceiver>(callable), &threw); |
| if (threw) return Failure::Exception(); |
| callable = JSFunction::cast(*delegate); |
| } |
| JSFunction* function = JSFunction::cast(callable); |
| |
| SharedFunctionInfo* shared = function->shared(); |
| if (shared->native() || !shared->is_classic_mode()) { |
| return isolate->heap()->undefined_value(); |
| } |
| // Returns undefined for strict or native functions, or |
| // the associated global receiver for "normal" functions. |
| |
| Context* global_context = |
| function->context()->global()->global_context(); |
| return global_context->global()->global_receiver(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MaterializeRegExpLiteral) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 4); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); |
| int index = args.smi_at(1); |
| Handle<String> pattern = args.at<String>(2); |
| Handle<String> flags = args.at<String>(3); |
| |
| // Get the RegExp function from the context in the literals array. |
| // This is the RegExp function from the context in which the |
| // function was created. We do not use the RegExp function from the |
| // current global context because this might be the RegExp function |
| // from another context which we should not have access to. |
| Handle<JSFunction> constructor = |
| Handle<JSFunction>( |
| JSFunction::GlobalContextFromLiterals(*literals)->regexp_function()); |
| // Compute the regular expression literal. |
| bool has_pending_exception; |
| Handle<Object> regexp = |
| RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags, |
| &has_pending_exception); |
| if (has_pending_exception) { |
| ASSERT(isolate->has_pending_exception()); |
| return Failure::Exception(); |
| } |
| literals->set(index, *regexp); |
| return *regexp; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetName) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, f, 0); |
| return f->shared()->name(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetName) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(JSFunction, f, 0); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| f->shared()->set_name(name); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionNameShouldPrintAsAnonymous) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSFunction, f, 0); |
| return isolate->heap()->ToBoolean( |
| f->shared()->name_should_print_as_anonymous()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionMarkNameShouldPrintAsAnonymous) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSFunction, f, 0); |
| f->shared()->set_name_should_print_as_anonymous(true); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionRemovePrototype) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, f, 0); |
| Object* obj = f->RemovePrototype(); |
| if (obj->IsFailure()) return obj; |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScript) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, fun, 0); |
| Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate); |
| if (!script->IsScript()) return isolate->heap()->undefined_value(); |
| |
| return *GetScriptWrapper(Handle<Script>::cast(script)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetSourceCode) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0); |
| Handle<SharedFunctionInfo> shared(f->shared()); |
| return *shared->GetSourceCode(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScriptSourcePosition) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, fun, 0); |
| int pos = fun->shared()->start_position(); |
| return Smi::FromInt(pos); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetPositionForOffset) { |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(Code, code, 0); |
| CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]); |
| |
| RUNTIME_ASSERT(0 <= offset && offset < code->Size()); |
| |
| Address pc = code->address() + offset; |
| return Smi::FromInt(code->SourcePosition(pc)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetInstanceClassName) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(JSFunction, fun, 0); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| fun->SetInstanceClassName(name); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetLength) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(JSFunction, fun, 0); |
| CONVERT_SMI_ARG_CHECKED(length, 1); |
| fun->shared()->set_length(length); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetPrototype) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(JSFunction, fun, 0); |
| ASSERT(fun->should_have_prototype()); |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| Accessors::FunctionSetPrototype(fun, args[1], NULL); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| return args[0]; // return TOS |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetReadOnlyPrototype) { |
| NoHandleAllocation ha; |
| RUNTIME_ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSFunction, function, 0); |
| |
| MaybeObject* maybe_name = |
| isolate->heap()->AllocateStringFromAscii(CStrVector("prototype")); |
| String* name; |
| if (!maybe_name->To(&name)) return maybe_name; |
| |
| if (function->HasFastProperties()) { |
| // Construct a new field descriptor with updated attributes. |
| DescriptorArray* instance_desc = function->map()->instance_descriptors(); |
| int index = instance_desc->Search(name); |
| ASSERT(index != DescriptorArray::kNotFound); |
| PropertyDetails details(instance_desc->GetDetails(index)); |
| CallbacksDescriptor new_desc(name, |
| instance_desc->GetValue(index), |
| static_cast<PropertyAttributes>(details.attributes() | READ_ONLY), |
| details.index()); |
| // Construct a new field descriptors array containing the new descriptor. |
| Object* descriptors_unchecked; |
| { MaybeObject* maybe_descriptors_unchecked = |
| instance_desc->CopyInsert(&new_desc, REMOVE_TRANSITIONS); |
| if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) { |
| return maybe_descriptors_unchecked; |
| } |
| } |
| DescriptorArray* new_descriptors = |
| DescriptorArray::cast(descriptors_unchecked); |
| // Create a new map featuring the new field descriptors array. |
| Object* map_unchecked; |
| { MaybeObject* maybe_map_unchecked = function->map()->CopyDropDescriptors(); |
| if (!maybe_map_unchecked->ToObject(&map_unchecked)) { |
| return maybe_map_unchecked; |
| } |
| } |
| Map* new_map = Map::cast(map_unchecked); |
| new_map->set_instance_descriptors(new_descriptors); |
| function->set_map(new_map); |
| } else { // Dictionary properties. |
| // Directly manipulate the property details. |
| int entry = function->property_dictionary()->FindEntry(name); |
| ASSERT(entry != StringDictionary::kNotFound); |
| PropertyDetails details = function->property_dictionary()->DetailsAt(entry); |
| PropertyDetails new_details( |
| static_cast<PropertyAttributes>(details.attributes() | READ_ONLY), |
| details.type(), |
| details.index()); |
| function->property_dictionary()->DetailsAtPut(entry, new_details); |
| } |
| return function; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsAPIFunction) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, f, 0); |
| return isolate->heap()->ToBoolean(f->shared()->IsApiFunction()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsBuiltin) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, f, 0); |
| return isolate->heap()->ToBoolean(f->IsBuiltin()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetCode) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0); |
| Handle<Object> code = args.at<Object>(1); |
| |
| Handle<Context> context(target->context()); |
| |
| if (!code->IsNull()) { |
| RUNTIME_ASSERT(code->IsJSFunction()); |
| Handle<JSFunction> fun = Handle<JSFunction>::cast(code); |
| Handle<SharedFunctionInfo> shared(fun->shared()); |
| |
| if (!SharedFunctionInfo::EnsureCompiled(shared, KEEP_EXCEPTION)) { |
| return Failure::Exception(); |
| } |
| // Since we don't store the source for this we should never |
| // optimize this. |
| shared->code()->set_optimizable(false); |
| // Set the code, scope info, formal parameter count, |
| // and the length of the target function. |
| target->shared()->set_code(shared->code()); |
| target->ReplaceCode(shared->code()); |
| target->shared()->set_scope_info(shared->scope_info()); |
| target->shared()->set_length(shared->length()); |
| target->shared()->set_formal_parameter_count( |
| shared->formal_parameter_count()); |
| // Set the source code of the target function to undefined. |
| // SetCode is only used for built-in constructors like String, |
| // Array, and Object, and some web code |
| // doesn't like seeing source code for constructors. |
| target->shared()->set_script(isolate->heap()->undefined_value()); |
| target->shared()->code()->set_optimizable(false); |
| // Clear the optimization hints related to the compiled code as these are no |
| // longer valid when the code is overwritten. |
| target->shared()->ClearThisPropertyAssignmentsInfo(); |
| context = Handle<Context>(fun->context()); |
| |
| // Make sure we get a fresh copy of the literal vector to avoid |
| // cross context contamination. |
| int number_of_literals = fun->NumberOfLiterals(); |
| Handle<FixedArray> literals = |
| isolate->factory()->NewFixedArray(number_of_literals, TENURED); |
| if (number_of_literals > 0) { |
| // Insert the object, regexp and array functions in the literals |
| // array prefix. These are the functions that will be used when |
| // creating object, regexp and array literals. |
| literals->set(JSFunction::kLiteralGlobalContextIndex, |
| context->global_context()); |
| } |
| target->set_literals(*literals); |
| target->set_next_function_link(isolate->heap()->undefined_value()); |
| |
| if (isolate->logger()->is_logging() || CpuProfiler::is_profiling(isolate)) { |
| isolate->logger()->LogExistingFunction( |
| shared, Handle<Code>(shared->code())); |
| } |
| } |
| |
| target->set_context(*context); |
| return *target; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetExpectedNumberOfProperties) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| CONVERT_SMI_ARG_CHECKED(num, 1); |
| RUNTIME_ASSERT(num >= 0); |
| SetExpectedNofProperties(function, num); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| MUST_USE_RESULT static MaybeObject* CharFromCode(Isolate* isolate, |
| Object* char_code) { |
| uint32_t code; |
| if (char_code->ToArrayIndex(&code)) { |
| if (code <= 0xffff) { |
| return isolate->heap()->LookupSingleCharacterStringFromCode(code); |
| } |
| } |
| return isolate->heap()->empty_string(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCharCodeAt) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(String, subject, 0); |
| Object* index = args[1]; |
| RUNTIME_ASSERT(index->IsNumber()); |
| |
| uint32_t i = 0; |
| if (index->IsSmi()) { |
| int value = Smi::cast(index)->value(); |
| if (value < 0) return isolate->heap()->nan_value(); |
| i = value; |
| } else { |
| ASSERT(index->IsHeapNumber()); |
| double value = HeapNumber::cast(index)->value(); |
| i = static_cast<uint32_t>(DoubleToInteger(value)); |
| } |
| |
| // Flatten the string. If someone wants to get a char at an index |
| // in a cons string, it is likely that more indices will be |
| // accessed. |
| Object* flat; |
| { MaybeObject* maybe_flat = subject->TryFlatten(); |
| if (!maybe_flat->ToObject(&flat)) return maybe_flat; |
| } |
| subject = String::cast(flat); |
| |
| if (i >= static_cast<uint32_t>(subject->length())) { |
| return isolate->heap()->nan_value(); |
| } |
| |
| return Smi::FromInt(subject->Get(i)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CharFromCode) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| return CharFromCode(isolate, args[0]); |
| } |
| |
| |
| class FixedArrayBuilder { |
| public: |
| explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity) |
| : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)), |
| length_(0), |
| has_non_smi_elements_(false) { |
| // Require a non-zero initial size. Ensures that doubling the size to |
| // extend the array will work. |
| ASSERT(initial_capacity > 0); |
| } |
| |
| explicit FixedArrayBuilder(Handle<FixedArray> backing_store) |
| : array_(backing_store), |
| length_(0), |
| has_non_smi_elements_(false) { |
| // Require a non-zero initial size. Ensures that doubling the size to |
| // extend the array will work. |
| ASSERT(backing_store->length() > 0); |
| } |
| |
| bool HasCapacity(int elements) { |
| int length = array_->length(); |
| int required_length = length_ + elements; |
| return (length >= required_length); |
| } |
| |
| void EnsureCapacity(int elements) { |
| int length = array_->length(); |
| int required_length = length_ + elements; |
| if (length < required_length) { |
| int new_length = length; |
| do { |
| new_length *= 2; |
| } while (new_length < required_length); |
| Handle<FixedArray> extended_array = |
| array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length); |
| array_->CopyTo(0, *extended_array, 0, length_); |
| array_ = extended_array; |
| } |
| } |
| |
| void Add(Object* value) { |
| ASSERT(!value->IsSmi()); |
| ASSERT(length_ < capacity()); |
| array_->set(length_, value); |
| length_++; |
| has_non_smi_elements_ = true; |
| } |
| |
| void Add(Smi* value) { |
| ASSERT(value->IsSmi()); |
| ASSERT(length_ < capacity()); |
| array_->set(length_, value); |
| length_++; |
| } |
| |
| Handle<FixedArray> array() { |
| return array_; |
| } |
| |
| int length() { |
| return length_; |
| } |
| |
| int capacity() { |
| return array_->length(); |
| } |
| |
| Handle<JSArray> ToJSArray() { |
| Handle<JSArray> result_array = FACTORY->NewJSArrayWithElements(array_); |
| result_array->set_length(Smi::FromInt(length_)); |
| return result_array; |
| } |
| |
| Handle<JSArray> ToJSArray(Handle<JSArray> target_array) { |
| FACTORY->SetContent(target_array, array_); |
| target_array->set_length(Smi::FromInt(length_)); |
| return target_array; |
| } |
| |
| private: |
| Handle<FixedArray> array_; |
| int length_; |
| bool has_non_smi_elements_; |
| }; |
| |
| |
| // Forward declarations. |
| const int kStringBuilderConcatHelperLengthBits = 11; |
| const int kStringBuilderConcatHelperPositionBits = 19; |
| |
| template <typename schar> |
| static inline void StringBuilderConcatHelper(String*, |
| schar*, |
| FixedArray*, |
| int); |
| |
| typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits> |
| StringBuilderSubstringLength; |
| typedef BitField<int, |
| kStringBuilderConcatHelperLengthBits, |
| kStringBuilderConcatHelperPositionBits> |
| StringBuilderSubstringPosition; |
| |
| |
| class ReplacementStringBuilder { |
| public: |
| ReplacementStringBuilder(Heap* heap, |
| Handle<String> subject, |
| int estimated_part_count) |
| : heap_(heap), |
| array_builder_(heap->isolate(), estimated_part_count), |
| subject_(subject), |
| character_count_(0), |
| is_ascii_(subject->IsAsciiRepresentation()) { |
| // Require a non-zero initial size. Ensures that doubling the size to |
| // extend the array will work. |
| ASSERT(estimated_part_count > 0); |
| } |
| |
| static inline void AddSubjectSlice(FixedArrayBuilder* builder, |
| int from, |
| int to) { |
| ASSERT(from >= 0); |
| int length = to - from; |
| ASSERT(length > 0); |
| if (StringBuilderSubstringLength::is_valid(length) && |
| StringBuilderSubstringPosition::is_valid(from)) { |
| int encoded_slice = StringBuilderSubstringLength::encode(length) | |
| StringBuilderSubstringPosition::encode(from); |
| builder->Add(Smi::FromInt(encoded_slice)); |
| } else { |
| // Otherwise encode as two smis. |
| builder->Add(Smi::FromInt(-length)); |
| builder->Add(Smi::FromInt(from)); |
| } |
| } |
| |
| |
| void EnsureCapacity(int elements) { |
| array_builder_.EnsureCapacity(elements); |
| } |
| |
| |
| void AddSubjectSlice(int from, int to) { |
| AddSubjectSlice(&array_builder_, from, to); |
| IncrementCharacterCount(to - from); |
| } |
| |
| |
| void AddString(Handle<String> string) { |
| int length = string->length(); |
| ASSERT(length > 0); |
| AddElement(*string); |
| if (!string->IsAsciiRepresentation()) { |
| is_ascii_ = false; |
| } |
| IncrementCharacterCount(length); |
| } |
| |
| |
| Handle<String> ToString() { |
| if (array_builder_.length() == 0) { |
| return heap_->isolate()->factory()->empty_string(); |
| } |
| |
| Handle<String> joined_string; |
| if (is_ascii_) { |
| Handle<SeqAsciiString> seq = NewRawAsciiString(character_count_); |
| AssertNoAllocation no_alloc; |
| char* char_buffer = seq->GetChars(); |
| StringBuilderConcatHelper(*subject_, |
| char_buffer, |
| *array_builder_.array(), |
| array_builder_.length()); |
| joined_string = Handle<String>::cast(seq); |
| } else { |
| // Non-ASCII. |
| Handle<SeqTwoByteString> seq = NewRawTwoByteString(character_count_); |
| AssertNoAllocation no_alloc; |
| uc16* char_buffer = seq->GetChars(); |
| StringBuilderConcatHelper(*subject_, |
| char_buffer, |
| *array_builder_.array(), |
| array_builder_.length()); |
| joined_string = Handle<String>::cast(seq); |
| } |
| return joined_string; |
| } |
| |
| |
| void IncrementCharacterCount(int by) { |
| if (character_count_ > String::kMaxLength - by) { |
| V8::FatalProcessOutOfMemory("String.replace result too large."); |
| } |
| character_count_ += by; |
| } |
| |
| Handle<JSArray> GetParts() { |
| return array_builder_.ToJSArray(); |
| } |
| |
| private: |
| Handle<SeqAsciiString> NewRawAsciiString(int length) { |
| return heap_->isolate()->factory()->NewRawAsciiString(length); |
| } |
| |
| |
| Handle<SeqTwoByteString> NewRawTwoByteString(int length) { |
| return heap_->isolate()->factory()->NewRawTwoByteString(length); |
| } |
| |
| |
| void AddElement(Object* element) { |
| ASSERT(element->IsSmi() || element->IsString()); |
| ASSERT(array_builder_.capacity() > array_builder_.length()); |
| array_builder_.Add(element); |
| } |
| |
| Heap* heap_; |
| FixedArrayBuilder array_builder_; |
| Handle<String> subject_; |
| int character_count_; |
| bool is_ascii_; |
| }; |
| |
| |
| class CompiledReplacement { |
| public: |
| CompiledReplacement() |
| : parts_(1), replacement_substrings_(0), simple_hint_(false) {} |
| |
| void Compile(Handle<String> replacement, |
| int capture_count, |
| int subject_length); |
| |
| void Apply(ReplacementStringBuilder* builder, |
| int match_from, |
| int match_to, |
| Handle<JSArray> last_match_info); |
| |
| // Number of distinct parts of the replacement pattern. |
| int parts() { |
| return parts_.length(); |
| } |
| |
| bool simple_hint() { |
| return simple_hint_; |
| } |
| |
| private: |
| enum PartType { |
| SUBJECT_PREFIX = 1, |
| SUBJECT_SUFFIX, |
| SUBJECT_CAPTURE, |
| REPLACEMENT_SUBSTRING, |
| REPLACEMENT_STRING, |
| |
| NUMBER_OF_PART_TYPES |
| }; |
| |
| struct ReplacementPart { |
| static inline ReplacementPart SubjectMatch() { |
| return ReplacementPart(SUBJECT_CAPTURE, 0); |
| } |
| static inline ReplacementPart SubjectCapture(int capture_index) { |
| return ReplacementPart(SUBJECT_CAPTURE, capture_index); |
| } |
| static inline ReplacementPart SubjectPrefix() { |
| return ReplacementPart(SUBJECT_PREFIX, 0); |
| } |
| static inline ReplacementPart SubjectSuffix(int subject_length) { |
| return ReplacementPart(SUBJECT_SUFFIX, subject_length); |
| } |
| static inline ReplacementPart ReplacementString() { |
| return ReplacementPart(REPLACEMENT_STRING, 0); |
| } |
| static inline ReplacementPart ReplacementSubString(int from, int to) { |
| ASSERT(from >= 0); |
| ASSERT(to > from); |
| return ReplacementPart(-from, to); |
| } |
| |
| // If tag <= 0 then it is the negation of a start index of a substring of |
| // the replacement pattern, otherwise it's a value from PartType. |
| ReplacementPart(int tag, int data) |
| : tag(tag), data(data) { |
| // Must be non-positive or a PartType value. |
| ASSERT(tag < NUMBER_OF_PART_TYPES); |
| } |
| // Either a value of PartType or a non-positive number that is |
| // the negation of an index into the replacement string. |
| int tag; |
| // The data value's interpretation depends on the value of tag: |
| // tag == SUBJECT_PREFIX || |
| // tag == SUBJECT_SUFFIX: data is unused. |
| // tag == SUBJECT_CAPTURE: data is the number of the capture. |
| // tag == REPLACEMENT_SUBSTRING || |
| // tag == REPLACEMENT_STRING: data is index into array of substrings |
| // of the replacement string. |
| // tag <= 0: Temporary representation of the substring of the replacement |
| // string ranging over -tag .. data. |
| // Is replaced by REPLACEMENT_{SUB,}STRING when we create the |
| // substring objects. |
| int data; |
| }; |
| |
| template<typename Char> |
| static bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts, |
| Vector<Char> characters, |
| int capture_count, |
| int subject_length) { |
| int length = characters.length(); |
| int last = 0; |
| for (int i = 0; i < length; i++) { |
| Char c = characters[i]; |
| if (c == '$') { |
| int next_index = i + 1; |
| if (next_index == length) { // No next character! |
| break; |
| } |
| Char c2 = characters[next_index]; |
| switch (c2) { |
| case '$': |
| if (i > last) { |
| // There is a substring before. Include the first "$". |
| parts->Add(ReplacementPart::ReplacementSubString(last, next_index)); |
| last = next_index + 1; // Continue after the second "$". |
| } else { |
| // Let the next substring start with the second "$". |
| last = next_index; |
| } |
| i = next_index; |
| break; |
| case '`': |
| if (i > last) { |
| parts->Add(ReplacementPart::ReplacementSubString(last, i)); |
| } |
| parts->Add(ReplacementPart::SubjectPrefix()); |
| i = next_index; |
| last = i + 1; |
| break; |
| case '\'': |
| if (i > last) { |
| parts->Add(ReplacementPart::ReplacementSubString(last, i)); |
| } |
| parts->Add(ReplacementPart::SubjectSuffix(subject_length)); |
| i = next_index; |
| last = i + 1; |
| break; |
| case '&': |
| if (i > last) { |
| parts->Add(ReplacementPart::ReplacementSubString(last, i)); |
| } |
| parts->Add(ReplacementPart::SubjectMatch()); |
| i = next_index; |
| last = i + 1; |
| break; |
| case '0': |
| case '1': |
| case '2': |
| case '3': |
| case '4': |
| case '5': |
| case '6': |
| case '7': |
| case '8': |
| case '9': { |
| int capture_ref = c2 - '0'; |
| if (capture_ref > capture_count) { |
| i = next_index; |
| continue; |
| } |
| int second_digit_index = next_index + 1; |
| if (second_digit_index < length) { |
| // Peek ahead to see if we have two digits. |
| Char c3 = characters[second_digit_index]; |
| if ('0' <= c3 && c3 <= '9') { // Double digits. |
| int double_digit_ref = capture_ref * 10 + c3 - '0'; |
| if (double_digit_ref <= capture_count) { |
| next_index = second_digit_index; |
| capture_ref = double_digit_ref; |
| } |
| } |
| } |
| if (capture_ref > 0) { |
| if (i > last) { |
| parts->Add(ReplacementPart::ReplacementSubString(last, i)); |
| } |
| ASSERT(capture_ref <= capture_count); |
| parts->Add(ReplacementPart::SubjectCapture(capture_ref)); |
| last = next_index + 1; |
| } |
| i = next_index; |
| break; |
| } |
| default: |
| i = next_index; |
| break; |
| } |
| } |
| } |
| if (length > last) { |
| if (last == 0) { |
| parts->Add(ReplacementPart::ReplacementString()); |
| return true; |
| } else { |
| parts->Add(ReplacementPart::ReplacementSubString(last, length)); |
| } |
| } |
| return false; |
| } |
| |
| ZoneList<ReplacementPart> parts_; |
| ZoneList<Handle<String> > replacement_substrings_; |
| bool simple_hint_; |
| }; |
| |
| |
| void CompiledReplacement::Compile(Handle<String> replacement, |
| int capture_count, |
| int subject_length) { |
| { |
| AssertNoAllocation no_alloc; |
| String::FlatContent content = replacement->GetFlatContent(); |
| ASSERT(content.IsFlat()); |
| if (content.IsAscii()) { |
| simple_hint_ = ParseReplacementPattern(&parts_, |
| content.ToAsciiVector(), |
| capture_count, |
| subject_length); |
| } else { |
| ASSERT(content.IsTwoByte()); |
| simple_hint_ = ParseReplacementPattern(&parts_, |
| content.ToUC16Vector(), |
| capture_count, |
| subject_length); |
| } |
| } |
| Isolate* isolate = replacement->GetIsolate(); |
| // Find substrings of replacement string and create them as String objects. |
| int substring_index = 0; |
| for (int i = 0, n = parts_.length(); i < n; i++) { |
| int tag = parts_[i].tag; |
| if (tag <= 0) { // A replacement string slice. |
| int from = -tag; |
| int to = parts_[i].data; |
| replacement_substrings_.Add( |
| isolate->factory()->NewSubString(replacement, from, to)); |
| parts_[i].tag = REPLACEMENT_SUBSTRING; |
| parts_[i].data = substring_index; |
| substring_index++; |
| } else if (tag == REPLACEMENT_STRING) { |
| replacement_substrings_.Add(replacement); |
| parts_[i].data = substring_index; |
| substring_index++; |
| } |
| } |
| } |
| |
| |
| void CompiledReplacement::Apply(ReplacementStringBuilder* builder, |
| int match_from, |
| int match_to, |
| Handle<JSArray> last_match_info) { |
| for (int i = 0, n = parts_.length(); i < n; i++) { |
| ReplacementPart part = parts_[i]; |
| switch (part.tag) { |
| case SUBJECT_PREFIX: |
| if (match_from > 0) builder->AddSubjectSlice(0, match_from); |
| break; |
| case SUBJECT_SUFFIX: { |
| int subject_length = part.data; |
| if (match_to < subject_length) { |
| builder->AddSubjectSlice(match_to, subject_length); |
| } |
| break; |
| } |
| case SUBJECT_CAPTURE: { |
| int capture = part.data; |
| FixedArray* match_info = FixedArray::cast(last_match_info->elements()); |
| int from = RegExpImpl::GetCapture(match_info, capture * 2); |
| int to = RegExpImpl::GetCapture(match_info, capture * 2 + 1); |
| if (from >= 0 && to > from) { |
| builder->AddSubjectSlice(from, to); |
| } |
| break; |
| } |
| case REPLACEMENT_SUBSTRING: |
| case REPLACEMENT_STRING: |
| builder->AddString(replacement_substrings_[part.data]); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| |
| void FindAsciiStringIndices(Vector<const char> subject, |
| char pattern, |
| ZoneList<int>* indices, |
| unsigned int limit) { |
| ASSERT(limit > 0); |
| // Collect indices of pattern in subject using memchr. |
| // Stop after finding at most limit values. |
| const char* subject_start = reinterpret_cast<const char*>(subject.start()); |
| const char* subject_end = subject_start + subject.length(); |
| const char* pos = subject_start; |
| while (limit > 0) { |
| pos = reinterpret_cast<const char*>( |
| memchr(pos, pattern, subject_end - pos)); |
| if (pos == NULL) return; |
| indices->Add(static_cast<int>(pos - subject_start)); |
| pos++; |
| limit--; |
| } |
| } |
| |
| |
| template <typename SubjectChar, typename PatternChar> |
| void FindStringIndices(Isolate* isolate, |
| Vector<const SubjectChar> subject, |
| Vector<const PatternChar> pattern, |
| ZoneList<int>* indices, |
| unsigned int limit) { |
| ASSERT(limit > 0); |
| // Collect indices of pattern in subject. |
| // Stop after finding at most limit values. |
| int pattern_length = pattern.length(); |
| int index = 0; |
| StringSearch<PatternChar, SubjectChar> search(isolate, pattern); |
| while (limit > 0) { |
| index = search.Search(subject, index); |
| if (index < 0) return; |
| indices->Add(index); |
| index += pattern_length; |
| limit--; |
| } |
| } |
| |
| |
| void FindStringIndicesDispatch(Isolate* isolate, |
| String* subject, |
| String* pattern, |
| ZoneList<int>* indices, |
| unsigned int limit) { |
| { |
| AssertNoAllocation no_gc; |
| String::FlatContent subject_content = subject->GetFlatContent(); |
| String::FlatContent pattern_content = pattern->GetFlatContent(); |
| ASSERT(subject_content.IsFlat()); |
| ASSERT(pattern_content.IsFlat()); |
| if (subject_content.IsAscii()) { |
| Vector<const char> subject_vector = subject_content.ToAsciiVector(); |
| if (pattern_content.IsAscii()) { |
| Vector<const char> pattern_vector = pattern_content.ToAsciiVector(); |
| if (pattern_vector.length() == 1) { |
| FindAsciiStringIndices(subject_vector, |
| pattern_vector[0], |
| indices, |
| limit); |
| } else { |
| FindStringIndices(isolate, |
| subject_vector, |
| pattern_vector, |
| indices, |
| limit); |
| } |
| } else { |
| FindStringIndices(isolate, |
| subject_vector, |
| pattern_content.ToUC16Vector(), |
| indices, |
| limit); |
| } |
| } else { |
| Vector<const uc16> subject_vector = subject_content.ToUC16Vector(); |
| if (pattern_content.IsAscii()) { |
| FindStringIndices(isolate, |
| subject_vector, |
| pattern_content.ToAsciiVector(), |
| indices, |
| limit); |
| } else { |
| FindStringIndices(isolate, |
| subject_vector, |
| pattern_content.ToUC16Vector(), |
| indices, |
| limit); |
| } |
| } |
| } |
| } |
| |
| |
| template<typename ResultSeqString> |
| MUST_USE_RESULT static MaybeObject* StringReplaceStringWithString( |
| Isolate* isolate, |
| Handle<String> subject, |
| Handle<JSRegExp> pattern_regexp, |
| Handle<String> replacement) { |
| ASSERT(subject->IsFlat()); |
| ASSERT(replacement->IsFlat()); |
| |
| ZoneScope zone_space(isolate, DELETE_ON_EXIT); |
| ZoneList<int> indices(8); |
| ASSERT_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag()); |
| String* pattern = |
| String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex)); |
| int subject_len = subject->length(); |
| int pattern_len = pattern->length(); |
| int replacement_len = replacement->length(); |
| |
| FindStringIndicesDispatch(isolate, *subject, pattern, &indices, 0xffffffff); |
| |
| int matches = indices.length(); |
| if (matches == 0) return *subject; |
| |
| int result_len = (replacement_len - pattern_len) * matches + subject_len; |
| int subject_pos = 0; |
| int result_pos = 0; |
| |
| Handle<ResultSeqString> result; |
| if (ResultSeqString::kHasAsciiEncoding) { |
| result = Handle<ResultSeqString>::cast( |
| isolate->factory()->NewRawAsciiString(result_len)); |
| } else { |
| result = Handle<ResultSeqString>::cast( |
| isolate->factory()->NewRawTwoByteString(result_len)); |
| } |
| |
| for (int i = 0; i < matches; i++) { |
| // Copy non-matched subject content. |
| if (subject_pos < indices.at(i)) { |
| String::WriteToFlat(*subject, |
| result->GetChars() + result_pos, |
| subject_pos, |
| indices.at(i)); |
| result_pos += indices.at(i) - subject_pos; |
| } |
| |
| // Replace match. |
| if (replacement_len > 0) { |
| String::WriteToFlat(*replacement, |
| result->GetChars() + result_pos, |
| 0, |
| replacement_len); |
| result_pos += replacement_len; |
| } |
| |
| subject_pos = indices.at(i) + pattern_len; |
| } |
| // Add remaining subject content at the end. |
| if (subject_pos < subject_len) { |
| String::WriteToFlat(*subject, |
| result->GetChars() + result_pos, |
| subject_pos, |
| subject_len); |
| } |
| return *result; |
| } |
| |
| |
| MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithString( |
| Isolate* isolate, |
| String* subject, |
| JSRegExp* regexp, |
| String* replacement, |
| JSArray* last_match_info) { |
| ASSERT(subject->IsFlat()); |
| ASSERT(replacement->IsFlat()); |
| |
| HandleScope handles(isolate); |
| |
| int length = subject->length(); |
| Handle<String> subject_handle(subject); |
| Handle<JSRegExp> regexp_handle(regexp); |
| Handle<String> replacement_handle(replacement); |
| Handle<JSArray> last_match_info_handle(last_match_info); |
| Handle<Object> match = RegExpImpl::Exec(regexp_handle, |
| subject_handle, |
| 0, |
| last_match_info_handle); |
| if (match.is_null()) { |
| return Failure::Exception(); |
| } |
| if (match->IsNull()) { |
| return *subject_handle; |
| } |
| |
| int capture_count = regexp_handle->CaptureCount(); |
| |
| // CompiledReplacement uses zone allocation. |
| ZoneScope zone(isolate, DELETE_ON_EXIT); |
| CompiledReplacement compiled_replacement; |
| compiled_replacement.Compile(replacement_handle, |
| capture_count, |
| length); |
| |
| bool is_global = regexp_handle->GetFlags().is_global(); |
| |
| // Shortcut for simple non-regexp global replacements |
| if (is_global && |
| regexp_handle->TypeTag() == JSRegExp::ATOM && |
| compiled_replacement.simple_hint()) { |
| if (subject_handle->HasOnlyAsciiChars() && |
| replacement_handle->HasOnlyAsciiChars()) { |
| return StringReplaceStringWithString<SeqAsciiString>( |
| isolate, subject_handle, regexp_handle, replacement_handle); |
| } else { |
| return StringReplaceStringWithString<SeqTwoByteString>( |
| isolate, subject_handle, regexp_handle, replacement_handle); |
| } |
| } |
| |
| // Guessing the number of parts that the final result string is built |
| // from. Global regexps can match any number of times, so we guess |
| // conservatively. |
| int expected_parts = |
| (compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1; |
| ReplacementStringBuilder builder(isolate->heap(), |
| subject_handle, |
| expected_parts); |
| |
| // Index of end of last match. |
| int prev = 0; |
| |
| // Number of parts added by compiled replacement plus preceeding |
| // string and possibly suffix after last match. It is possible for |
| // all components to use two elements when encoded as two smis. |
| const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2); |
| bool matched = true; |
| do { |
| ASSERT(last_match_info_handle->HasFastElements()); |
| // Increase the capacity of the builder before entering local handle-scope, |
| // so its internal buffer can safely allocate a new handle if it grows. |
| builder.EnsureCapacity(parts_added_per_loop); |
| |
| HandleScope loop_scope(isolate); |
| int start, end; |
| { |
| AssertNoAllocation match_info_array_is_not_in_a_handle; |
| FixedArray* match_info_array = |
| FixedArray::cast(last_match_info_handle->elements()); |
| |
| ASSERT_EQ(capture_count * 2 + 2, |
| RegExpImpl::GetLastCaptureCount(match_info_array)); |
| start = RegExpImpl::GetCapture(match_info_array, 0); |
| end = RegExpImpl::GetCapture(match_info_array, 1); |
| } |
| |
| if (prev < start) { |
| builder.AddSubjectSlice(prev, start); |
| } |
| compiled_replacement.Apply(&builder, |
| start, |
| end, |
| last_match_info_handle); |
| prev = end; |
| |
| // Only continue checking for global regexps. |
| if (!is_global) break; |
| |
| // Continue from where the match ended, unless it was an empty match. |
| int next = end; |
| if (start == end) { |
| next = end + 1; |
| if (next > length) break; |
| } |
| |
| match = RegExpImpl::Exec(regexp_handle, |
| subject_handle, |
| next, |
| last_match_info_handle); |
| if (match.is_null()) { |
| return Failure::Exception(); |
| } |
| matched = !match->IsNull(); |
| } while (matched); |
| |
| if (prev < length) { |
| builder.AddSubjectSlice(prev, length); |
| } |
| |
| return *(builder.ToString()); |
| } |
| |
| |
| template <typename ResultSeqString> |
| MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithEmptyString( |
| Isolate* isolate, |
| String* subject, |
| JSRegExp* regexp, |
| JSArray* last_match_info) { |
| ASSERT(subject->IsFlat()); |
| |
| HandleScope handles(isolate); |
| |
| Handle<String> subject_handle(subject); |
| Handle<JSRegExp> regexp_handle(regexp); |
| |
| // Shortcut for simple non-regexp global replacements |
| if (regexp_handle->GetFlags().is_global() && |
| regexp_handle->TypeTag() == JSRegExp::ATOM) { |
| Handle<String> empty_string_handle(HEAP->empty_string()); |
| if (subject_handle->HasOnlyAsciiChars()) { |
| return StringReplaceStringWithString<SeqAsciiString>( |
| isolate, subject_handle, regexp_handle, empty_string_handle); |
| } else { |
| return StringReplaceStringWithString<SeqTwoByteString>( |
| isolate, subject_handle, regexp_handle, empty_string_handle); |
| } |
| } |
| |
| Handle<JSArray> last_match_info_handle(last_match_info); |
| Handle<Object> match = RegExpImpl::Exec(regexp_handle, |
| subject_handle, |
| 0, |
| last_match_info_handle); |
| if (match.is_null()) return Failure::Exception(); |
| if (match->IsNull()) return *subject_handle; |
| |
| ASSERT(last_match_info_handle->HasFastElements()); |
| |
| int start, end; |
| { |
| AssertNoAllocation match_info_array_is_not_in_a_handle; |
| FixedArray* match_info_array = |
| FixedArray::cast(last_match_info_handle->elements()); |
| |
| start = RegExpImpl::GetCapture(match_info_array, 0); |
| end = RegExpImpl::GetCapture(match_info_array, 1); |
| } |
| |
| int length = subject_handle->length(); |
| int new_length = length - (end - start); |
| if (new_length == 0) { |
| return isolate->heap()->empty_string(); |
| } |
| Handle<ResultSeqString> answer; |
| if (ResultSeqString::kHasAsciiEncoding) { |
| answer = Handle<ResultSeqString>::cast( |
| isolate->factory()->NewRawAsciiString(new_length)); |
| } else { |
| answer = Handle<ResultSeqString>::cast( |
| isolate->factory()->NewRawTwoByteString(new_length)); |
| } |
| |
| // If the regexp isn't global, only match once. |
| if (!regexp_handle->GetFlags().is_global()) { |
| if (start > 0) { |
| String::WriteToFlat(*subject_handle, |
| answer->GetChars(), |
| 0, |
| start); |
| } |
| if (end < length) { |
| String::WriteToFlat(*subject_handle, |
| answer->GetChars() + start, |
| end, |
| length); |
| } |
| return *answer; |
| } |
| |
| int prev = 0; // Index of end of last match. |
| int next = 0; // Start of next search (prev unless last match was empty). |
| int position = 0; |
| |
| do { |
| if (prev < start) { |
| // Add substring subject[prev;start] to answer string. |
| String::WriteToFlat(*subject_handle, |
| answer->GetChars() + position, |
| prev, |
| start); |
| position += start - prev; |
| } |
| prev = end; |
| next = end; |
| // Continue from where the match ended, unless it was an empty match. |
| if (start == end) { |
| next++; |
| if (next > length) break; |
| } |
| match = RegExpImpl::Exec(regexp_handle, |
| subject_handle, |
| next, |
| last_match_info_handle); |
| if (match.is_null()) return Failure::Exception(); |
| if (match->IsNull()) break; |
| |
| ASSERT(last_match_info_handle->HasFastElements()); |
| HandleScope loop_scope(isolate); |
| { |
| AssertNoAllocation match_info_array_is_not_in_a_handle; |
| FixedArray* match_info_array = |
| FixedArray::cast(last_match_info_handle->elements()); |
| start = RegExpImpl::GetCapture(match_info_array, 0); |
| end = RegExpImpl::GetCapture(match_info_array, 1); |
| } |
| } while (true); |
| |
| if (prev < length) { |
| // Add substring subject[prev;length] to answer string. |
| String::WriteToFlat(*subject_handle, |
| answer->GetChars() + position, |
| prev, |
| length); |
| position += length - prev; |
| } |
| |
| if (position == 0) { |
| return isolate->heap()->empty_string(); |
| } |
| |
| // Shorten string and fill |
| int string_size = ResultSeqString::SizeFor(position); |
| int allocated_string_size = ResultSeqString::SizeFor(new_length); |
| int delta = allocated_string_size - string_size; |
| |
| answer->set_length(position); |
| if (delta == 0) return *answer; |
| |
| Address end_of_string = answer->address() + string_size; |
| isolate->heap()->CreateFillerObjectAt(end_of_string, delta); |
| if (Marking::IsBlack(Marking::MarkBitFrom(*answer))) { |
| MemoryChunk::IncrementLiveBytesFromMutator(answer->address(), -delta); |
| } |
| |
| return *answer; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceRegExpWithString) { |
| ASSERT(args.length() == 4); |
| |
| CONVERT_ARG_CHECKED(String, subject, 0); |
| if (!subject->IsFlat()) { |
| Object* flat_subject; |
| { MaybeObject* maybe_flat_subject = subject->TryFlatten(); |
| if (!maybe_flat_subject->ToObject(&flat_subject)) { |
| return maybe_flat_subject; |
| } |
| } |
| subject = String::cast(flat_subject); |
| } |
| |
| CONVERT_ARG_CHECKED(String, replacement, 2); |
| if (!replacement->IsFlat()) { |
| Object* flat_replacement; |
| { MaybeObject* maybe_flat_replacement = replacement->TryFlatten(); |
| if (!maybe_flat_replacement->ToObject(&flat_replacement)) { |
| return maybe_flat_replacement; |
| } |
| } |
| replacement = String::cast(flat_replacement); |
| } |
| |
| CONVERT_ARG_CHECKED(JSRegExp, regexp, 1); |
| CONVERT_ARG_CHECKED(JSArray, last_match_info, 3); |
| |
| ASSERT(last_match_info->HasFastElements()); |
| |
| if (replacement->length() == 0) { |
| if (subject->HasOnlyAsciiChars()) { |
| return StringReplaceRegExpWithEmptyString<SeqAsciiString>( |
| isolate, subject, regexp, last_match_info); |
| } else { |
| return StringReplaceRegExpWithEmptyString<SeqTwoByteString>( |
| isolate, subject, regexp, last_match_info); |
| } |
| } |
| |
| return StringReplaceRegExpWithString(isolate, |
| subject, |
| regexp, |
| replacement, |
| last_match_info); |
| } |
| |
| |
| Handle<String> Runtime::StringReplaceOneCharWithString(Isolate* isolate, |
| Handle<String> subject, |
| Handle<String> search, |
| Handle<String> replace, |
| bool* found, |
| int recursion_limit) { |
| if (recursion_limit == 0) return Handle<String>::null(); |
| if (subject->IsConsString()) { |
| ConsString* cons = ConsString::cast(*subject); |
| Handle<String> first = Handle<String>(cons->first()); |
| Handle<String> second = Handle<String>(cons->second()); |
| Handle<String> new_first = |
| StringReplaceOneCharWithString(isolate, |
| first, |
| search, |
| replace, |
| found, |
| recursion_limit - 1); |
| if (*found) return isolate->factory()->NewConsString(new_first, second); |
| if (new_first.is_null()) return new_first; |
| |
| Handle<String> new_second = |
| StringReplaceOneCharWithString(isolate, |
| second, |
| search, |
| replace, |
| found, |
| recursion_limit - 1); |
| if (*found) return isolate->factory()->NewConsString(first, new_second); |
| if (new_second.is_null()) return new_second; |
| |
| return subject; |
| } else { |
| int index = StringMatch(isolate, subject, search, 0); |
| if (index == -1) return subject; |
| *found = true; |
| Handle<String> first = isolate->factory()->NewSubString(subject, 0, index); |
| Handle<String> cons1 = isolate->factory()->NewConsString(first, replace); |
| Handle<String> second = |
| isolate->factory()->NewSubString(subject, index + 1, subject->length()); |
| return isolate->factory()->NewConsString(cons1, second); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceOneCharWithString) { |
| ASSERT(args.length() == 3); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, search, 1); |
| CONVERT_ARG_HANDLE_CHECKED(String, replace, 2); |
| |
| // If the cons string tree is too deep, we simply abort the recursion and |
| // retry with a flattened subject string. |
| const int kRecursionLimit = 0x1000; |
| bool found = false; |
| Handle<String> result = |
| Runtime::StringReplaceOneCharWithString(isolate, |
| subject, |
| search, |
| replace, |
| &found, |
| kRecursionLimit); |
| if (!result.is_null()) return *result; |
| return *Runtime::StringReplaceOneCharWithString(isolate, |
| FlattenGetString(subject), |
| search, |
| replace, |
| &found, |
| kRecursionLimit); |
| } |
| |
| |
| // Perform string match of pattern on subject, starting at start index. |
| // Caller must ensure that 0 <= start_index <= sub->length(), |
| // and should check that pat->length() + start_index <= sub->length(). |
| int Runtime::StringMatch(Isolate* isolate, |
| Handle<String> sub, |
| Handle<String> pat, |
| int start_index) { |
| ASSERT(0 <= start_index); |
| ASSERT(start_index <= sub->length()); |
| |
| int pattern_length = pat->length(); |
| if (pattern_length == 0) return start_index; |
| |
| int subject_length = sub->length(); |
| if (start_index + pattern_length > subject_length) return -1; |
| |
| if (!sub->IsFlat()) FlattenString(sub); |
| if (!pat->IsFlat()) FlattenString(pat); |
| |
| AssertNoAllocation no_heap_allocation; // ensure vectors stay valid |
| // Extract flattened substrings of cons strings before determining asciiness. |
| String::FlatContent seq_sub = sub->GetFlatContent(); |
| String::FlatContent seq_pat = pat->GetFlatContent(); |
| |
| // dispatch on type of strings |
| if (seq_pat.IsAscii()) { |
| Vector<const char> pat_vector = seq_pat.ToAsciiVector(); |
| if (seq_sub.IsAscii()) { |
| return SearchString(isolate, |
| seq_sub.ToAsciiVector(), |
| pat_vector, |
| start_index); |
| } |
| return SearchString(isolate, |
| seq_sub.ToUC16Vector(), |
| pat_vector, |
| start_index); |
| } |
| Vector<const uc16> pat_vector = seq_pat.ToUC16Vector(); |
| if (seq_sub.IsAscii()) { |
| return SearchString(isolate, |
| seq_sub.ToAsciiVector(), |
| pat_vector, |
| start_index); |
| } |
| return SearchString(isolate, |
| seq_sub.ToUC16Vector(), |
| pat_vector, |
| start_index); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringIndexOf) { |
| HandleScope scope(isolate); // create a new handle scope |
| ASSERT(args.length() == 3); |
| |
| CONVERT_ARG_HANDLE_CHECKED(String, sub, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, pat, 1); |
| |
| Object* index = args[2]; |
| uint32_t start_index; |
| if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); |
| |
| RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length())); |
| int position = |
| Runtime::StringMatch(isolate, sub, pat, start_index); |
| return Smi::FromInt(position); |
| } |
| |
| |
| template <typename schar, typename pchar> |
| static int StringMatchBackwards(Vector<const schar> subject, |
| Vector<const pchar> pattern, |
| int idx) { |
| int pattern_length = pattern.length(); |
| ASSERT(pattern_length >= 1); |
| ASSERT(idx + pattern_length <= subject.length()); |
| |
| if (sizeof(schar) == 1 && sizeof(pchar) > 1) { |
| for (int i = 0; i < pattern_length; i++) { |
| uc16 c = pattern[i]; |
| if (c > String::kMaxAsciiCharCode) { |
| return -1; |
| } |
| } |
| } |
| |
| pchar pattern_first_char = pattern[0]; |
| for (int i = idx; i >= 0; i--) { |
| if (subject[i] != pattern_first_char) continue; |
| int j = 1; |
| while (j < pattern_length) { |
| if (pattern[j] != subject[i+j]) { |
| break; |
| } |
| j++; |
| } |
| if (j == pattern_length) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLastIndexOf) { |
| HandleScope scope(isolate); // create a new handle scope |
| ASSERT(args.length() == 3); |
| |
| CONVERT_ARG_HANDLE_CHECKED(String, sub, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, pat, 1); |
| |
| Object* index = args[2]; |
| uint32_t start_index; |
