| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "liveobjectlist-inl.h" |
| #include "macro-assembler.h" |
| #include "mark-compact.h" |
| #include "platform.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| // ---------------------------------------------------------------------------- |
| // HeapObjectIterator |
| |
| HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { |
| // You can't actually iterate over the anchor page. It is not a real page, |
| // just an anchor for the double linked page list. Initialize as if we have |
| // reached the end of the anchor page, then the first iteration will move on |
| // to the first page. |
| Initialize(space, |
| NULL, |
| NULL, |
| kAllPagesInSpace, |
| NULL); |
| } |
| |
| |
| HeapObjectIterator::HeapObjectIterator(PagedSpace* space, |
| HeapObjectCallback size_func) { |
| // You can't actually iterate over the anchor page. It is not a real page, |
| // just an anchor for the double linked page list. Initialize the current |
| // address and end as NULL, then the first iteration will move on |
| // to the first page. |
| Initialize(space, |
| NULL, |
| NULL, |
| kAllPagesInSpace, |
| size_func); |
| } |
| |
| |
| HeapObjectIterator::HeapObjectIterator(Page* page, |
| HeapObjectCallback size_func) { |
| Space* owner = page->owner(); |
| ASSERT(owner == HEAP->old_pointer_space() || |
| owner == HEAP->old_data_space() || |
| owner == HEAP->map_space() || |
| owner == HEAP->cell_space() || |
| owner == HEAP->code_space()); |
| Initialize(reinterpret_cast<PagedSpace*>(owner), |
| page->area_start(), |
| page->area_end(), |
| kOnePageOnly, |
| size_func); |
| ASSERT(page->WasSweptPrecisely()); |
| } |
| |
| |
| void HeapObjectIterator::Initialize(PagedSpace* space, |
| Address cur, Address end, |
| HeapObjectIterator::PageMode mode, |
| HeapObjectCallback size_f) { |
| // Check that we actually can iterate this space. |
| ASSERT(!space->was_swept_conservatively()); |
| |
| space_ = space; |
| cur_addr_ = cur; |
| cur_end_ = end; |
| page_mode_ = mode; |
| size_func_ = size_f; |
| } |
| |
| |
| // We have hit the end of the page and should advance to the next block of |
| // objects. This happens at the end of the page. |
| bool HeapObjectIterator::AdvanceToNextPage() { |
| ASSERT(cur_addr_ == cur_end_); |
| if (page_mode_ == kOnePageOnly) return false; |
| Page* cur_page; |
| if (cur_addr_ == NULL) { |
| cur_page = space_->anchor(); |
| } else { |
| cur_page = Page::FromAddress(cur_addr_ - 1); |
| ASSERT(cur_addr_ == cur_page->area_end()); |
| } |
| cur_page = cur_page->next_page(); |
| if (cur_page == space_->anchor()) return false; |
| cur_addr_ = cur_page->area_start(); |
| cur_end_ = cur_page->area_end(); |
| ASSERT(cur_page->WasSweptPrecisely()); |
| return true; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // CodeRange |
| |
| |
| CodeRange::CodeRange(Isolate* isolate) |
| : isolate_(isolate), |
| code_range_(NULL), |
| free_list_(0), |
| allocation_list_(0), |
| current_allocation_block_index_(0) { |
| } |
| |
| |
| bool CodeRange::SetUp(const size_t requested) { |
| ASSERT(code_range_ == NULL); |
| |
| code_range_ = new VirtualMemory(requested); |
| CHECK(code_range_ != NULL); |
| if (!code_range_->IsReserved()) { |
| delete code_range_; |
| code_range_ = NULL; |
| return false; |
| } |
| |
| // We are sure that we have mapped a block of requested addresses. |
| ASSERT(code_range_->size() == requested); |
| LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested)); |
| Address base = reinterpret_cast<Address>(code_range_->address()); |
| Address aligned_base = |
| RoundUp(reinterpret_cast<Address>(code_range_->address()), |
| MemoryChunk::kAlignment); |
| size_t size = code_range_->size() - (aligned_base - base); |
| allocation_list_.Add(FreeBlock(aligned_base, size)); |
| current_allocation_block_index_ = 0; |
| return true; |
| } |
| |
| |