| if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); |
| |
| uint32_t pat_length = pat->length(); |
| uint32_t sub_length = sub->length(); |
| |
| if (start_index + pat_length > sub_length) { |
| start_index = sub_length - pat_length; |
| } |
| |
| if (pat_length == 0) { |
| return Smi::FromInt(start_index); |
| } |
| |
| if (!sub->IsFlat()) FlattenString(sub); |
| if (!pat->IsFlat()) FlattenString(pat); |
| |
| int position = -1; |
| AssertNoAllocation no_heap_allocation; // ensure vectors stay valid |
| |
| String::FlatContent sub_content = sub->GetFlatContent(); |
| String::FlatContent pat_content = pat->GetFlatContent(); |
| |
| if (pat_content.IsAscii()) { |
| Vector<const char> pat_vector = pat_content.ToAsciiVector(); |
| if (sub_content.IsAscii()) { |
| position = StringMatchBackwards(sub_content.ToAsciiVector(), |
| pat_vector, |
| start_index); |
| } else { |
| position = StringMatchBackwards(sub_content.ToUC16Vector(), |
| pat_vector, |
| start_index); |
| } |
| } else { |
| Vector<const uc16> pat_vector = pat_content.ToUC16Vector(); |
| if (sub_content.IsAscii()) { |
| position = StringMatchBackwards(sub_content.ToAsciiVector(), |
| pat_vector, |
| start_index); |
| } else { |
| position = StringMatchBackwards(sub_content.ToUC16Vector(), |
| pat_vector, |
| start_index); |
| } |
| } |
| |
| return Smi::FromInt(position); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLocaleCompare) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(String, str1, 0); |
| CONVERT_ARG_CHECKED(String, str2, 1); |
| |
| if (str1 == str2) return Smi::FromInt(0); // Equal. |
| int str1_length = str1->length(); |
| int str2_length = str2->length(); |
| |
| // Decide trivial cases without flattening. |
| if (str1_length == 0) { |
| if (str2_length == 0) return Smi::FromInt(0); // Equal. |
| return Smi::FromInt(-str2_length); |
| } else { |
| if (str2_length == 0) return Smi::FromInt(str1_length); |
| } |
| |
| int end = str1_length < str2_length ? str1_length : str2_length; |
| |
| // No need to flatten if we are going to find the answer on the first |
| // character. At this point we know there is at least one character |
| // in each string, due to the trivial case handling above. |
| int d = str1->Get(0) - str2->Get(0); |
| if (d != 0) return Smi::FromInt(d); |
| |
| str1->TryFlatten(); |
| str2->TryFlatten(); |
| |
| StringInputBuffer& buf1 = |
| *isolate->runtime_state()->string_locale_compare_buf1(); |
| StringInputBuffer& buf2 = |
| *isolate->runtime_state()->string_locale_compare_buf2(); |
| |
| buf1.Reset(str1); |
| buf2.Reset(str2); |
| |
| for (int i = 0; i < end; i++) { |
| uint16_t char1 = buf1.GetNext(); |
| uint16_t char2 = buf2.GetNext(); |
| if (char1 != char2) return Smi::FromInt(char1 - char2); |
| } |
| |
| return Smi::FromInt(str1_length - str2_length); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SubString) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| CONVERT_ARG_CHECKED(String, value, 0); |
| int start, end; |
| // We have a fast integer-only case here to avoid a conversion to double in |
| // the common case where from and to are Smis. |
| if (args[1]->IsSmi() && args[2]->IsSmi()) { |
| CONVERT_SMI_ARG_CHECKED(from_number, 1); |
| CONVERT_SMI_ARG_CHECKED(to_number, 2); |
| start = from_number; |
| end = to_number; |
| } else { |
| CONVERT_DOUBLE_ARG_CHECKED(from_number, 1); |
| CONVERT_DOUBLE_ARG_CHECKED(to_number, 2); |
| start = FastD2I(from_number); |
| end = FastD2I(to_number); |
| } |
| RUNTIME_ASSERT(end >= start); |
| RUNTIME_ASSERT(start >= 0); |
| RUNTIME_ASSERT(end <= value->length()); |
| isolate->counters()->sub_string_runtime()->Increment(); |
| return value->SubString(start, end); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringMatch) { |
| ASSERT_EQ(3, args.length()); |
| |
| CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
| CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2); |
| HandleScope handles; |
| |
| Handle<Object> match = RegExpImpl::Exec(regexp, subject, 0, regexp_info); |
| |
| if (match.is_null()) { |
| return Failure::Exception(); |
| } |
| if (match->IsNull()) { |
| return isolate->heap()->null_value(); |
| } |
| int length = subject->length(); |
| |
| ZoneScope zone_space(isolate, DELETE_ON_EXIT); |
| ZoneList<int> offsets(8); |
| int start; |
| int end; |
| do { |
| { |
| AssertNoAllocation no_alloc; |
| FixedArray* elements = FixedArray::cast(regexp_info->elements()); |
| start = Smi::cast(elements->get(RegExpImpl::kFirstCapture))->value(); |
| end = Smi::cast(elements->get(RegExpImpl::kFirstCapture + 1))->value(); |
| } |
| offsets.Add(start); |
| offsets.Add(end); |
| if (start == end) if (++end > length) break; |
| match = RegExpImpl::Exec(regexp, subject, end, regexp_info); |
| if (match.is_null()) { |
| return Failure::Exception(); |
| } |
| } while (!match->IsNull()); |
| int matches = offsets.length() / 2; |
| Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches); |
| Handle<String> substring = isolate->factory()-> |
| NewSubString(subject, offsets.at(0), offsets.at(1)); |
| elements->set(0, *substring); |
| for (int i = 1; i < matches ; i++) { |
| int from = offsets.at(i * 2); |
| int to = offsets.at(i * 2 + 1); |
| Handle<String> substring = isolate->factory()-> |
| NewProperSubString(subject, from, to); |
| elements->set(i, *substring); |
| } |
| Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements); |
| result->set_length(Smi::FromInt(matches)); |
| return *result; |
| } |
| |
| |
| // Two smis before and after the match, for very long strings. |
| const int kMaxBuilderEntriesPerRegExpMatch = 5; |
| |
| |
| static void SetLastMatchInfoNoCaptures(Handle<String> subject, |
| Handle<JSArray> last_match_info, |
| int match_start, |
| int match_end) { |
| // Fill last_match_info with a single capture. |
| last_match_info->EnsureSize(2 + RegExpImpl::kLastMatchOverhead); |
| AssertNoAllocation no_gc; |
| FixedArray* elements = FixedArray::cast(last_match_info->elements()); |
| RegExpImpl::SetLastCaptureCount(elements, 2); |
| RegExpImpl::SetLastInput(elements, *subject); |
| RegExpImpl::SetLastSubject(elements, *subject); |
| RegExpImpl::SetCapture(elements, 0, match_start); |
| RegExpImpl::SetCapture(elements, 1, match_end); |
| } |
| |
| |
| template <typename SubjectChar, typename PatternChar> |
| static bool SearchStringMultiple(Isolate* isolate, |
| Vector<const SubjectChar> subject, |
| Vector<const PatternChar> pattern, |
| String* pattern_string, |
| FixedArrayBuilder* builder, |
| int* match_pos) { |
| int pos = *match_pos; |
| int subject_length = subject.length(); |
| int pattern_length = pattern.length(); |
| int max_search_start = subject_length - pattern_length; |
| StringSearch<PatternChar, SubjectChar> search(isolate, pattern); |
| while (pos <= max_search_start) { |
| if (!builder->HasCapacity(kMaxBuilderEntriesPerRegExpMatch)) { |
| *match_pos = pos; |
| return false; |
| } |
| // Position of end of previous match. |
| int match_end = pos + pattern_length; |
| int new_pos = search.Search(subject, match_end); |
| if (new_pos >= 0) { |
| // A match. |
| if (new_pos > match_end) { |
| ReplacementStringBuilder::AddSubjectSlice(builder, |
| match_end, |
| new_pos); |
| } |
| pos = new_pos; |
| builder->Add(pattern_string); |
| } else { |
| break; |
| } |
| } |
| |
| if (pos < max_search_start) { |
| ReplacementStringBuilder::AddSubjectSlice(builder, |
| pos + pattern_length, |
| subject_length); |
| } |
| *match_pos = pos; |
| return true; |
| } |
| |
| |
| static bool SearchStringMultiple(Isolate* isolate, |
| Handle<String> subject, |
| Handle<String> pattern, |
| Handle<JSArray> last_match_info, |
| FixedArrayBuilder* builder) { |
| ASSERT(subject->IsFlat()); |
| ASSERT(pattern->IsFlat()); |
| |
| // Treating as if a previous match was before first character. |
| int match_pos = -pattern->length(); |
| |
| for (;;) { // Break when search complete. |
| builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); |
| AssertNoAllocation no_gc; |
| String::FlatContent subject_content = subject->GetFlatContent(); |
| String::FlatContent pattern_content = pattern->GetFlatContent(); |
| if (subject_content.IsAscii()) { |
| Vector<const char> subject_vector = subject_content.ToAsciiVector(); |
| if (pattern_content.IsAscii()) { |
| if (SearchStringMultiple(isolate, |
| subject_vector, |
| pattern_content.ToAsciiVector(), |
| *pattern, |
| builder, |
| &match_pos)) break; |
| } else { |
| if (SearchStringMultiple(isolate, |
| subject_vector, |
| pattern_content.ToUC16Vector(), |
| *pattern, |
| builder, |
| &match_pos)) break; |
| } |
| } else { |
| Vector<const uc16> subject_vector = subject_content.ToUC16Vector(); |
| if (pattern_content.IsAscii()) { |
| if (SearchStringMultiple(isolate, |
| subject_vector, |
| pattern_content.ToAsciiVector(), |
| *pattern, |
| builder, |
| &match_pos)) break; |
| } else { |
| if (SearchStringMultiple(isolate, |
| subject_vector, |
| pattern_content.ToUC16Vector(), |
| *pattern, |
| builder, |
| &match_pos)) break; |
| } |
| } |
| } |
| |
| if (match_pos >= 0) { |
| SetLastMatchInfoNoCaptures(subject, |
| last_match_info, |
| match_pos, |
| match_pos + pattern->length()); |
| return true; |
| } |
| return false; // No matches at all. |
| } |
| |
| |
| static RegExpImpl::IrregexpResult SearchRegExpNoCaptureMultiple( |
| Isolate* isolate, |
| Handle<String> subject, |
| Handle<JSRegExp> regexp, |
| Handle<JSArray> last_match_array, |
| FixedArrayBuilder* builder) { |
| ASSERT(subject->IsFlat()); |
| int match_start = -1; |
| int match_end = 0; |
| int pos = 0; |
| int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject); |
| if (required_registers < 0) return RegExpImpl::RE_EXCEPTION; |
| |
| OffsetsVector registers(required_registers, isolate); |
| Vector<int32_t> register_vector(registers.vector(), registers.length()); |
| int subject_length = subject->length(); |
| bool first = true; |
| |
| for (;;) { // Break on failure, return on exception. |
| RegExpImpl::IrregexpResult result = |
| RegExpImpl::IrregexpExecOnce(regexp, |
| subject, |
| pos, |
| register_vector); |
| if (result == RegExpImpl::RE_SUCCESS) { |
| match_start = register_vector[0]; |
| builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); |
| if (match_end < match_start) { |
| ReplacementStringBuilder::AddSubjectSlice(builder, |
| match_end, |
| match_start); |
| } |
| match_end = register_vector[1]; |
| HandleScope loop_scope(isolate); |
| if (!first) { |
| builder->Add(*isolate->factory()->NewProperSubString(subject, |
| match_start, |
| match_end)); |
| } else { |
| builder->Add(*isolate->factory()->NewSubString(subject, |
| match_start, |
| match_end)); |
| } |
| if (match_start != match_end) { |
| pos = match_end; |
| } else { |
| pos = match_end + 1; |
| if (pos > subject_length) break; |
| } |
| } else if (result == RegExpImpl::RE_FAILURE) { |
| break; |
| } else { |
| ASSERT_EQ(result, RegExpImpl::RE_EXCEPTION); |
| return result; |
| } |
| first = false; |
| } |
| |
| if (match_start >= 0) { |
| if (match_end < subject_length) { |
| ReplacementStringBuilder::AddSubjectSlice(builder, |
| match_end, |
| subject_length); |
| } |
| SetLastMatchInfoNoCaptures(subject, |
| last_match_array, |
| match_start, |
| match_end); |
| return RegExpImpl::RE_SUCCESS; |
| } else { |
| return RegExpImpl::RE_FAILURE; // No matches at all. |
| } |
| } |
| |
| |
| static RegExpImpl::IrregexpResult SearchRegExpMultiple( |
| Isolate* isolate, |
| Handle<String> subject, |
| Handle<JSRegExp> regexp, |
| Handle<JSArray> last_match_array, |
| FixedArrayBuilder* builder) { |
| |
| ASSERT(subject->IsFlat()); |
| int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject); |
| if (required_registers < 0) return RegExpImpl::RE_EXCEPTION; |
| |
| OffsetsVector registers(required_registers, isolate); |
| Vector<int32_t> register_vector(registers.vector(), registers.length()); |
| |
| RegExpImpl::IrregexpResult result = |
| RegExpImpl::IrregexpExecOnce(regexp, |
| subject, |
| 0, |
| register_vector); |
| |
| int capture_count = regexp->CaptureCount(); |
| int subject_length = subject->length(); |
| |
| // Position to search from. |
| int pos = 0; |
| // End of previous match. Differs from pos if match was empty. |
| int match_end = 0; |
| if (result == RegExpImpl::RE_SUCCESS) { |
| // Need to keep a copy of the previous match for creating last_match_info |
| // at the end, so we have two vectors that we swap between. |
| OffsetsVector registers2(required_registers, isolate); |
| Vector<int> prev_register_vector(registers2.vector(), registers2.length()); |
| bool first = true; |
| do { |
| int match_start = register_vector[0]; |
| builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); |
| if (match_end < match_start) { |
| ReplacementStringBuilder::AddSubjectSlice(builder, |
| match_end, |
| match_start); |
| } |
| match_end = register_vector[1]; |
| |
| { |
| // Avoid accumulating new handles inside loop. |
| HandleScope temp_scope(isolate); |
| // Arguments array to replace function is match, captures, index and |
| // subject, i.e., 3 + capture count in total. |
| Handle<FixedArray> elements = |
| isolate->factory()->NewFixedArray(3 + capture_count); |
| Handle<String> match; |
| if (!first) { |
| match = isolate->factory()->NewProperSubString(subject, |
| match_start, |
| match_end); |
| } else { |
| match = isolate->factory()->NewSubString(subject, |
| match_start, |
| match_end); |
| } |
| elements->set(0, *match); |
| for (int i = 1; i <= capture_count; i++) { |
| int start = register_vector[i * 2]; |
| if (start >= 0) { |
| int end = register_vector[i * 2 + 1]; |
| ASSERT(start <= end); |
| Handle<String> substring; |
| if (!first) { |
| substring = isolate->factory()->NewProperSubString(subject, |
| start, |
| end); |
| } else { |
| substring = isolate->factory()->NewSubString(subject, start, end); |
| } |
| elements->set(i, *substring); |
| } else { |
| ASSERT(register_vector[i * 2 + 1] < 0); |
| elements->set(i, isolate->heap()->undefined_value()); |
| } |
| } |
| elements->set(capture_count + 1, Smi::FromInt(match_start)); |
| elements->set(capture_count + 2, *subject); |
| builder->Add(*isolate->factory()->NewJSArrayWithElements(elements)); |
| } |
| // Swap register vectors, so the last successful match is in |
| // prev_register_vector. |
| Vector<int32_t> tmp = prev_register_vector; |
| prev_register_vector = register_vector; |
| register_vector = tmp; |
| |
| if (match_end > match_start) { |
| pos = match_end; |
| } else { |
| pos = match_end + 1; |
| if (pos > subject_length) { |
| break; |
| } |
| } |
| |
| result = RegExpImpl::IrregexpExecOnce(regexp, |
| subject, |
| pos, |
| register_vector); |
| first = false; |
| } while (result == RegExpImpl::RE_SUCCESS); |
| |
| if (result != RegExpImpl::RE_EXCEPTION) { |
| // Finished matching, with at least one match. |
| if (match_end < subject_length) { |
| ReplacementStringBuilder::AddSubjectSlice(builder, |
| match_end, |
| subject_length); |
| } |
| |
| int last_match_capture_count = (capture_count + 1) * 2; |
| int last_match_array_size = |
| last_match_capture_count + RegExpImpl::kLastMatchOverhead; |
| last_match_array->EnsureSize(last_match_array_size); |
| AssertNoAllocation no_gc; |
| FixedArray* elements = FixedArray::cast(last_match_array->elements()); |
| RegExpImpl::SetLastCaptureCount(elements, last_match_capture_count); |
| RegExpImpl::SetLastSubject(elements, *subject); |
| RegExpImpl::SetLastInput(elements, *subject); |
| for (int i = 0; i < last_match_capture_count; i++) { |
| RegExpImpl::SetCapture(elements, i, prev_register_vector[i]); |
| } |
| return RegExpImpl::RE_SUCCESS; |
| } |
| } |
| // No matches at all, return failure or exception result directly. |
| return result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExecMultiple) { |
| ASSERT(args.length() == 4); |
| HandleScope handles(isolate); |
| |
| CONVERT_ARG_HANDLE_CHECKED(String, subject, 1); |
| if (!subject->IsFlat()) FlattenString(subject); |
| CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3); |
| |
| ASSERT(last_match_info->HasFastElements()); |
| ASSERT(regexp->GetFlags().is_global()); |
| Handle<FixedArray> result_elements; |
| if (result_array->HasFastElements()) { |
| result_elements = |
| Handle<FixedArray>(FixedArray::cast(result_array->elements())); |
| } |
| if (result_elements.is_null() || result_elements->length() < 16) { |
| result_elements = isolate->factory()->NewFixedArrayWithHoles(16); |
| } |
| FixedArrayBuilder builder(result_elements); |
| |
| if (regexp->TypeTag() == JSRegExp::ATOM) { |
| Handle<String> pattern( |
| String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex))); |
| ASSERT(pattern->IsFlat()); |
| if (SearchStringMultiple(isolate, subject, pattern, |
| last_match_info, &builder)) { |
| return *builder.ToJSArray(result_array); |
| } |
| return isolate->heap()->null_value(); |
| } |
| |
| ASSERT_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP); |
| |
| RegExpImpl::IrregexpResult result; |
| if (regexp->CaptureCount() == 0) { |
| result = SearchRegExpNoCaptureMultiple(isolate, |
| subject, |
| regexp, |
| last_match_info, |
| &builder); |
| } else { |
| result = SearchRegExpMultiple(isolate, |
| subject, |
| regexp, |
| last_match_info, |
| &builder); |
| } |
| if (result == RegExpImpl::RE_SUCCESS) return *builder.ToJSArray(result_array); |
| if (result == RegExpImpl::RE_FAILURE) return isolate->heap()->null_value(); |
| ASSERT_EQ(result, RegExpImpl::RE_EXCEPTION); |
| return Failure::Exception(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToRadixString) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| CONVERT_SMI_ARG_CHECKED(radix, 1); |
| RUNTIME_ASSERT(2 <= radix && radix <= 36); |
| |
| // Fast case where the result is a one character string. |
| if (args[0]->IsSmi()) { |
| int value = args.smi_at(0); |
| if (value >= 0 && value < radix) { |
| // Character array used for conversion. |
| static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; |
| return isolate->heap()-> |
| LookupSingleCharacterStringFromCode(kCharTable[value]); |
| } |
| } |
| |
| // Slow case. |
| CONVERT_DOUBLE_ARG_CHECKED(value, 0); |
| if (isnan(value)) { |
| return *isolate->factory()->nan_symbol(); |
| } |
| if (isinf(value)) { |
| if (value < 0) { |
| return *isolate->factory()->minus_infinity_symbol(); |
| } |
| return *isolate->factory()->infinity_symbol(); |
| } |
| char* str = DoubleToRadixCString(value, radix); |
| MaybeObject* result = |
| isolate->heap()->AllocateStringFromAscii(CStrVector(str)); |
| DeleteArray(str); |
| return result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToFixed) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(value, 0); |
| if (isnan(value)) { |
| return *isolate->factory()->nan_symbol(); |
| } |
| if (isinf(value)) { |
| if (value < 0) { |
| return *isolate->factory()->minus_infinity_symbol(); |
| } |
| return *isolate->factory()->infinity_symbol(); |
| } |
| CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); |
| int f = FastD2I(f_number); |
| RUNTIME_ASSERT(f >= 0); |
| char* str = DoubleToFixedCString(value, f); |
| MaybeObject* res = |
| isolate->heap()->AllocateStringFromAscii(CStrVector(str)); |
| DeleteArray(str); |
| return res; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToExponential) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(value, 0); |
| if (isnan(value)) { |
| return *isolate->factory()->nan_symbol(); |
| } |
| if (isinf(value)) { |
| if (value < 0) { |
| return *isolate->factory()->minus_infinity_symbol(); |
| } |
| return *isolate->factory()->infinity_symbol(); |
| } |
| CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); |
| int f = FastD2I(f_number); |
| RUNTIME_ASSERT(f >= -1 && f <= 20); |
| char* str = DoubleToExponentialCString(value, f); |
| MaybeObject* res = |
| isolate->heap()->AllocateStringFromAscii(CStrVector(str)); |
| DeleteArray(str); |
| return res; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToPrecision) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(value, 0); |
| if (isnan(value)) { |
| return *isolate->factory()->nan_symbol(); |
| } |
| if (isinf(value)) { |
| if (value < 0) { |
| return *isolate->factory()->minus_infinity_symbol(); |
| } |
| return *isolate->factory()->infinity_symbol(); |
| } |
| CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); |
| int f = FastD2I(f_number); |
| RUNTIME_ASSERT(f >= 1 && f <= 21); |
| char* str = DoubleToPrecisionCString(value, f); |
| MaybeObject* res = |
| isolate->heap()->AllocateStringFromAscii(CStrVector(str)); |
| DeleteArray(str); |
| return res; |
| } |
| |
| |
| // Returns a single character string where first character equals |
| // string->Get(index). |
| static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) { |
| if (index < static_cast<uint32_t>(string->length())) { |
| string->TryFlatten(); |
| return LookupSingleCharacterStringFromCode( |
| string->Get(index)); |
| } |
| return Execution::CharAt(string, index); |
| } |
| |
| |
| MaybeObject* Runtime::GetElementOrCharAt(Isolate* isolate, |
| Handle<Object> object, |
| uint32_t index) { |
| // Handle [] indexing on Strings |
| if (object->IsString()) { |
| Handle<Object> result = GetCharAt(Handle<String>::cast(object), index); |
| if (!result->IsUndefined()) return *result; |
| } |
| |
| // Handle [] indexing on String objects |
| if (object->IsStringObjectWithCharacterAt(index)) { |
| Handle<JSValue> js_value = Handle<JSValue>::cast(object); |
| Handle<Object> result = |
| GetCharAt(Handle<String>(String::cast(js_value->value())), index); |
| if (!result->IsUndefined()) return *result; |
| } |
| |
| if (object->IsString() || object->IsNumber() || object->IsBoolean()) { |
| return object->GetPrototype()->GetElement(index); |
| } |
| |
| return object->GetElement(index); |
| } |
| |
| |
| MaybeObject* Runtime::GetObjectProperty(Isolate* isolate, |
| Handle<Object> object, |
| Handle<Object> key) { |
| HandleScope scope(isolate); |
| |
| if (object->IsUndefined() || object->IsNull()) { |
| Handle<Object> args[2] = { key, object }; |
| Handle<Object> error = |
| isolate->factory()->NewTypeError("non_object_property_load", |
| HandleVector(args, 2)); |
| return isolate->Throw(*error); |
| } |
| |
| // Check if the given key is an array index. |
| uint32_t index; |
| if (key->ToArrayIndex(&index)) { |
| return GetElementOrCharAt(isolate, object, index); |
| } |
| |
| // Convert the key to a string - possibly by calling back into JavaScript. |
| Handle<String> name; |
| if (key->IsString()) { |
| name = Handle<String>::cast(key); |
| } else { |
| bool has_pending_exception = false; |
| Handle<Object> converted = |
| Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| name = Handle<String>::cast(converted); |
| } |
| |
| // Check if the name is trivially convertible to an index and get |
| // the element if so. |
| if (name->AsArrayIndex(&index)) { |
| return GetElementOrCharAt(isolate, object, index); |
| } else { |
| return object->GetProperty(*name); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetProperty) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| Handle<Object> object = args.at<Object>(0); |
| Handle<Object> key = args.at<Object>(1); |
| |
| return Runtime::GetObjectProperty(isolate, object, key); |
| } |
| |
| |
| // KeyedStringGetProperty is called from KeyedLoadIC::GenerateGeneric. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_KeyedGetProperty) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| // Fast cases for getting named properties of the receiver JSObject |
| // itself. |
| // |
| // The global proxy objects has to be excluded since LocalLookup on |
| // the global proxy object can return a valid result even though the |
| // global proxy object never has properties. This is the case |
| // because the global proxy object forwards everything to its hidden |
| // prototype including local lookups. |
| // |
| // Additionally, we need to make sure that we do not cache results |
| // for objects that require access checks. |
| if (args[0]->IsJSObject()) { |
| if (!args[0]->IsJSGlobalProxy() && |
| !args[0]->IsAccessCheckNeeded() && |
| args[1]->IsString()) { |
| JSObject* receiver = JSObject::cast(args[0]); |
| String* key = String::cast(args[1]); |
| if (receiver->HasFastProperties()) { |
| // Attempt to use lookup cache. |
| Map* receiver_map = receiver->map(); |
| KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache(); |
| int offset = keyed_lookup_cache->Lookup(receiver_map, key); |
| if (offset != -1) { |
| Object* value = receiver->FastPropertyAt(offset); |
| return value->IsTheHole() |
| ? isolate->heap()->undefined_value() |
| : value; |
| } |
| // Lookup cache miss. Perform lookup and update the cache if |
| // appropriate. |
| LookupResult result(isolate); |
| receiver->LocalLookup(key, &result); |
| if (result.IsFound() && result.type() == FIELD) { |
| int offset = result.GetFieldIndex(); |
| keyed_lookup_cache->Update(receiver_map, key, offset); |
| return receiver->FastPropertyAt(offset); |
| } |
| } else { |
| // Attempt dictionary lookup. |
| StringDictionary* dictionary = receiver->property_dictionary(); |
| int entry = dictionary->FindEntry(key); |
| if ((entry != StringDictionary::kNotFound) && |
| (dictionary->DetailsAt(entry).type() == NORMAL)) { |
| Object* value = dictionary->ValueAt(entry); |
| if (!receiver->IsGlobalObject()) return value; |
| value = JSGlobalPropertyCell::cast(value)->value(); |
| if (!value->IsTheHole()) return value; |
| // If value is the hole do the general lookup. |
| } |
| } |
| } else if (FLAG_smi_only_arrays && args.at<Object>(1)->IsSmi()) { |
| // JSObject without a string key. If the key is a Smi, check for a |
| // definite out-of-bounds access to elements, which is a strong indicator |
| // that subsequent accesses will also call the runtime. Proactively |
| // transition elements to FAST_ELEMENTS to avoid excessive boxing of |
| // doubles for those future calls in the case that the elements would |
| // become FAST_DOUBLE_ELEMENTS. |
| Handle<JSObject> js_object(args.at<JSObject>(0)); |
| ElementsKind elements_kind = js_object->GetElementsKind(); |
| if (elements_kind == FAST_SMI_ONLY_ELEMENTS || |
| elements_kind == FAST_DOUBLE_ELEMENTS) { |
| FixedArrayBase* elements = js_object->elements(); |
| if (args.at<Smi>(1)->value() >= elements->length()) { |
| MaybeObject* maybe_object = TransitionElements(js_object, |
| FAST_ELEMENTS, |
| isolate); |
| if (maybe_object->IsFailure()) return maybe_object; |
| } |
| } |
| } |
| } else if (args[0]->IsString() && args[1]->IsSmi()) { |
| // Fast case for string indexing using [] with a smi index. |
| HandleScope scope(isolate); |
| Handle<String> str = args.at<String>(0); |
| int index = args.smi_at(1); |
| if (index >= 0 && index < str->length()) { |
| Handle<Object> result = GetCharAt(str, index); |
| return *result; |
| } |
| } |
| |
| // Fall back to GetObjectProperty. |
| return Runtime::GetObjectProperty(isolate, |
| args.at<Object>(0), |
| args.at<Object>(1)); |
| } |
| |
| |
| static bool IsValidAccessor(Handle<Object> obj) { |
| return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull(); |
| } |
| |
| |
| // Implements part of 8.12.9 DefineOwnProperty. |
| // There are 3 cases that lead here: |
| // Step 4b - define a new accessor property. |
| // Steps 9c & 12 - replace an existing data property with an accessor property. |
| // Step 12 - update an existing accessor property with an accessor or generic |
| // descriptor. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineAccessorProperty) { |
| ASSERT(args.length() == 5); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| RUNTIME_ASSERT(!obj->IsNull()); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 1); |
| CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2); |
| RUNTIME_ASSERT(IsValidAccessor(getter)); |
| CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3); |
| RUNTIME_ASSERT(IsValidAccessor(setter)); |
| CONVERT_SMI_ARG_CHECKED(unchecked, 4); |
| RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); |
| |
| bool fast = obj->HasFastProperties(); |
| JSObject::DefineAccessor(obj, name, getter, setter, attr); |
| if (fast) JSObject::TransformToFastProperties(obj, 0); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| // Implements part of 8.12.9 DefineOwnProperty. |
| // There are 3 cases that lead here: |
| // Step 4a - define a new data property. |
| // Steps 9b & 12 - replace an existing accessor property with a data property. |
| // Step 12 - update an existing data property with a data or generic |
| // descriptor. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineDataProperty) { |
| ASSERT(args.length() == 4); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 1); |
| CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2); |
| CONVERT_SMI_ARG_CHECKED(unchecked, 3); |
| RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); |
| |
| LookupResult result(isolate); |
| js_object->LocalLookupRealNamedProperty(*name, &result); |
| |
| // Special case for callback properties. |
| if (result.IsFound() && result.type() == CALLBACKS) { |
| Object* callback = result.GetCallbackObject(); |
| // To be compatible with Safari we do not change the value on API objects |
| // in Object.defineProperty(). Firefox disagrees here, and actually changes |
| // the value. |
| if (callback->IsAccessorInfo()) { |
| return isolate->heap()->undefined_value(); |
| } |
| // Avoid redefining foreign callback as data property, just use the stored |
| // setter to update the value instead. |
| // TODO(mstarzinger): So far this only works if property attributes don't |
| // change, this should be fixed once we cleanup the underlying code. |
| if (callback->IsForeign() && result.GetAttributes() == attr) { |
| return js_object->SetPropertyWithCallback(callback, |
| *name, |
| *obj_value, |
| result.holder(), |
| kStrictMode); |
| } |
| } |
| |
| // Take special care when attributes are different and there is already |
| // a property. For simplicity we normalize the property which enables us |
| // to not worry about changing the instance_descriptor and creating a new |
| // map. The current version of SetObjectProperty does not handle attributes |
| // correctly in the case where a property is a field and is reset with |
| // new attributes. |
| if (result.IsProperty() && |
| (attr != result.GetAttributes() || result.type() == CALLBACKS)) { |
| // New attributes - normalize to avoid writing to instance descriptor |
| if (js_object->IsJSGlobalProxy()) { |
| // Since the result is a property, the prototype will exist so |
| // we don't have to check for null. |
| js_object = Handle<JSObject>(JSObject::cast(js_object->GetPrototype())); |
| } |
| JSObject::NormalizeProperties(js_object, CLEAR_INOBJECT_PROPERTIES, 0); |
| // Use IgnoreAttributes version since a readonly property may be |
| // overridden and SetProperty does not allow this. |
| return js_object->SetLocalPropertyIgnoreAttributes(*name, |
| *obj_value, |
| attr); |
| } |
| |
| return Runtime::ForceSetObjectProperty(isolate, |
| js_object, |
| name, |
| obj_value, |
| attr); |
| } |
| |
| |
| MaybeObject* Runtime::SetObjectProperty(Isolate* isolate, |
| Handle<Object> object, |
| Handle<Object> key, |
| Handle<Object> value, |
| PropertyAttributes attr, |
| StrictModeFlag strict_mode) { |
| SetPropertyMode set_mode = attr == NONE ? SET_PROPERTY : DEFINE_PROPERTY; |
| HandleScope scope(isolate); |
| |
| if (object->IsUndefined() || object->IsNull()) { |
| Handle<Object> args[2] = { key, object }; |
| Handle<Object> error = |
| isolate->factory()->NewTypeError("non_object_property_store", |
| HandleVector(args, 2)); |
| return isolate->Throw(*error); |
| } |
| |
| if (object->IsJSProxy()) { |
| bool has_pending_exception = false; |
| Handle<Object> name = Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| return JSProxy::cast(*object)->SetProperty( |
| String::cast(*name), *value, attr, strict_mode); |
| } |
| |
| // If the object isn't a JavaScript object, we ignore the store. |
| if (!object->IsJSObject()) return *value; |
| |
| Handle<JSObject> js_object = Handle<JSObject>::cast(object); |
| |
| // Check if the given key is an array index. |
| uint32_t index; |
| if (key->ToArrayIndex(&index)) { |
| // In Firefox/SpiderMonkey, Safari and Opera you can access the characters |
| // of a string using [] notation. We need to support this too in |
| // JavaScript. |
| // In the case of a String object we just need to redirect the assignment to |
| // the underlying string if the index is in range. Since the underlying |
| // string does nothing with the assignment then we can ignore such |
| // assignments. |
| if (js_object->IsStringObjectWithCharacterAt(index)) { |
| return *value; |
| } |
| |
| Handle<Object> result = JSObject::SetElement( |
| js_object, index, value, attr, strict_mode, set_mode); |
| if (result.is_null()) return Failure::Exception(); |
| return *value; |
| } |
| |
| if (key->IsString()) { |
| Handle<Object> result; |
| if (Handle<String>::cast(key)->AsArrayIndex(&index)) { |
| result = JSObject::SetElement( |
| js_object, index, value, attr, strict_mode, set_mode); |
| } else { |
| Handle<String> key_string = Handle<String>::cast(key); |
| key_string->TryFlatten(); |
| result = JSReceiver::SetProperty( |
| js_object, key_string, value, attr, strict_mode); |
| } |
| if (result.is_null()) return Failure::Exception(); |
| return *value; |
| } |
| |
| // Call-back into JavaScript to convert the key to a string. |
| bool has_pending_exception = false; |
| Handle<Object> converted = Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| Handle<String> name = Handle<String>::cast(converted); |
| |
| if (name->AsArrayIndex(&index)) { |
| return js_object->SetElement( |
| index, *value, attr, strict_mode, true, set_mode); |
| } else { |
| return js_object->SetProperty(*name, *value, attr, strict_mode); |
| } |
| } |
| |
| |
| MaybeObject* Runtime::ForceSetObjectProperty(Isolate* isolate, |
| Handle<JSObject> js_object, |
| Handle<Object> key, |
| Handle<Object> value, |
| PropertyAttributes attr) { |
| HandleScope scope(isolate); |
| |
| // Check if the given key is an array index. |
| uint32_t index; |
| if (key->ToArrayIndex(&index)) { |
| // In Firefox/SpiderMonkey, Safari and Opera you can access the characters |
| // of a string using [] notation. We need to support this too in |
| // JavaScript. |
| // In the case of a String object we just need to redirect the assignment to |
| // the underlying string if the index is in range. Since the underlying |
| // string does nothing with the assignment then we can ignore such |
| // assignments. |
| if (js_object->IsStringObjectWithCharacterAt(index)) { |
| return *value; |
| } |
| |
| return js_object->SetElement( |
| index, *value, attr, kNonStrictMode, false, DEFINE_PROPERTY); |
| } |
| |
| if (key->IsString()) { |
| if (Handle<String>::cast(key)->AsArrayIndex(&index)) { |
| return js_object->SetElement( |
| index, *value, attr, kNonStrictMode, false, DEFINE_PROPERTY); |
| } else { |
| Handle<String> key_string = Handle<String>::cast(key); |
| key_string->TryFlatten(); |
| return js_object->SetLocalPropertyIgnoreAttributes(*key_string, |
| *value, |
| attr); |
| } |
| } |
| |
| // Call-back into JavaScript to convert the key to a string. |
| bool has_pending_exception = false; |
| Handle<Object> converted = Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| Handle<String> name = Handle<String>::cast(converted); |
| |
| if (name->AsArrayIndex(&index)) { |
| return js_object->SetElement( |
| index, *value, attr, kNonStrictMode, false, DEFINE_PROPERTY); |
| } else { |
| return js_object->SetLocalPropertyIgnoreAttributes(*name, *value, attr); |
| } |
| } |
| |
| |
| MaybeObject* Runtime::ForceDeleteObjectProperty(Isolate* isolate, |
| Handle<JSReceiver> receiver, |
| Handle<Object> key) { |
| HandleScope scope(isolate); |
| |
| // Check if the given key is an array index. |
| uint32_t index; |
| if (key->ToArrayIndex(&index)) { |
| // In Firefox/SpiderMonkey, Safari and Opera you can access the |
| // characters of a string using [] notation. In the case of a |
| // String object we just need to redirect the deletion to the |
| // underlying string if the index is in range. Since the |
| // underlying string does nothing with the deletion, we can ignore |
| // such deletions. |
| if (receiver->IsStringObjectWithCharacterAt(index)) { |
| return isolate->heap()->true_value(); |
| } |
| |
| return receiver->DeleteElement(index, JSReceiver::FORCE_DELETION); |
| } |
| |
| Handle<String> key_string; |
| if (key->IsString()) { |
| key_string = Handle<String>::cast(key); |
| } else { |
| // Call-back into JavaScript to convert the key to a string. |
| bool has_pending_exception = false; |
| Handle<Object> converted = Execution::ToString(key, &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| key_string = Handle<String>::cast(converted); |
| } |
| |
| key_string->TryFlatten(); |
| return receiver->DeleteProperty(*key_string, JSReceiver::FORCE_DELETION); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetProperty) { |
| NoHandleAllocation ha; |
| RUNTIME_ASSERT(args.length() == 4 || args.length() == 5); |
| |
| Handle<Object> object = args.at<Object>(0); |
| Handle<Object> key = args.at<Object>(1); |
| Handle<Object> value = args.at<Object>(2); |
| CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3); |
| RUNTIME_ASSERT( |
| (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| // Compute attributes. |
| PropertyAttributes attributes = |
| static_cast<PropertyAttributes>(unchecked_attributes); |
| |
| StrictModeFlag strict_mode = kNonStrictMode; |
| if (args.length() == 5) { |
| CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_flag, 4); |
| strict_mode = strict_mode_flag; |
| } |
| |
| return Runtime::SetObjectProperty(isolate, |
| object, |
| key, |
| value, |
| attributes, |
| strict_mode); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_TransitionElementsSmiToDouble) { |
| NoHandleAllocation ha; |
| RUNTIME_ASSERT(args.length() == 1); |
| Handle<Object> object = args.at<Object>(0); |
| return TransitionElements(object, FAST_DOUBLE_ELEMENTS, isolate); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_TransitionElementsDoubleToObject) { |
| NoHandleAllocation ha; |
| RUNTIME_ASSERT(args.length() == 1); |
| Handle<Object> object = args.at<Object>(0); |
| return TransitionElements(object, FAST_ELEMENTS, isolate); |
| } |
| |
| |
| // Set the native flag on the function. |
| // This is used to decide if we should transform null and undefined |
| // into the global object when doing call and apply. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetNativeFlag) { |
| NoHandleAllocation ha; |
| RUNTIME_ASSERT(args.length() == 1); |
| |
| Handle<Object> object = args.at<Object>(0); |
| |
| if (object->IsJSFunction()) { |
| JSFunction* func = JSFunction::cast(*object); |
| func->shared()->set_native(true); |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreArrayLiteralElement) { |
| RUNTIME_ASSERT(args.length() == 5); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); |
| CONVERT_SMI_ARG_CHECKED(store_index, 1); |
| Handle<Object> value = args.at<Object>(2); |
| CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3); |
| CONVERT_SMI_ARG_CHECKED(literal_index, 4); |
| HandleScope scope; |
| |
| Object* raw_boilerplate_object = literals->get(literal_index); |
| Handle<JSArray> boilerplate_object(JSArray::cast(raw_boilerplate_object)); |
| #if DEBUG |
| ElementsKind elements_kind = object->GetElementsKind(); |
| #endif |
| ASSERT(elements_kind <= FAST_DOUBLE_ELEMENTS); |
| // Smis should never trigger transitions. |
| ASSERT(!value->IsSmi()); |
| |
| if (value->IsNumber()) { |
| ASSERT(elements_kind == FAST_SMI_ONLY_ELEMENTS); |
| JSObject::TransitionElementsKind(object, FAST_DOUBLE_ELEMENTS); |
| JSObject::TransitionElementsKind(boilerplate_object, FAST_DOUBLE_ELEMENTS); |
| ASSERT(object->GetElementsKind() == FAST_DOUBLE_ELEMENTS); |
| FixedDoubleArray* double_array = |
| FixedDoubleArray::cast(object->elements()); |
| HeapNumber* number = HeapNumber::cast(*value); |
| double_array->set(store_index, number->Number()); |
| } else { |
| ASSERT(elements_kind == FAST_SMI_ONLY_ELEMENTS || |
| elements_kind == FAST_DOUBLE_ELEMENTS); |
| JSObject::TransitionElementsKind(object, FAST_ELEMENTS); |
| JSObject::TransitionElementsKind(boilerplate_object, FAST_ELEMENTS); |
| FixedArray* object_array = |
| FixedArray::cast(object->elements()); |
| object_array->set(store_index, *value); |
| } |
| return *object; |
| } |
| |
| |
| // Set a local property, even if it is READ_ONLY. If the property does not |
| // exist, it will be added with attributes NONE. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IgnoreAttributesAndSetProperty) { |
| NoHandleAllocation ha; |
| RUNTIME_ASSERT(args.length() == 3 || args.length() == 4); |
| CONVERT_ARG_CHECKED(JSObject, object, 0); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| // Compute attributes. |
| PropertyAttributes attributes = NONE; |
| if (args.length() == 4) { |
| CONVERT_SMI_ARG_CHECKED(unchecked_value, 3); |
| // Only attribute bits should be set. |
| RUNTIME_ASSERT( |
| (unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); |
| attributes = static_cast<PropertyAttributes>(unchecked_value); |
| } |
| |
| return object-> |
| SetLocalPropertyIgnoreAttributes(name, args[2], attributes); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteProperty) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| CONVERT_ARG_CHECKED(JSReceiver, object, 0); |
| CONVERT_ARG_CHECKED(String, key, 1); |
| CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2); |
| return object->DeleteProperty(key, (strict_mode == kStrictMode) |
| ? JSReceiver::STRICT_DELETION |
| : JSReceiver::NORMAL_DELETION); |
| } |
| |
| |
| static Object* HasLocalPropertyImplementation(Isolate* isolate, |
| Handle<JSObject> object, |
| Handle<String> key) { |
| if (object->HasLocalProperty(*key)) return isolate->heap()->true_value(); |
| // Handle hidden prototypes. If there's a hidden prototype above this thing |
| // then we have to check it for properties, because they are supposed to |
| // look like they are on this object. |
| Handle<Object> proto(object->GetPrototype()); |
| if (proto->IsJSObject() && |
| Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) { |
| return HasLocalPropertyImplementation(isolate, |
| Handle<JSObject>::cast(proto), |
| key); |
| } |
| return isolate->heap()->false_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_HasLocalProperty) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(String, key, 1); |
| |
| uint32_t index; |
| const bool key_is_array_index = key->AsArrayIndex(&index); |
| |
| Object* obj = args[0]; |
| // Only JS objects can have properties. |
| if (obj->IsJSObject()) { |
| JSObject* object = JSObject::cast(obj); |
| // Fast case: either the key is a real named property or it is not |
| // an array index and there are no interceptors or hidden |
| // prototypes. |
| if (object->HasRealNamedProperty(key)) return isolate->heap()->true_value(); |
| Map* map = object->map(); |
| if (!key_is_array_index && |
| !map->has_named_interceptor() && |
| !HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) { |
| return isolate->heap()->false_value(); |
| } |
| // Slow case. |
| HandleScope scope(isolate); |
| return HasLocalPropertyImplementation(isolate, |
| Handle<JSObject>(object), |
| Handle<String>(key)); |
| } else if (obj->IsString() && key_is_array_index) { |
| // Well, there is one exception: Handle [] on strings. |
| String* string = String::cast(obj); |
| if (index < static_cast<uint32_t>(string->length())) { |
| return isolate->heap()->true_value(); |
| } |
| } |
| return isolate->heap()->false_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_HasProperty) { |
| NoHandleAllocation na; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSReceiver, receiver, 0); |
| CONVERT_ARG_CHECKED(String, key, 1); |
| |
| bool result = receiver->HasProperty(key); |
| if (isolate->has_pending_exception()) return Failure::Exception(); |
| return isolate->heap()->ToBoolean(result); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_HasElement) { |
| NoHandleAllocation na; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSReceiver, receiver, 0); |
| CONVERT_SMI_ARG_CHECKED(index, 1); |
| |
| bool result = receiver->HasElement(index); |
| if (isolate->has_pending_exception()) return Failure::Exception(); |
| return isolate->heap()->ToBoolean(result); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IsPropertyEnumerable) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(JSObject, object, 0); |
| CONVERT_ARG_CHECKED(String, key, 1); |
| |
| uint32_t index; |
| if (key->AsArrayIndex(&index)) { |
| JSObject::LocalElementType type = object->HasLocalElement(index); |
| switch (type) { |
| case JSObject::UNDEFINED_ELEMENT: |
| case JSObject::STRING_CHARACTER_ELEMENT: |
| return isolate->heap()->false_value(); |
| case JSObject::INTERCEPTED_ELEMENT: |
| case JSObject::FAST_ELEMENT: |
| return isolate->heap()->true_value(); |
| case JSObject::DICTIONARY_ELEMENT: { |
| if (object->IsJSGlobalProxy()) { |
| Object* proto = object->GetPrototype(); |
| if (proto->IsNull()) { |
| return isolate->heap()->false_value(); |
| } |
| ASSERT(proto->IsJSGlobalObject()); |
| object = JSObject::cast(proto); |
| } |
| FixedArray* elements = FixedArray::cast(object->elements()); |
| SeededNumberDictionary* dictionary = NULL; |
| if (elements->map() == |
| isolate->heap()->non_strict_arguments_elements_map()) { |
| dictionary = SeededNumberDictionary::cast(elements->get(1)); |
| } else { |
| dictionary = SeededNumberDictionary::cast(elements); |
| } |
| int entry = dictionary->FindEntry(index); |
| ASSERT(entry != SeededNumberDictionary::kNotFound); |
| PropertyDetails details = dictionary->DetailsAt(entry); |
| return isolate->heap()->ToBoolean(!details.IsDontEnum()); |
| } |
| } |
| } |
| |
| PropertyAttributes att = object->GetLocalPropertyAttribute(key); |
| return isolate->heap()->ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNames) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0); |
| bool threw = false; |
| Handle<JSArray> result = GetKeysFor(object, &threw); |
| if (threw) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| // Returns either a FixedArray as Runtime_GetPropertyNames, |
| // or, if the given object has an enum cache that contains |
| // all enumerable properties of the object and its prototypes |
| // have none, the map of the object. This is used to speed up |
| // the check for deletions during a for-in. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNamesFast) { |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0); |
| |
| if (raw_object->IsSimpleEnum()) return raw_object->map(); |
| |
| HandleScope scope(isolate); |
| Handle<JSReceiver> object(raw_object); |
| bool threw = false; |
| Handle<FixedArray> content = |
| GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, &threw); |
| if (threw) return Failure::Exception(); |
| |
| // Test again, since cache may have been built by preceding call. |
| if (object->IsSimpleEnum()) return object->map(); |
| |
| return *content; |
| } |
| |
| |
| // Find the length of the prototype chain that is to to handled as one. If a |
| // prototype object is hidden it is to be viewed as part of the the object it |
| // is prototype for. |
| static int LocalPrototypeChainLength(JSObject* obj) { |
| int count = 1; |
| Object* proto = obj->GetPrototype(); |
| while (proto->IsJSObject() && |
| JSObject::cast(proto)->map()->is_hidden_prototype()) { |
| count++; |
| proto = JSObject::cast(proto)->GetPrototype(); |
| } |
| return count; |
| } |
| |
| |
| // Return the names of the local named properties. |
| // args[0]: object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalPropertyNames) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| if (!args[0]->IsJSObject()) { |
| return isolate->heap()->undefined_value(); |
| } |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| |
| // Skip the global proxy as it has no properties and always delegates to the |
| // real global object. |
| if (obj->IsJSGlobalProxy()) { |
| // Only collect names if access is permitted. |
| if (obj->IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(*obj, |
| isolate->heap()->undefined_value(), |
| v8::ACCESS_KEYS)) { |
| isolate->ReportFailedAccessCheck(*obj, v8::ACCESS_KEYS); |
| return *isolate->factory()->NewJSArray(0); |
| } |
| obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); |
| } |
| |
| // Find the number of objects making up this. |
| int length = LocalPrototypeChainLength(*obj); |
| |
| // Find the number of local properties for each of the objects. |
| ScopedVector<int> local_property_count(length); |
| int total_property_count = 0; |
| Handle<JSObject> jsproto = obj; |
| for (int i = 0; i < length; i++) { |
| // Only collect names if access is permitted. |
| if (jsproto->IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(*jsproto, |
| isolate->heap()->undefined_value(), |
| v8::ACCESS_KEYS)) { |
| isolate->ReportFailedAccessCheck(*jsproto, v8::ACCESS_KEYS); |
| return *isolate->factory()->NewJSArray(0); |
| } |
| int n; |
| n = jsproto->NumberOfLocalProperties(); |
| local_property_count[i] = n; |
| total_property_count += n; |
| if (i < length - 1) { |
| jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); |
| } |
| } |
| |
| // Allocate an array with storage for all the property names. |
| Handle<FixedArray> names = |
| isolate->factory()->NewFixedArray(total_property_count); |
| |
| // Get the property names. |
| jsproto = obj; |
| int proto_with_hidden_properties = 0; |
| int next_copy_index = 0; |
| for (int i = 0; i < length; i++) { |
| jsproto->GetLocalPropertyNames(*names, next_copy_index); |
| next_copy_index += local_property_count[i]; |
| if (jsproto->HasHiddenProperties()) { |
| proto_with_hidden_properties++; |
| } |
| if (i < length - 1) { |
| jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); |
| } |
| } |
| |
| // Filter out name of hidden propeties object. |
| if (proto_with_hidden_properties > 0) { |
| Handle<FixedArray> old_names = names; |
| names = isolate->factory()->NewFixedArray( |
| names->length() - proto_with_hidden_properties); |
| int dest_pos = 0; |
| for (int i = 0; i < total_property_count; i++) { |
| Object* name = old_names->get(i); |
| if (name == isolate->heap()->hidden_symbol()) { |
| continue; |
| } |
| names->set(dest_pos++, name); |
| } |
| } |
| |
| return *isolate->factory()->NewJSArrayWithElements(names); |
| } |
| |
| |
| // Return the names of the local indexed properties. |
| // args[0]: object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalElementNames) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| if (!args[0]->IsJSObject()) { |
| return isolate->heap()->undefined_value(); |
| } |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| |
| int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE)); |
| Handle<FixedArray> names = isolate->factory()->NewFixedArray(n); |
| obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE)); |
| return *isolate->factory()->NewJSArrayWithElements(names); |
| } |
| |
| |
| // Return information on whether an object has a named or indexed interceptor. |
| // args[0]: object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetInterceptorInfo) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| if (!args[0]->IsJSObject()) { |
| return Smi::FromInt(0); |
| } |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| |
| int result = 0; |
| if (obj->HasNamedInterceptor()) result |= 2; |
| if (obj->HasIndexedInterceptor()) result |= 1; |
| |
| return Smi::FromInt(result); |
| } |
| |
| |
| // Return property names from named interceptor. |
| // args[0]: object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetNamedInterceptorPropertyNames) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| |
| if (obj->HasNamedInterceptor()) { |
| v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj); |
| if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Return element names from indexed interceptor. |
| // args[0]: object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetIndexedInterceptorElementNames) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| |
| if (obj->HasIndexedInterceptor()) { |
| v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj); |
| if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LocalKeys) { |
| ASSERT_EQ(args.length(), 1); |
| CONVERT_ARG_CHECKED(JSObject, raw_object, 0); |
| HandleScope scope(isolate); |
| Handle<JSObject> object(raw_object); |
| |
| if (object->IsJSGlobalProxy()) { |
| // Do access checks before going to the global object. |
| if (object->IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(*object, isolate->heap()->undefined_value(), |
| v8::ACCESS_KEYS)) { |
| isolate->ReportFailedAccessCheck(*object, v8::ACCESS_KEYS); |
| return *isolate->factory()->NewJSArray(0); |
| } |
| |
| Handle<Object> proto(object->GetPrototype()); |
| // If proxy is detached we simply return an empty array. |
| if (proto->IsNull()) return *isolate->factory()->NewJSArray(0); |
| object = Handle<JSObject>::cast(proto); |
| } |
| |
| bool threw = false; |
| Handle<FixedArray> contents = |
| GetKeysInFixedArrayFor(object, LOCAL_ONLY, &threw); |
| if (threw) return Failure::Exception(); |
| |
| // Some fast paths through GetKeysInFixedArrayFor reuse a cached |
| // property array and since the result is mutable we have to create |
| // a fresh clone on each invocation. |
| int length = contents->length(); |
| Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length); |
| for (int i = 0; i < length; i++) { |
| Object* entry = contents->get(i); |
| if (entry->IsString()) { |
| copy->set(i, entry); |
| } else { |
| ASSERT(entry->IsNumber()); |
| HandleScope scope(isolate); |
| Handle<Object> entry_handle(entry, isolate); |
| Handle<Object> entry_str = |
| isolate->factory()->NumberToString(entry_handle); |
| copy->set(i, *entry_str); |
| } |
| } |
| return *isolate->factory()->NewJSArrayWithElements(copy); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArgumentsProperty) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| // Compute the frame holding the arguments. |
| JavaScriptFrameIterator it(isolate); |
| it.AdvanceToArgumentsFrame(); |
| JavaScriptFrame* frame = it.frame(); |
| |
| // Get the actual number of provided arguments. |
| const uint32_t n = frame->ComputeParametersCount(); |
| |
| // Try to convert the key to an index. If successful and within |
| // index return the the argument from the frame. |
| uint32_t index; |
| if (args[0]->ToArrayIndex(&index) && index < n) { |
| return frame->GetParameter(index); |
| } |
| |
| // Convert the key to a string. |
| HandleScope scope(isolate); |
| bool exception = false; |
| Handle<Object> converted = |
| Execution::ToString(args.at<Object>(0), &exception); |
| if (exception) return Failure::Exception(); |
| Handle<String> key = Handle<String>::cast(converted); |
| |
| // Try to convert the string key into an array index. |
| if (key->AsArrayIndex(&index)) { |
| if (index < n) { |
| return frame->GetParameter(index); |
| } else { |
| return isolate->initial_object_prototype()->GetElement(index); |
| } |
| } |
| |
| // Handle special arguments properties. |
| if (key->Equals(isolate->heap()->length_symbol())) return Smi::FromInt(n); |
| if (key->Equals(isolate->heap()->callee_symbol())) { |
| Object* function = frame->function(); |
| if (function->IsJSFunction() && |
| !JSFunction::cast(function)->shared()->is_classic_mode()) { |
| return isolate->Throw(*isolate->factory()->NewTypeError( |
| "strict_arguments_callee", HandleVector<Object>(NULL, 0))); |
| } |
| return function; |
| } |
| |
| // Lookup in the initial Object.prototype object. |
| return isolate->initial_object_prototype()->GetProperty(*key); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ToFastProperties) { |
| ASSERT(args.length() == 1); |
| Object* object = args[0]; |
| return (object->IsJSObject() && !object->IsGlobalObject()) |
| ? JSObject::cast(object)->TransformToFastProperties(0) |
| : object; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ToSlowProperties) { |
| ASSERT(args.length() == 1); |
| Object* obj = args[0]; |
| return (obj->IsJSObject() && !obj->IsJSGlobalProxy()) |
| ? JSObject::cast(obj)->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0) |
| : obj; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ToBool) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| return args[0]->ToBoolean(); |
| } |
| |
| |
| // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47). |
| // Possible optimizations: put the type string into the oddballs. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Typeof) { |
| NoHandleAllocation ha; |
| |
| Object* obj = args[0]; |
| if (obj->IsNumber()) return isolate->heap()->number_symbol(); |
| HeapObject* heap_obj = HeapObject::cast(obj); |
| |
| // typeof an undetectable object is 'undefined' |
| if (heap_obj->map()->is_undetectable()) { |
| return isolate->heap()->undefined_symbol(); |
| } |
| |
| InstanceType instance_type = heap_obj->map()->instance_type(); |
| if (instance_type < FIRST_NONSTRING_TYPE) { |
| return isolate->heap()->string_symbol(); |
| } |
| |
| switch (instance_type) { |
| case ODDBALL_TYPE: |
| if (heap_obj->IsTrue() || heap_obj->IsFalse()) { |
| return isolate->heap()->boolean_symbol(); |
| } |
| if (heap_obj->IsNull()) { |
| return FLAG_harmony_typeof |
| ? isolate->heap()->null_symbol() |
| : isolate->heap()->object_symbol(); |
| } |
| ASSERT(heap_obj->IsUndefined()); |
| return isolate->heap()->undefined_symbol(); |
| case JS_FUNCTION_TYPE: |
| case JS_FUNCTION_PROXY_TYPE: |
| return isolate->heap()->function_symbol(); |
| default: |
| // For any kind of object not handled above, the spec rule for |
| // host objects gives that it is okay to return "object" |
| return isolate->heap()->object_symbol(); |
| } |
| } |
| |
| |
| static bool AreDigits(const char*s, int from, int to) { |
| for (int i = from; i < to; i++) { |
| if (s[i] < '0' || s[i] > '9') return false; |
| } |
| |
| return true; |
| } |
| |
| |
| static int ParseDecimalInteger(const char*s, int from, int to) { |
| ASSERT(to - from < 10); // Overflow is not possible. |
| ASSERT(from < to); |
| int d = s[from] - '0'; |
| |
| for (int i = from + 1; i < to; i++) { |
| d = 10 * d + (s[i] - '0'); |
| } |
| |
| return d; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToNumber) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(String, subject, 0); |
| subject->TryFlatten(); |
| |
| // Fast case: short integer or some sorts of junk values. |
| int len = subject->length(); |
| if (subject->IsSeqAsciiString()) { |
| if (len == 0) return Smi::FromInt(0); |
| |
| char const* data = SeqAsciiString::cast(subject)->GetChars(); |
| bool minus = (data[0] == '-'); |
| int start_pos = (minus ? 1 : 0); |
| |
| if (start_pos == len) { |
| return isolate->heap()->nan_value(); |
| } else if (data[start_pos] > '9') { |
| // Fast check for a junk value. A valid string may start from a |
| // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit or |
| // the 'I' character ('Infinity'). All of that have codes not greater than |
| // '9' except 'I'. |
| if (data[start_pos] != 'I') { |
| return isolate->heap()->nan_value(); |
| } |
| } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) { |
| // The maximal/minimal smi has 10 digits. If the string has less digits we |
| // know it will fit into the smi-data type. |
| int d = ParseDecimalInteger(data, start_pos, len); |
| if (minus) { |
| if (d == 0) return isolate->heap()->minus_zero_value(); |
| d = -d; |
| } else if (!subject->HasHashCode() && |
| len <= String::kMaxArrayIndexSize && |
| (len == 1 || data[0] != '0')) { |
| // String hash is not calculated yet but all the data are present. |
| // Update the hash field to speed up sequential convertions. |
| uint32_t hash = StringHasher::MakeArrayIndexHash(d, len); |
| #ifdef DEBUG |
| subject->Hash(); // Force hash calculation. |
| ASSERT_EQ(static_cast<int>(subject->hash_field()), |
| static_cast<int>(hash)); |
| #endif |
| subject->set_hash_field(hash); |
| } |
| return Smi::FromInt(d); |
| } |
| } |
| |
| // Slower case. |
| return isolate->heap()->NumberFromDouble( |
| StringToDouble(isolate->unicode_cache(), subject, ALLOW_HEX)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringFromCharCodeArray) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSArray, codes, 0); |
| int length = Smi::cast(codes->length())->value(); |
| |
| // Check if the string can be ASCII. |
| int i; |
| for (i = 0; i < length; i++) { |
| Object* element; |
| { MaybeObject* maybe_element = codes->GetElement(i); |
| // We probably can't get an exception here, but just in order to enforce |
| // the checking of inputs in the runtime calls we check here. |
| if (!maybe_element->ToObject(&element)) return maybe_element; |
| } |
| CONVERT_NUMBER_CHECKED(int, chr, Int32, element); |
| if ((chr & 0xffff) > String::kMaxAsciiCharCode) |
| break; |
| } |
| |
| MaybeObject* maybe_object = NULL; |
| if (i == length) { // The string is ASCII. |
| maybe_object = isolate->heap()->AllocateRawAsciiString(length); |
| } else { // The string is not ASCII. |
| maybe_object = isolate->heap()->AllocateRawTwoByteString(length); |
| } |
| |
| Object* object = NULL; |
| if (!maybe_object->ToObject(&object)) return maybe_object; |
| String* result = String::cast(object); |
| for (int i = 0; i < length; i++) { |
| Object* element; |
| { MaybeObject* maybe_element = codes->GetElement(i); |
| if (!maybe_element->ToObject(&element)) return maybe_element; |
| } |
| CONVERT_NUMBER_CHECKED(int, chr, Int32, element); |
| result->Set(i, chr & 0xffff); |
| } |
| return result; |
| } |
| |
| |
| // kNotEscaped is generated by the following: |
| // |
| // #!/bin/perl |
| // for (my $i = 0; $i < 256; $i++) { |
| // print "\n" if $i % 16 == 0; |
| // my $c = chr($i); |
| // my $escaped = 1; |
| // $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#; |
| // print $escaped ? "0, " : "1, "; |
| // } |
| |
| |
| static bool IsNotEscaped(uint16_t character) { |
| // Only for 8 bit characters, the rest are always escaped (in a different way) |
| ASSERT(character < 256); |
| static const char kNotEscaped[256] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, |
| 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| return kNotEscaped[character] != 0; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_URIEscape) { |
| const char hex_chars[] = "0123456789ABCDEF"; |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(String, source, 0); |
| |
| source->TryFlatten(); |
| |
| int escaped_length = 0; |
| int length = source->length(); |
| { |
| Access<StringInputBuffer> buffer( |
| isolate->runtime_state()->string_input_buffer()); |
| buffer->Reset(source); |
| while (buffer->has_more()) { |
| uint16_t character = buffer->GetNext(); |
| if (character >= 256) { |
| escaped_length += 6; |
| } else if (IsNotEscaped(character)) { |
| escaped_length++; |
| } else { |
| escaped_length += 3; |
| } |
| // We don't allow strings that are longer than a maximal length. |
| ASSERT(String::kMaxLength < 0x7fffffff - 6); // Cannot overflow. |
| if (escaped_length > String::kMaxLength) { |
| isolate->context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| } |
| } |
| // No length change implies no change. Return original string if no change. |
| if (escaped_length == length) { |
| return source; |
| } |
| Object* o; |
| { MaybeObject* maybe_o = |
| isolate->heap()->AllocateRawAsciiString(escaped_length); |
| if (!maybe_o->ToObject(&o)) return maybe_o; |
| } |
| String* destination = String::cast(o); |
| int dest_position = 0; |
| |
| Access<StringInputBuffer> buffer( |
| isolate->runtime_state()->string_input_buffer()); |
| buffer->Rewind(); |
| while (buffer->has_more()) { |
| uint16_t chr = buffer->GetNext(); |
| if (chr >= 256) { |
| destination->Set(dest_position, '%'); |
| destination->Set(dest_position+1, 'u'); |
| destination->Set(dest_position+2, hex_chars[chr >> 12]); |
| destination->Set(dest_position+3, hex_chars[(chr >> 8) & 0xf]); |
| destination->Set(dest_position+4, hex_chars[(chr >> 4) & 0xf]); |
| destination->Set(dest_position+5, hex_chars[chr & 0xf]); |
| dest_position += 6; |
| } else if (IsNotEscaped(chr)) { |
| destination->Set(dest_position, chr); |
| dest_position++; |
| } else { |
| destination->Set(dest_position, '%'); |
| destination->Set(dest_position+1, hex_chars[chr >> 4]); |
| destination->Set(dest_position+2, hex_chars[chr & 0xf]); |
| dest_position += 3; |
| } |
| } |
| return destination; |
| } |
| |
| |
| static inline int TwoDigitHex(uint16_t character1, uint16_t character2) { |
| static const signed char kHexValue['g'] = { |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, |
| -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, 10, 11, 12, 13, 14, 15 }; |
| |
| if (character1 > 'f') return -1; |
| int hi = kHexValue[character1]; |
| if (hi == -1) return -1; |
| if (character2 > 'f') return -1; |
| int lo = kHexValue[character2]; |
| if (lo == -1) return -1; |
| return (hi << 4) + lo; |
| } |
| |
| |
| static inline int Unescape(String* source, |
| int i, |
| int length, |
| int* step) { |
| uint16_t character = source->Get(i); |
| int32_t hi = 0; |
| int32_t lo = 0; |
| if (character == '%' && |
| i <= length - 6 && |
| source->Get(i + 1) == 'u' && |
| (hi = TwoDigitHex(source->Get(i + 2), |
| source->Get(i + 3))) != -1 && |
| (lo = TwoDigitHex(source->Get(i + 4), |
| source->Get(i + 5))) != -1) { |
| *step = 6; |
| return (hi << 8) + lo; |
| } else if (character == '%' && |
| i <= length - 3 && |
| (lo = TwoDigitHex(source->Get(i + 1), |
| source->Get(i + 2))) != -1) { |
| *step = 3; |
| return lo; |
| } else { |
| *step = 1; |
| return character; |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_URIUnescape) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(String, source, 0); |
| |
| source->TryFlatten(); |
| |
| bool ascii = true; |
| int length = source->length(); |
| |
| int unescaped_length = 0; |
| for (int i = 0; i < length; unescaped_length++) { |
| int step; |
| if (Unescape(source, i, length, &step) > String::kMaxAsciiCharCode) { |
| ascii = false; |
| } |
| i += step; |
| } |
| |
| // No length change implies no change. Return original string if no change. |
| if (unescaped_length == length) |
| return source; |
| |
| Object* o; |
| { MaybeObject* maybe_o = |
| ascii ? |
| isolate->heap()->AllocateRawAsciiString(unescaped_length) : |
| isolate->heap()->AllocateRawTwoByteString(unescaped_length); |
| if (!maybe_o->ToObject(&o)) return maybe_o; |
| } |
| String* destination = String::cast(o); |
| |
| int dest_position = 0; |
| for (int i = 0; i < length; dest_position++) { |
| int step; |
| destination->Set(dest_position, Unescape(source, i, length, &step)); |
| i += step; |
| } |
| return destination; |
| } |
| |
| |
| static const unsigned int kQuoteTableLength = 128u; |
| |
| static const int kJsonQuotesCharactersPerEntry = 8; |
| static const char* const JsonQuotes = |
| "\\u0000 \\u0001 \\u0002 \\u0003 " |
| "\\u0004 \\u0005 \\u0006 \\u0007 " |
| "\\b \\t \\n \\u000b " |
| "\\f \\r \\u000e \\u000f " |
| "\\u0010 \\u0011 \\u0012 \\u0013 " |
| "\\u0014 \\u0015 \\u0016 \\u0017 " |
| "\\u0018 \\u0019 \\u001a \\u001b " |
| "\\u001c \\u001d \\u001e \\u001f " |
| " ! \\\" # " |
| "$ % & ' " |
| "( ) * + " |
| ", - . / " |
| "0 1 2 3 " |
| "4 5 6 7 " |
| "8 9 : ; " |
| "< = > ? " |
| "@ A B C " |
| "D E F G " |
| "H I J K " |
| "L M N O " |
| "P Q R S " |
| "T U V W " |
| "X Y Z [ " |
| "\\\\ ] ^ _ " |
| "` a b c " |
| "d e f g " |
| "h i j k " |
| "l m n o " |
| "p q r s " |
| "t u v w " |
| "x y z { " |
| "| } ~ \177 "; |
| |
| |
| // For a string that is less than 32k characters it should always be |
| // possible to allocate it in new space. |
| static const int kMaxGuaranteedNewSpaceString = 32 * 1024; |
| |
| |
| // Doing JSON quoting cannot make the string more than this many times larger. |
| static const int kJsonQuoteWorstCaseBlowup = 6; |
| |
| static const int kSpaceForQuotesAndComma = 3; |
| static const int kSpaceForBrackets = 2; |
| |
| // Covers the entire ASCII range (all other characters are unchanged by JSON |
| // quoting). |
| static const byte JsonQuoteLengths[kQuoteTableLength] = { |
| 6, 6, 6, 6, 6, 6, 6, 6, |
| 2, 2, 2, 6, 2, 2, 6, 6, |
| 6, 6, 6, 6, 6, 6, 6, 6, |
| 6, 6, 6, 6, 6, 6, 6, 6, |
| 1, 1, 2, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 2, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| }; |
| |
| |
| template <typename StringType> |
| MaybeObject* AllocateRawString(Isolate* isolate, int length); |
| |
| |
| template <> |
| MaybeObject* AllocateRawString<SeqTwoByteString>(Isolate* isolate, int length) { |
| return isolate->heap()->AllocateRawTwoByteString(length); |
| } |
| |
| |
| template <> |
| MaybeObject* AllocateRawString<SeqAsciiString>(Isolate* isolate, int length) { |
| return isolate->heap()->AllocateRawAsciiString(length); |
| } |
| |
| |
| template <typename Char, typename StringType, bool comma> |
| static MaybeObject* SlowQuoteJsonString(Isolate* isolate, |
| Vector<const Char> characters) { |
| int length = characters.length(); |
| const Char* read_cursor = characters.start(); |
| const Char* end = read_cursor + length; |
| const int kSpaceForQuotes = 2 + (comma ? 1 :0); |
| int quoted_length = kSpaceForQuotes; |
| while (read_cursor < end) { |
| Char c = *(read_cursor++); |
| if (sizeof(Char) > 1u && static_cast<unsigned>(c) >= kQuoteTableLength) { |
| quoted_length++; |
| } else { |
| quoted_length += JsonQuoteLengths[static_cast<unsigned>(c)]; |
| } |
| } |
| MaybeObject* new_alloc = AllocateRawString<StringType>(isolate, |
| quoted_length); |
| Object* new_object; |
| if (!new_alloc->ToObject(&new_object)) { |
| return new_alloc; |
| } |
| StringType* new_string = StringType::cast(new_object); |
| |
| Char* write_cursor = reinterpret_cast<Char*>( |
| new_string->address() + SeqString::kHeaderSize); |
| if (comma) *(write_cursor++) = ','; |
| *(write_cursor++) = '"'; |
| |
| read_cursor = characters.start(); |
| while (read_cursor < end) { |
| Char c = *(read_cursor++); |
| if (sizeof(Char) > 1u && static_cast<unsigned>(c) >= kQuoteTableLength) { |
| *(write_cursor++) = c; |
| } else { |
| int len = JsonQuoteLengths[static_cast<unsigned>(c)]; |
| const char* replacement = JsonQuotes + |
| static_cast<unsigned>(c) * kJsonQuotesCharactersPerEntry; |
| for (int i = 0; i < len; i++) { |
| *write_cursor++ = *replacement++; |
| } |
| } |
| } |
| *(write_cursor++) = '"'; |
| return new_string; |
| } |
| |
| |
| template <typename SinkChar, typename SourceChar> |
| static inline SinkChar* WriteQuoteJsonString( |
| Isolate* isolate, |
| SinkChar* write_cursor, |
| Vector<const SourceChar> characters) { |
| // SinkChar is only char if SourceChar is guaranteed to be char. |
| ASSERT(sizeof(SinkChar) >= sizeof(SourceChar)); |
| const SourceChar* read_cursor = characters.start(); |
| const SourceChar* end = read_cursor + characters.length(); |
| *(write_cursor++) = '"'; |
| while (read_cursor < end) { |
| SourceChar c = *(read_cursor++); |
| if (sizeof(SourceChar) > 1u && |
| static_cast<unsigned>(c) >= kQuoteTableLength) { |
| *(write_cursor++) = static_cast<SinkChar>(c); |
| } else { |
| int len = JsonQuoteLengths[static_cast<unsigned>(c)]; |
| const char* replacement = JsonQuotes + |
| static_cast<unsigned>(c) * kJsonQuotesCharactersPerEntry; |
| write_cursor[0] = replacement[0]; |
| if (len > 1) { |
| write_cursor[1] = replacement[1]; |
| if (len > 2) { |
| ASSERT(len == 6); |
| write_cursor[2] = replacement[2]; |
| write_cursor[3] = replacement[3]; |
| write_cursor[4] = replacement[4]; |
| write_cursor[5] = replacement[5]; |
| } |
| } |
| write_cursor += len; |
| } |
| } |
| *(write_cursor++) = '"'; |
| return write_cursor; |
| } |
| |
| |
| template <typename Char, typename StringType, bool comma> |
| static MaybeObject* QuoteJsonString(Isolate* isolate, |
| Vector<const Char> characters) { |
| int length = characters.length(); |
| isolate->counters()->quote_json_char_count()->Increment(length); |
| int worst_case_length = |
| length * kJsonQuoteWorstCaseBlowup + kSpaceForQuotesAndComma; |
| if (worst_case_length > kMaxGuaranteedNewSpaceString) { |
| return SlowQuoteJsonString<Char, StringType, comma>(isolate, characters); |
| } |
| |
| MaybeObject* new_alloc = AllocateRawString<StringType>(isolate, |
| worst_case_length); |
| Object* new_object; |
| if (!new_alloc->ToObject(&new_object)) { |
| return new_alloc; |
| } |
| if (!isolate->heap()->new_space()->Contains(new_object)) { |
| // Even if our string is small enough to fit in new space we still have to |
| // handle it being allocated in old space as may happen in the third |
| // attempt. See CALL_AND_RETRY in heap-inl.h and similar code in |
| // CEntryStub::GenerateCore. |
| return SlowQuoteJsonString<Char, StringType, comma>(isolate, characters); |
| } |
| StringType* new_string = StringType::cast(new_object); |
| ASSERT(isolate->heap()->new_space()->Contains(new_string)); |
| |
| Char* write_cursor = reinterpret_cast<Char*>( |
| new_string->address() + SeqString::kHeaderSize); |
| if (comma) *(write_cursor++) = ','; |
| write_cursor = WriteQuoteJsonString<Char, Char>(isolate, |
| write_cursor, |
| characters); |
| int final_length = static_cast<int>( |
| write_cursor - reinterpret_cast<Char*>( |
| new_string->address() + SeqString::kHeaderSize)); |
| isolate->heap()->new_space()-> |
| template ShrinkStringAtAllocationBoundary<StringType>( |
| new_string, final_length); |
| return new_string; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONString) { |
| NoHandleAllocation ha; |
| CONVERT_ARG_CHECKED(String, str, 0); |
| if (!str->IsFlat()) { |
| MaybeObject* try_flatten = str->TryFlatten(); |
| Object* flat; |
| if (!try_flatten->ToObject(&flat)) { |
| return try_flatten; |
| } |
| str = String::cast(flat); |
| ASSERT(str->IsFlat()); |
| } |
| String::FlatContent flat = str->GetFlatContent(); |
| ASSERT(flat.IsFlat()); |
| if (flat.IsTwoByte()) { |
| return QuoteJsonString<uc16, SeqTwoByteString, false>(isolate, |
| flat.ToUC16Vector()); |
| } else { |
| return QuoteJsonString<char, SeqAsciiString, false>(isolate, |
| flat.ToAsciiVector()); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONStringComma) { |
| NoHandleAllocation ha; |
| CONVERT_ARG_CHECKED(String, str, 0); |
| if (!str->IsFlat()) { |
| MaybeObject* try_flatten = str->TryFlatten(); |
| Object* flat; |
| if (!try_flatten->ToObject(&flat)) { |
| return try_flatten; |
| } |
| str = String::cast(flat); |
| ASSERT(str->IsFlat()); |
| } |
| String::FlatContent flat = str->GetFlatContent(); |
| if (flat.IsTwoByte()) { |
| return QuoteJsonString<uc16, SeqTwoByteString, true>(isolate, |
| flat.ToUC16Vector()); |
| } else { |
| return QuoteJsonString<char, SeqAsciiString, true>(isolate, |
| flat.ToAsciiVector()); |
| } |
| } |
| |
| |
| template <typename Char, typename StringType> |
| static MaybeObject* QuoteJsonStringArray(Isolate* isolate, |
| FixedArray* array, |
| int worst_case_length) { |
| int length = array->length(); |
| |
| MaybeObject* new_alloc = AllocateRawString<StringType>(isolate, |
| worst_case_length); |
| Object* new_object; |
| if (!new_alloc->ToObject(&new_object)) { |
| return new_alloc; |
| } |
| if (!isolate->heap()->new_space()->Contains(new_object)) { |
| // Even if our string is small enough to fit in new space we still have to |
| // handle it being allocated in old space as may happen in the third |
| // attempt. See CALL_AND_RETRY in heap-inl.h and similar code in |
| // CEntryStub::GenerateCore. |
| return isolate->heap()->undefined_value(); |
| } |
| AssertNoAllocation no_gc; |
| StringType* new_string = StringType::cast(new_object); |
| ASSERT(isolate->heap()->new_space()->Contains(new_string)); |
| |
| Char* write_cursor = reinterpret_cast<Char*>( |
| new_string->address() + SeqString::kHeaderSize); |
| *(write_cursor++) = '['; |
| for (int i = 0; i < length; i++) { |
| if (i != 0) *(write_cursor++) = ','; |
| String* str = String::cast(array->get(i)); |
| String::FlatContent content = str->GetFlatContent(); |
| ASSERT(content.IsFlat()); |
| if (content.IsTwoByte()) { |
| write_cursor = WriteQuoteJsonString<Char, uc16>(isolate, |
| write_cursor, |
| content.ToUC16Vector()); |
| } else { |
| write_cursor = WriteQuoteJsonString<Char, char>(isolate, |
| write_cursor, |
| content.ToAsciiVector()); |
| } |
| } |
| *(write_cursor++) = ']'; |
| |
| int final_length = static_cast<int>( |
| write_cursor - reinterpret_cast<Char*>( |
| new_string->address() + SeqString::kHeaderSize)); |
| isolate->heap()->new_space()-> |
| template ShrinkStringAtAllocationBoundary<StringType>( |
| new_string, final_length); |
| return new_string; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONStringArray) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSArray, array, 0); |
| |
| if (!array->HasFastElements()) return isolate->heap()->undefined_value(); |
| FixedArray* elements = FixedArray::cast(array->elements()); |
| int n = elements->length(); |
| bool ascii = true; |
| int total_length = 0; |
| |
| for (int i = 0; i < n; i++) { |
| Object* elt = elements->get(i); |
| if (!elt->IsString()) return isolate->heap()->undefined_value(); |
| String* element = String::cast(elt); |
| if (!element->IsFlat()) return isolate->heap()->undefined_value(); |
| total_length += element->length(); |
| if (ascii && element->IsTwoByteRepresentation()) { |
| ascii = false; |
| } |
| } |
| |
| int worst_case_length = |
| kSpaceForBrackets + n * kSpaceForQuotesAndComma |
| + total_length * kJsonQuoteWorstCaseBlowup; |
| |
| if (worst_case_length > kMaxGuaranteedNewSpaceString) { |
| return isolate->heap()->undefined_value(); |
| } |
| |
| if (ascii) { |
| return QuoteJsonStringArray<char, SeqAsciiString>(isolate, |
| elements, |
| worst_case_length); |
| } else { |
| return QuoteJsonStringArray<uc16, SeqTwoByteString>(isolate, |
| elements, |
| worst_case_length); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseInt) { |
| NoHandleAllocation ha; |
| |
| CONVERT_ARG_CHECKED(String, s, 0); |
| CONVERT_SMI_ARG_CHECKED(radix, 1); |
| |
| s->TryFlatten(); |
| |
| RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36)); |
| double value = StringToInt(isolate->unicode_cache(), s, radix); |
| return isolate->heap()->NumberFromDouble(value); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseFloat) { |
| NoHandleAllocation ha; |
| CONVERT_ARG_CHECKED(String, str, 0); |
| |
| // ECMA-262 section 15.1.2.3, empty string is NaN |
| double value = StringToDouble(isolate->unicode_cache(), |
| str, ALLOW_TRAILING_JUNK, OS::nan_value()); |
| |
| // Create a number object from the value. |
| return isolate->heap()->NumberFromDouble(value); |
| } |
| |
| |
| template <class Converter> |
| MUST_USE_RESULT static MaybeObject* ConvertCaseHelper( |
| Isolate* isolate, |
| String* s, |
| int length, |
| int input_string_length, |
| unibrow::Mapping<Converter, 128>* mapping) { |
| // We try this twice, once with the assumption that the result is no longer |
| // than the input and, if that assumption breaks, again with the exact |
| // length. This may not be pretty, but it is nicer than what was here before |
| // and I hereby claim my vaffel-is. |
| // |
| // Allocate the resulting string. |
| // |
| // NOTE: This assumes that the upper/lower case of an ASCII |
| // character is also ASCII. This is currently the case, but it |
| // might break in the future if we implement more context and locale |
| // dependent upper/lower conversions. |
| Object* o; |
| { MaybeObject* maybe_o = s->IsAsciiRepresentation() |
| ? isolate->heap()->AllocateRawAsciiString(length) |
| : isolate->heap()->AllocateRawTwoByteString(length); |
| if (!maybe_o->ToObject(&o)) return maybe_o; |
| } |
| String* result = String::cast(o); |
| bool has_changed_character = false; |
| |
| // Convert all characters to upper case, assuming that they will fit |
| // in the buffer |
| Access<StringInputBuffer> buffer( |
| isolate->runtime_state()->string_input_buffer()); |
| buffer->Reset(s); |
| unibrow::uchar chars[Converter::kMaxWidth]; |
| // We can assume that the string is not empty |
| uc32 current = buffer->GetNext(); |
| for (int i = 0; i < length;) { |
| bool has_next = buffer->has_more(); |
| uc32 next = has_next ? buffer->GetNext() : 0; |
| int char_length = mapping->get(current, next, chars); |
| if (char_length == 0) { |
| // The case conversion of this character is the character itself. |
| result->Set(i, current); |
| i++; |
| } else if (char_length == 1) { |
| // Common case: converting the letter resulted in one character. |
| ASSERT(static_cast<uc32>(chars[0]) != current); |
| result->Set(i, chars[0]); |
| has_changed_character = true; |
| i++; |
| } else if (length == input_string_length) { |
| // We've assumed that the result would be as long as the |
| // input but here is a character that converts to several |
| // characters. No matter, we calculate the exact length |
| // of the result and try the whole thing again. |
| // |
| // Note that this leaves room for optimization. We could just |
| // memcpy what we already have to the result string. Also, |
| // the result string is the last object allocated we could |
| // "realloc" it and probably, in the vast majority of cases, |
| // extend the existing string to be able to hold the full |
| // result. |
| int next_length = 0; |
| if (has_next) { |
| next_length = mapping->get(next, 0, chars); |
| if (next_length == 0) next_length = 1; |
| } |
| int current_length = i + char_length + next_length; |
| while (buffer->has_more()) { |
| current = buffer->GetNext(); |
| // NOTE: we use 0 as the next character here because, while |
| // the next character may affect what a character converts to, |
| // it does not in any case affect the length of what it convert |
| // to. |
| int char_length = mapping->get(current, 0, chars); |
| if (char_length == 0) char_length = 1; |
| current_length += char_length; |
| if (current_length > Smi::kMaxValue) { |
| isolate->context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| } |
| // Try again with the real length. |
| return Smi::FromInt(current_length); |
| } else { |
| for (int j = 0; j < char_length; j++) { |
| result->Set(i, chars[j]); |
| i++; |
| } |
| has_changed_character = true; |
| } |
| current = next; |
| } |
| if (has_changed_character) { |
| return result; |
| } else { |
| // If we didn't actually change anything in doing the conversion |
| // we simple return the result and let the converted string |
| // become garbage; there is no reason to keep two identical strings |
| // alive. |
| return s; |
| } |
| } |
| |
| |
| namespace { |
| |
| static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF; |
| |
| |
| // Given a word and two range boundaries returns a word with high bit |
| // set in every byte iff the corresponding input byte was strictly in |
| // the range (m, n). All the other bits in the result are cleared. |
| // This function is only useful when it can be inlined and the |
| // boundaries are statically known. |
| // Requires: all bytes in the input word and the boundaries must be |
| // ASCII (less than 0x7F). |
| static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) { |
| // Every byte in an ASCII string is less than or equal to 0x7F. |
| ASSERT((w & (kOneInEveryByte * 0x7F)) == w); |
| // Use strict inequalities since in edge cases the function could be |
| // further simplified. |
| ASSERT(0 < m && m < n && n < 0x7F); |
| // Has high bit set in every w byte less than n. |
| uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w; |
| // Has high bit set in every w byte greater than m. |
| uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m); |
| return (tmp1 & tmp2 & (kOneInEveryByte * 0x80)); |
| } |
| |
| |
| enum AsciiCaseConversion { |
| ASCII_TO_LOWER, |
| ASCII_TO_UPPER |
| }; |
| |
| |
| template <AsciiCaseConversion dir> |
| struct FastAsciiConverter { |
| static bool Convert(char* dst, char* src, int length) { |
| #ifdef DEBUG |
| char* saved_dst = dst; |
| char* saved_src = src; |
| #endif |
| // We rely on the distance between upper and lower case letters |
| // being a known power of 2. |
| ASSERT('a' - 'A' == (1 << 5)); |
| // Boundaries for the range of input characters than require conversion. |
| const char lo = (dir == ASCII_TO_LOWER) ? 'A' - 1 : 'a' - 1; |
| const char hi = (dir == ASCII_TO_LOWER) ? 'Z' + 1 : 'z' + 1; |
| bool changed = false; |
| char* const limit = src + length; |
| #ifdef V8_HOST_CAN_READ_UNALIGNED |
| // Process the prefix of the input that requires no conversion one |
| // (machine) word at a time. |
| while (src <= limit - sizeof(uintptr_t)) { |
| uintptr_t w = *reinterpret_cast<uintptr_t*>(src); |
| if (AsciiRangeMask(w, lo, hi) != 0) { |
| changed = true; |
| break; |
| } |
| *reinterpret_cast<uintptr_t*>(dst) = w; |
| src += sizeof(uintptr_t); |
| dst += sizeof(uintptr_t); |
| } |
| // Process the remainder of the input performing conversion when |
| // required one word at a time. |
| while (src <= limit - sizeof(uintptr_t)) { |
| uintptr_t w = *reinterpret_cast<uintptr_t*>(src); |
| uintptr_t m = AsciiRangeMask(w, lo, hi); |
| // The mask has high (7th) bit set in every byte that needs |
| // conversion and we know that the distance between cases is |
| // 1 << 5. |
| *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2); |
| src += sizeof(uintptr_t); |
| dst += sizeof(uintptr_t); |
| } |
| #endif |
| // Process the last few bytes of the input (or the whole input if |
| // unaligned access is not supported). |
| while (src < limit) { |
| char c = *src; |
| if (lo < c && c < hi) { |
| c ^= (1 << 5); |
| changed = true; |
| } |
| *dst = c; |
| ++src; |
| ++dst; |
| } |
| #ifdef DEBUG |
| CheckConvert(saved_dst, saved_src, length, changed); |
| #endif |
| return changed; |
| } |
| |
| #ifdef DEBUG |
| static void CheckConvert(char* dst, char* src, int length, bool changed) { |
| bool expected_changed = false; |
| for (int i = 0; i < length; i++) { |
| if (dst[i] == src[i]) continue; |
| expected_changed = true; |
| if (dir == ASCII_TO_LOWER) { |
| ASSERT('A' <= src[i] && src[i] <= 'Z'); |
| ASSERT(dst[i] == src[i] + ('a' - 'A')); |
| } else { |
| ASSERT(dir == ASCII_TO_UPPER); |
| ASSERT('a' <= src[i] && src[i] <= 'z'); |
| ASSERT(dst[i] == src[i] - ('a' - 'A')); |
| } |
| } |
| ASSERT(expected_changed == changed); |
| } |
| #endif |
| }; |
| |
| |
| struct ToLowerTraits { |
| typedef unibrow::ToLowercase UnibrowConverter; |
| |
| typedef FastAsciiConverter<ASCII_TO_LOWER> AsciiConverter; |
| }; |
| |
| |
| struct ToUpperTraits { |
| typedef unibrow::ToUppercase UnibrowConverter; |
| |
| typedef FastAsciiConverter<ASCII_TO_UPPER> AsciiConverter; |
| }; |
| |
| } // namespace |
| |
| |
| template <typename ConvertTraits> |
| MUST_USE_RESULT static MaybeObject* ConvertCase( |
| Arguments args, |
| Isolate* isolate, |
| unibrow::Mapping<typename ConvertTraits::UnibrowConverter, 128>* mapping) { |
| NoHandleAllocation ha; |
| CONVERT_ARG_CHECKED(String, s, 0); |
| s = s->TryFlattenGetString(); |
| |
| const int length = s->length(); |
| // Assume that the string is not empty; we need this assumption later |
| if (length == 0) return s; |
| |
| // Simpler handling of ASCII strings. |
| // |
| // NOTE: This assumes that the upper/lower case of an ASCII |
| // character is also ASCII. This is currently the case, but it |
| // might break in the future if we implement more context and locale |
| // dependent upper/lower conversions. |
| if (s->IsSeqAsciiString()) { |
| Object* o; |
| { MaybeObject* maybe_o = isolate->heap()->AllocateRawAsciiString(length); |
| if (!maybe_o->ToObject(&o)) return maybe_o; |
| } |
| SeqAsciiString* result = SeqAsciiString::cast(o); |
| bool has_changed_character = ConvertTraits::AsciiConverter::Convert( |
| result->GetChars(), SeqAsciiString::cast(s)->GetChars(), length); |
| return has_changed_character ? result : s; |
| } |
| |
| Object* answer; |
| { MaybeObject* maybe_answer = |
| ConvertCaseHelper(isolate, s, length, length, mapping); |
| if (!maybe_answer->ToObject(&answer)) return maybe_answer; |
| } |
| if (answer->IsSmi()) { |
| // Retry with correct length. |
| { MaybeObject* maybe_answer = |
| ConvertCaseHelper(isolate, |
| s, Smi::cast(answer)->value(), length, mapping); |
| if (!maybe_answer->ToObject(&answer)) return maybe_answer; |
| } |
| } |
| return answer; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToLowerCase) { |
| return ConvertCase<ToLowerTraits>( |
| args, isolate, isolate->runtime_state()->to_lower_mapping()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToUpperCase) { |
| return ConvertCase<ToUpperTraits>( |
| args, isolate, isolate->runtime_state()->to_upper_mapping()); |
| } |
| |
| |
| static inline bool IsTrimWhiteSpace(unibrow::uchar c) { |
| return unibrow::WhiteSpace::Is(c) || c == 0x200b || c == 0xfeff; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringTrim) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| CONVERT_ARG_CHECKED(String, s, 0); |
| CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1); |
| CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2); |
| |
| s->TryFlatten(); |
| int length = s->length(); |
| |
| int left = 0; |
| if (trimLeft) { |
| while (left < length && IsTrimWhiteSpace(s->Get(left))) { |
| left++; |
| } |
| } |
| |
| int right = length; |
| if (trimRight) { |
| while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) { |
| right--; |
| } |
| } |
| return s->SubString(left, right); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringSplit) { |
| ASSERT(args.length() == 3); |
| HandleScope handle_scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1); |
| CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]); |
| |
| int subject_length = subject->length(); |
| int pattern_length = pattern->length(); |
| RUNTIME_ASSERT(pattern_length > 0); |
| |
| if (limit == 0xffffffffu) { |
| Handle<Object> cached_answer(StringSplitCache::Lookup( |
| isolate->heap()->string_split_cache(), |
| *subject, |
| *pattern)); |
| if (*cached_answer != Smi::FromInt(0)) { |
| Handle<JSArray> result = |
| isolate->factory()->NewJSArrayWithElements( |
| Handle<FixedArray>::cast(cached_answer)); |
| return *result; |
| } |
| } |
| |
| // The limit can be very large (0xffffffffu), but since the pattern |
| // isn't empty, we can never create more parts than ~half the length |
| // of the subject. |
| |
| if (!subject->IsFlat()) FlattenString(subject); |
| |
| static const int kMaxInitialListCapacity = 16; |
| |
| ZoneScope scope(isolate, DELETE_ON_EXIT); |
| |
| // Find (up to limit) indices of separator and end-of-string in subject |
| int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit); |
| ZoneList<int> indices(initial_capacity); |
| if (!pattern->IsFlat()) FlattenString(pattern); |
| |
| FindStringIndicesDispatch(isolate, *subject, *pattern, &indices, limit); |
| |
| if (static_cast<uint32_t>(indices.length()) < limit) { |
| indices.Add(subject_length); |
| } |
| |
| // The list indices now contains the end of each part to create. |
| |
| // Create JSArray of substrings separated by separator. |
| int part_count = indices.length(); |
| |
| Handle<JSArray> result = isolate->factory()->NewJSArray(part_count); |