| int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, |
| const FreeBlock* right) { |
| // The entire point of CodeRange is that the difference between two |
| // addresses in the range can be represented as a signed 32-bit int, |
| // so the cast is semantically correct. |
| return static_cast<int>(left->start - right->start); |
| } |
| |
| |
| void CodeRange::GetNextAllocationBlock(size_t requested) { |
| for (current_allocation_block_index_++; |
| current_allocation_block_index_ < allocation_list_.length(); |
| current_allocation_block_index_++) { |
| if (requested <= allocation_list_[current_allocation_block_index_].size) { |
| return; // Found a large enough allocation block. |
| } |
| } |
| |
| // Sort and merge the free blocks on the free list and the allocation list. |
| free_list_.AddAll(allocation_list_); |
| allocation_list_.Clear(); |
| free_list_.Sort(&CompareFreeBlockAddress); |
| for (int i = 0; i < free_list_.length();) { |
| FreeBlock merged = free_list_[i]; |
| i++; |
| // Add adjacent free blocks to the current merged block. |
| while (i < free_list_.length() && |
| free_list_[i].start == merged.start + merged.size) { |
| merged.size += free_list_[i].size; |
| i++; |
| } |
| if (merged.size > 0) { |
| allocation_list_.Add(merged); |
| } |
| } |
| free_list_.Clear(); |
| |
| for (current_allocation_block_index_ = 0; |
| current_allocation_block_index_ < allocation_list_.length(); |
| current_allocation_block_index_++) { |
| if (requested <= allocation_list_[current_allocation_block_index_].size) { |
| return; // Found a large enough allocation block. |
| } |
| } |
| |
| // Code range is full or too fragmented. |
| V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock"); |
| } |
| |
| |
| |
| Address CodeRange::AllocateRawMemory(const size_t requested, |
| size_t* allocated) { |
| ASSERT(current_allocation_block_index_ < allocation_list_.length()); |
| if (requested > allocation_list_[current_allocation_block_index_].size) { |
| // Find an allocation block large enough. This function call may |
| // call V8::FatalProcessOutOfMemory if it cannot find a large enough block. |
| GetNextAllocationBlock(requested); |
| } |
| // Commit the requested memory at the start of the current allocation block. |
| size_t aligned_requested = RoundUp(requested, MemoryChunk::kAlignment); |
| FreeBlock current = allocation_list_[current_allocation_block_index_]; |
| if (aligned_requested >= (current.size - Page::kPageSize)) { |
| // Don't leave a small free block, useless for a large object or chunk. |
| *allocated = current.size; |
| } else { |
| *allocated = aligned_requested; |
| } |
| ASSERT(*allocated <= current.size); |
| ASSERT(IsAddressAligned(current.start, MemoryChunk::kAlignment)); |
| if (!MemoryAllocator::CommitCodePage(code_range_, |
| current.start, |
| *allocated)) { |
| *allocated = 0; |
| return NULL; |
| } |
| allocation_list_[current_allocation_block_index_].start += *allocated; |
| allocation_list_[current_allocation_block_index_].size -= *allocated; |
| if (*allocated == current.size) { |
| GetNextAllocationBlock(0); // This block is used up, get the next one. |
| } |
| return current.start; |
| } |
| |
| |
| void CodeRange::FreeRawMemory(Address address, size_t length) { |
| ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment)); |
| free_list_.Add(FreeBlock(address, length)); |
| code_range_->Uncommit(address, length); |
| } |
| |
| |
| void CodeRange::TearDown() { |
| delete code_range_; // Frees all memory in the virtual memory range. |
| code_range_ = NULL; |
| free_list_.Free(); |
| allocation_list_.Free(); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // MemoryAllocator |
| // |
| |
| MemoryAllocator::MemoryAllocator(Isolate* isolate) |
| : isolate_(isolate), |
| capacity_(0), |
| capacity_executable_(0), |
| size_(0), |
| size_executable_(0) { |
| } |
| |
| |
| bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) { |