| MaybeObject* maybe_result = result->EnsureCanContainHeapObjectElements(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| result->set_length(Smi::FromInt(part_count)); |
| |
| ASSERT(result->HasFastElements()); |
| |
| if (part_count == 1 && indices.at(0) == subject_length) { |
| FixedArray::cast(result->elements())->set(0, *subject); |
| return *result; |
| } |
| |
| Handle<FixedArray> elements(FixedArray::cast(result->elements())); |
| int part_start = 0; |
| for (int i = 0; i < part_count; i++) { |
| HandleScope local_loop_handle; |
| int part_end = indices.at(i); |
| Handle<String> substring = |
| isolate->factory()->NewProperSubString(subject, part_start, part_end); |
| elements->set(i, *substring); |
| part_start = part_end + pattern_length; |
| } |
| |
| if (limit == 0xffffffffu) { |
| if (result->HasFastElements()) { |
| StringSplitCache::Enter(isolate->heap(), |
| isolate->heap()->string_split_cache(), |
| *subject, |
| *pattern, |
| *elements); |
| } |
| } |
| |
| return *result; |
| } |
| |
| |
| // Copies ASCII characters to the given fixed array looking up |
| // one-char strings in the cache. Gives up on the first char that is |
| // not in the cache and fills the remainder with smi zeros. Returns |
| // the length of the successfully copied prefix. |
| static int CopyCachedAsciiCharsToArray(Heap* heap, |
| const char* chars, |
| FixedArray* elements, |
| int length) { |
| AssertNoAllocation no_gc; |
| FixedArray* ascii_cache = heap->single_character_string_cache(); |
| Object* undefined = heap->undefined_value(); |
| int i; |
| WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); |
| for (i = 0; i < length; ++i) { |
| Object* value = ascii_cache->get(chars[i]); |
| if (value == undefined) break; |
| elements->set(i, value, mode); |
| } |
| if (i < length) { |
| ASSERT(Smi::FromInt(0) == 0); |
| memset(elements->data_start() + i, 0, kPointerSize * (length - i)); |
| } |
| #ifdef DEBUG |
| for (int j = 0; j < length; ++j) { |
| Object* element = elements->get(j); |
| ASSERT(element == Smi::FromInt(0) || |
| (element->IsString() && String::cast(element)->LooksValid())); |
| } |
| #endif |
| return i; |
| } |
| |
| |
| // Converts a String to JSArray. |
| // For example, "foo" => ["f", "o", "o"]. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToArray) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(String, s, 0); |
| CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); |
| |
| s = FlattenGetString(s); |
| const int length = static_cast<int>(Min<uint32_t>(s->length(), limit)); |
| |
| Handle<FixedArray> elements; |
| int position = 0; |
| if (s->IsFlat() && s->IsAsciiRepresentation()) { |
| // Try using cached chars where possible. |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| isolate->heap()->AllocateUninitializedFixedArray(length); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| elements = Handle<FixedArray>(FixedArray::cast(obj), isolate); |
| String::FlatContent content = s->GetFlatContent(); |
| if (content.IsAscii()) { |
| Vector<const char> chars = content.ToAsciiVector(); |
| // Note, this will initialize all elements (not only the prefix) |
| // to prevent GC from seeing partially initialized array. |
| position = CopyCachedAsciiCharsToArray(isolate->heap(), |
| chars.start(), |
| *elements, |
| length); |
| } else { |
| MemsetPointer(elements->data_start(), |
| isolate->heap()->undefined_value(), |
| length); |
| } |
| } else { |
| elements = isolate->factory()->NewFixedArray(length); |
| } |
| for (int i = position; i < length; ++i) { |
| Handle<Object> str = LookupSingleCharacterStringFromCode(s->Get(i)); |
| elements->set(i, *str); |
| } |
| |
| #ifdef DEBUG |
| for (int i = 0; i < length; ++i) { |
| ASSERT(String::cast(elements->get(i))->length() == 1); |
| } |
| #endif |
| |
| return *isolate->factory()->NewJSArrayWithElements(elements); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NewStringWrapper) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(String, value, 0); |
| return value->ToObject(); |
| } |
| |
| |
| bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) { |
| unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth]; |
| int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars); |
| return char_length == 0; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToString) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| Object* number = args[0]; |
| RUNTIME_ASSERT(number->IsNumber()); |
| |
| return isolate->heap()->NumberToString(number); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToStringSkipCache) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| Object* number = args[0]; |
| RUNTIME_ASSERT(number->IsNumber()); |
| |
| return isolate->heap()->NumberToString(number, false); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToInteger) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(number, 0); |
| |
| // We do not include 0 so that we don't have to treat +0 / -0 cases. |
| if (number > 0 && number <= Smi::kMaxValue) { |
| return Smi::FromInt(static_cast<int>(number)); |
| } |
| return isolate->heap()->NumberFromDouble(DoubleToInteger(number)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToIntegerMapMinusZero) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(number, 0); |
| |
| // We do not include 0 so that we don't have to treat +0 / -0 cases. |
| if (number > 0 && number <= Smi::kMaxValue) { |
| return Smi::FromInt(static_cast<int>(number)); |
| } |
| |
| double double_value = DoubleToInteger(number); |
| // Map both -0 and +0 to +0. |
| if (double_value == 0) double_value = 0; |
| |
| return isolate->heap()->NumberFromDouble(double_value); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSUint32) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]); |
| return isolate->heap()->NumberFromUint32(number); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSInt32) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(number, 0); |
| |
| // We do not include 0 so that we don't have to treat +0 / -0 cases. |
| if (number > 0 && number <= Smi::kMaxValue) { |
| return Smi::FromInt(static_cast<int>(number)); |
| } |
| return isolate->heap()->NumberFromInt32(DoubleToInt32(number)); |
| } |
| |
| |
| // Converts a Number to a Smi, if possible. Returns NaN if the number is not |
| // a small integer. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToSmi) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| Object* obj = args[0]; |
| if (obj->IsSmi()) { |
| return obj; |
| } |
| if (obj->IsHeapNumber()) { |
| double value = HeapNumber::cast(obj)->value(); |
| int int_value = FastD2I(value); |
| if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { |
| return Smi::FromInt(int_value); |
| } |
| } |
| return isolate->heap()->nan_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateHeapNumber) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 0); |
| return isolate->heap()->AllocateHeapNumber(0); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAdd) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| return isolate->heap()->NumberFromDouble(x + y); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSub) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| return isolate->heap()->NumberFromDouble(x - y); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMul) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| return isolate->heap()->NumberFromDouble(x * y); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberUnaryMinus) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->heap()->NumberFromDouble(-x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAlloc) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 0); |
| |
| return isolate->heap()->NumberFromDouble(9876543210.0); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberDiv) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| return isolate->heap()->NumberFromDouble(x / y); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMod) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| |
| x = modulo(x, y); |
| // NumberFromDouble may return a Smi instead of a Number object |
| return isolate->heap()->NumberFromDouble(x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringAdd) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(String, str1, 0); |
| CONVERT_ARG_CHECKED(String, str2, 1); |
| isolate->counters()->string_add_runtime()->Increment(); |
| return isolate->heap()->AllocateConsString(str1, str2); |
| } |
| |
| |
| template <typename sinkchar> |
| static inline void StringBuilderConcatHelper(String* special, |
| sinkchar* sink, |
| FixedArray* fixed_array, |
| int array_length) { |
| int position = 0; |
| for (int i = 0; i < array_length; i++) { |
| Object* element = fixed_array->get(i); |
| if (element->IsSmi()) { |
| // Smi encoding of position and length. |
| int encoded_slice = Smi::cast(element)->value(); |
| int pos; |
| int len; |
| if (encoded_slice > 0) { |
| // Position and length encoded in one smi. |
| pos = StringBuilderSubstringPosition::decode(encoded_slice); |
| len = StringBuilderSubstringLength::decode(encoded_slice); |
| } else { |
| // Position and length encoded in two smis. |
| Object* obj = fixed_array->get(++i); |
| ASSERT(obj->IsSmi()); |
| pos = Smi::cast(obj)->value(); |
| len = -encoded_slice; |
| } |
| String::WriteToFlat(special, |
| sink + position, |
| pos, |
| pos + len); |
| position += len; |
| } else { |
| String* string = String::cast(element); |
| int element_length = string->length(); |
| String::WriteToFlat(string, sink + position, 0, element_length); |
| position += element_length; |
| } |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderConcat) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(JSArray, array, 0); |
| if (!args[1]->IsSmi()) { |
| isolate->context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| int array_length = args.smi_at(1); |
| CONVERT_ARG_CHECKED(String, special, 2); |
| |
| // This assumption is used by the slice encoding in one or two smis. |
| ASSERT(Smi::kMaxValue >= String::kMaxLength); |
| |
| MaybeObject* maybe_result = array->EnsureCanContainHeapObjectElements(); |
| if (maybe_result->IsFailure()) return maybe_result; |
| |
| int special_length = special->length(); |
| if (!array->HasFastElements()) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| FixedArray* fixed_array = FixedArray::cast(array->elements()); |
| if (fixed_array->length() < array_length) { |
| array_length = fixed_array->length(); |
| } |
| |
| if (array_length == 0) { |
| return isolate->heap()->empty_string(); |
| } else if (array_length == 1) { |
| Object* first = fixed_array->get(0); |
| if (first->IsString()) return first; |
| } |
| |
| bool ascii = special->HasOnlyAsciiChars(); |
| int position = 0; |
| for (int i = 0; i < array_length; i++) { |
| int increment = 0; |
| Object* elt = fixed_array->get(i); |
| if (elt->IsSmi()) { |
| // Smi encoding of position and length. |
| int smi_value = Smi::cast(elt)->value(); |
| int pos; |
| int len; |
| if (smi_value > 0) { |
| // Position and length encoded in one smi. |
| pos = StringBuilderSubstringPosition::decode(smi_value); |
| len = StringBuilderSubstringLength::decode(smi_value); |
| } else { |
| // Position and length encoded in two smis. |
| len = -smi_value; |
| // Get the position and check that it is a positive smi. |
| i++; |
| if (i >= array_length) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| Object* next_smi = fixed_array->get(i); |
| if (!next_smi->IsSmi()) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| pos = Smi::cast(next_smi)->value(); |
| if (pos < 0) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| } |
| ASSERT(pos >= 0); |
| ASSERT(len >= 0); |
| if (pos > special_length || len > special_length - pos) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| increment = len; |
| } else if (elt->IsString()) { |
| String* element = String::cast(elt); |
| int element_length = element->length(); |
| increment = element_length; |
| if (ascii && !element->HasOnlyAsciiChars()) { |
| ascii = false; |
| } |
| } else { |
| ASSERT(!elt->IsTheHole()); |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| if (increment > String::kMaxLength - position) { |
| isolate->context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| position += increment; |
| } |
| |
| int length = position; |
| Object* object; |
| |
| if (ascii) { |
| { MaybeObject* maybe_object = |
| isolate->heap()->AllocateRawAsciiString(length); |
| if (!maybe_object->ToObject(&object)) return maybe_object; |
| } |
| SeqAsciiString* answer = SeqAsciiString::cast(object); |
| StringBuilderConcatHelper(special, |
| answer->GetChars(), |
| fixed_array, |
| array_length); |
| return answer; |
| } else { |
| { MaybeObject* maybe_object = |
| isolate->heap()->AllocateRawTwoByteString(length); |
| if (!maybe_object->ToObject(&object)) return maybe_object; |
| } |
| SeqTwoByteString* answer = SeqTwoByteString::cast(object); |
| StringBuilderConcatHelper(special, |
| answer->GetChars(), |
| fixed_array, |
| array_length); |
| return answer; |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderJoin) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(JSArray, array, 0); |
| if (!args[1]->IsSmi()) { |
| isolate->context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| int array_length = args.smi_at(1); |
| CONVERT_ARG_CHECKED(String, separator, 2); |
| |
| if (!array->HasFastElements()) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| FixedArray* fixed_array = FixedArray::cast(array->elements()); |
| if (fixed_array->length() < array_length) { |
| array_length = fixed_array->length(); |
| } |
| |
| if (array_length == 0) { |
| return isolate->heap()->empty_string(); |
| } else if (array_length == 1) { |
| Object* first = fixed_array->get(0); |
| if (first->IsString()) return first; |
| } |
| |
| int separator_length = separator->length(); |
| int max_nof_separators = |
| (String::kMaxLength + separator_length - 1) / separator_length; |
| if (max_nof_separators < (array_length - 1)) { |
| isolate->context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| int length = (array_length - 1) * separator_length; |
| for (int i = 0; i < array_length; i++) { |
| Object* element_obj = fixed_array->get(i); |
| if (!element_obj->IsString()) { |
| // TODO(1161): handle this case. |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| String* element = String::cast(element_obj); |
| int increment = element->length(); |
| if (increment > String::kMaxLength - length) { |
| isolate->context()->mark_out_of_memory(); |
| return Failure::OutOfMemoryException(); |
| } |
| length += increment; |
| } |
| |
| Object* object; |
| { MaybeObject* maybe_object = |
| isolate->heap()->AllocateRawTwoByteString(length); |
| if (!maybe_object->ToObject(&object)) return maybe_object; |
| } |
| SeqTwoByteString* answer = SeqTwoByteString::cast(object); |
| |
| uc16* sink = answer->GetChars(); |
| #ifdef DEBUG |
| uc16* end = sink + length; |
| #endif |
| |
| String* first = String::cast(fixed_array->get(0)); |
| int first_length = first->length(); |
| String::WriteToFlat(first, sink, 0, first_length); |
| sink += first_length; |
| |
| for (int i = 1; i < array_length; i++) { |
| ASSERT(sink + separator_length <= end); |
| String::WriteToFlat(separator, sink, 0, separator_length); |
| sink += separator_length; |
| |
| String* element = String::cast(fixed_array->get(i)); |
| int element_length = element->length(); |
| ASSERT(sink + element_length <= end); |
| String::WriteToFlat(element, sink, 0, element_length); |
| sink += element_length; |
| } |
| ASSERT(sink == end); |
| |
| ASSERT(!answer->HasOnlyAsciiChars()); // Use %_FastAsciiArrayJoin instead. |
| return answer; |
| } |
| |
| template <typename Char> |
| static void JoinSparseArrayWithSeparator(FixedArray* elements, |
| int elements_length, |
| uint32_t array_length, |
| String* separator, |
| Vector<Char> buffer) { |
| int previous_separator_position = 0; |
| int separator_length = separator->length(); |
| int cursor = 0; |
| for (int i = 0; i < elements_length; i += 2) { |
| int position = NumberToInt32(elements->get(i)); |
| String* string = String::cast(elements->get(i + 1)); |
| int string_length = string->length(); |
| if (string->length() > 0) { |
| while (previous_separator_position < position) { |
| String::WriteToFlat<Char>(separator, &buffer[cursor], |
| 0, separator_length); |
| cursor += separator_length; |
| previous_separator_position++; |
| } |
| String::WriteToFlat<Char>(string, &buffer[cursor], |
| 0, string_length); |
| cursor += string->length(); |
| } |
| } |
| if (separator_length > 0) { |
| // Array length must be representable as a signed 32-bit number, |
| // otherwise the total string length would have been too large. |
| ASSERT(array_length <= 0x7fffffff); // Is int32_t. |
| int last_array_index = static_cast<int>(array_length - 1); |
| while (previous_separator_position < last_array_index) { |
| String::WriteToFlat<Char>(separator, &buffer[cursor], |
| 0, separator_length); |
| cursor += separator_length; |
| previous_separator_position++; |
| } |
| } |
| ASSERT(cursor <= buffer.length()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SparseJoinWithSeparator) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(JSArray, elements_array, 0); |
| RUNTIME_ASSERT(elements_array->HasFastElements() || |
| elements_array->HasFastSmiOnlyElements()); |
| CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]); |
| CONVERT_ARG_CHECKED(String, separator, 2); |
| // elements_array is fast-mode JSarray of alternating positions |
| // (increasing order) and strings. |
| // array_length is length of original array (used to add separators); |
| // separator is string to put between elements. Assumed to be non-empty. |
| |
| // Find total length of join result. |
| int string_length = 0; |
| bool is_ascii = separator->IsAsciiRepresentation(); |
| int max_string_length; |
| if (is_ascii) { |
| max_string_length = SeqAsciiString::kMaxLength; |
| } else { |
| max_string_length = SeqTwoByteString::kMaxLength; |
| } |
| bool overflow = false; |
| CONVERT_NUMBER_CHECKED(int, elements_length, |
| Int32, elements_array->length()); |
| RUNTIME_ASSERT((elements_length & 1) == 0); // Even length. |
| FixedArray* elements = FixedArray::cast(elements_array->elements()); |
| for (int i = 0; i < elements_length; i += 2) { |
| RUNTIME_ASSERT(elements->get(i)->IsNumber()); |
| RUNTIME_ASSERT(elements->get(i + 1)->IsString()); |
| String* string = String::cast(elements->get(i + 1)); |
| int length = string->length(); |
| if (is_ascii && !string->IsAsciiRepresentation()) { |
| is_ascii = false; |
| max_string_length = SeqTwoByteString::kMaxLength; |
| } |
| if (length > max_string_length || |
| max_string_length - length < string_length) { |
| overflow = true; |
| break; |
| } |
| string_length += length; |
| } |
| int separator_length = separator->length(); |
| if (!overflow && separator_length > 0) { |
| if (array_length <= 0x7fffffffu) { |
| int separator_count = static_cast<int>(array_length) - 1; |
| int remaining_length = max_string_length - string_length; |
| if ((remaining_length / separator_length) >= separator_count) { |
| string_length += separator_length * (array_length - 1); |
| } else { |
| // Not room for the separators within the maximal string length. |
| overflow = true; |
| } |
| } else { |
| // Nonempty separator and at least 2^31-1 separators necessary |
| // means that the string is too large to create. |
| STATIC_ASSERT(String::kMaxLength < 0x7fffffff); |
| overflow = true; |
| } |
| } |
| if (overflow) { |
| // Throw OutOfMemory exception for creating too large a string. |
| V8::FatalProcessOutOfMemory("Array join result too large."); |
| } |
| |
| if (is_ascii) { |
| MaybeObject* result_allocation = |
| isolate->heap()->AllocateRawAsciiString(string_length); |
| if (result_allocation->IsFailure()) return result_allocation; |
| SeqAsciiString* result_string = |
| SeqAsciiString::cast(result_allocation->ToObjectUnchecked()); |
| JoinSparseArrayWithSeparator<char>(elements, |
| elements_length, |
| array_length, |
| separator, |
| Vector<char>(result_string->GetChars(), |
| string_length)); |
| return result_string; |
| } else { |
| MaybeObject* result_allocation = |
| isolate->heap()->AllocateRawTwoByteString(string_length); |
| if (result_allocation->IsFailure()) return result_allocation; |
| SeqTwoByteString* result_string = |
| SeqTwoByteString::cast(result_allocation->ToObjectUnchecked()); |
| JoinSparseArrayWithSeparator<uc16>(elements, |
| elements_length, |
| array_length, |
| separator, |
| Vector<uc16>(result_string->GetChars(), |
| string_length)); |
| return result_string; |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberOr) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return isolate->heap()->NumberFromInt32(x | y); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAnd) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return isolate->heap()->NumberFromInt32(x & y); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberXor) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return isolate->heap()->NumberFromInt32(x ^ y); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberNot) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| return isolate->heap()->NumberFromInt32(~x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShl) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return isolate->heap()->NumberFromInt32(x << (y & 0x1f)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShr) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return isolate->heap()->NumberFromUint32(x >> (y & 0x1f)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSar) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| return isolate->heap()->NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberEquals) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| if (isnan(x)) return Smi::FromInt(NOT_EQUAL); |
| if (isnan(y)) return Smi::FromInt(NOT_EQUAL); |
| if (x == y) return Smi::FromInt(EQUAL); |
| Object* result; |
| if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) { |
| result = Smi::FromInt(EQUAL); |
| } else { |
| result = Smi::FromInt(NOT_EQUAL); |
| } |
| return result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringEquals) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(String, x, 0); |
| CONVERT_ARG_CHECKED(String, y, 1); |
| |
| bool not_equal = !x->Equals(y); |
| // This is slightly convoluted because the value that signifies |
| // equality is 0 and inequality is 1 so we have to negate the result |
| // from String::Equals. |
| ASSERT(not_equal == 0 || not_equal == 1); |
| STATIC_CHECK(EQUAL == 0); |
| STATIC_CHECK(NOT_EQUAL == 1); |
| return Smi::FromInt(not_equal); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberCompare) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| if (isnan(x) || isnan(y)) return args[2]; |
| if (x == y) return Smi::FromInt(EQUAL); |
| if (isless(x, y)) return Smi::FromInt(LESS); |
| return Smi::FromInt(GREATER); |
| } |
| |
| |
| // Compare two Smis as if they were converted to strings and then |
| // compared lexicographically. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SmiLexicographicCompare) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| CONVERT_SMI_ARG_CHECKED(x_value, 0); |
| CONVERT_SMI_ARG_CHECKED(y_value, 1); |
| |
| // If the integers are equal so are the string representations. |
| if (x_value == y_value) return Smi::FromInt(EQUAL); |
| |
| // If one of the integers is zero the normal integer order is the |
| // same as the lexicographic order of the string representations. |
| if (x_value == 0 || y_value == 0) |
| return Smi::FromInt(x_value < y_value ? LESS : GREATER); |
| |
| // If only one of the integers is negative the negative number is |
| // smallest because the char code of '-' is less than the char code |
| // of any digit. Otherwise, we make both values positive. |
| |
| // Use unsigned values otherwise the logic is incorrect for -MIN_INT on |
| // architectures using 32-bit Smis. |
| uint32_t x_scaled = x_value; |
| uint32_t y_scaled = y_value; |
| if (x_value < 0 || y_value < 0) { |
| if (y_value >= 0) return Smi::FromInt(LESS); |
| if (x_value >= 0) return Smi::FromInt(GREATER); |
| x_scaled = -x_value; |
| y_scaled = -y_value; |
| } |
| |
| static const uint32_t kPowersOf10[] = { |
| 1, 10, 100, 1000, 10*1000, 100*1000, |
| 1000*1000, 10*1000*1000, 100*1000*1000, |
| 1000*1000*1000 |
| }; |
| |
| // If the integers have the same number of decimal digits they can be |
| // compared directly as the numeric order is the same as the |
| // lexicographic order. If one integer has fewer digits, it is scaled |
| // by some power of 10 to have the same number of digits as the longer |
| // integer. If the scaled integers are equal it means the shorter |
| // integer comes first in the lexicographic order. |
| |
| // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 |
| int x_log2 = IntegerLog2(x_scaled); |
| int x_log10 = ((x_log2 + 1) * 1233) >> 12; |
| x_log10 -= x_scaled < kPowersOf10[x_log10]; |
| |
| int y_log2 = IntegerLog2(y_scaled); |
| int y_log10 = ((y_log2 + 1) * 1233) >> 12; |
| y_log10 -= y_scaled < kPowersOf10[y_log10]; |
| |
| int tie = EQUAL; |
| |
| if (x_log10 < y_log10) { |
| // X has fewer digits. We would like to simply scale up X but that |
| // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would |
| // be scaled up to 9_000_000_000. So we scale up by the next |
| // smallest power and scale down Y to drop one digit. It is OK to |
| // drop one digit from the longer integer since the final digit is |
| // past the length of the shorter integer. |
| x_scaled *= kPowersOf10[y_log10 - x_log10 - 1]; |
| y_scaled /= 10; |
| tie = LESS; |
| } else if (y_log10 < x_log10) { |
| y_scaled *= kPowersOf10[x_log10 - y_log10 - 1]; |
| x_scaled /= 10; |
| tie = GREATER; |
| } |
| |
| if (x_scaled < y_scaled) return Smi::FromInt(LESS); |
| if (x_scaled > y_scaled) return Smi::FromInt(GREATER); |
| return Smi::FromInt(tie); |
| } |
| |
| |
| static Object* StringInputBufferCompare(RuntimeState* state, |
| String* x, |
| String* y) { |
| StringInputBuffer& bufx = *state->string_input_buffer_compare_bufx(); |
| StringInputBuffer& bufy = *state->string_input_buffer_compare_bufy(); |
| bufx.Reset(x); |
| bufy.Reset(y); |
| while (bufx.has_more() && bufy.has_more()) { |
| int d = bufx.GetNext() - bufy.GetNext(); |
| if (d < 0) return Smi::FromInt(LESS); |
| else if (d > 0) return Smi::FromInt(GREATER); |
| } |
| |
| // x is (non-trivial) prefix of y: |
| if (bufy.has_more()) return Smi::FromInt(LESS); |
| // y is prefix of x: |
| return Smi::FromInt(bufx.has_more() ? GREATER : EQUAL); |
| } |
| |
| |
| static Object* FlatStringCompare(String* x, String* y) { |
| ASSERT(x->IsFlat()); |
| ASSERT(y->IsFlat()); |
| Object* equal_prefix_result = Smi::FromInt(EQUAL); |
| int prefix_length = x->length(); |
| if (y->length() < prefix_length) { |
| prefix_length = y->length(); |
| equal_prefix_result = Smi::FromInt(GREATER); |
| } else if (y->length() > prefix_length) { |
| equal_prefix_result = Smi::FromInt(LESS); |
| } |
| int r; |
| String::FlatContent x_content = x->GetFlatContent(); |
| String::FlatContent y_content = y->GetFlatContent(); |
| if (x_content.IsAscii()) { |
| Vector<const char> x_chars = x_content.ToAsciiVector(); |
| if (y_content.IsAscii()) { |
| Vector<const char> y_chars = y_content.ToAsciiVector(); |
| r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); |
| } else { |
| Vector<const uc16> y_chars = y_content.ToUC16Vector(); |
| r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); |
| } |
| } else { |
| Vector<const uc16> x_chars = x_content.ToUC16Vector(); |
| if (y_content.IsAscii()) { |
| Vector<const char> y_chars = y_content.ToAsciiVector(); |
| r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); |
| } else { |
| Vector<const uc16> y_chars = y_content.ToUC16Vector(); |
| r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); |
| } |
| } |
| Object* result; |
| if (r == 0) { |
| result = equal_prefix_result; |
| } else { |
| result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER); |
| } |
| ASSERT(result == |
| StringInputBufferCompare(Isolate::Current()->runtime_state(), x, y)); |
| return result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCompare) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_CHECKED(String, x, 0); |
| CONVERT_ARG_CHECKED(String, y, 1); |
| |
| isolate->counters()->string_compare_runtime()->Increment(); |
| |
| // A few fast case tests before we flatten. |
| if (x == y) return Smi::FromInt(EQUAL); |
| if (y->length() == 0) { |
| if (x->length() == 0) return Smi::FromInt(EQUAL); |
| return Smi::FromInt(GREATER); |
| } else if (x->length() == 0) { |
| return Smi::FromInt(LESS); |
| } |
| |
| int d = x->Get(0) - y->Get(0); |
| if (d < 0) return Smi::FromInt(LESS); |
| else if (d > 0) return Smi::FromInt(GREATER); |
| |
| Object* obj; |
| { MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(x); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| { MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(y); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| return (x->IsFlat() && y->IsFlat()) ? FlatStringCompare(x, y) |
| : StringInputBufferCompare(isolate->runtime_state(), x, y); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_acos) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_acos()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->transcendental_cache()->Get(TranscendentalCache::ACOS, x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_asin) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_asin()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->transcendental_cache()->Get(TranscendentalCache::ASIN, x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_atan()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->transcendental_cache()->Get(TranscendentalCache::ATAN, x); |
| } |
| |
| |
| static const double kPiDividedBy4 = 0.78539816339744830962; |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan2) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| isolate->counters()->math_atan2()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| double result; |
| if (isinf(x) && isinf(y)) { |
| // Make sure that the result in case of two infinite arguments |
| // is a multiple of Pi / 4. The sign of the result is determined |
| // by the first argument (x) and the sign of the second argument |
| // determines the multiplier: one or three. |
| int multiplier = (x < 0) ? -1 : 1; |
| if (y < 0) multiplier *= 3; |
| result = multiplier * kPiDividedBy4; |
| } else { |
| result = atan2(x, y); |
| } |
| return isolate->heap()->AllocateHeapNumber(result); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_ceil) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_ceil()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->heap()->NumberFromDouble(ceiling(x)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cos) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_cos()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->transcendental_cache()->Get(TranscendentalCache::COS, x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_exp) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_exp()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->transcendental_cache()->Get(TranscendentalCache::EXP, x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_floor) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_floor()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->heap()->NumberFromDouble(floor(x)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_log()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->transcendental_cache()->Get(TranscendentalCache::LOG, x); |
| } |
| |
| // Slow version of Math.pow. We check for fast paths for special cases. |
| // Used if SSE2/VFP3 is not available. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| isolate->counters()->math_pow()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| |
| // If the second argument is a smi, it is much faster to call the |
| // custom powi() function than the generic pow(). |
| if (args[1]->IsSmi()) { |
| int y = args.smi_at(1); |
| return isolate->heap()->NumberFromDouble(power_double_int(x, y)); |
| } |
| |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| int y_int = static_cast<int>(y); |
| double result; |
| if (y == y_int) { |
| result = power_double_int(x, y_int); // Returns 1 if exponent is 0. |
| } else if (y == 0.5) { |
| result = (isinf(x)) ? V8_INFINITY |
| : fast_sqrt(x + 0.0); // Convert -0 to +0. |
| } else if (y == -0.5) { |
| result = (isinf(x)) ? 0 |
| : 1.0 / fast_sqrt(x + 0.0); // Convert -0 to +0. |
| } else { |
| result = power_double_double(x, y); |
| } |
| if (isnan(result)) return isolate->heap()->nan_value(); |
| return isolate->heap()->AllocateHeapNumber(result); |
| } |
| |
| // Fast version of Math.pow if we know that y is not an integer and y is not |
| // -0.5 or 0.5. Used as slow case from full codegen. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow_cfunction) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| isolate->counters()->math_pow()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| if (y == 0) { |
| return Smi::FromInt(1); |
| } else { |
| double result = power_double_double(x, y); |
| if (isnan(result)) return isolate->heap()->nan_value(); |
| return isolate->heap()->AllocateHeapNumber(result); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_RoundNumber) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_round()->Increment(); |
| |
| if (!args[0]->IsHeapNumber()) { |
| // Must be smi. Return the argument unchanged for all the other types |
| // to make fuzz-natives test happy. |
| return args[0]; |
| } |
| |
| HeapNumber* number = reinterpret_cast<HeapNumber*>(args[0]); |
| |
| double value = number->value(); |
| int exponent = number->get_exponent(); |
| int sign = number->get_sign(); |
| |
| if (exponent < -1) { |
| // Number in range ]-0.5..0.5[. These always round to +/-zero. |
| if (sign) return isolate->heap()->minus_zero_value(); |
| return Smi::FromInt(0); |
| } |
| |
| // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and |
| // should be rounded to 2^30, which is not smi (for 31-bit smis, similar |
| // argument holds for 32-bit smis). |
| if (!sign && exponent < kSmiValueSize - 2) { |
| return Smi::FromInt(static_cast<int>(value + 0.5)); |
| } |
| |
| // If the magnitude is big enough, there's no place for fraction part. If we |
| // try to add 0.5 to this number, 1.0 will be added instead. |
| if (exponent >= 52) { |
| return number; |
| } |
| |
| if (sign && value >= -0.5) return isolate->heap()->minus_zero_value(); |
| |
| // Do not call NumberFromDouble() to avoid extra checks. |
| return isolate->heap()->AllocateHeapNumber(floor(value + 0.5)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sin) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_sin()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->transcendental_cache()->Get(TranscendentalCache::SIN, x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sqrt) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_sqrt()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->heap()->AllocateHeapNumber(fast_sqrt(x)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_tan) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| isolate->counters()->math_tan()->Increment(); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| return isolate->transcendental_cache()->Get(TranscendentalCache::TAN, x); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DateMakeDay) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| |
| CONVERT_SMI_ARG_CHECKED(year, 0); |
| CONVERT_SMI_ARG_CHECKED(month, 1); |
| |
| return Smi::FromInt(isolate->date_cache()->DaysFromYearMonth(year, month)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DateSetValue) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0); |
| CONVERT_DOUBLE_ARG_CHECKED(time, 1); |
| CONVERT_SMI_ARG_CHECKED(is_utc, 2); |
| |
| DateCache* date_cache = isolate->date_cache(); |
| |
| Object* value = NULL; |
| bool is_value_nan = false; |
| if (isnan(time)) { |
| value = isolate->heap()->nan_value(); |
| is_value_nan = true; |
| } else if (!is_utc && |
| (time < -DateCache::kMaxTimeBeforeUTCInMs || |
| time > DateCache::kMaxTimeBeforeUTCInMs)) { |
| value = isolate->heap()->nan_value(); |
| is_value_nan = true; |
| } else { |
| time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time)); |
| if (time < -DateCache::kMaxTimeInMs || |
| time > DateCache::kMaxTimeInMs) { |
| value = isolate->heap()->nan_value(); |
| is_value_nan = true; |
| } else { |
| MaybeObject* maybe_result = |
| isolate->heap()->AllocateHeapNumber(DoubleToInteger(time)); |
| if (!maybe_result->ToObject(&value)) return maybe_result; |
| } |
| } |
| date->SetValue(value, is_value_nan); |
| return value; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NewArgumentsFast) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| |
| Handle<JSFunction> callee = args.at<JSFunction>(0); |
| Object** parameters = reinterpret_cast<Object**>(args[1]); |
| const int argument_count = Smi::cast(args[2])->value(); |
| |
| Handle<JSObject> result = |
| isolate->factory()->NewArgumentsObject(callee, argument_count); |
| // Allocate the elements if needed. |
| int parameter_count = callee->shared()->formal_parameter_count(); |
| if (argument_count > 0) { |
| if (parameter_count > 0) { |
| int mapped_count = Min(argument_count, parameter_count); |
| Handle<FixedArray> parameter_map = |
| isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED); |
| parameter_map->set_map( |
| isolate->heap()->non_strict_arguments_elements_map()); |
| |
| Handle<Map> old_map(result->map()); |
| Handle<Map> new_map = |
| isolate->factory()->CopyMapDropTransitions(old_map); |
| new_map->set_elements_kind(NON_STRICT_ARGUMENTS_ELEMENTS); |
| |
| result->set_map(*new_map); |
| result->set_elements(*parameter_map); |
| |
| // Store the context and the arguments array at the beginning of the |
| // parameter map. |
| Handle<Context> context(isolate->context()); |
| Handle<FixedArray> arguments = |
| isolate->factory()->NewFixedArray(argument_count, NOT_TENURED); |
| parameter_map->set(0, *context); |
| parameter_map->set(1, *arguments); |
| |
| // Loop over the actual parameters backwards. |
| int index = argument_count - 1; |
| while (index >= mapped_count) { |
| // These go directly in the arguments array and have no |
| // corresponding slot in the parameter map. |
| arguments->set(index, *(parameters - index - 1)); |
| --index; |
| } |
| |
| Handle<ScopeInfo> scope_info(callee->shared()->scope_info()); |
| while (index >= 0) { |
| // Detect duplicate names to the right in the parameter list. |
| Handle<String> name(scope_info->ParameterName(index)); |
| int context_local_count = scope_info->ContextLocalCount(); |
| bool duplicate = false; |
| for (int j = index + 1; j < parameter_count; ++j) { |
| if (scope_info->ParameterName(j) == *name) { |
| duplicate = true; |
| break; |
| } |
| } |
| |
| if (duplicate) { |
| // This goes directly in the arguments array with a hole in the |
| // parameter map. |
| arguments->set(index, *(parameters - index - 1)); |
| parameter_map->set_the_hole(index + 2); |
| } else { |
| // The context index goes in the parameter map with a hole in the |
| // arguments array. |
| int context_index = -1; |
| for (int j = 0; j < context_local_count; ++j) { |
| if (scope_info->ContextLocalName(j) == *name) { |
| context_index = j; |
| break; |
| } |
| } |
| ASSERT(context_index >= 0); |
| arguments->set_the_hole(index); |
| parameter_map->set(index + 2, Smi::FromInt( |
| Context::MIN_CONTEXT_SLOTS + context_index)); |
| } |
| |
| --index; |
| } |
| } else { |
| // If there is no aliasing, the arguments object elements are not |
| // special in any way. |
| Handle<FixedArray> elements = |
| isolate->factory()->NewFixedArray(argument_count, NOT_TENURED); |
| result->set_elements(*elements); |
| for (int i = 0; i < argument_count; ++i) { |
| elements->set(i, *(parameters - i - 1)); |
| } |
| } |
| } |
| return *result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NewStrictArgumentsFast) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| |
| JSFunction* callee = JSFunction::cast(args[0]); |
| Object** parameters = reinterpret_cast<Object**>(args[1]); |
| const int length = args.smi_at(2); |
| |
| Object* result; |
| { MaybeObject* maybe_result = |
| isolate->heap()->AllocateArgumentsObject(callee, length); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| // Allocate the elements if needed. |
| if (length > 0) { |
| // Allocate the fixed array. |
| Object* obj; |
| { MaybeObject* maybe_obj = isolate->heap()->AllocateRawFixedArray(length); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| AssertNoAllocation no_gc; |
| FixedArray* array = reinterpret_cast<FixedArray*>(obj); |
| array->set_map_no_write_barrier(isolate->heap()->fixed_array_map()); |
| array->set_length(length); |
| |
| WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc); |
| for (int i = 0; i < length; i++) { |
| array->set(i, *--parameters, mode); |
| } |
| JSObject::cast(result)->set_elements(FixedArray::cast(obj)); |
| } |
| return result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NewClosure) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_HANDLE_CHECKED(Context, context, 0); |
| CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1); |
| CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2); |
| |
| // The caller ensures that we pretenure closures that are assigned |
| // directly to properties. |
| PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED; |
| Handle<JSFunction> result = |
| isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, |
| context, |
| pretenure_flag); |
| return *result; |
| } |
| |
| |
| // Find the arguments of the JavaScript function invocation that called |
| // into C++ code. Collect these in a newly allocated array of handles (possibly |
| // prefixed by a number of empty handles). |
| static SmartArrayPointer<Handle<Object> > GetCallerArguments( |
| int prefix_argc, |
| int* total_argc) { |
| // Find frame containing arguments passed to the caller. |
| JavaScriptFrameIterator it; |
| JavaScriptFrame* frame = it.frame(); |
| List<JSFunction*> functions(2); |
| frame->GetFunctions(&functions); |
| if (functions.length() > 1) { |
| int inlined_jsframe_index = functions.length() - 1; |
| JSFunction* inlined_function = functions[inlined_jsframe_index]; |
| Vector<SlotRef> args_slots = |
| SlotRef::ComputeSlotMappingForArguments( |
| frame, |
| inlined_jsframe_index, |
| inlined_function->shared()->formal_parameter_count()); |
| |
| int args_count = args_slots.length(); |
| |
| *total_argc = prefix_argc + args_count; |
| SmartArrayPointer<Handle<Object> > param_data( |
| NewArray<Handle<Object> >(*total_argc)); |
| for (int i = 0; i < args_count; i++) { |
| Handle<Object> val = args_slots[i].GetValue(); |
| param_data[prefix_argc + i] = val; |
| } |
| |
| args_slots.Dispose(); |
| |
| return param_data; |
| } else { |
| it.AdvanceToArgumentsFrame(); |
| frame = it.frame(); |
| int args_count = frame->ComputeParametersCount(); |
| |
| *total_argc = prefix_argc + args_count; |
| SmartArrayPointer<Handle<Object> > param_data( |
| NewArray<Handle<Object> >(*total_argc)); |
| for (int i = 0; i < args_count; i++) { |
| Handle<Object> val = Handle<Object>(frame->GetParameter(i)); |
| param_data[prefix_argc + i] = val; |
| } |
| return param_data; |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionBindArguments) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 4); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0); |
| RUNTIME_ASSERT(args[3]->IsNumber()); |
| Handle<Object> bindee = args.at<Object>(1); |
| |
| // TODO(lrn): Create bound function in C++ code from premade shared info. |
| bound_function->shared()->set_bound(true); |
| // Get all arguments of calling function (Function.prototype.bind). |
| int argc = 0; |
| SmartArrayPointer<Handle<Object> > arguments = GetCallerArguments(0, &argc); |
| // Don't count the this-arg. |
| if (argc > 0) { |
| ASSERT(*arguments[0] == args[2]); |
| argc--; |
| } else { |
| ASSERT(args[2]->IsUndefined()); |
| } |
| // Initialize array of bindings (function, this, and any existing arguments |
| // if the function was already bound). |
| Handle<FixedArray> new_bindings; |
| int i; |
| if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) { |
| Handle<FixedArray> old_bindings( |
| JSFunction::cast(*bindee)->function_bindings()); |
| new_bindings = |
| isolate->factory()->NewFixedArray(old_bindings->length() + argc); |
| bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex)); |
| i = 0; |
| for (int n = old_bindings->length(); i < n; i++) { |
| new_bindings->set(i, old_bindings->get(i)); |
| } |
| } else { |
| int array_size = JSFunction::kBoundArgumentsStartIndex + argc; |
| new_bindings = isolate->factory()->NewFixedArray(array_size); |
| new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee); |
| new_bindings->set(JSFunction::kBoundThisIndex, args[2]); |
| i = 2; |
| } |
| // Copy arguments, skipping the first which is "this_arg". |
| for (int j = 0; j < argc; j++, i++) { |
| new_bindings->set(i, *arguments[j + 1]); |
| } |
| new_bindings->set_map_no_write_barrier( |
| isolate->heap()->fixed_cow_array_map()); |
| bound_function->set_function_bindings(*new_bindings); |
| |
| // Update length. |
| Handle<String> length_symbol = isolate->factory()->length_symbol(); |
| Handle<Object> new_length(args.at<Object>(3)); |
| PropertyAttributes attr = |
| static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY); |
| ForceSetProperty(bound_function, length_symbol, new_length, attr); |
| return *bound_function; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_BoundFunctionGetBindings) { |
| HandleScope handles(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0); |
| if (callable->IsJSFunction()) { |
| Handle<JSFunction> function = Handle<JSFunction>::cast(callable); |
| if (function->shared()->bound()) { |
| Handle<FixedArray> bindings(function->function_bindings()); |
| ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map()); |
| return *isolate->factory()->NewJSArrayWithElements(bindings); |
| } |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObjectFromBound) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| // First argument is a function to use as a constructor. |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| RUNTIME_ASSERT(function->shared()->bound()); |
| |
| // The argument is a bound function. Extract its bound arguments |
| // and callable. |
| Handle<FixedArray> bound_args = |
| Handle<FixedArray>(FixedArray::cast(function->function_bindings())); |
| int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex; |
| Handle<Object> bound_function( |
| JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex))); |
| ASSERT(!bound_function->IsJSFunction() || |
| !Handle<JSFunction>::cast(bound_function)->shared()->bound()); |
| |
| int total_argc = 0; |
| SmartArrayPointer<Handle<Object> > param_data = |
| GetCallerArguments(bound_argc, &total_argc); |
| for (int i = 0; i < bound_argc; i++) { |
| param_data[i] = Handle<Object>(bound_args->get( |
| JSFunction::kBoundArgumentsStartIndex + i)); |
| } |
| |
| if (!bound_function->IsJSFunction()) { |
| bool exception_thrown; |
| bound_function = Execution::TryGetConstructorDelegate(bound_function, |
| &exception_thrown); |
| if (exception_thrown) return Failure::Exception(); |
| } |
| ASSERT(bound_function->IsJSFunction()); |
| |
| bool exception = false; |
| Handle<Object> result = |
| Execution::New(Handle<JSFunction>::cast(bound_function), |
| total_argc, *param_data, &exception); |
| if (exception) { |
| return Failure::Exception(); |
| } |
| ASSERT(!result.is_null()); |
| return *result; |
| } |
| |
| |
| static void TrySettingInlineConstructStub(Isolate* isolate, |
| Handle<JSFunction> function) { |
| Handle<Object> prototype = isolate->factory()->null_value(); |
| if (function->has_instance_prototype()) { |
| prototype = Handle<Object>(function->instance_prototype(), isolate); |
| } |
| if (function->shared()->CanGenerateInlineConstructor(*prototype)) { |
| ConstructStubCompiler compiler(isolate); |
| Handle<Code> code = compiler.CompileConstructStub(function); |
| function->shared()->set_construct_stub(*code); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObject) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| Handle<Object> constructor = args.at<Object>(0); |
| |
| // If the constructor isn't a proper function we throw a type error. |
| if (!constructor->IsJSFunction()) { |
| Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); |
| Handle<Object> type_error = |
| isolate->factory()->NewTypeError("not_constructor", arguments); |
| return isolate->Throw(*type_error); |
| } |
| |
| Handle<JSFunction> function = Handle<JSFunction>::cast(constructor); |
| |
| // If function should not have prototype, construction is not allowed. In this |
| // case generated code bailouts here, since function has no initial_map. |
| if (!function->should_have_prototype() && !function->shared()->bound()) { |
| Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); |
| Handle<Object> type_error = |
| isolate->factory()->NewTypeError("not_constructor", arguments); |
| return isolate->Throw(*type_error); |
| } |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| Debug* debug = isolate->debug(); |
| // Handle stepping into constructors if step into is active. |
| if (debug->StepInActive()) { |
| debug->HandleStepIn(function, Handle<Object>::null(), 0, true); |
| } |
| #endif |
| |
| if (function->has_initial_map()) { |
| if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) { |
| // The 'Function' function ignores the receiver object when |
| // called using 'new' and creates a new JSFunction object that |
| // is returned. The receiver object is only used for error |
| // reporting if an error occurs when constructing the new |
| // JSFunction. FACTORY->NewJSObject() should not be used to |
| // allocate JSFunctions since it does not properly initialize |
| // the shared part of the function. Since the receiver is |
| // ignored anyway, we use the global object as the receiver |
| // instead of a new JSFunction object. This way, errors are |
| // reported the same way whether or not 'Function' is called |
| // using 'new'. |
| return isolate->context()->global(); |
| } |
| } |
| |
| // The function should be compiled for the optimization hints to be |
| // available. We cannot use EnsureCompiled because that forces a |
| // compilation through the shared function info which makes it |
| // impossible for us to optimize. |
| if (!function->is_compiled()) { |
| JSFunction::CompileLazy(function, CLEAR_EXCEPTION); |
| } |
| |
| Handle<SharedFunctionInfo> shared(function->shared(), isolate); |
| if (!function->has_initial_map() && |
| shared->IsInobjectSlackTrackingInProgress()) { |
| // The tracking is already in progress for another function. We can only |
| // track one initial_map at a time, so we force the completion before the |
| // function is called as a constructor for the first time. |
| shared->CompleteInobjectSlackTracking(); |
| } |
| |
| bool first_allocation = !shared->live_objects_may_exist(); |
| Handle<JSObject> result = isolate->factory()->NewJSObject(function); |
| RETURN_IF_EMPTY_HANDLE(isolate, result); |
| // Delay setting the stub if inobject slack tracking is in progress. |
| if (first_allocation && !shared->IsInobjectSlackTrackingInProgress()) { |
| TrySettingInlineConstructStub(isolate, function); |
| } |
| |
| isolate->counters()->constructed_objects()->Increment(); |
| isolate->counters()->constructed_objects_runtime()->Increment(); |
| |
| return *result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FinalizeInstanceSize) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| function->shared()->CompleteInobjectSlackTracking(); |
| TrySettingInlineConstructStub(isolate, function); |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyCompile) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| Handle<JSFunction> function = args.at<JSFunction>(0); |
| #ifdef DEBUG |
| if (FLAG_trace_lazy && !function->shared()->is_compiled()) { |
| PrintF("[lazy: "); |
| function->PrintName(); |
| PrintF("]\n"); |
| } |
| #endif |
| |
| // Compile the target function. |
| ASSERT(!function->is_compiled()); |
| if (!JSFunction::CompileLazy(function, KEEP_EXCEPTION)) { |
| return Failure::Exception(); |
| } |
| |
| // All done. Return the compiled code. |
| ASSERT(function->is_compiled()); |
| return function->code(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyRecompile) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| Handle<JSFunction> function = args.at<JSFunction>(0); |
| |
| // If the function is not compiled ignore the lazy |
| // recompilation. This can happen if the debugger is activated and |
| // the function is returned to the not compiled state. |
| if (!function->shared()->is_compiled()) { |
| function->ReplaceCode(function->shared()->code()); |
| return function->code(); |
| } |
| |
| // If the function is not optimizable or debugger is active continue using the |
| // code from the full compiler. |
| if (!function->shared()->code()->optimizable() || |
| isolate->DebuggerHasBreakPoints()) { |
| if (FLAG_trace_opt) { |
| PrintF("[failed to optimize "); |
| function->PrintName(); |
| PrintF(": is code optimizable: %s, is debugger enabled: %s]\n", |
| function->shared()->code()->optimizable() ? "T" : "F", |
| isolate->DebuggerHasBreakPoints() ? "T" : "F"); |
| } |
| function->ReplaceCode(function->shared()->code()); |
| return function->code(); |
| } |
| function->shared()->code()->set_profiler_ticks(0); |
| if (JSFunction::CompileOptimized(function, |
| AstNode::kNoNumber, |
| CLEAR_EXCEPTION)) { |
| return function->code(); |
| } |
| if (FLAG_trace_opt) { |
| PrintF("[failed to optimize "); |
| function->PrintName(); |
| PrintF(": optimized compilation failed]\n"); |
| } |
| function->ReplaceCode(function->shared()->code()); |
| return function->code(); |
| } |
| |
| |
| class ActivationsFinder : public ThreadVisitor { |
| public: |
| explicit ActivationsFinder(JSFunction* function) |
| : function_(function), has_activations_(false) {} |
| |
| void VisitThread(Isolate* isolate, ThreadLocalTop* top) { |
| if (has_activations_) return; |
| |
| for (JavaScriptFrameIterator it(isolate, top); !it.done(); it.Advance()) { |
| JavaScriptFrame* frame = it.frame(); |
| if (frame->is_optimized() && frame->function() == function_) { |
| has_activations_ = true; |
| return; |
| } |
| } |
| } |
| |
| bool has_activations() { return has_activations_; } |
| |
| private: |
| JSFunction* function_; |
| bool has_activations_; |
| }; |
| |
| |
| static void MaterializeArgumentsObjectInFrame(Isolate* isolate, |
| JavaScriptFrame* frame) { |
| Handle<JSFunction> function(JSFunction::cast(frame->function()), isolate); |
| Handle<Object> arguments; |
| for (int i = frame->ComputeExpressionsCount() - 1; i >= 0; --i) { |
| if (frame->GetExpression(i) == isolate->heap()->arguments_marker()) { |
| if (arguments.is_null()) { |
| // FunctionGetArguments can't throw an exception, so cast away the |
| // doubt with an assert. |
| arguments = Handle<Object>( |
| Accessors::FunctionGetArguments(*function, |
| NULL)->ToObjectUnchecked()); |
| ASSERT(*arguments != isolate->heap()->null_value()); |
| ASSERT(*arguments != isolate->heap()->undefined_value()); |
| } |
| frame->SetExpression(i, *arguments); |
| } |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyDeoptimized) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| RUNTIME_ASSERT(args[0]->IsSmi()); |
| Deoptimizer::BailoutType type = |
| static_cast<Deoptimizer::BailoutType>(args.smi_at(0)); |
| Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate); |
| ASSERT(isolate->heap()->IsAllocationAllowed()); |
| int jsframes = deoptimizer->jsframe_count(); |
| |
| deoptimizer->MaterializeHeapNumbers(); |
| delete deoptimizer; |
| |
| JavaScriptFrameIterator it(isolate); |
| for (int i = 0; i < jsframes - 1; i++) { |
| MaterializeArgumentsObjectInFrame(isolate, it.frame()); |
| it.Advance(); |
| } |
| |
| JavaScriptFrame* frame = it.frame(); |
| RUNTIME_ASSERT(frame->function()->IsJSFunction()); |
| Handle<JSFunction> function(JSFunction::cast(frame->function()), isolate); |
| MaterializeArgumentsObjectInFrame(isolate, frame); |
| |
| if (type == Deoptimizer::EAGER) { |
| RUNTIME_ASSERT(function->IsOptimized()); |
| } |
| |
| // Avoid doing too much work when running with --always-opt and keep |
| // the optimized code around. |
| if (FLAG_always_opt || type == Deoptimizer::LAZY) { |
| return isolate->heap()->undefined_value(); |
| } |
| |
| // Find other optimized activations of the function. |
| bool has_other_activations = false; |
| while (!it.done()) { |
| JavaScriptFrame* frame = it.frame(); |
| if (frame->is_optimized() && frame->function() == *function) { |
| has_other_activations = true; |
| break; |
| } |
| it.Advance(); |
| } |
| |
| if (!has_other_activations) { |
| ActivationsFinder activations_finder(*function); |
| isolate->thread_manager()->IterateArchivedThreads(&activations_finder); |
| has_other_activations = activations_finder.has_activations(); |
| } |
| |
| if (!has_other_activations) { |
| if (FLAG_trace_deopt) { |
| PrintF("[removing optimized code for: "); |
| function->PrintName(); |
| PrintF("]\n"); |
| } |
| function->ReplaceCode(function->shared()->code()); |
| } else { |
| Deoptimizer::DeoptimizeFunction(*function); |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyOSR) { |
| Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate); |
| delete deoptimizer; |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DeoptimizeFunction) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| if (!function->IsOptimized()) return isolate->heap()->undefined_value(); |
| |
| Deoptimizer::DeoptimizeFunction(*function); |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_RunningInSimulator) { |
| #if defined(USE_SIMULATOR) |
| return isolate->heap()->true_value(); |
| #else |
| return isolate->heap()->false_value(); |
| #endif |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_OptimizeFunctionOnNextCall) { |
| HandleScope scope(isolate); |
| RUNTIME_ASSERT(args.length() == 1 || args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| |
| if (!function->IsOptimizable()) return isolate->heap()->undefined_value(); |
| function->MarkForLazyRecompilation(); |
| |
| Code* unoptimized = function->shared()->code(); |
| if (args.length() == 2 && |
| unoptimized->kind() == Code::FUNCTION) { |
| CONVERT_ARG_HANDLE_CHECKED(String, type, 1); |
| CHECK(type->IsEqualTo(CStrVector("osr"))); |
| isolate->runtime_profiler()->AttemptOnStackReplacement(*function); |
| unoptimized->set_allow_osr_at_loop_nesting_level( |
| Code::kMaxLoopNestingMarker); |
| } |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOptimizationStatus) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| // The least significant bit (after untagging) indicates whether the |
| // function is currently optimized, regardless of reason. |
| if (!V8::UseCrankshaft()) { |
| return Smi::FromInt(4); // 4 == "never". |
| } |
| if (FLAG_always_opt) { |
| return Smi::FromInt(3); // 3 == "always". |
| } |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| return function->IsOptimized() ? Smi::FromInt(1) // 1 == "yes". |
| : Smi::FromInt(2); // 2 == "no". |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOptimizationCount) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| return Smi::FromInt(function->shared()->opt_count()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileForOnStackReplacement) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| |
| // We're not prepared to handle a function with arguments object. |
| ASSERT(!function->shared()->uses_arguments()); |
| |
| // We have hit a back edge in an unoptimized frame for a function that was |
| // selected for on-stack replacement. Find the unoptimized code object. |
| Handle<Code> unoptimized(function->shared()->code(), isolate); |
| // Keep track of whether we've succeeded in optimizing. |
| bool succeeded = unoptimized->optimizable(); |
| if (succeeded) { |
| // If we are trying to do OSR when there are already optimized |
| // activations of the function, it means (a) the function is directly or |
| // indirectly recursive and (b) an optimized invocation has been |
| // deoptimized so that we are currently in an unoptimized activation. |
| // Check for optimized activations of this function. |
| JavaScriptFrameIterator it(isolate); |
| while (succeeded && !it.done()) { |
| JavaScriptFrame* frame = it.frame(); |
| succeeded = !frame->is_optimized() || frame->function() != *function; |
| it.Advance(); |
| } |
| } |
| |
| int ast_id = AstNode::kNoNumber; |
| if (succeeded) { |
| // The top JS function is this one, the PC is somewhere in the |
| // unoptimized code. |
| JavaScriptFrameIterator it(isolate); |
| JavaScriptFrame* frame = it.frame(); |
| ASSERT(frame->function() == *function); |
| ASSERT(frame->LookupCode() == *unoptimized); |
| ASSERT(unoptimized->contains(frame->pc())); |
| |
| // Use linear search of the unoptimized code's stack check table to find |
| // the AST id matching the PC. |
| Address start = unoptimized->instruction_start(); |
| unsigned target_pc_offset = static_cast<unsigned>(frame->pc() - start); |
| Address table_cursor = start + unoptimized->stack_check_table_offset(); |
| uint32_t table_length = Memory::uint32_at(table_cursor); |
| table_cursor += kIntSize; |
| for (unsigned i = 0; i < table_length; ++i) { |
| // Table entries are (AST id, pc offset) pairs. |
| uint32_t pc_offset = Memory::uint32_at(table_cursor + kIntSize); |
| if (pc_offset == target_pc_offset) { |
| ast_id = static_cast<int>(Memory::uint32_at(table_cursor)); |
| break; |
| } |
| table_cursor += 2 * kIntSize; |
| } |
| ASSERT(ast_id != AstNode::kNoNumber); |
| if (FLAG_trace_osr) { |
| PrintF("[replacing on-stack at AST id %d in ", ast_id); |
| function->PrintName(); |
| PrintF("]\n"); |
| } |
| |
| // Try to compile the optimized code. A true return value from |
| // CompileOptimized means that compilation succeeded, not necessarily |
| // that optimization succeeded. |
| if (JSFunction::CompileOptimized(function, ast_id, CLEAR_EXCEPTION) && |
| function->IsOptimized()) { |
| DeoptimizationInputData* data = DeoptimizationInputData::cast( |
| function->code()->deoptimization_data()); |
| if (data->OsrPcOffset()->value() >= 0) { |
| if (FLAG_trace_osr) { |
| PrintF("[on-stack replacement offset %d in optimized code]\n", |
| data->OsrPcOffset()->value()); |
| } |
| ASSERT(data->OsrAstId()->value() == ast_id); |
| } else { |
| // We may never generate the desired OSR entry if we emit an |
| // early deoptimize. |
| succeeded = false; |
| } |
| } else { |
| succeeded = false; |
| } |
| } |
| |
| // Revert to the original stack checks in the original unoptimized code. |
| if (FLAG_trace_osr) { |
| PrintF("[restoring original stack checks in "); |
| function->PrintName(); |
| PrintF("]\n"); |
| } |
| Handle<Code> check_code; |
| #if defined(V8_TARGET_ARCH_IA32) || \ |
| defined(V8_TARGET_ARCH_ARM) || \ |
| defined(V8_TARGET_ARCH_MIPS) |
| if (FLAG_count_based_interrupts) { |
| InterruptStub interrupt_stub; |
| check_code = interrupt_stub.GetCode(); |
| } else // NOLINT |
| #endif |
| { // NOLINT |
| StackCheckStub check_stub; |
| check_code = check_stub.GetCode(); |
| } |
| Handle<Code> replacement_code = isolate->builtins()->OnStackReplacement(); |
| Deoptimizer::RevertStackCheckCode(*unoptimized, |
| *check_code, |
| *replacement_code); |
| |
| // Allow OSR only at nesting level zero again. |
| unoptimized->set_allow_osr_at_loop_nesting_level(0); |
| |
| // If the optimization attempt succeeded, return the AST id tagged as a |
| // smi. This tells the builtin that we need to translate the unoptimized |
| // frame to an optimized one. |
| if (succeeded) { |
| ASSERT(function->code()->kind() == Code::OPTIMIZED_FUNCTION); |
| return Smi::FromInt(ast_id); |
| } else { |
| if (function->IsMarkedForLazyRecompilation()) { |
| function->ReplaceCode(function->shared()->code()); |
| } |
| return Smi::FromInt(-1); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CheckIsBootstrapping) { |
| RUNTIME_ASSERT(isolate->bootstrapper()->IsActive()); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetRootNaN) { |
| RUNTIME_ASSERT(isolate->bootstrapper()->IsActive()); |
| return isolate->heap()->nan_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Call) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() >= 2); |
| int argc = args.length() - 2; |
| CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1); |
| Object* receiver = args[0]; |
| |
| // If there are too many arguments, allocate argv via malloc. |
| const int argv_small_size = 10; |
| Handle<Object> argv_small_buffer[argv_small_size]; |
| SmartArrayPointer<Handle<Object> > argv_large_buffer; |
| Handle<Object>* argv = argv_small_buffer; |
| if (argc > argv_small_size) { |
| argv = new Handle<Object>[argc]; |
| if (argv == NULL) return isolate->StackOverflow(); |
| argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv); |
| } |
| |
| for (int i = 0; i < argc; ++i) { |
| MaybeObject* maybe = args[1 + i]; |
| Object* object; |
| if (!maybe->To<Object>(&object)) return maybe; |
| argv[i] = Handle<Object>(object); |
| } |
| |
| bool threw; |
| Handle<JSReceiver> hfun(fun); |
| Handle<Object> hreceiver(receiver); |
| Handle<Object> result = |
| Execution::Call(hfun, hreceiver, argc, argv, &threw, true); |
| |
| if (threw) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Apply) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 5); |
| CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0); |
| Handle<Object> receiver = args.at<Object>(1); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2); |
| CONVERT_SMI_ARG_CHECKED(offset, 3); |
| CONVERT_SMI_ARG_CHECKED(argc, 4); |
| ASSERT(offset >= 0); |
| ASSERT(argc >= 0); |
| |
| // If there are too many arguments, allocate argv via malloc. |
| const int argv_small_size = 10; |
| Handle<Object> argv_small_buffer[argv_small_size]; |
| SmartArrayPointer<Handle<Object> > argv_large_buffer; |
| Handle<Object>* argv = argv_small_buffer; |
| if (argc > argv_small_size) { |
| argv = new Handle<Object>[argc]; |
| if (argv == NULL) return isolate->StackOverflow(); |
| argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv); |
| } |
| |
| for (int i = 0; i < argc; ++i) { |
| argv[i] = Object::GetElement(arguments, offset + i); |
| } |
| |
| bool threw; |
| Handle<Object> result = |
| Execution::Call(fun, receiver, argc, argv, &threw, true); |
| |
| if (threw) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionDelegate) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| RUNTIME_ASSERT(!args[0]->IsJSFunction()); |
| return *Execution::GetFunctionDelegate(args.at<Object>(0)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetConstructorDelegate) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| RUNTIME_ASSERT(!args[0]->IsJSFunction()); |
| return *Execution::GetConstructorDelegate(args.at<Object>(0)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NewFunctionContext) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, function, 0); |
| int length = function->shared()->scope_info()->ContextLength(); |
| Object* result; |
| { MaybeObject* maybe_result = |
| isolate->heap()->AllocateFunctionContext(length, function); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| |
| isolate->set_context(Context::cast(result)); |
| |
| return result; // non-failure |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_PushWithContext) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| JSObject* extension_object; |
| if (args[0]->IsJSObject()) { |
| extension_object = JSObject::cast(args[0]); |
| } else { |
| // Convert the object to a proper JavaScript object. |
| MaybeObject* maybe_js_object = args[0]->ToObject(); |
| if (!maybe_js_object->To(&extension_object)) { |
| if (Failure::cast(maybe_js_object)->IsInternalError()) { |
| HandleScope scope(isolate); |
| Handle<Object> handle = args.at<Object>(0); |
| Handle<Object> result = |
| isolate->factory()->NewTypeError("with_expression", |
| HandleVector(&handle, 1)); |
| return isolate->Throw(*result); |
| } else { |
| return maybe_js_object; |
| } |
| } |
| } |
| |
| JSFunction* function; |
| if (args[1]->IsSmi()) { |
| // A smi sentinel indicates a context nested inside global code rather |
| // than some function. There is a canonical empty function that can be |
| // gotten from the global context. |
| function = isolate->context()->global_context()->closure(); |
| } else { |
| function = JSFunction::cast(args[1]); |
| } |
| |
| Context* context; |
| MaybeObject* maybe_context = |
| isolate->heap()->AllocateWithContext(function, |
| isolate->context(), |
| extension_object); |
| if (!maybe_context->To(&context)) return maybe_context; |
| isolate->set_context(context); |
| return context; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_PushCatchContext) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 3); |
| String* name = String::cast(args[0]); |
| Object* thrown_object = args[1]; |
| JSFunction* function; |
| if (args[2]->IsSmi()) { |
| // A smi sentinel indicates a context nested inside global code rather |
| // than some function. There is a canonical empty function that can be |
| // gotten from the global context. |
| function = isolate->context()->global_context()->closure(); |
| } else { |
| function = JSFunction::cast(args[2]); |
| } |
| Context* context; |
| MaybeObject* maybe_context = |
| isolate->heap()->AllocateCatchContext(function, |
| isolate->context(), |
| name, |
| thrown_object); |
| if (!maybe_context->To(&context)) return maybe_context; |
| isolate->set_context(context); |
| return context; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_PushBlockContext) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 2); |
| ScopeInfo* scope_info = ScopeInfo::cast(args[0]); |
| JSFunction* function; |
| if (args[1]->IsSmi()) { |
| // A smi sentinel indicates a context nested inside global code rather |
| // than some function. There is a canonical empty function that can be |
| // gotten from the global context. |
| function = isolate->context()->global_context()->closure(); |
| } else { |
| function = JSFunction::cast(args[1]); |
| } |
| Context* context; |
| MaybeObject* maybe_context = |
| isolate->heap()->AllocateBlockContext(function, |
| isolate->context(), |
| scope_info); |
| if (!maybe_context->To(&context)) return maybe_context; |
| isolate->set_context(context); |
| return context; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteContextSlot) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_HANDLE_CHECKED(Context, context, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 1); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = FOLLOW_CHAINS; |
| BindingFlags binding_flags; |
| Handle<Object> holder = context->Lookup(name, |
| flags, |
| &index, |
| &attributes, |
| &binding_flags); |
| |
| // If the slot was not found the result is true. |
| if (holder.is_null()) { |
| return isolate->heap()->true_value(); |
| } |
| |
| // If the slot was found in a context, it should be DONT_DELETE. |
| if (holder->IsContext()) { |
| return isolate->heap()->false_value(); |
| } |
| |
| // The slot was found in a JSObject, either a context extension object, |
| // the global object, or the subject of a with. Try to delete it |
| // (respecting DONT_DELETE). |
| Handle<JSObject> object = Handle<JSObject>::cast(holder); |
| return object->DeleteProperty(*name, JSReceiver::NORMAL_DELETION); |
| } |
| |
| |
| // A mechanism to return a pair of Object pointers in registers (if possible). |
| // How this is achieved is calling convention-dependent. |
| // All currently supported x86 compiles uses calling conventions that are cdecl |
| // variants where a 64-bit value is returned in two 32-bit registers |
| // (edx:eax on ia32, r1:r0 on ARM). |
| // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax. |
| // In Win64 calling convention, a struct of two pointers is returned in memory, |
| // allocated by the caller, and passed as a pointer in a hidden first parameter. |
| #ifdef V8_HOST_ARCH_64_BIT |
| struct ObjectPair { |
| MaybeObject* x; |
| MaybeObject* y; |
| }; |
| |
| static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) { |
| ObjectPair result = {x, y}; |
| // Pointers x and y returned in rax and rdx, in AMD-x64-abi. |
| // In Win64 they are assigned to a hidden first argument. |
| return result; |
| } |
| #else |
| typedef uint64_t ObjectPair; |
| static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) { |
| return reinterpret_cast<uint32_t>(x) | |
| (reinterpret_cast<ObjectPair>(y) << 32); |
| } |
| #endif |
| |
| |
| static inline MaybeObject* Unhole(Heap* heap, |
| MaybeObject* x, |
| PropertyAttributes attributes) { |
| ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0); |
| USE(attributes); |
| return x->IsTheHole() ? heap->undefined_value() : x; |
| } |
| |
| |
| static Object* ComputeReceiverForNonGlobal(Isolate* isolate, |
| JSObject* holder) { |
| ASSERT(!holder->IsGlobalObject()); |
| Context* top = isolate->context(); |
| // Get the context extension function. |
| JSFunction* context_extension_function = |
| top->global_context()->context_extension_function(); |
| // If the holder isn't a context extension object, we just return it |
| // as the receiver. This allows arguments objects to be used as |
| // receivers, but only if they are put in the context scope chain |
| // explicitly via a with-statement. |
| Object* constructor = holder->map()->constructor(); |
| if (constructor != context_extension_function) return holder; |
| // Fall back to using the global object as the implicit receiver if |
| // the property turns out to be a local variable allocated in a |
| // context extension object - introduced via eval. Implicit global |
| // receivers are indicated with the hole value. |
| return isolate->heap()->the_hole_value(); |
| } |
| |
| |
| static ObjectPair LoadContextSlotHelper(Arguments args, |
| Isolate* isolate, |
| bool throw_error) { |
| HandleScope scope(isolate); |
| ASSERT_EQ(2, args.length()); |
| |
| if (!args[0]->IsContext() || !args[1]->IsString()) { |
| return MakePair(isolate->ThrowIllegalOperation(), NULL); |
| } |
| Handle<Context> context = args.at<Context>(0); |
| Handle<String> name = args.at<String>(1); |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = FOLLOW_CHAINS; |
| BindingFlags binding_flags; |
| Handle<Object> holder = context->Lookup(name, |
| flags, |
| &index, |
| &attributes, |
| &binding_flags); |
| |
| // If the index is non-negative, the slot has been found in a context. |
| if (index >= 0) { |
| ASSERT(holder->IsContext()); |
| // If the "property" we were looking for is a local variable, the |
| // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3. |
| // |
| // Use the hole as the receiver to signal that the receiver is implicit |
| // and that the global receiver should be used (as distinguished from an |
| // explicit receiver that happens to be a global object). |
| Handle<Object> receiver = isolate->factory()->the_hole_value(); |
| Object* value = Context::cast(*holder)->get(index); |
| // Check for uninitialized bindings. |
| switch (binding_flags) { |
| case MUTABLE_CHECK_INITIALIZED: |
| case IMMUTABLE_CHECK_INITIALIZED_HARMONY: |
| if (value->IsTheHole()) { |
| Handle<Object> reference_error = |
| isolate->factory()->NewReferenceError("not_defined", |
| HandleVector(&name, 1)); |
| return MakePair(isolate->Throw(*reference_error), NULL); |
| } |
| // FALLTHROUGH |
| case MUTABLE_IS_INITIALIZED: |
| case IMMUTABLE_IS_INITIALIZED: |
| case IMMUTABLE_IS_INITIALIZED_HARMONY: |
| ASSERT(!value->IsTheHole()); |
| return MakePair(value, *receiver); |
| case IMMUTABLE_CHECK_INITIALIZED: |
| return MakePair(Unhole(isolate->heap(), value, attributes), *receiver); |
| case MISSING_BINDING: |
| UNREACHABLE(); |
| return MakePair(NULL, NULL); |
| } |
| } |
| |
| // Otherwise, if the slot was found the holder is a context extension |
| // object, subject of a with, or a global object. We read the named |
| // property from it. |
| if (!holder.is_null()) { |
| Handle<JSObject> object = Handle<JSObject>::cast(holder); |
| ASSERT(object->HasProperty(*name)); |
| // GetProperty below can cause GC. |
| Handle<Object> receiver_handle(object->IsGlobalObject() |
| ? GlobalObject::cast(*object)->global_receiver() |
| : ComputeReceiverForNonGlobal(isolate, *object)); |
| |
| // No need to unhole the value here. This is taken care of by the |
| // GetProperty function. |
| MaybeObject* value = object->GetProperty(*name); |
| return MakePair(value, *receiver_handle); |
| } |
| |
| if (throw_error) { |
| // The property doesn't exist - throw exception. |
| Handle<Object> reference_error = |
| isolate->factory()->NewReferenceError("not_defined", |
| HandleVector(&name, 1)); |
| return MakePair(isolate->Throw(*reference_error), NULL); |
| } else { |
| // The property doesn't exist - return undefined. |
| return MakePair(isolate->heap()->undefined_value(), |
| isolate->heap()->undefined_value()); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlot) { |
| return LoadContextSlotHelper(args, isolate, true); |
| } |
| |
| |
| RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlotNoReferenceError) { |
| return LoadContextSlotHelper(args, isolate, false); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreContextSlot) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 4); |
| |
| Handle<Object> value(args[0], isolate); |
| CONVERT_ARG_HANDLE_CHECKED(Context, context, 1); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 2); |
| CONVERT_LANGUAGE_MODE_ARG(language_mode, 3); |
| StrictModeFlag strict_mode = (language_mode == CLASSIC_MODE) |
| ? kNonStrictMode : kStrictMode; |
| |
| int index; |
| PropertyAttributes attributes; |
| ContextLookupFlags flags = FOLLOW_CHAINS; |
| BindingFlags binding_flags; |
| Handle<Object> holder = context->Lookup(name, |
| flags, |
| &index, |
| &attributes, |
| &binding_flags); |
| |
| if (index >= 0) { |
| // The property was found in a context slot. |
| Handle<Context> context = Handle<Context>::cast(holder); |
| if (binding_flags == MUTABLE_CHECK_INITIALIZED && |
| context->get(index)->IsTheHole()) { |
| Handle<Object> error = |
| isolate->factory()->NewReferenceError("not_defined", |
| HandleVector(&name, 1)); |
| return isolate->Throw(*error); |
| } |
| // Ignore if read_only variable. |
| if ((attributes & READ_ONLY) == 0) { |
| // Context is a fixed array and set cannot fail. |
| context->set(index, *value); |
| } else if (strict_mode == kStrictMode) { |
| // Setting read only property in strict mode. |
| Handle<Object> error = |
| isolate->factory()->NewTypeError("strict_cannot_assign", |
| HandleVector(&name, 1)); |
| return isolate->Throw(*error); |
| } |
| return *value; |
| } |
| |
| // Slow case: The property is not in a context slot. It is either in a |
| // context extension object, a property of the subject of a with, or a |
| // property of the global object. |
| Handle<JSObject> object; |
| |
| if (!holder.is_null()) { |
| // The property exists on the holder. |
| object = Handle<JSObject>::cast(holder); |
| } else { |
| // The property was not found. |
| ASSERT(attributes == ABSENT); |
| |
| if (strict_mode == kStrictMode) { |
| // Throw in strict mode (assignment to undefined variable). |
| Handle<Object> error = |
| isolate->factory()->NewReferenceError( |
| "not_defined", HandleVector(&name, 1)); |
| return isolate->Throw(*error); |
| } |
| // In non-strict mode, the property is added to the global object. |
| attributes = NONE; |
| object = Handle<JSObject>(isolate->context()->global()); |
| } |
| |
| // Set the property if it's not read only or doesn't yet exist. |
| if ((attributes & READ_ONLY) == 0 || |
| (object->GetLocalPropertyAttribute(*name) == ABSENT)) { |
| RETURN_IF_EMPTY_HANDLE( |
| isolate, |
| JSReceiver::SetProperty(object, name, value, NONE, strict_mode)); |
| } else if (strict_mode == kStrictMode && (attributes & READ_ONLY) != 0) { |
| // Setting read only property in strict mode. |
| Handle<Object> error = |
| isolate->factory()->NewTypeError( |
| "strict_cannot_assign", HandleVector(&name, 1)); |
| return isolate->Throw(*error); |
| } |
| return *value; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Throw) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| return isolate->Throw(args[0]); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ReThrow) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| return isolate->ReThrow(args[0]); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_PromoteScheduledException) { |
| ASSERT_EQ(0, args.length()); |
| return isolate->PromoteScheduledException(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowReferenceError) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| Handle<Object> name(args[0], isolate); |
| Handle<Object> reference_error = |
| isolate->factory()->NewReferenceError("not_defined", |
| HandleVector(&name, 1)); |
| return isolate->Throw(*reference_error); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_StackGuard) { |
| ASSERT(args.length() == 0); |
| |
| // First check if this is a real stack overflow. |
| if (isolate->stack_guard()->IsStackOverflow()) { |
| NoHandleAllocation na; |
| return isolate->StackOverflow(); |
| } |
| |
| return Execution::HandleStackGuardInterrupt(isolate); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Interrupt) { |
| ASSERT(args.length() == 0); |
| return Execution::HandleStackGuardInterrupt(isolate); |
| } |
| |
| |
| static int StackSize() { |
| int n = 0; |
| for (JavaScriptFrameIterator it; !it.done(); it.Advance()) n++; |
| return n; |
| } |
| |
| |
| static void PrintTransition(Object* result) { |
| // indentation |
| { const int nmax = 80; |
| int n = StackSize(); |
| if (n <= nmax) |
| PrintF("%4d:%*s", n, n, ""); |
| else |
| PrintF("%4d:%*s", n, nmax, "..."); |
| } |
| |
| if (result == NULL) { |
| JavaScriptFrame::PrintTop(stdout, true, false); |
| PrintF(" {\n"); |
| } else { |
| // function result |
| PrintF("} -> "); |
| result->ShortPrint(); |
| PrintF("\n"); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceEnter) { |
| ASSERT(args.length() == 0); |
| NoHandleAllocation ha; |
| PrintTransition(NULL); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceExit) { |
| NoHandleAllocation ha; |
| PrintTransition(args[0]); |
| return args[0]; // return TOS |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrint) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| #ifdef DEBUG |
| if (args[0]->IsString()) { |
| // If we have a string, assume it's a code "marker" |
| // and print some interesting cpu debugging info. |
| JavaScriptFrameIterator it(isolate); |
| JavaScriptFrame* frame = it.frame(); |
| PrintF("fp = %p, sp = %p, caller_sp = %p: ", |
| frame->fp(), frame->sp(), frame->caller_sp()); |
| } else { |
| PrintF("DebugPrint: "); |
| } |
| args[0]->Print(); |
| if (args[0]->IsHeapObject()) { |
| PrintF("\n"); |
| HeapObject::cast(args[0])->map()->Print(); |
| } |
| #else |
| // ShortPrint is available in release mode. Print is not. |
| args[0]->ShortPrint(); |
| #endif |
| PrintF("\n"); |
| Flush(); |
| |
| return args[0]; // return TOS |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugTrace) { |
| ASSERT(args.length() == 0); |
| NoHandleAllocation ha; |
| isolate->PrintStack(); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DateCurrentTime) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 0); |
| |
| // According to ECMA-262, section 15.9.1, page 117, the precision of |
| // the number in a Date object representing a particular instant in |
| // time is milliseconds. Therefore, we floor the result of getting |
| // the OS time. |
| double millis = floor(OS::TimeCurrentMillis()); |
| return isolate->heap()->NumberFromDouble(millis); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DateParseString) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_HANDLE_CHECKED(String, str, 0); |
| FlattenString(str); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1); |
| |
| MaybeObject* maybe_result_array = |
| output->EnsureCanContainHeapObjectElements(); |
| if (maybe_result_array->IsFailure()) return maybe_result_array; |
| RUNTIME_ASSERT(output->HasFastElements()); |
| |
| AssertNoAllocation no_allocation; |
| |
| FixedArray* output_array = FixedArray::cast(output->elements()); |
| RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE); |
| bool result; |
| String::FlatContent str_content = str->GetFlatContent(); |
| if (str_content.IsAscii()) { |
| result = DateParser::Parse(str_content.ToAsciiVector(), |
| output_array, |
| isolate->unicode_cache()); |
| } else { |
| ASSERT(str_content.IsTwoByte()); |
| result = DateParser::Parse(str_content.ToUC16Vector(), |
| output_array, |
| isolate->unicode_cache()); |
| } |
| |
| if (result) { |
| return *output; |
| } else { |
| return isolate->heap()->null_value(); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DateLocalTimezone) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| int64_t time = isolate->date_cache()->EquivalentTime(static_cast<int64_t>(x)); |
| const char* zone = OS::LocalTimezone(static_cast<double>(time)); |
| return isolate->heap()->AllocateStringFromUtf8(CStrVector(zone)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DateToUTC) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x)); |
| |
| return isolate->heap()->NumberFromDouble(static_cast<double>(time)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalReceiver) { |
| ASSERT(args.length() == 1); |
| Object* global = args[0]; |
| if (!global->IsJSGlobalObject()) return isolate->heap()->null_value(); |
| return JSGlobalObject::cast(global)->global_receiver(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ParseJson) { |
| HandleScope scope(isolate); |
| ASSERT_EQ(1, args.length()); |
| CONVERT_ARG_HANDLE_CHECKED(String, source, 0); |
| |
| source = Handle<String>(source->TryFlattenGetString()); |
| // Optimized fast case where we only have ASCII characters. |
| Handle<Object> result; |
| if (source->IsSeqAsciiString()) { |
| result = JsonParser<true>::Parse(source); |
| } else { |
| result = JsonParser<false>::Parse(source); |
| } |
| if (result.is_null()) { |
| // Syntax error or stack overflow in scanner. |
| ASSERT(isolate->has_pending_exception()); |
| return Failure::Exception(); |
| } |
| return *result; |
| } |
| |
| |
| bool CodeGenerationFromStringsAllowed(Isolate* isolate, |
| Handle<Context> context) { |
| ASSERT(context->allow_code_gen_from_strings()->IsFalse()); |
| // Check with callback if set. |
| AllowCodeGenerationFromStringsCallback callback = |
| isolate->allow_code_gen_callback(); |
| if (callback == NULL) { |
| // No callback set and code generation disallowed. |
| return false; |
| } else { |
| // Callback set. Let it decide if code generation is allowed. |
| VMState state(isolate, EXTERNAL); |
| return callback(v8::Utils::ToLocal(context)); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileString) { |
| HandleScope scope(isolate); |
| ASSERT_EQ(1, args.length()); |
| CONVERT_ARG_HANDLE_CHECKED(String, source, 0); |
| |
| // Extract global context. |
| Handle<Context> context(isolate->context()->global_context()); |
| |
| // Check if global context allows code generation from |
| // strings. Throw an exception if it doesn't. |
| if (context->allow_code_gen_from_strings()->IsFalse() && |
| !CodeGenerationFromStringsAllowed(isolate, context)) { |
| return isolate->Throw(*isolate->factory()->NewError( |
| "code_gen_from_strings", HandleVector<Object>(NULL, 0))); |
| } |
| |
| // Compile source string in the global context. |
| Handle<SharedFunctionInfo> shared = Compiler::CompileEval( |
| source, context, true, CLASSIC_MODE, RelocInfo::kNoPosition); |
| if (shared.is_null()) return Failure::Exception(); |
| Handle<JSFunction> fun = |
| isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, |
| context, |
| NOT_TENURED); |
| return *fun; |
| } |
| |
| |
| static ObjectPair CompileGlobalEval(Isolate* isolate, |
| Handle<String> source, |
| Handle<Object> receiver, |
| LanguageMode language_mode, |
| int scope_position) { |
| Handle<Context> context = Handle<Context>(isolate->context()); |
| Handle<Context> global_context = Handle<Context>(context->global_context()); |
| |
| // Check if global context allows code generation from |
| // strings. Throw an exception if it doesn't. |
| if (global_context->allow_code_gen_from_strings()->IsFalse() && |
| !CodeGenerationFromStringsAllowed(isolate, global_context)) { |
| isolate->Throw(*isolate->factory()->NewError( |
| "code_gen_from_strings", HandleVector<Object>(NULL, 0))); |
| return MakePair(Failure::Exception(), NULL); |
| } |
| |
| // Deal with a normal eval call with a string argument. Compile it |
| // and return the compiled function bound in the local context. |
| Handle<SharedFunctionInfo> shared = Compiler::CompileEval( |
| source, |
| Handle<Context>(isolate->context()), |
| context->IsGlobalContext(), |
| language_mode, |
| scope_position); |
| if (shared.is_null()) return MakePair(Failure::Exception(), NULL); |
| Handle<JSFunction> compiled = |
| isolate->factory()->NewFunctionFromSharedFunctionInfo( |
| shared, context, NOT_TENURED); |
| return MakePair(*compiled, *receiver); |
| } |
| |
| |
| RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEval) { |
| ASSERT(args.length() == 5); |
| |
| HandleScope scope(isolate); |
| Handle<Object> callee = args.at<Object>(0); |
| |
| // If "eval" didn't refer to the original GlobalEval, it's not a |
| // direct call to eval. |
| // (And even if it is, but the first argument isn't a string, just let |
| // execution default to an indirect call to eval, which will also return |
| // the first argument without doing anything). |
| if (*callee != isolate->global_context()->global_eval_fun() || |
| !args[1]->IsString()) { |
| return MakePair(*callee, isolate->heap()->the_hole_value()); |
| } |
| |
| CONVERT_LANGUAGE_MODE_ARG(language_mode, 3); |
| ASSERT(args[4]->IsSmi()); |
| return CompileGlobalEval(isolate, |
| args.at<String>(1), |
| args.at<Object>(2), |
| language_mode, |
| args.smi_at(4)); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetNewFunctionAttributes) { |
| // This utility adjusts the property attributes for newly created Function |
| // object ("new Function(...)") by changing the map. |
| // All it does is changing the prototype property to enumerable |
| // as specified in ECMA262, 15.3.5.2. |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0); |
| |
| Handle<Map> map = func->shared()->is_classic_mode() |
| ? isolate->function_instance_map() |
| : isolate->strict_mode_function_instance_map(); |
| |
| ASSERT(func->map()->instance_type() == map->instance_type()); |
| ASSERT(func->map()->instance_size() == map->instance_size()); |
| func->set_map(*map); |
| return *func; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateInNewSpace) { |
| // Allocate a block of memory in NewSpace (filled with a filler). |
| // Use as fallback for allocation in generated code when NewSpace |