| capacity_ = RoundUp(capacity, Page::kPageSize); |
| capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize); |
| ASSERT_GE(capacity_, capacity_executable_); |
| |
| size_ = 0; |
| size_executable_ = 0; |
| |
| return true; |
| } |
| |
| |
| void MemoryAllocator::TearDown() { |
| // Check that spaces were torn down before MemoryAllocator. |
| ASSERT(size_ == 0); |
| // TODO(gc) this will be true again when we fix FreeMemory. |
| // ASSERT(size_executable_ == 0); |
| capacity_ = 0; |
| capacity_executable_ = 0; |
| } |
| |
| |
| void MemoryAllocator::FreeMemory(VirtualMemory* reservation, |
| Executability executable) { |
| // TODO(gc) make code_range part of memory allocator? |
| ASSERT(reservation->IsReserved()); |
| size_t size = reservation->size(); |
| ASSERT(size_ >= size); |
| size_ -= size; |
| |
| isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); |
| |
| if (executable == EXECUTABLE) { |
| ASSERT(size_executable_ >= size); |
| size_executable_ -= size; |
| } |
| // Code which is part of the code-range does not have its own VirtualMemory. |
| ASSERT(!isolate_->code_range()->contains( |
| static_cast<Address>(reservation->address()))); |
| ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists()); |
| reservation->Release(); |
| } |
| |
| |
| void MemoryAllocator::FreeMemory(Address base, |
| size_t size, |
| Executability executable) { |
| // TODO(gc) make code_range part of memory allocator? |
| ASSERT(size_ >= size); |
| size_ -= size; |
| |
| isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); |
| |
| if (executable == EXECUTABLE) { |
| ASSERT(size_executable_ >= size); |
| size_executable_ -= size; |
| } |
| if (isolate_->code_range()->contains(static_cast<Address>(base))) { |
| ASSERT(executable == EXECUTABLE); |
| isolate_->code_range()->FreeRawMemory(base, size); |
| } else { |
| ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists()); |
| bool result = VirtualMemory::ReleaseRegion(base, size); |
| USE(result); |
| ASSERT(result); |
| } |
| } |
| |
| |
| Address MemoryAllocator::ReserveAlignedMemory(size_t size, |
| size_t alignment, |
| VirtualMemory* controller) { |
| VirtualMemory reservation(size, alignment); |
| |
| if (!reservation.IsReserved()) return NULL; |
| size_ += reservation.size(); |
| Address base = RoundUp(static_cast<Address>(reservation.address()), |
| alignment); |
| controller->TakeControl(&reservation); |
| return base; |
| } |
| |
| |
| Address MemoryAllocator::AllocateAlignedMemory(size_t size, |
| size_t alignment, |
| Executability executable, |
| VirtualMemory* controller) { |
| VirtualMemory reservation; |
| Address base = ReserveAlignedMemory(size, alignment, &reservation); |
| if (base == NULL) return NULL; |
| |
| if (executable == EXECUTABLE) { |
| if (!CommitCodePage(&reservation, base, size)) { |
| base = NULL; |
| } |
| } else { |
| if (!reservation.Commit(base, size, false)) { |
| base = NULL; |
| } |
| } |
| |
| if (base == NULL) { |
| // Failed to commit the body. Release the mapping and any partially |
| // commited regions inside it. |
| reservation.Release(); |
| return NULL; |
| } |
| |
| controller->TakeControl(&reservation); |
| return base; |
| } |
| |
| |
| void Page::InitializeAsAnchor(PagedSpace* owner) { |
| set_owner(owner); |
| set_prev_page(this); |
| set_next_page(this); |
| } |
| |
| |
| NewSpacePage* NewSpacePage::Initialize(Heap* heap, |
| Address start, |
| SemiSpace* semi_space) { |
| Address area_start = start + NewSpacePage::kObjectStartOffset; |
| Address area_end = start + Page::kPageSize; |
| |
| MemoryChunk* chunk = MemoryChunk::Initialize(heap, |
| start, |
| Page::kPageSize, |
| area_start, |
| area_end, |
| NOT_EXECUTABLE, |
| semi_space); |
| chunk->set_next_chunk(NULL); |
| chunk->set_prev_chunk(NULL); |
| chunk->initialize_scan_on_scavenge(true); |
| bool in_to_space = (semi_space->id() != kFromSpace); |
| chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE |
| : MemoryChunk::IN_FROM_SPACE); |
| ASSERT(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE |
| : MemoryChunk::IN_TO_SPACE)); |
| NewSpacePage* page = static_cast<NewSpacePage*>(chunk); |
| heap->incremental_marking()->SetNewSpacePageFlags(page); |
| return page; |
| } |
| |
| |
| void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) { |
| set_owner(semi_space); |
| set_next_chunk(this); |
| set_prev_chunk(this); |
| // Flags marks this invalid page as not being in new-space. |
| // All real new-space pages will be in new-space. |
| SetFlags(0, ~0); |
| } |
| |
| |
| MemoryChunk* MemoryChunk::Initialize(Heap* heap, |
| Address base, |
| size_t size, |
| Address area_start, |
| Address area_end, |
| Executability executable, |
| Space* owner) { |
| MemoryChunk* chunk = FromAddress(base); |
| |
| ASSERT(base == chunk->address()); |
| |
| chunk->heap_ = heap; |
| chunk->size_ = size; |
| chunk->area_start_ = area_start; |
| chunk->area_end_ = area_end; |
| chunk->flags_ = 0; |
| chunk->set_owner(owner); |
| chunk->InitializeReservedMemory(); |
| chunk->slots_buffer_ = NULL; |
| chunk->skip_list_ = NULL; |
| chunk->ResetLiveBytes(); |
| Bitmap::Clear(chunk); |
| chunk->initialize_scan_on_scavenge(false); |
| chunk->SetFlag(WAS_SWEPT_PRECISELY); |
| |
| ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset); |
| ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset); |
| |
| if (executable == EXECUTABLE) { |
| chunk->SetFlag(IS_EXECUTABLE); |
| } |
| |
| if (owner == heap->old_data_space()) { |
| chunk->SetFlag(CONTAINS_ONLY_DATA); |
| } |
| |
| return chunk; |
| } |
| |
| |
| void MemoryChunk::InsertAfter(MemoryChunk* other) { |
| next_chunk_ = other->next_chunk_; |
| prev_chunk_ = other; |
| other->next_chunk_->prev_chunk_ = this; |
| other->next_chunk_ = this; |
| } |
| |
| |
| void MemoryChunk::Unlink() { |
| if (!InNewSpace() && IsFlagSet(SCAN_ON_SCAVENGE)) { |
| heap_->decrement_scan_on_scavenge_pages(); |
| ClearFlag(SCAN_ON_SCAVENGE); |
| } |
| next_chunk_->prev_chunk_ = prev_chunk_; |
| prev_chunk_->next_chunk_ = next_chunk_; |
| prev_chunk_ = NULL; |
| next_chunk_ = NULL; |
| } |
| |
| |
| MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size, |
| Executability executable, |
| Space* owner) { |
| size_t chunk_size; |
| Heap* heap = isolate_->heap(); |
| Address base = NULL; |
| VirtualMemory reservation; |
| Address area_start = NULL; |
| Address area_end = NULL; |
| if (executable == EXECUTABLE) { |
| chunk_size = RoundUp(CodePageAreaStartOffset() + body_size, |
| OS::CommitPageSize()) + CodePageGuardSize(); |
| |
| // Check executable memory limit. |
| if (size_executable_ + chunk_size > capacity_executable_) { |
| LOG(isolate_, |
| StringEvent("MemoryAllocator::AllocateRawMemory", |
| "V8 Executable Allocation capacity exceeded")); |
| return NULL; |
| } |
| |
| // Allocate executable memory either from code range or from the |
| // OS. |
| if (isolate_->code_range()->exists()) { |
| base = isolate_->code_range()->AllocateRawMemory(chunk_size, &chunk_size); |
| ASSERT(IsAligned(reinterpret_cast<intptr_t>(base), |
| MemoryChunk::kAlignment)); |
| if (base == NULL) return NULL; |
| size_ += chunk_size; |
| // Update executable memory size. |
| size_executable_ += chunk_size; |
| } else { |
| base = AllocateAlignedMemory(chunk_size, |
| MemoryChunk::kAlignment, |
| executable, |
| &reservation); |
| if (base == NULL) return NULL; |
| // Update executable memory size. |
| size_executable_ += reservation.size(); |
| } |
| |
| #ifdef DEBUG |
| ZapBlock(base, CodePageGuardStartOffset()); |
| ZapBlock(base + CodePageAreaStartOffset(), body_size); |
| #endif |
| area_start = base + CodePageAreaStartOffset(); |
| area_end = area_start + body_size; |
| } else { |
| chunk_size = MemoryChunk::kObjectStartOffset + body_size; |