| // is full. |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_HANDLE_CHECKED(Smi, size_smi, 0); |
| int size = size_smi->value(); |
| RUNTIME_ASSERT(IsAligned(size, kPointerSize)); |
| RUNTIME_ASSERT(size > 0); |
| Heap* heap = isolate->heap(); |
| const int kMinFreeNewSpaceAfterGC = heap->InitialSemiSpaceSize() * 3/4; |
| RUNTIME_ASSERT(size <= kMinFreeNewSpaceAfterGC); |
| Object* allocation; |
| { MaybeObject* maybe_allocation = heap->new_space()->AllocateRaw(size); |
| if (maybe_allocation->ToObject(&allocation)) { |
| heap->CreateFillerObjectAt(HeapObject::cast(allocation)->address(), size); |
| } |
| return maybe_allocation; |
| } |
| } |
| |
| |
| // Push an object unto an array of objects if it is not already in the |
| // array. Returns true if the element was pushed on the stack and |
| // false otherwise. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_PushIfAbsent) { |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSArray, array, 0); |
| CONVERT_ARG_CHECKED(JSObject, element, 1); |
| RUNTIME_ASSERT(array->HasFastElements() || array->HasFastSmiOnlyElements()); |
| int length = Smi::cast(array->length())->value(); |
| FixedArray* elements = FixedArray::cast(array->elements()); |
| for (int i = 0; i < length; i++) { |
| if (elements->get(i) == element) return isolate->heap()->false_value(); |
| } |
| Object* obj; |
| // Strict not needed. Used for cycle detection in Array join implementation. |
| { MaybeObject* maybe_obj = |
| array->SetFastElement(length, element, kNonStrictMode, true); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| return isolate->heap()->true_value(); |
| } |
| |
| |
| /** |
| * A simple visitor visits every element of Array's. |
| * The backend storage can be a fixed array for fast elements case, |
| * or a dictionary for sparse array. Since Dictionary is a subtype |
| * of FixedArray, the class can be used by both fast and slow cases. |
| * The second parameter of the constructor, fast_elements, specifies |
| * whether the storage is a FixedArray or Dictionary. |
| * |
| * An index limit is used to deal with the situation that a result array |
| * length overflows 32-bit non-negative integer. |
| */ |
| class ArrayConcatVisitor { |
| public: |
| ArrayConcatVisitor(Isolate* isolate, |
| Handle<FixedArray> storage, |
| bool fast_elements) : |
| isolate_(isolate), |
| storage_(Handle<FixedArray>::cast( |
| isolate->global_handles()->Create(*storage))), |
| index_offset_(0u), |
| fast_elements_(fast_elements) { } |
| |
| ~ArrayConcatVisitor() { |
| clear_storage(); |
| } |
| |
| void visit(uint32_t i, Handle<Object> elm) { |
| if (i >= JSObject::kMaxElementCount - index_offset_) return; |
| uint32_t index = index_offset_ + i; |
| |
| if (fast_elements_) { |
| if (index < static_cast<uint32_t>(storage_->length())) { |
| storage_->set(index, *elm); |
| return; |
| } |
| // Our initial estimate of length was foiled, possibly by |
| // getters on the arrays increasing the length of later arrays |
| // during iteration. |
| // This shouldn't happen in anything but pathological cases. |
| SetDictionaryMode(index); |
| // Fall-through to dictionary mode. |
| } |
| ASSERT(!fast_elements_); |
| Handle<SeededNumberDictionary> dict( |
| SeededNumberDictionary::cast(*storage_)); |
| Handle<SeededNumberDictionary> result = |
| isolate_->factory()->DictionaryAtNumberPut(dict, index, elm); |
| if (!result.is_identical_to(dict)) { |
| // Dictionary needed to grow. |
| clear_storage(); |
| set_storage(*result); |
| } |
| } |
| |
| void increase_index_offset(uint32_t delta) { |
| if (JSObject::kMaxElementCount - index_offset_ < delta) { |
| index_offset_ = JSObject::kMaxElementCount; |
| } else { |
| index_offset_ += delta; |
| } |
| } |
| |
| Handle<JSArray> ToArray() { |
| Handle<JSArray> array = isolate_->factory()->NewJSArray(0); |
| Handle<Object> length = |
| isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); |
| Handle<Map> map; |
| if (fast_elements_) { |
| map = isolate_->factory()->GetElementsTransitionMap(array, |
| FAST_ELEMENTS); |
| } else { |
| map = isolate_->factory()->GetElementsTransitionMap(array, |
| DICTIONARY_ELEMENTS); |
| } |
| array->set_map(*map); |
| array->set_length(*length); |
| array->set_elements(*storage_); |
| return array; |
| } |
| |
| private: |
| // Convert storage to dictionary mode. |
| void SetDictionaryMode(uint32_t index) { |
| ASSERT(fast_elements_); |
| Handle<FixedArray> current_storage(*storage_); |
| Handle<SeededNumberDictionary> slow_storage( |
| isolate_->factory()->NewSeededNumberDictionary( |
| current_storage->length())); |
| uint32_t current_length = static_cast<uint32_t>(current_storage->length()); |
| for (uint32_t i = 0; i < current_length; i++) { |
| HandleScope loop_scope; |
| Handle<Object> element(current_storage->get(i)); |
| if (!element->IsTheHole()) { |
| Handle<SeededNumberDictionary> new_storage = |
| isolate_->factory()->DictionaryAtNumberPut(slow_storage, i, element); |
| if (!new_storage.is_identical_to(slow_storage)) { |
| slow_storage = loop_scope.CloseAndEscape(new_storage); |
| } |
| } |
| } |
| clear_storage(); |
| set_storage(*slow_storage); |
| fast_elements_ = false; |
| } |
| |
| inline void clear_storage() { |
| isolate_->global_handles()->Destroy( |
| Handle<Object>::cast(storage_).location()); |
| } |
| |
| inline void set_storage(FixedArray* storage) { |
| storage_ = Handle<FixedArray>::cast( |
| isolate_->global_handles()->Create(storage)); |
| } |
| |
| Isolate* isolate_; |
| Handle<FixedArray> storage_; // Always a global handle. |
| // Index after last seen index. Always less than or equal to |
| // JSObject::kMaxElementCount. |
| uint32_t index_offset_; |
| bool fast_elements_; |
| }; |
| |
| |
| static uint32_t EstimateElementCount(Handle<JSArray> array) { |
| uint32_t length = static_cast<uint32_t>(array->length()->Number()); |
| int element_count = 0; |
| switch (array->GetElementsKind()) { |
| case FAST_SMI_ONLY_ELEMENTS: |
| case FAST_ELEMENTS: { |
| // Fast elements can't have lengths that are not representable by |
| // a 32-bit signed integer. |
| ASSERT(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); |
| int fast_length = static_cast<int>(length); |
| Handle<FixedArray> elements(FixedArray::cast(array->elements())); |
| for (int i = 0; i < fast_length; i++) { |
| if (!elements->get(i)->IsTheHole()) element_count++; |
| } |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: |
| // TODO(1810): Decide if it's worthwhile to implement this. |
| UNREACHABLE(); |
| break; |
| case DICTIONARY_ELEMENTS: { |
| Handle<SeededNumberDictionary> dictionary( |
| SeededNumberDictionary::cast(array->elements())); |
| int capacity = dictionary->Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Handle<Object> key(dictionary->KeyAt(i)); |
| if (dictionary->IsKey(*key)) { |
| element_count++; |
| } |
| } |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case EXTERNAL_PIXEL_ELEMENTS: |
| // External arrays are always dense. |
| return length; |
| } |
| // As an estimate, we assume that the prototype doesn't contain any |
| // inherited elements. |
| return element_count; |
| } |
| |
| |
| |
| template<class ExternalArrayClass, class ElementType> |
| static void IterateExternalArrayElements(Isolate* isolate, |
| Handle<JSObject> receiver, |
| bool elements_are_ints, |
| bool elements_are_guaranteed_smis, |
| ArrayConcatVisitor* visitor) { |
| Handle<ExternalArrayClass> array( |
| ExternalArrayClass::cast(receiver->elements())); |
| uint32_t len = static_cast<uint32_t>(array->length()); |
| |
| ASSERT(visitor != NULL); |
| if (elements_are_ints) { |
| if (elements_are_guaranteed_smis) { |
| for (uint32_t j = 0; j < len; j++) { |
| HandleScope loop_scope; |
| Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j)))); |
| visitor->visit(j, e); |
| } |
| } else { |
| for (uint32_t j = 0; j < len; j++) { |
| HandleScope loop_scope; |
| int64_t val = static_cast<int64_t>(array->get_scalar(j)); |
| if (Smi::IsValid(static_cast<intptr_t>(val))) { |
| Handle<Smi> e(Smi::FromInt(static_cast<int>(val))); |
| visitor->visit(j, e); |
| } else { |
| Handle<Object> e = |
| isolate->factory()->NewNumber(static_cast<ElementType>(val)); |
| visitor->visit(j, e); |
| } |
| } |
| } |
| } else { |
| for (uint32_t j = 0; j < len; j++) { |
| HandleScope loop_scope(isolate); |
| Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j)); |
| visitor->visit(j, e); |
| } |
| } |
| } |
| |
| |
| // Used for sorting indices in a List<uint32_t>. |
| static int compareUInt32(const uint32_t* ap, const uint32_t* bp) { |
| uint32_t a = *ap; |
| uint32_t b = *bp; |
| return (a == b) ? 0 : (a < b) ? -1 : 1; |
| } |
| |
| |
| static void CollectElementIndices(Handle<JSObject> object, |
| uint32_t range, |
| List<uint32_t>* indices) { |
| ElementsKind kind = object->GetElementsKind(); |
| switch (kind) { |
| case FAST_SMI_ONLY_ELEMENTS: |
| case FAST_ELEMENTS: { |
| Handle<FixedArray> elements(FixedArray::cast(object->elements())); |
| uint32_t length = static_cast<uint32_t>(elements->length()); |
| if (range < length) length = range; |
| for (uint32_t i = 0; i < length; i++) { |
| if (!elements->get(i)->IsTheHole()) { |
| indices->Add(i); |
| } |
| } |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| // TODO(1810): Decide if it's worthwhile to implement this. |
| UNREACHABLE(); |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| Handle<SeededNumberDictionary> dict( |
| SeededNumberDictionary::cast(object->elements())); |
| uint32_t capacity = dict->Capacity(); |
| for (uint32_t j = 0; j < capacity; j++) { |
| HandleScope loop_scope; |
| Handle<Object> k(dict->KeyAt(j)); |
| if (dict->IsKey(*k)) { |
| ASSERT(k->IsNumber()); |
| uint32_t index = static_cast<uint32_t>(k->Number()); |
| if (index < range) { |
| indices->Add(index); |
| } |
| } |
| } |
| break; |
| } |
| default: { |
| int dense_elements_length; |
| switch (kind) { |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| dense_elements_length = |
| ExternalPixelArray::cast(object->elements())->length(); |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: { |
| dense_elements_length = |
| ExternalByteArray::cast(object->elements())->length(); |
| break; |
| } |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { |
| dense_elements_length = |
| ExternalUnsignedByteArray::cast(object->elements())->length(); |
| break; |
| } |
| case EXTERNAL_SHORT_ELEMENTS: { |
| dense_elements_length = |
| ExternalShortArray::cast(object->elements())->length(); |
| break; |
| } |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { |
| dense_elements_length = |
| ExternalUnsignedShortArray::cast(object->elements())->length(); |
| break; |
| } |
| case EXTERNAL_INT_ELEMENTS: { |
| dense_elements_length = |
| ExternalIntArray::cast(object->elements())->length(); |
| break; |
| } |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: { |
| dense_elements_length = |
| ExternalUnsignedIntArray::cast(object->elements())->length(); |
| break; |
| } |
| case EXTERNAL_FLOAT_ELEMENTS: { |
| dense_elements_length = |
| ExternalFloatArray::cast(object->elements())->length(); |
| break; |
| } |
| case EXTERNAL_DOUBLE_ELEMENTS: { |
| dense_elements_length = |
| ExternalDoubleArray::cast(object->elements())->length(); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| dense_elements_length = 0; |
| break; |
| } |
| uint32_t length = static_cast<uint32_t>(dense_elements_length); |
| if (range <= length) { |
| length = range; |
| // We will add all indices, so we might as well clear it first |
| // and avoid duplicates. |
| indices->Clear(); |
| } |
| for (uint32_t i = 0; i < length; i++) { |
| indices->Add(i); |
| } |
| if (length == range) return; // All indices accounted for already. |
| break; |
| } |
| } |
| |
| Handle<Object> prototype(object->GetPrototype()); |
| if (prototype->IsJSObject()) { |
| // The prototype will usually have no inherited element indices, |
| // but we have to check. |
| CollectElementIndices(Handle<JSObject>::cast(prototype), range, indices); |
| } |
| } |
| |
| |
| /** |
| * A helper function that visits elements of a JSArray in numerical |
| * order. |
| * |
| * The visitor argument called for each existing element in the array |
| * with the element index and the element's value. |
| * Afterwards it increments the base-index of the visitor by the array |
| * length. |
| * Returns false if any access threw an exception, otherwise true. |
| */ |
| static bool IterateElements(Isolate* isolate, |
| Handle<JSArray> receiver, |
| ArrayConcatVisitor* visitor) { |
| uint32_t length = static_cast<uint32_t>(receiver->length()->Number()); |
| switch (receiver->GetElementsKind()) { |
| case FAST_SMI_ONLY_ELEMENTS: |
| case FAST_ELEMENTS: { |
| // Run through the elements FixedArray and use HasElement and GetElement |
| // to check the prototype for missing elements. |
| Handle<FixedArray> elements(FixedArray::cast(receiver->elements())); |
| int fast_length = static_cast<int>(length); |
| ASSERT(fast_length <= elements->length()); |
| for (int j = 0; j < fast_length; j++) { |
| HandleScope loop_scope(isolate); |
| Handle<Object> element_value(elements->get(j), isolate); |
| if (!element_value->IsTheHole()) { |
| visitor->visit(j, element_value); |
| } else if (receiver->HasElement(j)) { |
| // Call GetElement on receiver, not its prototype, or getters won't |
| // have the correct receiver. |
| element_value = Object::GetElement(receiver, j); |
| RETURN_IF_EMPTY_HANDLE_VALUE(isolate, element_value, false); |
| visitor->visit(j, element_value); |
| } |
| } |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| // TODO(1810): Decide if it's worthwhile to implement this. |
| UNREACHABLE(); |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| Handle<SeededNumberDictionary> dict(receiver->element_dictionary()); |
| List<uint32_t> indices(dict->Capacity() / 2); |
| // Collect all indices in the object and the prototypes less |
| // than length. This might introduce duplicates in the indices list. |
| CollectElementIndices(receiver, length, &indices); |
| indices.Sort(&compareUInt32); |
| int j = 0; |
| int n = indices.length(); |
| while (j < n) { |
| HandleScope loop_scope; |
| uint32_t index = indices[j]; |
| Handle<Object> element = Object::GetElement(receiver, index); |
| RETURN_IF_EMPTY_HANDLE_VALUE(isolate, element, false); |
| visitor->visit(index, element); |
| // Skip to next different index (i.e., omit duplicates). |
| do { |
| j++; |
| } while (j < n && indices[j] == index); |
| } |
| break; |
| } |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| Handle<ExternalPixelArray> pixels(ExternalPixelArray::cast( |
| receiver->elements())); |
| for (uint32_t j = 0; j < length; j++) { |
| Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j))); |
| visitor->visit(j, e); |
| } |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: { |
| IterateExternalArrayElements<ExternalByteArray, int8_t>( |
| isolate, receiver, true, true, visitor); |
| break; |
| } |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { |
| IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>( |
| isolate, receiver, true, true, visitor); |
| break; |
| } |
| case EXTERNAL_SHORT_ELEMENTS: { |
| IterateExternalArrayElements<ExternalShortArray, int16_t>( |
| isolate, receiver, true, true, visitor); |
| break; |
| } |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { |
| IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>( |
| isolate, receiver, true, true, visitor); |
| break; |
| } |
| case EXTERNAL_INT_ELEMENTS: { |
| IterateExternalArrayElements<ExternalIntArray, int32_t>( |
| isolate, receiver, true, false, visitor); |
| break; |
| } |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: { |
| IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>( |
| isolate, receiver, true, false, visitor); |
| break; |
| } |
| case EXTERNAL_FLOAT_ELEMENTS: { |
| IterateExternalArrayElements<ExternalFloatArray, float>( |
| isolate, receiver, false, false, visitor); |
| break; |
| } |
| case EXTERNAL_DOUBLE_ELEMENTS: { |
| IterateExternalArrayElements<ExternalDoubleArray, double>( |
| isolate, receiver, false, false, visitor); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| visitor->increase_index_offset(length); |
| return true; |
| } |
| |
| |
| /** |
| * Array::concat implementation. |
| * See ECMAScript 262, 15.4.4.4. |
| * TODO(581): Fix non-compliance for very large concatenations and update to |
| * following the ECMAScript 5 specification. |
| */ |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayConcat) { |
| ASSERT(args.length() == 1); |
| HandleScope handle_scope(isolate); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0); |
| int argument_count = static_cast<int>(arguments->length()->Number()); |
| RUNTIME_ASSERT(arguments->HasFastElements()); |
| Handle<FixedArray> elements(FixedArray::cast(arguments->elements())); |
| |
| // Pass 1: estimate the length and number of elements of the result. |
| // The actual length can be larger if any of the arguments have getters |
| // that mutate other arguments (but will otherwise be precise). |
| // The number of elements is precise if there are no inherited elements. |
| |
| uint32_t estimate_result_length = 0; |
| uint32_t estimate_nof_elements = 0; |
| { |
| for (int i = 0; i < argument_count; i++) { |
| HandleScope loop_scope; |
| Handle<Object> obj(elements->get(i)); |
| uint32_t length_estimate; |
| uint32_t element_estimate; |
| if (obj->IsJSArray()) { |
| Handle<JSArray> array(Handle<JSArray>::cast(obj)); |
| // TODO(1810): Find out if it's worthwhile to properly support |
| // arbitrary ElementsKinds. For now, pessimistically transition to |
| // FAST_ELEMENTS. |
| if (array->HasFastDoubleElements()) { |
| array = Handle<JSArray>::cast( |
| JSObject::TransitionElementsKind(array, FAST_ELEMENTS)); |
| } |
| length_estimate = |
| static_cast<uint32_t>(array->length()->Number()); |
| element_estimate = |
| EstimateElementCount(array); |
| } else { |
| length_estimate = 1; |
| element_estimate = 1; |
| } |
| // Avoid overflows by capping at kMaxElementCount. |
| if (JSObject::kMaxElementCount - estimate_result_length < |
| length_estimate) { |
| estimate_result_length = JSObject::kMaxElementCount; |
| } else { |
| estimate_result_length += length_estimate; |
| } |
| if (JSObject::kMaxElementCount - estimate_nof_elements < |
| element_estimate) { |
| estimate_nof_elements = JSObject::kMaxElementCount; |
| } else { |
| estimate_nof_elements += element_estimate; |
| } |
| } |
| } |
| |
| // If estimated number of elements is more than half of length, a |
| // fixed array (fast case) is more time and space-efficient than a |
| // dictionary. |
| bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length; |
| |
| Handle<FixedArray> storage; |
| if (fast_case) { |
| // The backing storage array must have non-existing elements to |
| // preserve holes across concat operations. |
| storage = isolate->factory()->NewFixedArrayWithHoles( |
| estimate_result_length); |
| } else { |
| // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate |
| uint32_t at_least_space_for = estimate_nof_elements + |
| (estimate_nof_elements >> 2); |
| storage = Handle<FixedArray>::cast( |
| isolate->factory()->NewSeededNumberDictionary(at_least_space_for)); |
| } |
| |
| ArrayConcatVisitor visitor(isolate, storage, fast_case); |
| |
| for (int i = 0; i < argument_count; i++) { |
| Handle<Object> obj(elements->get(i)); |
| if (obj->IsJSArray()) { |
| Handle<JSArray> array = Handle<JSArray>::cast(obj); |
| if (!IterateElements(isolate, array, &visitor)) { |
| return Failure::Exception(); |
| } |
| } else { |
| visitor.visit(0, obj); |
| visitor.increase_index_offset(1); |
| } |
| } |
| |
| return *visitor.ToArray(); |
| } |
| |
| |
| // This will not allocate (flatten the string), but it may run |
| // very slowly for very deeply nested ConsStrings. For debugging use only. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalPrint) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(String, string, 0); |
| StringInputBuffer buffer(string); |
| while (buffer.has_more()) { |
| uint16_t character = buffer.GetNext(); |
| PrintF("%c", character); |
| } |
| return string; |
| } |
| |
| // Moves all own elements of an object, that are below a limit, to positions |
| // starting at zero. All undefined values are placed after non-undefined values, |
| // and are followed by non-existing element. Does not change the length |
| // property. |
| // Returns the number of non-undefined elements collected. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_RemoveArrayHoles) { |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSObject, object, 0); |
| CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); |
| return object->PrepareElementsForSort(limit); |
| } |
| |
| |
| // Move contents of argument 0 (an array) to argument 1 (an array) |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MoveArrayContents) { |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSArray, from, 0); |
| CONVERT_ARG_CHECKED(JSArray, to, 1); |
| FixedArrayBase* new_elements = from->elements(); |
| MaybeObject* maybe_new_map; |
| ElementsKind elements_kind; |
| if (new_elements->map() == isolate->heap()->fixed_array_map() || |
| new_elements->map() == isolate->heap()->fixed_cow_array_map()) { |
| elements_kind = FAST_ELEMENTS; |
| } else if (new_elements->map() == |
| isolate->heap()->fixed_double_array_map()) { |
| elements_kind = FAST_DOUBLE_ELEMENTS; |
| } else { |
| elements_kind = DICTIONARY_ELEMENTS; |
| } |
| maybe_new_map = to->GetElementsTransitionMap(isolate, elements_kind); |
| Object* new_map; |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| to->set_map(Map::cast(new_map)); |
| to->set_elements(new_elements); |
| to->set_length(from->length()); |
| Object* obj; |
| { MaybeObject* maybe_obj = from->ResetElements(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| from->set_length(Smi::FromInt(0)); |
| return to; |
| } |
| |
| |
| // How many elements does this object/array have? |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_EstimateNumberOfElements) { |
| ASSERT(args.length() == 1); |
| CONVERT_ARG_CHECKED(JSObject, object, 0); |
| HeapObject* elements = object->elements(); |
| if (elements->IsDictionary()) { |
| int result = SeededNumberDictionary::cast(elements)->NumberOfElements(); |
| return Smi::FromInt(result); |
| } else if (object->IsJSArray()) { |
| return JSArray::cast(object)->length(); |
| } else { |
| return Smi::FromInt(FixedArray::cast(elements)->length()); |
| } |
| } |
| |
| |
| // Returns an array that tells you where in the [0, length) interval an array |
| // might have elements. Can either return keys (positive integers) or |
| // intervals (pair of a negative integer (-start-1) followed by a |
| // positive (length)) or undefined values. |
| // Intervals can span over some keys that are not in the object. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArrayKeys) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); |
| CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]); |
| if (array->elements()->IsDictionary()) { |
| // Create an array and get all the keys into it, then remove all the |
| // keys that are not integers in the range 0 to length-1. |
| bool threw = false; |
| Handle<FixedArray> keys = |
| GetKeysInFixedArrayFor(array, INCLUDE_PROTOS, &threw); |
| if (threw) return Failure::Exception(); |
| |
| int keys_length = keys->length(); |
| for (int i = 0; i < keys_length; i++) { |
| Object* key = keys->get(i); |
| uint32_t index = 0; |
| if (!key->ToArrayIndex(&index) || index >= length) { |
| // Zap invalid keys. |
| keys->set_undefined(i); |
| } |
| } |
| return *isolate->factory()->NewJSArrayWithElements(keys); |
| } else { |
| ASSERT(array->HasFastElements() || |
| array->HasFastSmiOnlyElements() || |
| array->HasFastDoubleElements()); |
| Handle<FixedArray> single_interval = isolate->factory()->NewFixedArray(2); |
| // -1 means start of array. |
| single_interval->set(0, Smi::FromInt(-1)); |
| FixedArrayBase* elements = FixedArrayBase::cast(array->elements()); |
| uint32_t actual_length = |
| static_cast<uint32_t>(elements->length()); |
| uint32_t min_length = actual_length < length ? actual_length : length; |
| Handle<Object> length_object = |
| isolate->factory()->NewNumber(static_cast<double>(min_length)); |
| single_interval->set(1, *length_object); |
| return *isolate->factory()->NewJSArrayWithElements(single_interval); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LookupAccessor) { |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| CONVERT_ARG_CHECKED(String, name, 1); |
| CONVERT_SMI_ARG_CHECKED(flag, 2); |
| AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER; |
| return obj->LookupAccessor(name, component); |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugBreak) { |
| ASSERT(args.length() == 0); |
| return Execution::DebugBreakHelper(); |
| } |
| |
| |
| // Helper functions for wrapping and unwrapping stack frame ids. |
| static Smi* WrapFrameId(StackFrame::Id id) { |
| ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4))); |
| return Smi::FromInt(id >> 2); |
| } |
| |
| |
| static StackFrame::Id UnwrapFrameId(int wrapped) { |
| return static_cast<StackFrame::Id>(wrapped << 2); |
| } |
| |
| |
| // Adds a JavaScript function as a debug event listener. |
| // args[0]: debug event listener function to set or null or undefined for |
| // clearing the event listener function |
| // args[1]: object supplied during callback |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDebugEventListener) { |
| ASSERT(args.length() == 2); |
| RUNTIME_ASSERT(args[0]->IsJSFunction() || |
| args[0]->IsUndefined() || |
| args[0]->IsNull()); |
| Handle<Object> callback = args.at<Object>(0); |
| Handle<Object> data = args.at<Object>(1); |
| isolate->debugger()->SetEventListener(callback, data); |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Break) { |
| ASSERT(args.length() == 0); |
| isolate->stack_guard()->DebugBreak(); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| static MaybeObject* DebugLookupResultValue(Heap* heap, |
| Object* receiver, |
| String* name, |
| LookupResult* result, |
| bool* caught_exception) { |
| Object* value; |
| switch (result->type()) { |
| case NORMAL: |
| value = result->holder()->GetNormalizedProperty(result); |
| if (value->IsTheHole()) { |
| return heap->undefined_value(); |
| } |
| return value; |
| case FIELD: |
| value = |
| JSObject::cast( |
| result->holder())->FastPropertyAt(result->GetFieldIndex()); |
| if (value->IsTheHole()) { |
| return heap->undefined_value(); |
| } |
| return value; |
| case CONSTANT_FUNCTION: |
| return result->GetConstantFunction(); |
| case CALLBACKS: { |
| Object* structure = result->GetCallbackObject(); |
| if (structure->IsForeign() || structure->IsAccessorInfo()) { |
| MaybeObject* maybe_value = result->holder()->GetPropertyWithCallback( |
| receiver, structure, name); |
| if (!maybe_value->ToObject(&value)) { |
| if (maybe_value->IsRetryAfterGC()) return maybe_value; |
| ASSERT(maybe_value->IsException()); |
| maybe_value = heap->isolate()->pending_exception(); |
| heap->isolate()->clear_pending_exception(); |
| if (caught_exception != NULL) { |
| *caught_exception = true; |
| } |
| return maybe_value; |
| } |
| return value; |
| } else { |
| return heap->undefined_value(); |
| } |
| } |
| case INTERCEPTOR: |
| case MAP_TRANSITION: |
| case ELEMENTS_TRANSITION: |
| case CONSTANT_TRANSITION: |
| case NULL_DESCRIPTOR: |
| return heap->undefined_value(); |
| case HANDLER: |
| UNREACHABLE(); |
| return heap->undefined_value(); |
| } |
| UNREACHABLE(); // keep the compiler happy |
| return heap->undefined_value(); |
| } |
| |
| |
| // Get debugger related details for an object property. |
| // args[0]: object holding property |
| // args[1]: name of the property |
| // |
| // The array returned contains the following information: |
| // 0: Property value |
| // 1: Property details |
| // 2: Property value is exception |
| // 3: Getter function if defined |
| // 4: Setter function if defined |
| // Items 2-4 are only filled if the property has either a getter or a setter |
| // defined through __defineGetter__ and/or __defineSetter__. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPropertyDetails) { |
| HandleScope scope(isolate); |
| |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 1); |
| |
| // Make sure to set the current context to the context before the debugger was |
| // entered (if the debugger is entered). The reason for switching context here |
| // is that for some property lookups (accessors and interceptors) callbacks |
| // into the embedding application can occour, and the embedding application |
| // could have the assumption that its own global context is the current |
| // context and not some internal debugger context. |
| SaveContext save(isolate); |
| if (isolate->debug()->InDebugger()) { |
| isolate->set_context(*isolate->debug()->debugger_entry()->GetContext()); |
| } |
| |
| // Skip the global proxy as it has no properties and always delegates to the |
| // real global object. |
| if (obj->IsJSGlobalProxy()) { |
| obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype())); |
| } |
| |
| |
| // Check if the name is trivially convertible to an index and get the element |
| // if so. |
| uint32_t index; |
| if (name->AsArrayIndex(&index)) { |
| Handle<FixedArray> details = isolate->factory()->NewFixedArray(2); |
| Object* element_or_char; |
| { MaybeObject* maybe_element_or_char = |
| Runtime::GetElementOrCharAt(isolate, obj, index); |
| if (!maybe_element_or_char->ToObject(&element_or_char)) { |
| return maybe_element_or_char; |
| } |
| } |
| details->set(0, element_or_char); |
| details->set(1, PropertyDetails(NONE, NORMAL).AsSmi()); |
| return *isolate->factory()->NewJSArrayWithElements(details); |
| } |
| |
| // Find the number of objects making up this. |
| int length = LocalPrototypeChainLength(*obj); |
| |
| // Try local lookup on each of the objects. |
| Handle<JSObject> jsproto = obj; |
| for (int i = 0; i < length; i++) { |
| LookupResult result(isolate); |
| jsproto->LocalLookup(*name, &result); |
| if (result.IsProperty()) { |
| // LookupResult is not GC safe as it holds raw object pointers. |
| // GC can happen later in this code so put the required fields into |
| // local variables using handles when required for later use. |
| PropertyType result_type = result.type(); |
| Handle<Object> result_callback_obj; |
| if (result_type == CALLBACKS) { |
| result_callback_obj = Handle<Object>(result.GetCallbackObject(), |
| isolate); |
| } |
| Smi* property_details = result.GetPropertyDetails().AsSmi(); |
| // DebugLookupResultValue can cause GC so details from LookupResult needs |
| // to be copied to handles before this. |
| bool caught_exception = false; |
| Object* raw_value; |
| { MaybeObject* maybe_raw_value = |
| DebugLookupResultValue(isolate->heap(), *obj, *name, |
| &result, &caught_exception); |
| if (!maybe_raw_value->ToObject(&raw_value)) return maybe_raw_value; |
| } |
| Handle<Object> value(raw_value, isolate); |
| |
| // If the callback object is a fixed array then it contains JavaScript |
| // getter and/or setter. |
| bool hasJavaScriptAccessors = result_type == CALLBACKS && |
| result_callback_obj->IsAccessorPair(); |
| Handle<FixedArray> details = |
| isolate->factory()->NewFixedArray(hasJavaScriptAccessors ? 5 : 2); |
| details->set(0, *value); |
| details->set(1, property_details); |
| if (hasJavaScriptAccessors) { |
| AccessorPair* accessors = AccessorPair::cast(*result_callback_obj); |
| details->set(2, isolate->heap()->ToBoolean(caught_exception)); |
| details->set(3, accessors->GetComponent(ACCESSOR_GETTER)); |
| details->set(4, accessors->GetComponent(ACCESSOR_SETTER)); |
| } |
| |
| return *isolate->factory()->NewJSArrayWithElements(details); |
| } |
| if (i < length - 1) { |
| jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype())); |
| } |
| } |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetProperty) { |
| HandleScope scope(isolate); |
| |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 1); |
| |
| LookupResult result(isolate); |
| obj->Lookup(*name, &result); |
| if (result.IsProperty()) { |
| return DebugLookupResultValue(isolate->heap(), *obj, *name, &result, NULL); |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Return the property type calculated from the property details. |
| // args[0]: smi with property details. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyTypeFromDetails) { |
| ASSERT(args.length() == 1); |
| CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); |
| return Smi::FromInt(static_cast<int>(details.type())); |
| } |
| |
| |
| // Return the property attribute calculated from the property details. |
| // args[0]: smi with property details. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyAttributesFromDetails) { |
| ASSERT(args.length() == 1); |
| CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); |
| return Smi::FromInt(static_cast<int>(details.attributes())); |
| } |
| |
| |
| // Return the property insertion index calculated from the property details. |
| // args[0]: smi with property details. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyIndexFromDetails) { |
| ASSERT(args.length() == 1); |
| CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); |
| return Smi::FromInt(details.index()); |
| } |
| |
| |
| // Return property value from named interceptor. |
| // args[0]: object |
| // args[1]: property name |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugNamedInterceptorPropertyValue) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| RUNTIME_ASSERT(obj->HasNamedInterceptor()); |
| CONVERT_ARG_HANDLE_CHECKED(String, name, 1); |
| |
| PropertyAttributes attributes; |
| return obj->GetPropertyWithInterceptor(*obj, *name, &attributes); |
| } |
| |
| |
| // Return element value from indexed interceptor. |
| // args[0]: object |
| // args[1]: index |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugIndexedInterceptorElementValue) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); |
| RUNTIME_ASSERT(obj->HasIndexedInterceptor()); |
| CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]); |
| |
| return obj->GetElementWithInterceptor(*obj, index); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CheckExecutionState) { |
| ASSERT(args.length() >= 1); |
| CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); |
| // Check that the break id is valid. |
| if (isolate->debug()->break_id() == 0 || |
| break_id != isolate->debug()->break_id()) { |
| return isolate->Throw( |
| isolate->heap()->illegal_execution_state_symbol()); |
| } |
| |
| return isolate->heap()->true_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameCount) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| // Check arguments. |
| Object* result; |
| { MaybeObject* maybe_result = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| |
| // Count all frames which are relevant to debugging stack trace. |
| int n = 0; |
| StackFrame::Id id = isolate->debug()->break_frame_id(); |
| if (id == StackFrame::NO_ID) { |
| // If there is no JavaScript stack frame count is 0. |
| return Smi::FromInt(0); |
| } |
| |
| for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) { |
| n += it.frame()->GetInlineCount(); |
| } |
| return Smi::FromInt(n); |
| } |
| |
| |
| class FrameInspector { |
| public: |
| FrameInspector(JavaScriptFrame* frame, |
| int inlined_jsframe_index, |
| Isolate* isolate) |
| : frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) { |
| // Calculate the deoptimized frame. |
| if (frame->is_optimized()) { |
| deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame( |
| frame, inlined_jsframe_index, isolate); |
| } |
| has_adapted_arguments_ = frame_->has_adapted_arguments(); |
| is_bottommost_ = inlined_jsframe_index == 0; |
| is_optimized_ = frame_->is_optimized(); |
| } |
| |
| ~FrameInspector() { |
| // Get rid of the calculated deoptimized frame if any. |
| if (deoptimized_frame_ != NULL) { |
| Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_, |
| isolate_); |
| } |
| } |
| |
| int GetParametersCount() { |
| return is_optimized_ |
| ? deoptimized_frame_->parameters_count() |
| : frame_->ComputeParametersCount(); |
| } |
| int expression_count() { return deoptimized_frame_->expression_count(); } |
| Object* GetFunction() { |
| return is_optimized_ |
| ? deoptimized_frame_->GetFunction() |
| : frame_->function(); |
| } |
| Object* GetParameter(int index) { |
| return is_optimized_ |
| ? deoptimized_frame_->GetParameter(index) |
| : frame_->GetParameter(index); |
| } |
| Object* GetExpression(int index) { |
| return is_optimized_ |
| ? deoptimized_frame_->GetExpression(index) |
| : frame_->GetExpression(index); |
| } |
| int GetSourcePosition() { |
| return is_optimized_ |
| ? deoptimized_frame_->GetSourcePosition() |
| : frame_->LookupCode()->SourcePosition(frame_->pc()); |
| } |
| bool IsConstructor() { |
| return is_optimized_ && !is_bottommost_ |
| ? deoptimized_frame_->HasConstructStub() |
| : frame_->IsConstructor(); |
| } |
| |
| // To inspect all the provided arguments the frame might need to be |
| // replaced with the arguments frame. |
| void SetArgumentsFrame(JavaScriptFrame* frame) { |
| ASSERT(has_adapted_arguments_); |
| frame_ = frame; |
| is_optimized_ = frame_->is_optimized(); |
| ASSERT(!is_optimized_); |
| } |
| |
| private: |
| JavaScriptFrame* frame_; |
| DeoptimizedFrameInfo* deoptimized_frame_; |
| Isolate* isolate_; |
| bool is_optimized_; |
| bool is_bottommost_; |
| bool has_adapted_arguments_; |
| |
| DISALLOW_COPY_AND_ASSIGN(FrameInspector); |
| }; |
| |
| |
| static const int kFrameDetailsFrameIdIndex = 0; |
| static const int kFrameDetailsReceiverIndex = 1; |
| static const int kFrameDetailsFunctionIndex = 2; |
| static const int kFrameDetailsArgumentCountIndex = 3; |
| static const int kFrameDetailsLocalCountIndex = 4; |
| static const int kFrameDetailsSourcePositionIndex = 5; |
| static const int kFrameDetailsConstructCallIndex = 6; |
| static const int kFrameDetailsAtReturnIndex = 7; |
| static const int kFrameDetailsFlagsIndex = 8; |
| static const int kFrameDetailsFirstDynamicIndex = 9; |
| |
| |
| static SaveContext* FindSavedContextForFrame(Isolate* isolate, |
| JavaScriptFrame* frame) { |
| SaveContext* save = isolate->save_context(); |
| while (save != NULL && !save->IsBelowFrame(frame)) { |
| save = save->prev(); |
| } |
| ASSERT(save != NULL); |
| return save; |
| } |
| |
| |
| // Return an array with frame details |
| // args[0]: number: break id |
| // args[1]: number: frame index |
| // |
| // The array returned contains the following information: |
| // 0: Frame id |
| // 1: Receiver |
| // 2: Function |
| // 3: Argument count |
| // 4: Local count |
| // 5: Source position |
| // 6: Constructor call |
| // 7: Is at return |
| // 8: Flags |
| // Arguments name, value |
| // Locals name, value |
| // Return value if any |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameDetails) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| |
| // Check arguments. |
| Object* check; |
| { MaybeObject* maybe_check = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_check->ToObject(&check)) return maybe_check; |
| } |
| CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); |
| Heap* heap = isolate->heap(); |
| |
| // Find the relevant frame with the requested index. |
| StackFrame::Id id = isolate->debug()->break_frame_id(); |
| if (id == StackFrame::NO_ID) { |
| // If there are no JavaScript stack frames return undefined. |
| return heap->undefined_value(); |
| } |
| |
| int count = 0; |
| JavaScriptFrameIterator it(isolate, id); |
| for (; !it.done(); it.Advance()) { |
| if (index < count + it.frame()->GetInlineCount()) break; |
| count += it.frame()->GetInlineCount(); |
| } |
| if (it.done()) return heap->undefined_value(); |
| |
| bool is_optimized = it.frame()->is_optimized(); |
| |
| int inlined_jsframe_index = 0; // Inlined frame index in optimized frame. |
| if (is_optimized) { |
| inlined_jsframe_index = |
| it.frame()->GetInlineCount() - (index - count) - 1; |
| } |
| FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate); |
| |
| // Traverse the saved contexts chain to find the active context for the |
| // selected frame. |
| SaveContext* save = FindSavedContextForFrame(isolate, it.frame()); |
| |
| // Get the frame id. |
| Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate); |
| |
| // Find source position in unoptimized code. |
| int position = frame_inspector.GetSourcePosition(); |
| |
| // Check for constructor frame. |
| bool constructor = frame_inspector.IsConstructor(); |
| |
| // Get scope info and read from it for local variable information. |
| Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction())); |
| Handle<SharedFunctionInfo> shared(function->shared()); |
| Handle<ScopeInfo> scope_info(shared->scope_info()); |
| ASSERT(*scope_info != ScopeInfo::Empty()); |
| |
| // Get the locals names and values into a temporary array. |
| // |
| // TODO(1240907): Hide compiler-introduced stack variables |
| // (e.g. .result)? For users of the debugger, they will probably be |
| // confusing. |
| Handle<FixedArray> locals = |
| isolate->factory()->NewFixedArray(scope_info->LocalCount() * 2); |
| |
| // Fill in the values of the locals. |
| int i = 0; |
| for (; i < scope_info->StackLocalCount(); ++i) { |
| // Use the value from the stack. |
| locals->set(i * 2, scope_info->LocalName(i)); |
| locals->set(i * 2 + 1, frame_inspector.GetExpression(i)); |
| } |
| if (i < scope_info->LocalCount()) { |
| // Get the context containing declarations. |
| Handle<Context> context( |
| Context::cast(it.frame()->context())->declaration_context()); |
| for (; i < scope_info->LocalCount(); ++i) { |
| Handle<String> name(scope_info->LocalName(i)); |
| VariableMode mode; |
| InitializationFlag init_flag; |
| locals->set(i * 2, *name); |
| locals->set(i * 2 + 1, context->get( |
| scope_info->ContextSlotIndex(*name, &mode, &init_flag))); |
| } |
| } |
| |
| // Check whether this frame is positioned at return. If not top |
| // frame or if the frame is optimized it cannot be at a return. |
| bool at_return = false; |
| if (!is_optimized && index == 0) { |
| at_return = isolate->debug()->IsBreakAtReturn(it.frame()); |
| } |
| |
| // If positioned just before return find the value to be returned and add it |
| // to the frame information. |
| Handle<Object> return_value = isolate->factory()->undefined_value(); |
| if (at_return) { |
| StackFrameIterator it2(isolate); |
| Address internal_frame_sp = NULL; |
| while (!it2.done()) { |
| if (it2.frame()->is_internal()) { |
| internal_frame_sp = it2.frame()->sp(); |
| } else { |
| if (it2.frame()->is_java_script()) { |
| if (it2.frame()->id() == it.frame()->id()) { |
| // The internal frame just before the JavaScript frame contains the |
| // value to return on top. A debug break at return will create an |
| // internal frame to store the return value (eax/rax/r0) before |
| // entering the debug break exit frame. |
| if (internal_frame_sp != NULL) { |
| return_value = |
| Handle<Object>(Memory::Object_at(internal_frame_sp), |
| isolate); |
| break; |
| } |
| } |
| } |
| |
| // Indicate that the previous frame was not an internal frame. |
| internal_frame_sp = NULL; |
| } |
| it2.Advance(); |
| } |
| } |
| |
| // Now advance to the arguments adapter frame (if any). It contains all |
| // the provided parameters whereas the function frame always have the number |
| // of arguments matching the functions parameters. The rest of the |
| // information (except for what is collected above) is the same. |
| if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) { |
| it.AdvanceToArgumentsFrame(); |
| frame_inspector.SetArgumentsFrame(it.frame()); |
| } |
| |
| // Find the number of arguments to fill. At least fill the number of |
| // parameters for the function and fill more if more parameters are provided. |
| int argument_count = scope_info->ParameterCount(); |
| if (argument_count < frame_inspector.GetParametersCount()) { |
| argument_count = frame_inspector.GetParametersCount(); |
| } |
| |
| // Calculate the size of the result. |
| int details_size = kFrameDetailsFirstDynamicIndex + |
| 2 * (argument_count + scope_info->LocalCount()) + |
| (at_return ? 1 : 0); |
| Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size); |
| |
| // Add the frame id. |
| details->set(kFrameDetailsFrameIdIndex, *frame_id); |
| |
| // Add the function (same as in function frame). |
| details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction()); |
| |
| // Add the arguments count. |
| details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count)); |
| |
| // Add the locals count |
| details->set(kFrameDetailsLocalCountIndex, |
| Smi::FromInt(scope_info->LocalCount())); |
| |
| // Add the source position. |
| if (position != RelocInfo::kNoPosition) { |
| details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position)); |
| } else { |
| details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value()); |
| } |
| |
| // Add the constructor information. |
| details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor)); |
| |
| // Add the at return information. |
| details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return)); |
| |
| // Add flags to indicate information on whether this frame is |
| // bit 0: invoked in the debugger context. |
| // bit 1: optimized frame. |
| // bit 2: inlined in optimized frame |
| int flags = 0; |
| if (*save->context() == *isolate->debug()->debug_context()) { |
| flags |= 1 << 0; |
| } |
| if (is_optimized) { |
| flags |= 1 << 1; |
| flags |= inlined_jsframe_index << 2; |
| } |
| details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags)); |
| |
| // Fill the dynamic part. |
| int details_index = kFrameDetailsFirstDynamicIndex; |
| |
| // Add arguments name and value. |
| for (int i = 0; i < argument_count; i++) { |
| // Name of the argument. |
| if (i < scope_info->ParameterCount()) { |
| details->set(details_index++, scope_info->ParameterName(i)); |
| } else { |
| details->set(details_index++, heap->undefined_value()); |
| } |
| |
| // Parameter value. |
| if (i < frame_inspector.GetParametersCount()) { |
| // Get the value from the stack. |
| details->set(details_index++, frame_inspector.GetParameter(i)); |
| } else { |
| details->set(details_index++, heap->undefined_value()); |
| } |
| } |
| |
| // Add locals name and value from the temporary copy from the function frame. |
| for (int i = 0; i < scope_info->LocalCount() * 2; i++) { |
| details->set(details_index++, locals->get(i)); |
| } |
| |
| // Add the value being returned. |
| if (at_return) { |
| details->set(details_index++, *return_value); |
| } |
| |
| // Add the receiver (same as in function frame). |
| // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE |
| // THE FRAME ITERATOR TO WRAP THE RECEIVER. |
| Handle<Object> receiver(it.frame()->receiver(), isolate); |
| if (!receiver->IsJSObject() && |
| shared->is_classic_mode() && |
| !shared->native()) { |
| // If the receiver is not a JSObject and the function is not a |
| // builtin or strict-mode we have hit an optimization where a |
| // value object is not converted into a wrapped JS objects. To |
| // hide this optimization from the debugger, we wrap the receiver |
| // by creating correct wrapper object based on the calling frame's |
| // global context. |
| it.Advance(); |
| Handle<Context> calling_frames_global_context( |
| Context::cast(Context::cast(it.frame()->context())->global_context())); |
| receiver = |
| isolate->factory()->ToObject(receiver, calling_frames_global_context); |
| } |
| details->set(kFrameDetailsReceiverIndex, *receiver); |
| |
| ASSERT_EQ(details_size, details_index); |
| return *isolate->factory()->NewJSArrayWithElements(details); |
| } |
| |
| |
| // Copy all the context locals into an object used to materialize a scope. |
| static bool CopyContextLocalsToScopeObject( |
| Isolate* isolate, |
| Handle<ScopeInfo> scope_info, |
| Handle<Context> context, |
| Handle<JSObject> scope_object) { |
| // Fill all context locals to the context extension. |
| for (int i = 0; i < scope_info->ContextLocalCount(); i++) { |
| VariableMode mode; |
| InitializationFlag init_flag; |
| int context_index = scope_info->ContextSlotIndex( |
| scope_info->ContextLocalName(i), &mode, &init_flag); |
| |
| RETURN_IF_EMPTY_HANDLE_VALUE( |
| isolate, |
| SetProperty(scope_object, |
| Handle<String>(scope_info->ContextLocalName(i)), |
| Handle<Object>(context->get(context_index), isolate), |
| NONE, |
| kNonStrictMode), |
| false); |
| } |
| |
| return true; |
| } |
| |
| |
| // Create a plain JSObject which materializes the local scope for the specified |
| // frame. |
| static Handle<JSObject> MaterializeLocalScopeWithFrameInspector( |
| Isolate* isolate, |
| JavaScriptFrame* frame, |
| FrameInspector* frame_inspector) { |
| Handle<JSFunction> function(JSFunction::cast(frame_inspector->GetFunction())); |
| Handle<SharedFunctionInfo> shared(function->shared()); |
| Handle<ScopeInfo> scope_info(shared->scope_info()); |
| |
| // Allocate and initialize a JSObject with all the arguments, stack locals |
| // heap locals and extension properties of the debugged function. |
| Handle<JSObject> local_scope = |
| isolate->factory()->NewJSObject(isolate->object_function()); |
| |
| // First fill all parameters. |
| for (int i = 0; i < scope_info->ParameterCount(); ++i) { |
| Handle<Object> value( |
| i < frame_inspector->GetParametersCount() ? |
| frame_inspector->GetParameter(i) : isolate->heap()->undefined_value()); |
| |
| RETURN_IF_EMPTY_HANDLE_VALUE( |
| isolate, |
| SetProperty(local_scope, |
| Handle<String>(scope_info->ParameterName(i)), |
| value, |
| NONE, |
| kNonStrictMode), |
| Handle<JSObject>()); |
| } |
| |
| // Second fill all stack locals. |
| for (int i = 0; i < scope_info->StackLocalCount(); ++i) { |
| RETURN_IF_EMPTY_HANDLE_VALUE( |
| isolate, |
| SetProperty(local_scope, |
| Handle<String>(scope_info->StackLocalName(i)), |
| Handle<Object>(frame_inspector->GetExpression(i)), |
| NONE, |
| kNonStrictMode), |
| Handle<JSObject>()); |
| } |
| |
| if (scope_info->HasContext()) { |
| // Third fill all context locals. |
| Handle<Context> frame_context(Context::cast(frame->context())); |
| Handle<Context> function_context(frame_context->declaration_context()); |
| if (!CopyContextLocalsToScopeObject( |
| isolate, scope_info, function_context, local_scope)) { |
| return Handle<JSObject>(); |
| } |
| |
| // Finally copy any properties from the function context extension. |
| // These will be variables introduced by eval. |
| if (function_context->closure() == *function) { |
| if (function_context->has_extension() && |
| !function_context->IsGlobalContext()) { |
| Handle<JSObject> ext(JSObject::cast(function_context->extension())); |
| bool threw = false; |
| Handle<FixedArray> keys = |
| GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS, &threw); |
| if (threw) return Handle<JSObject>(); |
| |
| for (int i = 0; i < keys->length(); i++) { |
| // Names of variables introduced by eval are strings. |
| ASSERT(keys->get(i)->IsString()); |
| Handle<String> key(String::cast(keys->get(i))); |
| RETURN_IF_EMPTY_HANDLE_VALUE( |
| isolate, |
| SetProperty(local_scope, |
| key, |
| GetProperty(ext, key), |
| NONE, |
| kNonStrictMode), |
| Handle<JSObject>()); |
| } |
| } |
| } |
| } |
| |
| return local_scope; |
| } |
| |
| |
| static Handle<JSObject> MaterializeLocalScope( |
| Isolate* isolate, |
| JavaScriptFrame* frame, |
| int inlined_jsframe_index) { |
| FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate); |
| return MaterializeLocalScopeWithFrameInspector(isolate, |
| frame, |
| &frame_inspector); |
| } |
| |
| |
| // Create a plain JSObject which materializes the closure content for the |
| // context. |
| static Handle<JSObject> MaterializeClosure(Isolate* isolate, |
| Handle<Context> context) { |
| ASSERT(context->IsFunctionContext()); |
| |
| Handle<SharedFunctionInfo> shared(context->closure()->shared()); |
| Handle<ScopeInfo> scope_info(shared->scope_info()); |
| |
| // Allocate and initialize a JSObject with all the content of this function |
| // closure. |
| Handle<JSObject> closure_scope = |
| isolate->factory()->NewJSObject(isolate->object_function()); |
| |
| // Fill all context locals to the context extension. |
| if (!CopyContextLocalsToScopeObject( |
| isolate, scope_info, context, closure_scope)) { |
| return Handle<JSObject>(); |
| } |
| |
| // Finally copy any properties from the function context extension. This will |
| // be variables introduced by eval. |
| if (context->has_extension()) { |
| Handle<JSObject> ext(JSObject::cast(context->extension())); |
| bool threw = false; |
| Handle<FixedArray> keys = |
| GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS, &threw); |
| if (threw) return Handle<JSObject>(); |
| |
| for (int i = 0; i < keys->length(); i++) { |
| // Names of variables introduced by eval are strings. |
| ASSERT(keys->get(i)->IsString()); |
| Handle<String> key(String::cast(keys->get(i))); |
| RETURN_IF_EMPTY_HANDLE_VALUE( |
| isolate, |
| SetProperty(closure_scope, |
| key, |
| GetProperty(ext, key), |
| NONE, |
| kNonStrictMode), |
| Handle<JSObject>()); |
| } |
| } |
| |
| return closure_scope; |
| } |
| |
| |
| // Create a plain JSObject which materializes the scope for the specified |
| // catch context. |
| static Handle<JSObject> MaterializeCatchScope(Isolate* isolate, |
| Handle<Context> context) { |
| ASSERT(context->IsCatchContext()); |
| Handle<String> name(String::cast(context->extension())); |
| Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX)); |
| Handle<JSObject> catch_scope = |
| isolate->factory()->NewJSObject(isolate->object_function()); |
| RETURN_IF_EMPTY_HANDLE_VALUE( |
| isolate, |
| SetProperty(catch_scope, name, thrown_object, NONE, kNonStrictMode), |
| Handle<JSObject>()); |
| return catch_scope; |
| } |
| |
| |
| // Create a plain JSObject which materializes the block scope for the specified |
| // block context. |
| static Handle<JSObject> MaterializeBlockScope( |
| Isolate* isolate, |
| Handle<Context> context) { |
| ASSERT(context->IsBlockContext()); |
| Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension())); |
| |
| // Allocate and initialize a JSObject with all the arguments, stack locals |
| // heap locals and extension properties of the debugged function. |
| Handle<JSObject> block_scope = |
| isolate->factory()->NewJSObject(isolate->object_function()); |
| |
| // Fill all context locals. |
| if (!CopyContextLocalsToScopeObject( |
| isolate, scope_info, context, block_scope)) { |
| return Handle<JSObject>(); |
| } |
| |
| return block_scope; |
| } |
| |
| |
| // Create a plain JSObject which materializes the module scope for the specified |
| // module context. |
| static Handle<JSObject> MaterializeModuleScope( |
| Isolate* isolate, |
| Handle<Context> context) { |
| ASSERT(context->IsModuleContext()); |
| Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension())); |
| |
| // Allocate and initialize a JSObject with all the members of the debugged |
| // module. |
| Handle<JSObject> module_scope = |
| isolate->factory()->NewJSObject(isolate->object_function()); |
| |
| // Fill all context locals. |
| if (!CopyContextLocalsToScopeObject( |
| isolate, scope_info, context, module_scope)) { |
| return Handle<JSObject>(); |
| } |
| |
| return module_scope; |
| } |
| |
| |
| // Iterate over the actual scopes visible from a stack frame. The iteration |
| // proceeds from the innermost visible nested scope outwards. All scopes are |
| // backed by an actual context except the local scope, which is inserted |
| // "artificially" in the context chain. |
| class ScopeIterator { |
| public: |
| enum ScopeType { |
| ScopeTypeGlobal = 0, |
| ScopeTypeLocal, |
| ScopeTypeWith, |
| ScopeTypeClosure, |
| ScopeTypeCatch, |
| ScopeTypeBlock, |
| ScopeTypeModule |
| }; |
| |
| ScopeIterator(Isolate* isolate, |
| JavaScriptFrame* frame, |
| int inlined_jsframe_index) |
| : isolate_(isolate), |
| frame_(frame), |
| inlined_jsframe_index_(inlined_jsframe_index), |
| function_(JSFunction::cast(frame->function())), |
| context_(Context::cast(frame->context())), |
| nested_scope_chain_(4) { |
| |
| // Catch the case when the debugger stops in an internal function. |
| Handle<SharedFunctionInfo> shared_info(function_->shared()); |
| Handle<ScopeInfo> scope_info(shared_info->scope_info()); |
| if (shared_info->script() == isolate->heap()->undefined_value()) { |
| while (context_->closure() == *function_) { |
| context_ = Handle<Context>(context_->previous(), isolate_); |
| } |
| return; |
| } |
| |
| // Get the debug info (create it if it does not exist). |
| if (!isolate->debug()->EnsureDebugInfo(shared_info)) { |
| // Return if ensuring debug info failed. |
| return; |
| } |
| Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info); |
| |
| // Find the break point where execution has stopped. |
| BreakLocationIterator break_location_iterator(debug_info, |
| ALL_BREAK_LOCATIONS); |
| break_location_iterator.FindBreakLocationFromAddress(frame->pc()); |
| if (break_location_iterator.IsExit()) { |
| // We are within the return sequence. At the momemt it is not possible to |
| // get a source position which is consistent with the current scope chain. |
| // Thus all nested with, catch and block contexts are skipped and we only |
| // provide the function scope. |
| if (scope_info->HasContext()) { |
| context_ = Handle<Context>(context_->declaration_context(), isolate_); |
| } else { |
| while (context_->closure() == *function_) { |
| context_ = Handle<Context>(context_->previous(), isolate_); |
| } |
| } |
| if (scope_info->Type() != EVAL_SCOPE) nested_scope_chain_.Add(scope_info); |
| } else { |
| // Reparse the code and analyze the scopes. |
| ZoneScope zone_scope(isolate, DELETE_ON_EXIT); |
| Handle<Script> script(Script::cast(shared_info->script())); |
| Scope* scope = NULL; |
| |
| // Check whether we are in global, eval or function code. |
| Handle<ScopeInfo> scope_info(shared_info->scope_info()); |
| if (scope_info->Type() != FUNCTION_SCOPE) { |
| // Global or eval code. |
| CompilationInfo info(script); |
| if (scope_info->Type() == GLOBAL_SCOPE) { |
| info.MarkAsGlobal(); |
| } else { |
| ASSERT(scope_info->Type() == EVAL_SCOPE); |
| info.MarkAsEval(); |
| info.SetCallingContext(Handle<Context>(function_->context())); |
| } |
| if (ParserApi::Parse(&info, kNoParsingFlags) && Scope::Analyze(&info)) { |
| scope = info.function()->scope(); |
| } |
| } else { |
| // Function code |
| CompilationInfo info(shared_info); |
| if (ParserApi::Parse(&info, kNoParsingFlags) && Scope::Analyze(&info)) { |
| scope = info.function()->scope(); |
| } |
| } |
| |
| // Retrieve the scope chain for the current position. |
| if (scope != NULL) { |
| int source_position = shared_info->code()->SourcePosition(frame_->pc()); |
| scope->GetNestedScopeChain(&nested_scope_chain_, source_position); |
| } else { |
| // A failed reparse indicates that the preparser has diverged from the |
| // parser or that the preparse data given to the initial parse has been |
| // faulty. We fail in debug mode but in release mode we only provide the |
| // information we get from the context chain but nothing about |
| // completely stack allocated scopes or stack allocated locals. |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| // More scopes? |
| bool Done() { return context_.is_null(); } |
| |
| // Move to the next scope. |
| void Next() { |
| ScopeType scope_type = Type(); |
| if (scope_type == ScopeTypeGlobal) { |
| // The global scope is always the last in the chain. |
| ASSERT(context_->IsGlobalContext()); |
| context_ = Handle<Context>(); |
| return; |
| } |
| if (nested_scope_chain_.is_empty()) { |
| context_ = Handle<Context>(context_->previous(), isolate_); |
| } else { |
| if (nested_scope_chain_.last()->HasContext()) { |
| ASSERT(context_->previous() != NULL); |
| context_ = Handle<Context>(context_->previous(), isolate_); |
| } |
| nested_scope_chain_.RemoveLast(); |
| } |
| } |
| |
| // Return the type of the current scope. |
| ScopeType Type() { |
| if (!nested_scope_chain_.is_empty()) { |
| Handle<ScopeInfo> scope_info = nested_scope_chain_.last(); |
| switch (scope_info->Type()) { |
| case FUNCTION_SCOPE: |
| ASSERT(context_->IsFunctionContext() || |
| !scope_info->HasContext()); |
| return ScopeTypeLocal; |
| case MODULE_SCOPE: |
| ASSERT(context_->IsModuleContext()); |
| return ScopeTypeModule; |
| case GLOBAL_SCOPE: |
| ASSERT(context_->IsGlobalContext()); |
| return ScopeTypeGlobal; |
| case WITH_SCOPE: |
| ASSERT(context_->IsWithContext()); |
| return ScopeTypeWith; |
| case CATCH_SCOPE: |
| ASSERT(context_->IsCatchContext()); |
| return ScopeTypeCatch; |
| case BLOCK_SCOPE: |
| ASSERT(!scope_info->HasContext() || |
| context_->IsBlockContext()); |
| return ScopeTypeBlock; |
| case EVAL_SCOPE: |
| UNREACHABLE(); |
| } |
| } |
| if (context_->IsGlobalContext()) { |
| ASSERT(context_->global()->IsGlobalObject()); |
| return ScopeTypeGlobal; |
| } |
| if (context_->IsFunctionContext()) { |
| return ScopeTypeClosure; |
| } |
| if (context_->IsCatchContext()) { |
| return ScopeTypeCatch; |
| } |
| if (context_->IsBlockContext()) { |
| return ScopeTypeBlock; |
| } |
| if (context_->IsModuleContext()) { |
| return ScopeTypeModule; |
| } |
| ASSERT(context_->IsWithContext()); |
| return ScopeTypeWith; |
| } |
| |
| // Return the JavaScript object with the content of the current scope. |
| Handle<JSObject> ScopeObject() { |
| switch (Type()) { |
| case ScopeIterator::ScopeTypeGlobal: |
| return Handle<JSObject>(CurrentContext()->global()); |
| case ScopeIterator::ScopeTypeLocal: |
| // Materialize the content of the local scope into a JSObject. |
| ASSERT(nested_scope_chain_.length() == 1); |
| return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_); |
| case ScopeIterator::ScopeTypeWith: |
| // Return the with object. |
| return Handle<JSObject>(JSObject::cast(CurrentContext()->extension())); |
| case ScopeIterator::ScopeTypeCatch: |
| return MaterializeCatchScope(isolate_, CurrentContext()); |
| case ScopeIterator::ScopeTypeClosure: |
| // Materialize the content of the closure scope into a JSObject. |
| return MaterializeClosure(isolate_, CurrentContext()); |
| case ScopeIterator::ScopeTypeBlock: |
| return MaterializeBlockScope(isolate_, CurrentContext()); |
| case ScopeIterator::ScopeTypeModule: |
| return MaterializeModuleScope(isolate_, CurrentContext()); |
| } |
| UNREACHABLE(); |
| return Handle<JSObject>(); |
| } |
| |
| Handle<ScopeInfo> CurrentScopeInfo() { |
| if (!nested_scope_chain_.is_empty()) { |
| return nested_scope_chain_.last(); |
| } else if (context_->IsBlockContext()) { |
| return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension())); |
| } else if (context_->IsFunctionContext()) { |
| return Handle<ScopeInfo>(context_->closure()->shared()->scope_info()); |
| } |
| return Handle<ScopeInfo>::null(); |
| } |
| |
| // Return the context for this scope. For the local context there might not |
| // be an actual context. |
| Handle<Context> CurrentContext() { |
| if (Type() == ScopeTypeGlobal || |
| nested_scope_chain_.is_empty()) { |
| return context_; |
| } else if (nested_scope_chain_.last()->HasContext()) { |
| return context_; |
| } else { |
| return Handle<Context>(); |
| } |
| } |
| |
| #ifdef DEBUG |
| // Debug print of the content of the current scope. |
| void DebugPrint() { |
| switch (Type()) { |
| case ScopeIterator::ScopeTypeGlobal: |
| PrintF("Global:\n"); |
| CurrentContext()->Print(); |
| break; |
| |
| case ScopeIterator::ScopeTypeLocal: { |
| PrintF("Local:\n"); |
| function_->shared()->scope_info()->Print(); |
| if (!CurrentContext().is_null()) { |
| CurrentContext()->Print(); |
| if (CurrentContext()->has_extension()) { |
| Handle<Object> extension(CurrentContext()->extension()); |
| if (extension->IsJSContextExtensionObject()) { |
| extension->Print(); |
| } |
| } |
| } |
| break; |
| } |
| |
| case ScopeIterator::ScopeTypeWith: |
| PrintF("With:\n"); |
| CurrentContext()->extension()->Print(); |
| break; |
| |
| case ScopeIterator::ScopeTypeCatch: |
| PrintF("Catch:\n"); |
| CurrentContext()->extension()->Print(); |
| CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print(); |
| break; |
| |
| case ScopeIterator::ScopeTypeClosure: |
| PrintF("Closure:\n"); |
| CurrentContext()->Print(); |
| if (CurrentContext()->has_extension()) { |
| Handle<Object> extension(CurrentContext()->extension()); |
| if (extension->IsJSContextExtensionObject()) { |
| extension->Print(); |
| } |
| } |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| PrintF("\n"); |
| } |
| #endif |
| |
| private: |
| Isolate* isolate_; |
| JavaScriptFrame* frame_; |
| int inlined_jsframe_index_; |
| Handle<JSFunction> function_; |
| Handle<Context> context_; |
| List<Handle<ScopeInfo> > nested_scope_chain_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator); |
| }; |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeCount) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| |
| // Check arguments. |
| Object* check; |
| { MaybeObject* maybe_check = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_check->ToObject(&check)) return maybe_check; |
| } |
| CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); |
| |
| // Get the frame where the debugging is performed. |
| StackFrame::Id id = UnwrapFrameId(wrapped_id); |
| JavaScriptFrameIterator it(isolate, id); |
| JavaScriptFrame* frame = it.frame(); |
| |
| // Count the visible scopes. |
| int n = 0; |
| for (ScopeIterator it(isolate, frame, 0); |
| !it.Done(); |
| it.Next()) { |
| n++; |
| } |
| |
| return Smi::FromInt(n); |
| } |
| |
| |
| static const int kScopeDetailsTypeIndex = 0; |
| static const int kScopeDetailsObjectIndex = 1; |
| static const int kScopeDetailsSize = 2; |
| |
| // Return an array with scope details |
| // args[0]: number: break id |
| // args[1]: number: frame index |
| // args[2]: number: inlined frame index |
| // args[3]: number: scope index |
| // |
| // The array returned contains the following information: |
| // 0: Scope type |
| // 1: Scope object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeDetails) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 4); |
| |
| // Check arguments. |
| Object* check; |
| { MaybeObject* maybe_check = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_check->ToObject(&check)) return maybe_check; |
| } |
| CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); |
| CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); |
| CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]); |
| |
| // Get the frame where the debugging is performed. |
| StackFrame::Id id = UnwrapFrameId(wrapped_id); |
| JavaScriptFrameIterator frame_it(isolate, id); |
| JavaScriptFrame* frame = frame_it.frame(); |
| |
| // Find the requested scope. |
| int n = 0; |
| ScopeIterator it(isolate, frame, inlined_jsframe_index); |
| for (; !it.Done() && n < index; it.Next()) { |
| n++; |
| } |
| if (it.Done()) { |
| return isolate->heap()->undefined_value(); |
| } |
| |
| // Calculate the size of the result. |
| int details_size = kScopeDetailsSize; |
| Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size); |
| |
| // Fill in scope details. |
| details->set(kScopeDetailsTypeIndex, Smi::FromInt(it.Type())); |
| Handle<JSObject> scope_object = it.ScopeObject(); |
| RETURN_IF_EMPTY_HANDLE(isolate, scope_object); |
| details->set(kScopeDetailsObjectIndex, *scope_object); |
| |
| return *isolate->factory()->NewJSArrayWithElements(details); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrintScopes) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 0); |
| |
| #ifdef DEBUG |
| // Print the scopes for the top frame. |
| StackFrameLocator locator; |
| JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); |
| for (ScopeIterator it(isolate, frame, 0); |
| !it.Done(); |
| it.Next()) { |
| it.DebugPrint(); |
| } |
| #endif |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadCount) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| // Check arguments. |
| Object* result; |
| { MaybeObject* maybe_result = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| |
| // Count all archived V8 threads. |
| int n = 0; |
| for (ThreadState* thread = |
| isolate->thread_manager()->FirstThreadStateInUse(); |
| thread != NULL; |
| thread = thread->Next()) { |
| n++; |
| } |
| |
| // Total number of threads is current thread and archived threads. |
| return Smi::FromInt(n + 1); |
| } |
| |
| |
| static const int kThreadDetailsCurrentThreadIndex = 0; |
| static const int kThreadDetailsThreadIdIndex = 1; |
| static const int kThreadDetailsSize = 2; |
| |
| // Return an array with thread details |
| // args[0]: number: break id |
| // args[1]: number: thread index |
| // |
| // The array returned contains the following information: |
| // 0: Is current thread? |
| // 1: Thread id |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadDetails) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| |
| // Check arguments. |
| Object* check; |
| { MaybeObject* maybe_check = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_check->ToObject(&check)) return maybe_check; |
| } |
| CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); |
| |
| // Allocate array for result. |
| Handle<FixedArray> details = |
| isolate->factory()->NewFixedArray(kThreadDetailsSize); |
| |
| // Thread index 0 is current thread. |
| if (index == 0) { |
| // Fill the details. |
| details->set(kThreadDetailsCurrentThreadIndex, |
| isolate->heap()->true_value()); |
| details->set(kThreadDetailsThreadIdIndex, |
| Smi::FromInt(ThreadId::Current().ToInteger())); |
| } else { |
| // Find the thread with the requested index. |
| int n = 1; |
| ThreadState* thread = |
| isolate->thread_manager()->FirstThreadStateInUse(); |
| while (index != n && thread != NULL) { |
| thread = thread->Next(); |
| n++; |
| } |
| if (thread == NULL) { |
| return isolate->heap()->undefined_value(); |
| } |
| |
| // Fill the details. |
| details->set(kThreadDetailsCurrentThreadIndex, |
| isolate->heap()->false_value()); |
| details->set(kThreadDetailsThreadIdIndex, |
| Smi::FromInt(thread->id().ToInteger())); |
| } |
| |
| // Convert to JS array and return. |
| return *isolate->factory()->NewJSArrayWithElements(details); |
| } |
| |
| |
| // Sets the disable break state |
| // args[0]: disable break state |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDisableBreak) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0); |
| isolate->debug()->set_disable_break(disable_break); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetBreakLocations) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); |
| Handle<SharedFunctionInfo> shared(fun->shared()); |
| // Find the number of break points |
| Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared); |
| if (break_locations->IsUndefined()) return isolate->heap()->undefined_value(); |
| // Return array as JS array |
| return *isolate->factory()->NewJSArrayWithElements( |
| Handle<FixedArray>::cast(break_locations)); |
| } |
| |
| |
| // Set a break point in a function |
| // args[0]: function |
| // args[1]: number: break source position (within the function source) |
| // args[2]: number: break point object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFunctionBreakPoint) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); |
| Handle<SharedFunctionInfo> shared(fun->shared()); |
| CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); |
| RUNTIME_ASSERT(source_position >= 0); |
| Handle<Object> break_point_object_arg = args.at<Object>(2); |
| |
| // Set break point. |
| isolate->debug()->SetBreakPoint(shared, break_point_object_arg, |
| &source_position); |
| |
| return Smi::FromInt(source_position); |
| } |
| |
| |
| Object* Runtime::FindSharedFunctionInfoInScript(Isolate* isolate, |
| Handle<Script> script, |
| int position) { |
| // Iterate the heap looking for SharedFunctionInfo generated from the |
| // script. The inner most SharedFunctionInfo containing the source position |
| // for the requested break point is found. |
| // NOTE: This might require several heap iterations. If the SharedFunctionInfo |
| // which is found is not compiled it is compiled and the heap is iterated |
| // again as the compilation might create inner functions from the newly |
| // compiled function and the actual requested break point might be in one of |
| // these functions. |
| bool done = false; |
| // The current candidate for the source position: |
| int target_start_position = RelocInfo::kNoPosition; |
| Handle<SharedFunctionInfo> target; |
| while (!done) { |
| { // Extra scope for iterator and no-allocation. |
| isolate->heap()->EnsureHeapIsIterable(); |
| AssertNoAllocation no_alloc_during_heap_iteration; |
| HeapIterator iterator; |
| for (HeapObject* obj = iterator.next(); |
| obj != NULL; obj = iterator.next()) { |
| if (obj->IsSharedFunctionInfo()) { |
| Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(obj)); |
| if (shared->script() == *script) { |
| // If the SharedFunctionInfo found has the requested script data and |
| // contains the source position it is a candidate. |
| int start_position = shared->function_token_position(); |
| if (start_position == RelocInfo::kNoPosition) { |
| start_position = shared->start_position(); |
| } |
| if (start_position <= position && |
| position <= shared->end_position()) { |
| // If there is no candidate or this function is within the current |
| // candidate this is the new candidate. |
| if (target.is_null()) { |
| target_start_position = start_position; |
| target = shared; |
| } else { |
| if (target_start_position == start_position && |
| shared->end_position() == target->end_position()) { |
| // If a top-level function contain only one function |
| // declartion the source for the top-level and the |
| // function is the same. In that case prefer the non |
| // top-level function. |
| if (!shared->is_toplevel()) { |
| target_start_position = start_position; |
| target = shared; |
| } |
| } else if (target_start_position <= start_position && |
| shared->end_position() <= target->end_position()) { |
| // This containment check includes equality as a function |
| // inside a top-level function can share either start or end |
| // position with the top-level function. |
| target_start_position = start_position; |
| target = shared; |
| } |
| } |
| } |
| } |
| } |
| } // End for loop. |
| } // End No allocation scope. |
| |
| if (target.is_null()) { |
| return isolate->heap()->undefined_value(); |
| } |
| |
| // If the candidate found is compiled we are done. NOTE: when lazy |
| // compilation of inner functions is introduced some additional checking |
| // needs to be done here to compile inner functions. |
| done = target->is_compiled(); |
| if (!done) { |
| // If the candidate is not compiled compile it to reveal any inner |
| // functions which might contain the requested source position. |
| SharedFunctionInfo::CompileLazy(target, KEEP_EXCEPTION); |
| } |
| } // End while loop. |
| |
| return *target; |
| } |
| |
| |
| // Changes the state of a break point in a script and returns source position |
| // where break point was set. NOTE: Regarding performance see the NOTE for |
| // GetScriptFromScriptData. |
| // args[0]: script to set break point in |
| // args[1]: number: break source position (within the script source) |
| // args[2]: number: break point object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetScriptBreakPoint) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0); |
| CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); |
| RUNTIME_ASSERT(source_position >= 0); |
| Handle<Object> break_point_object_arg = args.at<Object>(2); |
| |
| // Get the script from the script wrapper. |
| RUNTIME_ASSERT(wrapper->value()->IsScript()); |
| Handle<Script> script(Script::cast(wrapper->value())); |
| |
| Object* result = Runtime::FindSharedFunctionInfoInScript( |
| isolate, script, source_position); |
| if (!result->IsUndefined()) { |
| Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result)); |
| // Find position within function. The script position might be before the |
| // source position of the first function. |
| int position; |
| if (shared->start_position() > source_position) { |
| position = 0; |
| } else { |
| position = source_position - shared->start_position(); |
| } |
| isolate->debug()->SetBreakPoint(shared, break_point_object_arg, &position); |
| position += shared->start_position(); |
| return Smi::FromInt(position); |
| } |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Clear a break point |
| // args[0]: number: break point object |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearBreakPoint) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| Handle<Object> break_point_object_arg = args.at<Object>(0); |
| |
| // Clear break point. |
| isolate->debug()->ClearBreakPoint(break_point_object_arg); |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Change the state of break on exceptions. |
| // args[0]: Enum value indicating whether to affect caught/uncaught exceptions. |
| // args[1]: Boolean indicating on/off. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ChangeBreakOnException) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| RUNTIME_ASSERT(args[0]->IsNumber()); |
| CONVERT_BOOLEAN_ARG_CHECKED(enable, 1); |
| |
| // If the number doesn't match an enum value, the ChangeBreakOnException |
| // function will default to affecting caught exceptions. |
| ExceptionBreakType type = |
| static_cast<ExceptionBreakType>(NumberToUint32(args[0])); |
| // Update break point state. |
| isolate->debug()->ChangeBreakOnException(type, enable); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Returns the state of break on exceptions |
| // args[0]: boolean indicating uncaught exceptions |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IsBreakOnException) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| RUNTIME_ASSERT(args[0]->IsNumber()); |
| |
| ExceptionBreakType type = |
| static_cast<ExceptionBreakType>(NumberToUint32(args[0])); |
| bool result = isolate->debug()->IsBreakOnException(type); |
| return Smi::FromInt(result); |
| } |
| |
| |
| // Prepare for stepping |
| // args[0]: break id for checking execution state |
| // args[1]: step action from the enumeration StepAction |
| // args[2]: number of times to perform the step, for step out it is the number |
| // of frames to step down. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_PrepareStep) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 3); |
| // Check arguments. |
| Object* check; |
| { MaybeObject* maybe_check = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_check->ToObject(&check)) return maybe_check; |
| } |
| if (!args[1]->IsNumber() || !args[2]->IsNumber()) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| |
| // Get the step action and check validity. |
| StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1])); |
| if (step_action != StepIn && |
| step_action != StepNext && |
| step_action != StepOut && |
| step_action != StepInMin && |
| step_action != StepMin) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| |
| // Get the number of steps. |
| int step_count = NumberToInt32(args[2]); |
| if (step_count < 1) { |
| return isolate->Throw(isolate->heap()->illegal_argument_symbol()); |
| } |
| |
| // Clear all current stepping setup. |
| isolate->debug()->ClearStepping(); |
| |
| // Prepare step. |
| isolate->debug()->PrepareStep(static_cast<StepAction>(step_action), |
| step_count); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Clear all stepping set by PrepareStep. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearStepping) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 0); |
| isolate->debug()->ClearStepping(); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Creates a copy of the with context chain. The copy of the context chain is |
| // is linked to the function context supplied. |
| static Handle<Context> CopyNestedScopeContextChain(Isolate* isolate, |
| Handle<JSFunction> function, |
| Handle<Context> base, |
| JavaScriptFrame* frame, |
| int inlined_jsframe_index) { |
| HandleScope scope(isolate); |
| List<Handle<ScopeInfo> > scope_chain; |
| List<Handle<Context> > context_chain; |
| |
| ScopeIterator it(isolate, frame, inlined_jsframe_index); |
| for (; it.Type() != ScopeIterator::ScopeTypeGlobal && |
| it.Type() != ScopeIterator::ScopeTypeLocal ; it.Next()) { |
| ASSERT(!it.Done()); |
| scope_chain.Add(it.CurrentScopeInfo()); |
| context_chain.Add(it.CurrentContext()); |
| } |
| |
| // At the end of the chain. Return the base context to link to. |
| Handle<Context> context = base; |
| |
| // Iteratively copy and or materialize the nested contexts. |
| while (!scope_chain.is_empty()) { |
| Handle<ScopeInfo> scope_info = scope_chain.RemoveLast(); |
| Handle<Context> current = context_chain.RemoveLast(); |
| ASSERT(!(scope_info->HasContext() & current.is_null())); |
| |
| if (scope_info->Type() == CATCH_SCOPE) { |
| Handle<String> name(String::cast(current->extension())); |
| Handle<Object> thrown_object(current->get(Context::THROWN_OBJECT_INDEX)); |
| context = |
| isolate->factory()->NewCatchContext(function, |
| context, |
| name, |
| thrown_object); |
| } else if (scope_info->Type() == BLOCK_SCOPE) { |
| // Materialize the contents of the block scope into a JSObject. |
| Handle<JSObject> block_scope_object = |
| MaterializeBlockScope(isolate, current); |
| if (block_scope_object.is_null()) { |
| return Handle<Context>::null(); |
| } |
| // Allocate a new function context for the debug evaluation and set the |
| // extension object. |
| Handle<Context> new_context = |
| isolate->factory()->NewFunctionContext(Context::MIN_CONTEXT_SLOTS, |
| function); |
| new_context->set_extension(*block_scope_object); |
| new_context->set_previous(*context); |
| context = new_context; |
| } else { |
| ASSERT(scope_info->Type() == WITH_SCOPE); |
| ASSERT(current->IsWithContext()); |
| Handle<JSObject> extension(JSObject::cast(current->extension())); |
| context = |
| isolate->factory()->NewWithContext(function, context, extension); |
| } |
| } |
| |
| return scope.CloseAndEscape(context); |
| } |
| |
| |
| // Helper function to find or create the arguments object for |
| // Runtime_DebugEvaluate. |
| static Handle<Object> GetArgumentsObject(Isolate* isolate, |
| JavaScriptFrame* frame, |
| FrameInspector* frame_inspector, |
| Handle<ScopeInfo> scope_info, |
| Handle<Context> function_context) { |
| // Try to find the value of 'arguments' to pass as parameter. If it is not |
| // found (that is the debugged function does not reference 'arguments' and |
| // does not support eval) then create an 'arguments' object. |
| int index; |
| if (scope_info->StackLocalCount() > 0) { |
| index = scope_info->StackSlotIndex(isolate->heap()->arguments_symbol()); |
| if (index != -1) { |
| return Handle<Object>(frame->GetExpression(index), isolate); |
| } |
| } |
| |
| if (scope_info->HasHeapAllocatedLocals()) { |
| VariableMode mode; |
| InitializationFlag init_flag; |
| index = scope_info->ContextSlotIndex( |
| isolate->heap()->arguments_symbol(), &mode, &init_flag); |
| if (index != -1) { |
| return Handle<Object>(function_context->get(index), isolate); |
| } |
| } |
| |
| Handle<JSFunction> function(JSFunction::cast(frame_inspector->GetFunction())); |
| int length = frame_inspector->GetParametersCount(); |
| Handle<JSObject> arguments = |
| isolate->factory()->NewArgumentsObject(function, length); |
| Handle<FixedArray> array = isolate->factory()->NewFixedArray(length); |
| |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc); |
| for (int i = 0; i < length; i++) { |
| array->set(i, frame_inspector->GetParameter(i), mode); |
| } |
| arguments->set_elements(*array); |
| return arguments; |
| } |
| |
| |
| static const char kSourceStr[] = |
| "(function(arguments,__source__){return eval(__source__);})"; |
| |
| |
| // Evaluate a piece of JavaScript in the context of a stack frame for |
| // debugging. This is accomplished by creating a new context which in its |
| // extension part has all the parameters and locals of the function on the |
| // stack frame. A function which calls eval with the code to evaluate is then |
| // compiled in this context and called in this context. As this context |
| // replaces the context of the function on the stack frame a new (empty) |
| // function is created as well to be used as the closure for the context. |
| // This function and the context acts as replacements for the function on the |
| // stack frame presenting the same view of the values of parameters and |
| // local variables as if the piece of JavaScript was evaluated at the point |
| // where the function on the stack frame is currently stopped. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluate) { |
| HandleScope scope(isolate); |
| |
| // Check the execution state and decode arguments frame and source to be |
| // evaluated. |
| ASSERT(args.length() == 6); |
| Object* check_result; |
| { MaybeObject* maybe_check_result = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_check_result->ToObject(&check_result)) { |
| return maybe_check_result; |
| } |
| } |
| CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); |
| CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); |
| CONVERT_ARG_HANDLE_CHECKED(String, source, 3); |
| CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4); |
| Handle<Object> additional_context(args[5]); |
| |
| // Handle the processing of break. |
| DisableBreak disable_break_save(disable_break); |
| |
| // Get the frame where the debugging is performed. |
| StackFrame::Id id = UnwrapFrameId(wrapped_id); |
| JavaScriptFrameIterator it(isolate, id); |
| JavaScriptFrame* frame = it.frame(); |
| FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate); |
| Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction())); |
| Handle<ScopeInfo> scope_info(function->shared()->scope_info()); |
| |
| // Traverse the saved contexts chain to find the active context for the |
| // selected frame. |
| SaveContext* save = FindSavedContextForFrame(isolate, frame); |
| |
| SaveContext savex(isolate); |
| isolate->set_context(*(save->context())); |
| |
| // Create the (empty) function replacing the function on the stack frame for |
| // the purpose of evaluating in the context created below. It is important |
| // that this function does not describe any parameters and local variables |
| // in the context. If it does then this will cause problems with the lookup |
| // in Context::Lookup, where context slots for parameters and local variables |
| // are looked at before the extension object. |
| Handle<JSFunction> go_between = |
| isolate->factory()->NewFunction(isolate->factory()->empty_string(), |
| isolate->factory()->undefined_value()); |
| go_between->set_context(function->context()); |
| #ifdef DEBUG |
| Handle<ScopeInfo> go_between_scope_info(go_between->shared()->scope_info()); |
| ASSERT(go_between_scope_info->ParameterCount() == 0); |
| ASSERT(go_between_scope_info->ContextLocalCount() == 0); |
| #endif |
| |
| // Materialize the content of the local scope into a JSObject. |
| Handle<JSObject> local_scope = MaterializeLocalScopeWithFrameInspector( |
| isolate, frame, &frame_inspector); |
| RETURN_IF_EMPTY_HANDLE(isolate, local_scope); |
| |
| // Allocate a new context for the debug evaluation and set the extension |
| // object build. |
| Handle<Context> context = |
| isolate->factory()->NewFunctionContext(Context::MIN_CONTEXT_SLOTS, |
| go_between); |
| context->set_extension(*local_scope); |
| // Copy any with contexts present and chain them in front of this context. |
| Handle<Context> frame_context(Context::cast(frame->context())); |
| Handle<Context> function_context; |
| // Get the function's context if it has one. |
| if (scope_info->HasContext()) { |
| function_context = Handle<Context>(frame_context->declaration_context()); |
| } |
| context = CopyNestedScopeContextChain(isolate, |
| go_between, |
| context, |
| frame, |
| inlined_jsframe_index); |
| |
| if (additional_context->IsJSObject()) { |
| Handle<JSObject> extension = Handle<JSObject>::cast(additional_context); |
| context = |
| isolate->factory()->NewWithContext(go_between, context, extension); |
| } |
| |
| // Wrap the evaluation statement in a new function compiled in the newly |
| // created context. The function has one parameter which has to be called |
| // 'arguments'. This it to have access to what would have been 'arguments' in |
| // the function being debugged. |
| // function(arguments,__source__) {return eval(__source__);} |
| |
| Handle<String> function_source = |
| isolate->factory()->NewStringFromAscii( |
| Vector<const char>(kSourceStr, sizeof(kSourceStr) - 1)); |
| |
| // Currently, the eval code will be executed in non-strict mode, |
| // even in the strict code context. |
| Handle<SharedFunctionInfo> shared = |
| Compiler::CompileEval(function_source, |
| context, |
| context->IsGlobalContext(), |
| CLASSIC_MODE, |
| RelocInfo::kNoPosition); |
| if (shared.is_null()) return Failure::Exception(); |
| Handle<JSFunction> compiled_function = |
| isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context); |
| |
| // Invoke the result of the compilation to get the evaluation function. |
| bool has_pending_exception; |
| Handle<Object> receiver(frame->receiver(), isolate); |
| Handle<Object> evaluation_function = |
| Execution::Call(compiled_function, receiver, 0, NULL, |
| &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| |
| Handle<Object> arguments = GetArgumentsObject(isolate, |
| frame, |
| &frame_inspector, |
| scope_info, |
| function_context); |
| |
| // Invoke the evaluation function and return the result. |
| Handle<Object> argv[] = { arguments, source }; |
| Handle<Object> result = |
| Execution::Call(Handle<JSFunction>::cast(evaluation_function), |
| receiver, |
| ARRAY_SIZE(argv), |
| argv, |
| &has_pending_exception); |
| if (has_pending_exception) return Failure::Exception(); |
| |
| // Skip the global proxy as it has no properties and always delegates to the |
| // real global object. |
| if (result->IsJSGlobalProxy()) { |
| result = Handle<JSObject>(JSObject::cast(result->GetPrototype())); |
| } |
| |
| return *result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluateGlobal) { |
| HandleScope scope(isolate); |
| |
| // Check the execution state and decode arguments frame and source to be |
| // evaluated. |
| ASSERT(args.length() == 4); |
| Object* check_result; |
| { MaybeObject* maybe_check_result = Runtime_CheckExecutionState( |
| RUNTIME_ARGUMENTS(isolate, args)); |
| if (!maybe_check_result->ToObject(&check_result)) { |
| return maybe_check_result; |
| } |
| } |
| CONVERT_ARG_HANDLE_CHECKED(String, source, 1); |
| CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2); |
| Handle<Object> additional_context(args[3]); |
| |
| // Handle the processing of break. |
| DisableBreak disable_break_save(disable_break); |
| |
| // Enter the top context from before the debugger was invoked. |
| SaveContext save(isolate); |
| SaveContext* top = &save; |
| while (top != NULL && *top->context() == *isolate->debug()->debug_context()) { |
| top = top->prev(); |
| } |
| if (top != NULL) { |
| isolate->set_context(*top->context()); |
| } |
| |
| // Get the global context now set to the top context from before the |
| // debugger was invoked. |
| Handle<Context> context = isolate->global_context(); |
| |
| bool is_global = true; |
| |
| if (additional_context->IsJSObject()) { |
| // Create a new with context with the additional context information between |
| // the context of the debugged function and the eval code to be executed. |
| context = isolate->factory()->NewWithContext( |
| Handle<JSFunction>(context->closure()), |
| context, |
| Handle<JSObject>::cast(additional_context)); |
| is_global = false; |
| } |
| |
| // Compile the source to be evaluated. |
| // Currently, the eval code will be executed in non-strict mode, |
| // even in the strict code context. |
| Handle<SharedFunctionInfo> shared = |
| Compiler::CompileEval(source, |
| context, |
| is_global, |
| CLASSIC_MODE, |
| RelocInfo::kNoPosition); |
| if (shared.is_null()) return Failure::Exception(); |
| Handle<JSFunction> compiled_function = |
| Handle<JSFunction>( |
| isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, |
| context)); |
| |
| // Invoke the result of the compilation to get the evaluation function. |
| bool has_pending_exception; |
| Handle<Object> receiver = isolate->global(); |
| Handle<Object> result = |
| Execution::Call(compiled_function, receiver, 0, NULL, |
| &has_pending_exception); |
| // Clear the oneshot breakpoints so that the debugger does not step further. |
| isolate->debug()->ClearStepping(); |
| if (has_pending_exception) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetLoadedScripts) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 0); |
| |
| // Fill the script objects. |
| Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts(); |
| |
| // Convert the script objects to proper JS objects. |
| for (int i = 0; i < instances->length(); i++) { |
| Handle<Script> script = Handle<Script>(Script::cast(instances->get(i))); |
| // Get the script wrapper in a local handle before calling GetScriptWrapper, |
| // because using |
| // instances->set(i, *GetScriptWrapper(script)) |
| // is unsafe as GetScriptWrapper might call GC and the C++ compiler might |
| // already have dereferenced the instances handle. |
| Handle<JSValue> wrapper = GetScriptWrapper(script); |
| instances->set(i, *wrapper); |
| } |
| |
| // Return result as a JS array. |
| Handle<JSObject> result = |
| isolate->factory()->NewJSObject(isolate->array_function()); |
| isolate->factory()->SetContent(Handle<JSArray>::cast(result), instances); |
| return *result; |
| } |
| |
| |
| // Helper function used by Runtime_DebugReferencedBy below. |
| static int DebugReferencedBy(HeapIterator* iterator, |
| JSObject* target, |
| Object* instance_filter, int max_references, |
| FixedArray* instances, int instances_size, |
| JSFunction* arguments_function) { |
| NoHandleAllocation ha; |
| AssertNoAllocation no_alloc; |
| |
| // Iterate the heap. |
| int count = 0; |
| JSObject* last = NULL; |
| HeapObject* heap_obj = NULL; |
| while (((heap_obj = iterator->next()) != NULL) && |
| (max_references == 0 || count < max_references)) { |
| // Only look at all JSObjects. |
| if (heap_obj->IsJSObject()) { |
| // Skip context extension objects and argument arrays as these are |
| // checked in the context of functions using them. |
| JSObject* obj = JSObject::cast(heap_obj); |
| if (obj->IsJSContextExtensionObject() || |
| obj->map()->constructor() == arguments_function) { |
| continue; |
| } |
| |
| // Check if the JS object has a reference to the object looked for. |
| if (obj->ReferencesObject(target)) { |
| // Check instance filter if supplied. This is normally used to avoid |
| // references from mirror objects (see Runtime_IsInPrototypeChain). |
| if (!instance_filter->IsUndefined()) { |
| Object* V = obj; |
| while (true) { |
| Object* prototype = V->GetPrototype(); |
| if (prototype->IsNull()) { |
| break; |
| } |
| if (instance_filter == prototype) { |
| obj = NULL; // Don't add this object. |
| break; |
| } |
| V = prototype; |
| } |
| } |
| |
| if (obj != NULL) { |
| // Valid reference found add to instance array if supplied an update |
| // count. |
| if (instances != NULL && count < instances_size) { |
| instances->set(count, obj); |
| } |
| last = obj; |
| count++; |
| } |
| } |
| } |
| } |
| |
| // Check for circular reference only. This can happen when the object is only |
| // referenced from mirrors and has a circular reference in which case the |
| // object is not really alive and would have been garbage collected if not |
| // referenced from the mirror. |
| if (count == 1 && last == target) { |
| count = 0; |
| } |
| |
| // Return the number of referencing objects found. |
| return count; |
| } |
| |
| |
| // Scan the heap for objects with direct references to an object |
| // args[0]: the object to find references to |
| // args[1]: constructor function for instances to exclude (Mirror) |
| // args[2]: the the maximum number of objects to return |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugReferencedBy) { |
| ASSERT(args.length() == 3); |
| |
| // First perform a full GC in order to avoid references from dead objects. |
| isolate->heap()->CollectAllGarbage(Heap::kMakeHeapIterableMask, |
| "%DebugReferencedBy"); |
| // The heap iterator reserves the right to do a GC to make the heap iterable. |
| // Due to the GC above we know it won't need to do that, but it seems cleaner |
| // to get the heap iterator constructed before we start having unprotected |
| // Object* locals that are not protected by handles. |
| |
| // Check parameters. |
| CONVERT_ARG_CHECKED(JSObject, target, 0); |
| Object* instance_filter = args[1]; |
| RUNTIME_ASSERT(instance_filter->IsUndefined() || |
| instance_filter->IsJSObject()); |
| CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]); |
| RUNTIME_ASSERT(max_references >= 0); |
| |
| |
| // Get the constructor function for context extension and arguments array. |
| JSObject* arguments_boilerplate = |
| isolate->context()->global_context()->arguments_boilerplate(); |
| JSFunction* arguments_function = |
| JSFunction::cast(arguments_boilerplate->map()->constructor()); |
| |
| // Get the number of referencing objects. |
| int count; |
| HeapIterator heap_iterator; |
| count = DebugReferencedBy(&heap_iterator, |
| target, instance_filter, max_references, |
| NULL, 0, arguments_function); |
| |
| // Allocate an array to hold the result. |
| Object* object; |
| { MaybeObject* maybe_object = isolate->heap()->AllocateFixedArray(count); |
| if (!maybe_object->ToObject(&object)) return maybe_object; |
| } |
| FixedArray* instances = FixedArray::cast(object); |
| |
| // Fill the referencing objects. |
| // AllocateFixedArray above does not make the heap non-iterable. |
| ASSERT(HEAP->IsHeapIterable()); |
| HeapIterator heap_iterator2; |
| count = DebugReferencedBy(&heap_iterator2, |
| target, instance_filter, max_references, |
| instances, count, arguments_function); |
| |
| // Return result as JS array. |
| Object* result; |
| MaybeObject* maybe_result = isolate->heap()->AllocateJSObject( |
| isolate->context()->global_context()->array_function()); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| return JSArray::cast(result)->SetContent(instances); |
| } |
| |
| |
| // Helper function used by Runtime_DebugConstructedBy below. |
| static int DebugConstructedBy(HeapIterator* iterator, |
| JSFunction* constructor, |
| int max_references, |
| FixedArray* instances, |
| int instances_size) { |
| AssertNoAllocation no_alloc; |
| |
| // Iterate the heap. |
| int count = 0; |
| HeapObject* heap_obj = NULL; |
| while (((heap_obj = iterator->next()) != NULL) && |
| (max_references == 0 || count < max_references)) { |
| // Only look at all JSObjects. |
| if (heap_obj->IsJSObject()) { |
| JSObject* obj = JSObject::cast(heap_obj); |
| if (obj->map()->constructor() == constructor) { |
| // Valid reference found add to instance array if supplied an update |
| // count. |
| if (instances != NULL && count < instances_size) { |
| instances->set(count, obj); |
| } |
| count++; |
| } |
| } |
| } |
| |
| // Return the number of referencing objects found. |
| return count; |
| } |
| |
| |
| // Scan the heap for objects constructed by a specific function. |
| // args[0]: the constructor to find instances of |
| // args[1]: the the maximum number of objects to return |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugConstructedBy) { |
| ASSERT(args.length() == 2); |
| |
| // First perform a full GC in order to avoid dead objects. |
| isolate->heap()->CollectAllGarbage(Heap::kMakeHeapIterableMask, |
| "%DebugConstructedBy"); |
| |
| // Check parameters. |
| CONVERT_ARG_CHECKED(JSFunction, constructor, 0); |
| CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]); |
| RUNTIME_ASSERT(max_references >= 0); |
| |
| // Get the number of referencing objects. |
| int count; |
| HeapIterator heap_iterator; |
| count = DebugConstructedBy(&heap_iterator, |
| constructor, |
| max_references, |
| NULL, |
| 0); |
| |
| // Allocate an array to hold the result. |
| Object* object; |
| { MaybeObject* maybe_object = isolate->heap()->AllocateFixedArray(count); |
| if (!maybe_object->ToObject(&object)) return maybe_object; |
| } |
| FixedArray* instances = FixedArray::cast(object); |
| |
| ASSERT(HEAP->IsHeapIterable()); |
| // Fill the referencing objects. |
| HeapIterator heap_iterator2; |
| count = DebugConstructedBy(&heap_iterator2, |
| constructor, |
| max_references, |
| instances, |
| count); |
| |
| // Return result as JS array. |
| Object* result; |
| { MaybeObject* maybe_result = isolate->heap()->AllocateJSObject( |
| isolate->context()->global_context()->array_function()); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| return JSArray::cast(result)->SetContent(instances); |
| } |
| |
| |
| // Find the effective prototype object as returned by __proto__. |
| // args[0]: the object to find the prototype for. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPrototype) { |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); |
| |
| // Use the __proto__ accessor. |
| return Accessors::ObjectPrototype.getter(obj, NULL); |
| } |
| |
| |
| // Patches script source (should be called upon BeforeCompile event). |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugSetScriptSource) { |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 2); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0); |
| Handle<String> source(String::cast(args[1])); |
| |
| RUNTIME_ASSERT(script_wrapper->value()->IsScript()); |
| Handle<Script> script(Script::cast(script_wrapper->value())); |
| |
| int compilation_state = Smi::cast(script->compilation_state())->value(); |
| RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL); |
| script->set_source(*source); |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SystemBreak) { |
| ASSERT(args.length() == 0); |
| CPU::DebugBreak(); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleFunction) { |
| #ifdef DEBUG |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| // Get the function and make sure it is compiled. |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0); |
| Handle<SharedFunctionInfo> shared(func->shared()); |
| if (!SharedFunctionInfo::EnsureCompiled(shared, KEEP_EXCEPTION)) { |
| return Failure::Exception(); |
| } |
| func->code()->PrintLn(); |
| #endif // DEBUG |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleConstructor) { |
| #ifdef DEBUG |
| HandleScope scope(isolate); |
| ASSERT(args.length() == 1); |
| // Get the function and make sure it is compiled. |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0); |
| Handle<SharedFunctionInfo> shared(func->shared()); |
| if (!SharedFunctionInfo::EnsureCompiled(shared, KEEP_EXCEPTION)) { |
| return Failure::Exception(); |
| } |
| shared->construct_stub()->PrintLn(); |
| #endif // DEBUG |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetInferredName) { |
| NoHandleAllocation ha; |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(JSFunction, f, 0); |
| return f->shared()->inferred_name(); |
| } |
| |
| |
| static int FindSharedFunctionInfosForScript(HeapIterator* iterator, |
| Script* script, |
| FixedArray* buffer) { |
| AssertNoAllocation no_allocations; |
| int counter = 0; |
| int buffer_size = buffer->length(); |
| for (HeapObject* obj = iterator->next(); |
| obj != NULL; |
| obj = iterator->next()) { |
| ASSERT(obj != NULL); |
| if (!obj->IsSharedFunctionInfo()) { |
| continue; |
| } |
| SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); |
| if (shared->script() != script) { |
| continue; |
| } |
| if (counter < buffer_size) { |
| buffer->set(counter, shared); |
| } |
| counter++; |
| } |
| return counter; |
| } |
| |
| // For a script finds all SharedFunctionInfo's in the heap that points |
| // to this script. Returns JSArray of SharedFunctionInfo wrapped |
| // in OpaqueReferences. |
| RUNTIME_FUNCTION(MaybeObject*, |
| Runtime_LiveEditFindSharedFunctionInfosForScript) { |
| ASSERT(args.length() == 1); |
| HandleScope scope(isolate); |
| CONVERT_ARG_CHECKED(JSValue, script_value, 0); |
| |
| |
| Handle<Script> script = Handle<Script>(Script::cast(script_value->value())); |
| |
| const int kBufferSize = 32; |
| |
| Handle<FixedArray> array; |
| array = isolate->factory()->NewFixedArray(kBufferSize); |
| int number; |
| { |
| isolate->heap()->EnsureHeapIsIterable(); |
| AssertNoAllocation no_allocations; |
| HeapIterator heap_iterator; |
| Script* scr = *script; |
| FixedArray* arr = *array; |
| number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr); |
| } |
| if (number > kBufferSize) { |
| array = isolate->factory()->NewFixedArray(number); |
| isolate->heap()->EnsureHeapIsIterable(); |
| AssertNoAllocation no_allocations; |
| HeapIterator heap_iterator; |
| Script* scr = *script; |
| FixedArray* arr = *array; |
| FindSharedFunctionInfosForScript(&heap_iterator, scr, arr); |
| } |
| |
| Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array); |
| result->set_length(Smi::FromInt(number)); |
| |
| LiveEdit::WrapSharedFunctionInfos(result); |
| |
| return *result; |
| } |
| |
| // For a script calculates compilation information about all its functions. |
| // The script source is explicitly specified by the second argument. |
| // The source of the actual script is not used, however it is important that |
| // all generated code keeps references to this particular instance of script. |
| // Returns a JSArray of compilation infos. The array is ordered so that |
| // each function with all its descendant is always stored in a continues range |
| // with the function itself going first. The root function is a script function. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditGatherCompileInfo) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_CHECKED(JSValue, script, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, source, 1); |
| Handle<Script> script_handle = Handle<Script>(Script::cast(script->value())); |
| |
| JSArray* result = LiveEdit::GatherCompileInfo(script_handle, source); |
| |
| if (isolate->has_pending_exception()) { |
| return Failure::Exception(); |
| } |
| |
| return result; |
| } |
| |
| // Changes the source of the script to a new_source. |
| // If old_script_name is provided (i.e. is a String), also creates a copy of |
| // the script with its original source and sends notification to debugger. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceScript) { |
| ASSERT(args.length() == 3); |
| HandleScope scope(isolate); |
| CONVERT_ARG_CHECKED(JSValue, original_script_value, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1); |
| Handle<Object> old_script_name(args[2], isolate); |
| |
| RUNTIME_ASSERT(original_script_value->value()->IsScript()); |
| Handle<Script> original_script(Script::cast(original_script_value->value())); |
| |
| Object* old_script = LiveEdit::ChangeScriptSource(original_script, |
| new_source, |
| old_script_name); |
| |
| if (old_script->IsScript()) { |
| Handle<Script> script_handle(Script::cast(old_script)); |
| return *(GetScriptWrapper(script_handle)); |
| } else { |
| return isolate->heap()->null_value(); |
| } |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSourceUpdated) { |
| ASSERT(args.length() == 1); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0); |
| return LiveEdit::FunctionSourceUpdated(shared_info); |
| } |
| |
| |
| // Replaces code of SharedFunctionInfo with a new one. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceFunctionCode) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1); |
| |
| return LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info); |
| } |
| |
| // Connects SharedFunctionInfo to another script. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSetScript) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| Handle<Object> function_object(args[0], isolate); |
| Handle<Object> script_object(args[1], isolate); |
| |
| if (function_object->IsJSValue()) { |
| Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object); |
| if (script_object->IsJSValue()) { |
| RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript()); |
| Script* script = Script::cast(JSValue::cast(*script_object)->value()); |
| script_object = Handle<Object>(script, isolate); |
| } |
| |
| LiveEdit::SetFunctionScript(function_wrapper, script_object); |
| } else { |
| // Just ignore this. We may not have a SharedFunctionInfo for some functions |
| // and we check it in this function. |
| } |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // In a code of a parent function replaces original function as embedded object |
| // with a substitution one. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceRefToNestedFunction) { |
| ASSERT(args.length() == 3); |
| HandleScope scope(isolate); |
| |
| CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0); |
| CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2); |
| |
| LiveEdit::ReplaceRefToNestedFunction(parent_wrapper, orig_wrapper, |
| subst_wrapper); |
| |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Updates positions of a shared function info (first parameter) according |
| // to script source change. Text change is described in second parameter as |
| // array of groups of 3 numbers: |
| // (change_begin, change_end, change_end_new_position). |
| // Each group describes a change in text; groups are sorted by change_begin. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditPatchFunctionPositions) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1); |
| |
| return LiveEdit::PatchFunctionPositions(shared_array, position_change_array); |
| } |
| |
| |
| // For array of SharedFunctionInfo's (each wrapped in JSValue) |
| // checks that none of them have activations on stacks (of any thread). |
| // Returns array of the same length with corresponding results of |
| // LiveEdit::FunctionPatchabilityStatus type. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCheckAndDropActivations) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0); |
| CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1); |
| |
| return *LiveEdit::CheckAndDropActivations(shared_array, do_drop); |
| } |
| |
| // Compares 2 strings line-by-line, then token-wise and returns diff in form |
| // of JSArray of triplets (pos1, pos1_end, pos2_end) describing list |
| // of diff chunks. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCompareStrings) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(String, s1, 0); |
| CONVERT_ARG_HANDLE_CHECKED(String, s2, 1); |
| |
| return *LiveEdit::CompareStrings(s1, s2); |
| } |
| |
| |
| // A testing entry. Returns statement position which is the closest to |
| // source_position. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionCodePositionFromSource) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); |
| |
| Handle<Code> code(function->code(), isolate); |
| |
| if (code->kind() != Code::FUNCTION && |
| code->kind() != Code::OPTIMIZED_FUNCTION) { |
| return isolate->heap()->undefined_value(); |
| } |
| |
| RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION)); |
| int closest_pc = 0; |
| int distance = kMaxInt; |
| while (!it.done()) { |
| int statement_position = static_cast<int>(it.rinfo()->data()); |
| // Check if this break point is closer that what was previously found. |
| if (source_position <= statement_position && |
| statement_position - source_position < distance) { |
| closest_pc = |
| static_cast<int>(it.rinfo()->pc() - code->instruction_start()); |
| distance = statement_position - source_position; |
| // Check whether we can't get any closer. |
| if (distance == 0) break; |
| } |
| it.next(); |
| } |
| |
| return Smi::FromInt(closest_pc); |
| } |
| |
| |
| // Calls specified function with or without entering the debugger. |
| // This is used in unit tests to run code as if debugger is entered or simply |
| // to have a stack with C++ frame in the middle. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ExecuteInDebugContext) { |
| ASSERT(args.length() == 2); |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); |
| CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1); |
| |
| Handle<Object> result; |
| bool pending_exception; |
| { |
| if (without_debugger) { |
| result = Execution::Call(function, isolate->global(), 0, NULL, |
| &pending_exception); |
| } else { |
| EnterDebugger enter_debugger; |
| result = Execution::Call(function, isolate->global(), 0, NULL, |
| &pending_exception); |
| } |
| } |
| if (!pending_exception) { |
| return *result; |
| } else { |
| return Failure::Exception(); |
| } |
| } |
| |
| |
| // Sets a v8 flag. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFlags) { |
| CONVERT_ARG_CHECKED(String, arg, 0); |
| SmartArrayPointer<char> flags = |
| arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); |
| FlagList::SetFlagsFromString(*flags, StrLength(*flags)); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Performs a GC. |
| // Presently, it only does a full GC. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectGarbage) { |
| isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage"); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Gets the current heap usage. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetHeapUsage) { |
| int usage = static_cast<int>(isolate->heap()->SizeOfObjects()); |
| if (!Smi::IsValid(usage)) { |
| return *isolate->factory()->NewNumberFromInt(usage); |
| } |
| return Smi::FromInt(usage); |
| } |
| |
| |
| // Captures a live object list from the present heap. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_HasLOLEnabled) { |
| #ifdef LIVE_OBJECT_LIST |
| return isolate->heap()->true_value(); |
| #else |
| return isolate->heap()->false_value(); |
| #endif |
| } |
| |
| |
| // Captures a live object list from the present heap. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CaptureLOL) { |
| #ifdef LIVE_OBJECT_LIST |
| return LiveObjectList::Capture(); |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Deletes the specified live object list. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteLOL) { |
| #ifdef LIVE_OBJECT_LIST |
| CONVERT_SMI_ARG_CHECKED(id, 0); |
| bool success = LiveObjectList::Delete(id); |
| return isolate->heap()->ToBoolean(success); |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Generates the response to a debugger request for a dump of the objects |
| // contained in the difference between the captured live object lists |
| // specified by id1 and id2. |
| // If id1 is 0 (i.e. not a valid lol), then the whole of lol id2 will be |
| // dumped. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_DumpLOL) { |
| #ifdef LIVE_OBJECT_LIST |
| HandleScope scope; |
| CONVERT_SMI_ARG_CHECKED(id1, 0); |
| CONVERT_SMI_ARG_CHECKED(id2, 1); |
| CONVERT_SMI_ARG_CHECKED(start, 2); |
| CONVERT_SMI_ARG_CHECKED(count, 3); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, filter_obj, 4); |
| EnterDebugger enter_debugger; |
| return LiveObjectList::Dump(id1, id2, start, count, filter_obj); |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Gets the specified object as requested by the debugger. |
| // This is only used for obj ids shown in live object lists. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObj) { |
| #ifdef LIVE_OBJECT_LIST |
| CONVERT_SMI_ARG_CHECKED(obj_id, 0); |
| Object* result = LiveObjectList::GetObj(obj_id); |
| return result; |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Gets the obj id for the specified address if valid. |
| // This is only used for obj ids shown in live object lists. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObjId) { |
| #ifdef LIVE_OBJECT_LIST |
| HandleScope scope; |
| CONVERT_ARG_HANDLE_CHECKED(String, address, 0); |
| Object* result = LiveObjectList::GetObjId(address); |
| return result; |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Gets the retainers that references the specified object alive. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObjRetainers) { |
| #ifdef LIVE_OBJECT_LIST |
| HandleScope scope; |
| CONVERT_SMI_ARG_CHECKED(obj_id, 0); |
| RUNTIME_ASSERT(args[1]->IsUndefined() || args[1]->IsJSObject()); |
| RUNTIME_ASSERT(args[2]->IsUndefined() || args[2]->IsBoolean()); |
| RUNTIME_ASSERT(args[3]->IsUndefined() || args[3]->IsSmi()); |
| RUNTIME_ASSERT(args[4]->IsUndefined() || args[4]->IsSmi()); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, filter_obj, 5); |
| |
| Handle<JSObject> instance_filter; |
| if (args[1]->IsJSObject()) { |
| instance_filter = args.at<JSObject>(1); |
| } |
| bool verbose = false; |
| if (args[2]->IsBoolean()) { |
| verbose = args[2]->IsTrue(); |
| } |
| int start = 0; |
| if (args[3]->IsSmi()) { |
| start = args.smi_at(3); |
| } |
| int limit = Smi::kMaxValue; |
| if (args[4]->IsSmi()) { |
| limit = args.smi_at(4); |
| } |
| |
| return LiveObjectList::GetObjRetainers(obj_id, |
| instance_filter, |
| verbose, |
| start, |
| limit, |
| filter_obj); |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Gets the reference path between 2 objects. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLPath) { |
| #ifdef LIVE_OBJECT_LIST |
| HandleScope scope; |
| CONVERT_SMI_ARG_CHECKED(obj_id1, 0); |
| CONVERT_SMI_ARG_CHECKED(obj_id2, 1); |
| RUNTIME_ASSERT(args[2]->IsUndefined() || args[2]->IsJSObject()); |
| |
| Handle<JSObject> instance_filter; |
| if (args[2]->IsJSObject()) { |
| instance_filter = args.at<JSObject>(2); |
| } |
| |
| Object* result = |
| LiveObjectList::GetPath(obj_id1, obj_id2, instance_filter); |
| return result; |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Generates the response to a debugger request for a list of all |
| // previously captured live object lists. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_InfoLOL) { |
| #ifdef LIVE_OBJECT_LIST |
| CONVERT_SMI_ARG_CHECKED(start, 0); |
| CONVERT_SMI_ARG_CHECKED(count, 1); |
| return LiveObjectList::Info(start, count); |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Gets a dump of the specified object as requested by the debugger. |
| // This is only used for obj ids shown in live object lists. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_PrintLOLObj) { |
| #ifdef LIVE_OBJECT_LIST |
| HandleScope scope; |
| CONVERT_SMI_ARG_CHECKED(obj_id, 0); |
| Object* result = LiveObjectList::PrintObj(obj_id); |
| return result; |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Resets and releases all previously captured live object lists. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ResetLOL) { |
| #ifdef LIVE_OBJECT_LIST |
| LiveObjectList::Reset(); |
| return isolate->heap()->undefined_value(); |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| |
| // Generates the response to a debugger request for a summary of the types |
| // of objects in the difference between the captured live object lists |
| // specified by id1 and id2. |
| // If id1 is 0 (i.e. not a valid lol), then the whole of lol id2 will be |
| // summarized. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_SummarizeLOL) { |
| #ifdef LIVE_OBJECT_LIST |
| HandleScope scope; |
| CONVERT_SMI_ARG_CHECKED(id1, 0); |
| CONVERT_SMI_ARG_CHECKED(id2, 1); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, filter_obj, 2); |
| |
| EnterDebugger enter_debugger; |
| return LiveObjectList::Summarize(id1, id2, filter_obj); |
| #else |
| return isolate->heap()->undefined_value(); |
| #endif |
| } |
| |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ProfilerResume) { |
| NoHandleAllocation ha; |
| v8::V8::ResumeProfiler(); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ProfilerPause) { |
| NoHandleAllocation ha; |
| v8::V8::PauseProfiler(); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| // Finds the script object from the script data. NOTE: This operation uses |
| // heap traversal to find the function generated for the source position |
| // for the requested break point. For lazily compiled functions several heap |
| // traversals might be required rendering this operation as a rather slow |
| // operation. However for setting break points which is normally done through |
| // some kind of user interaction the performance is not crucial. |
| static Handle<Object> Runtime_GetScriptFromScriptName( |
| Handle<String> script_name) { |
| // Scan the heap for Script objects to find the script with the requested |
| // script data. |
| Handle<Script> script; |
| script_name->GetHeap()->EnsureHeapIsIterable(); |
| AssertNoAllocation no_allocation_during_heap_iteration; |
| HeapIterator iterator; |
| HeapObject* obj = NULL; |
| while (script.is_null() && ((obj = iterator.next()) != NULL)) { |
| // If a script is found check if it has the script data requested. |
| if (obj->IsScript()) { |
| if (Script::cast(obj)->name()->IsString()) { |
| if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) { |
| script = Handle<Script>(Script::cast(obj)); |
| } |
| } |
| } |
| } |
| |
| // If no script with the requested script data is found return undefined. |
| if (script.is_null()) return FACTORY->undefined_value(); |
| |
| // Return the script found. |
| return GetScriptWrapper(script); |
| } |
| |
| |
| // Get the script object from script data. NOTE: Regarding performance |
| // see the NOTE for GetScriptFromScriptData. |
| // args[0]: script data for the script to find the source for |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScript) { |
| HandleScope scope(isolate); |
| |
| ASSERT(args.length() == 1); |
| |
| CONVERT_ARG_CHECKED(String, script_name, 0); |
| |
| // Find the requested script. |
| Handle<Object> result = |
| Runtime_GetScriptFromScriptName(Handle<String>(script_name)); |
| return *result; |
| } |
| |
| |
| // Determines whether the given stack frame should be displayed in |
| // a stack trace. The caller is the error constructor that asked |
| // for the stack trace to be collected. The first time a construct |
| // call to this function is encountered it is skipped. The seen_caller |
| // in/out parameter is used to remember if the caller has been seen |
| // yet. |
| static bool ShowFrameInStackTrace(StackFrame* raw_frame, |
| Object* caller, |
| bool* seen_caller) { |
| // Only display JS frames. |
| if (!raw_frame->is_java_script()) { |
| return false; |
| } |
| JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame); |
| Object* raw_fun = frame->function(); |
| // Not sure when this can happen but skip it just in case. |
| if (!raw_fun->IsJSFunction()) { |
| return false; |
| } |
| if ((raw_fun == caller) && !(*seen_caller)) { |
| *seen_caller = true; |
| return false; |
| } |
| // Skip all frames until we've seen the caller. |
| if (!(*seen_caller)) return false; |
| // Also, skip non-visible built-in functions and any call with the builtins |
| // object as receiver, so as to not reveal either the builtins object or |
| // an internal function. |
| // The --builtins-in-stack-traces command line flag allows including |
| // internal call sites in the stack trace for debugging purposes. |
| if (!FLAG_builtins_in_stack_traces) { |
| JSFunction* fun = JSFunction::cast(raw_fun); |
| if (frame->receiver()->IsJSBuiltinsObject() || |
| (fun->IsBuiltin() && !fun->shared()->native())) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| // Collect the raw data for a stack trace. Returns an array of 4 |
| // element segments each containing a receiver, function, code and |
| // native code offset. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectStackTrace) { |
| ASSERT_EQ(args.length(), 3); |
| CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0); |
| Handle<Object> caller = args.at<Object>(1); |
| CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[2]); |
| |
| HandleScope scope(isolate); |
| Factory* factory = isolate->factory(); |
| |
| limit = Max(limit, 0); // Ensure that limit is not negative. |
| int initial_size = Min(limit, 10); |
| Handle<FixedArray> elements = |
| factory->NewFixedArrayWithHoles(initial_size * 4); |
| |
| StackFrameIterator iter(isolate); |
| // If the caller parameter is a function we skip frames until we're |
| // under it before starting to collect. |
| bool seen_caller = !caller->IsJSFunction(); |
| int cursor = 0; |
| int frames_seen = 0; |
| while (!iter.done() && frames_seen < limit) { |
| StackFrame* raw_frame = iter.frame(); |
| if (ShowFrameInStackTrace(raw_frame, *caller, &seen_caller)) { |
| frames_seen++; |
| JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame); |
| // Set initial size to the maximum inlining level + 1 for the outermost |
| // function. |
| List<FrameSummary> frames(Compiler::kMaxInliningLevels + 1); |
| frame->Summarize(&frames); |
| for (int i = frames.length() - 1; i >= 0; i--) { |
| if (cursor + 4 > elements->length()) { |
| int new_capacity = JSObject::NewElementsCapacity(elements->length()); |
| Handle<FixedArray> new_elements = |
| factory->NewFixedArrayWithHoles(new_capacity); |
| for (int i = 0; i < cursor; i++) { |
| new_elements->set(i, elements->get(i)); |
| } |
| elements = new_elements; |
| } |
| ASSERT(cursor + 4 <= elements->length()); |
| |
| Handle<Object> recv = frames[i].receiver(); |
| Handle<JSFunction> fun = frames[i].function(); |
| Handle<Code> code = frames[i].code(); |
| Handle<Smi> offset(Smi::FromInt(frames[i].offset())); |
| elements->set(cursor++, *recv); |
| elements->set(cursor++, *fun); |
| elements->set(cursor++, *code); |
| elements->set(cursor++, *offset); |
| } |
| } |
| iter.Advance(); |
| } |
| Handle<JSArray> result = factory->NewJSArrayWithElements(elements); |
| // Capture and attach a more detailed stack trace if necessary. |
| isolate->CaptureAndSetCurrentStackTraceFor(error_object); |
| result->set_length(Smi::FromInt(cursor)); |
| return *result; |
| } |
| |
| |
| // Returns V8 version as a string. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetV8Version) { |
| ASSERT_EQ(args.length(), 0); |
| |
| NoHandleAllocation ha; |
| |
| const char* version_string = v8::V8::GetVersion(); |
| |
| return isolate->heap()->AllocateStringFromAscii(CStrVector(version_string), |
| NOT_TENURED); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Abort) { |
| ASSERT(args.length() == 2); |
| OS::PrintError("abort: %s\n", |
| reinterpret_cast<char*>(args[0]) + args.smi_at(1)); |
| isolate->PrintStack(); |
| OS::Abort(); |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFromCache) { |
| // This is only called from codegen, so checks might be more lax. |
| CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0); |
| Object* key = args[1]; |
| |
| int finger_index = cache->finger_index(); |
| Object* o = cache->get(finger_index); |
| if (o == key) { |
| // The fastest case: hit the same place again. |
| return cache->get(finger_index + 1); |
| } |
| |
| for (int i = finger_index - 2; |
| i >= JSFunctionResultCache::kEntriesIndex; |
| i -= 2) { |
| o = cache->get(i); |
| if (o == key) { |
| cache->set_finger_index(i); |
| return cache->get(i + 1); |
| } |
| } |
| |
| int size = cache->size(); |
| ASSERT(size <= cache->length()); |
| |
| for (int i = size - 2; i > finger_index; i -= 2) { |
| o = cache->get(i); |
| if (o == key) { |
| cache->set_finger_index(i); |
| return cache->get(i + 1); |
| } |
| } |
| |
| // There is no value in the cache. Invoke the function and cache result. |
| HandleScope scope(isolate); |
| |
| Handle<JSFunctionResultCache> cache_handle(cache); |
| Handle<Object> key_handle(key); |
| Handle<Object> value; |
| { |
| Handle<JSFunction> factory(JSFunction::cast( |
| cache_handle->get(JSFunctionResultCache::kFactoryIndex))); |
| // TODO(antonm): consider passing a receiver when constructing a cache. |
| Handle<Object> receiver(isolate->global_context()->global()); |
| // This handle is nor shared, nor used later, so it's safe. |
| Handle<Object> argv[] = { key_handle }; |
| bool pending_exception; |
| value = Execution::Call(factory, |
| receiver, |
| ARRAY_SIZE(argv), |
| argv, |
| &pending_exception); |
| if (pending_exception) return Failure::Exception(); |
| } |
| |
| #ifdef DEBUG |
| if (FLAG_verify_heap) { |
| cache_handle->JSFunctionResultCacheVerify(); |
| } |
| #endif |
| |
| // Function invocation may have cleared the cache. Reread all the data. |
| finger_index = cache_handle->finger_index(); |
| size = cache_handle->size(); |
| |
| // If we have spare room, put new data into it, otherwise evict post finger |
| // entry which is likely to be the least recently used. |
| int index = -1; |
| if (size < cache_handle->length()) { |
| cache_handle->set_size(size + JSFunctionResultCache::kEntrySize); |
| index = size; |
| } else { |
| index = finger_index + JSFunctionResultCache::kEntrySize; |
| if (index == cache_handle->length()) { |
| index = JSFunctionResultCache::kEntriesIndex; |
| } |
| } |
| |
| ASSERT(index % 2 == 0); |
| ASSERT(index >= JSFunctionResultCache::kEntriesIndex); |
| ASSERT(index < cache_handle->length()); |
| |
| cache_handle->set(index, *key_handle); |
| cache_handle->set(index + 1, *value); |
| cache_handle->set_finger_index(index); |
| |
| #ifdef DEBUG |
| if (FLAG_verify_heap) { |
| cache_handle->JSFunctionResultCacheVerify(); |
| } |
| #endif |
| |
| return *value; |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_NewMessageObject) { |
| HandleScope scope(isolate); |
| CONVERT_ARG_HANDLE_CHECKED(String, type, 0); |
| CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 1); |
| return *isolate->factory()->NewJSMessageObject( |
| type, |
| arguments, |
| 0, |
| 0, |
| isolate->factory()->undefined_value(), |
| isolate->factory()->undefined_value(), |
| isolate->factory()->undefined_value()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetType) { |
| CONVERT_ARG_CHECKED(JSMessageObject, message, 0); |
| return message->type(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetArguments) { |
| CONVERT_ARG_CHECKED(JSMessageObject, message, 0); |
| return message->arguments(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetStartPosition) { |
| CONVERT_ARG_CHECKED(JSMessageObject, message, 0); |
| return Smi::FromInt(message->start_position()); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetScript) { |
| CONVERT_ARG_CHECKED(JSMessageObject, message, 0); |
| return message->script(); |
| } |
| |
| |
| #ifdef DEBUG |
| // ListNatives is ONLY used by the fuzz-natives.js in debug mode |
| // Exclude the code in release mode. |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_ListNatives) { |
| ASSERT(args.length() == 0); |
| HandleScope scope; |
| #define COUNT_ENTRY(Name, argc, ressize) + 1 |
| int entry_count = 0 |
| RUNTIME_FUNCTION_LIST(COUNT_ENTRY) |
| INLINE_FUNCTION_LIST(COUNT_ENTRY) |
| INLINE_RUNTIME_FUNCTION_LIST(COUNT_ENTRY); |
| #undef COUNT_ENTRY |
| Factory* factory = isolate->factory(); |
| Handle<FixedArray> elements = factory->NewFixedArray(entry_count); |
| int index = 0; |
| bool inline_runtime_functions = false; |
| #define ADD_ENTRY(Name, argc, ressize) \ |
| { \ |
| HandleScope inner; \ |
| Handle<String> name; \ |
| /* Inline runtime functions have an underscore in front of the name. */ \ |
| if (inline_runtime_functions) { \ |
| name = factory->NewStringFromAscii( \ |
| Vector<const char>("_" #Name, StrLength("_" #Name))); \ |
| } else { \ |
| name = factory->NewStringFromAscii( \ |
| Vector<const char>(#Name, StrLength(#Name))); \ |
| } \ |
| Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \ |
| pair_elements->set(0, *name); \ |
| pair_elements->set(1, Smi::FromInt(argc)); \ |
| Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \ |
| elements->set(index++, *pair); \ |
| } |
| inline_runtime_functions = false; |
| RUNTIME_FUNCTION_LIST(ADD_ENTRY) |
| inline_runtime_functions = true; |
| INLINE_FUNCTION_LIST(ADD_ENTRY) |
| INLINE_RUNTIME_FUNCTION_LIST(ADD_ENTRY) |
| #undef ADD_ENTRY |
| ASSERT_EQ(index, entry_count); |
| Handle<JSArray> result = factory->NewJSArrayWithElements(elements); |
| return *result; |
| } |
| #endif |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Log) { |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(String, format, 0); |
| CONVERT_ARG_CHECKED(JSArray, elms, 1); |
| String::FlatContent format_content = format->GetFlatContent(); |
| RUNTIME_ASSERT(format_content.IsAscii()); |
| Vector<const char> chars = format_content.ToAsciiVector(); |
| LOGGER->LogRuntime(chars, elms); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_IS_VAR) { |
| UNREACHABLE(); // implemented as macro in the parser |
| return NULL; |
| } |
| |
| |
| #define ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(Name) \ |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_Has##Name) { \ |
| CONVERT_ARG_CHECKED(JSObject, obj, 0); \ |
| return isolate->heap()->ToBoolean(obj->Has##Name()); \ |
| } |
| |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiOnlyElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastDoubleElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(DictionaryElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalPixelElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalArrayElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalByteElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedByteElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalShortElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedShortElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalIntElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalUnsignedIntElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalFloatElements) |
| ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalDoubleElements) |
| |
| #undef ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION |
| |
| |
| RUNTIME_FUNCTION(MaybeObject*, Runtime_HaveSameMap) { |
| ASSERT(args.length() == 2); |
| CONVERT_ARG_CHECKED(JSObject, obj1, 0); |
| CONVERT_ARG_CHECKED(JSObject, obj2, 1); |
| return isolate->heap()->ToBoolean(obj1->map() == obj2->map()); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Implementation of Runtime |
| |
| #define F(name, number_of_args, result_size) \ |
| { Runtime::k##name, Runtime::RUNTIME, #name, \ |
| FUNCTION_ADDR(Runtime_##name), number_of_args, result_size }, |
| |
| |
| #define I(name, number_of_args, result_size) \ |
| { Runtime::kInline##name, Runtime::INLINE, \ |
| "_" #name, NULL, number_of_args, result_size }, |
| |
| static const Runtime::Function kIntrinsicFunctions[] = { |
| RUNTIME_FUNCTION_LIST(F) |
| INLINE_FUNCTION_LIST(I) |
| INLINE_RUNTIME_FUNCTION_LIST(I) |
| }; |
| |
| |
| MaybeObject* Runtime::InitializeIntrinsicFunctionNames(Heap* heap, |
| Object* dictionary) { |
| ASSERT(Isolate::Current()->heap() == heap); |
| ASSERT(dictionary != NULL); |
| ASSERT(StringDictionary::cast(dictionary)->NumberOfElements() == 0); |
| for (int i = 0; i < kNumFunctions; ++i) { |
| Object* name_symbol; |
| { MaybeObject* maybe_name_symbol = |
| heap->LookupAsciiSymbol(kIntrinsicFunctions[i].name); |
| if (!maybe_name_symbol->ToObject(&name_symbol)) return maybe_name_symbol; |
| } |
| StringDictionary* string_dictionary = StringDictionary::cast(dictionary); |
| { MaybeObject* maybe_dictionary = string_dictionary->Add( |
| String::cast(name_symbol), |
| Smi::FromInt(i), |
| PropertyDetails(NONE, NORMAL)); |
| if (!maybe_dictionary->ToObject(&dictionary)) { |
| // Non-recoverable failure. Calling code must restart heap |
| // initialization. |
| return maybe_dictionary; |
| } |
| } |
| } |
| return dictionary; |
| } |
| |
| |
| const Runtime::Function* Runtime::FunctionForSymbol(Handle<String> name) { |
| Heap* heap = name->GetHeap(); |
| int entry = heap->intrinsic_function_names()->FindEntry(*name); |
| if (entry != kNotFound) { |
| Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry); |
| int function_index = Smi::cast(smi_index)->value(); |
| return &(kIntrinsicFunctions[function_index]); |
| } |
| return NULL; |
| } |
| |
| |
| const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) { |
| return &(kIntrinsicFunctions[static_cast<int>(id)]); |
| } |
| |
| |
| void Runtime::PerformGC(Object* result) { |
| Isolate* isolate = Isolate::Current(); |
| Failure* failure = Failure::cast(result); |
| if (failure->IsRetryAfterGC()) { |
| if (isolate->heap()->new_space()->AddFreshPage()) { |
| return; |
| } |
| |
| // Try to do a garbage collection; ignore it if it fails. The C |
| // entry stub will throw an out-of-memory exception in that case. |
| isolate->heap()->CollectGarbage(failure->allocation_space(), |
| "Runtime::PerformGC"); |
| } else { |
| // Handle last resort GC and make sure to allow future allocations |
| // to grow the heap without causing GCs (if possible). |
| isolate->counters()->gc_last_resort_from_js()->Increment(); |
| isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, |
| "Runtime::PerformGC"); |
| } |
| } |
| |
| |
| } } // namespace v8::internal |