| base = AllocateAlignedMemory(chunk_size, |
| MemoryChunk::kAlignment, |
| executable, |
| &reservation); |
| |
| if (base == NULL) return NULL; |
| |
| #ifdef DEBUG |
| ZapBlock(base, chunk_size); |
| #endif |
| |
| area_start = base + Page::kObjectStartOffset; |
| area_end = base + chunk_size; |
| } |
| |
| isolate_->counters()->memory_allocated()-> |
| Increment(static_cast<int>(chunk_size)); |
| |
| LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size)); |
| if (owner != NULL) { |
| ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity()); |
| PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size); |
| } |
| |
| MemoryChunk* result = MemoryChunk::Initialize(heap, |
| base, |
| chunk_size, |
| area_start, |
| area_end, |
| executable, |
| owner); |
| result->set_reserved_memory(&reservation); |
| return result; |
| } |
| |
| |
| Page* MemoryAllocator::AllocatePage(PagedSpace* owner, |
| Executability executable) { |
| MemoryChunk* chunk = AllocateChunk(owner->AreaSize(), |
| executable, |
| owner); |
| |
| if (chunk == NULL) return NULL; |
| |
| return Page::Initialize(isolate_->heap(), chunk, executable, owner); |
| } |
| |
| |
| LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size, |
| Executability executable, |
| Space* owner) { |
| MemoryChunk* chunk = AllocateChunk(object_size, executable, owner); |
| if (chunk == NULL) return NULL; |
| return LargePage::Initialize(isolate_->heap(), chunk); |
| } |
| |
| |
| void MemoryAllocator::Free(MemoryChunk* chunk) { |
| LOG(isolate_, DeleteEvent("MemoryChunk", chunk)); |
| if (chunk->owner() != NULL) { |
| ObjectSpace space = |
| static_cast<ObjectSpace>(1 << chunk->owner()->identity()); |
| PerformAllocationCallback(space, kAllocationActionFree, chunk->size()); |
| } |
| |
| isolate_->heap()->RememberUnmappedPage( |
| reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate()); |
| |
| delete chunk->slots_buffer(); |
| delete chunk->skip_list(); |
| |
| VirtualMemory* reservation = chunk->reserved_memory(); |
| if (reservation->IsReserved()) { |
| FreeMemory(reservation, chunk->executable()); |
| } else { |
| FreeMemory(chunk->address(), |
| chunk->size(), |
| chunk->executable()); |
| } |
| } |
| |
| |
| bool MemoryAllocator::CommitBlock(Address start, |
| size_t size, |
| Executability executable) { |
| if (!VirtualMemory::CommitRegion(start, size, executable)) return false; |
| #ifdef DEBUG |
| ZapBlock(start, size); |
| #endif |
| isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size)); |
| return true; |
| } |
| |
| |
| bool MemoryAllocator::UncommitBlock(Address start, size_t size) { |
| if (!VirtualMemory::UncommitRegion(start, size)) return false; |
| isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); |
| return true; |
| } |
| |
| |
| void MemoryAllocator::ZapBlock(Address start, size_t size) { |
| for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) { |
| Memory::Address_at(start + s) = kZapValue; |
| } |
| } |
| |
| |
| void MemoryAllocator::PerformAllocationCallback(ObjectSpace space, |
| AllocationAction action, |
| size_t size) { |
| for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { |
| MemoryAllocationCallbackRegistration registration = |
| memory_allocation_callbacks_[i]; |
| if ((registration.space & space) == space && |
| (registration.action & action) == action) |
| registration.callback(space, action, static_cast<int>(size)); |
| } |
| } |
| |
| |
| bool MemoryAllocator::MemoryAllocationCallbackRegistered( |
| MemoryAllocationCallback callback) { |
| for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { |
| if (memory_allocation_callbacks_[i].callback == callback) return true; |
| } |
| return false; |
| } |
| |
| |
| void MemoryAllocator::AddMemoryAllocationCallback( |
| MemoryAllocationCallback callback, |
| ObjectSpace space, |
| AllocationAction action) { |
| ASSERT(callback != NULL); |
| MemoryAllocationCallbackRegistration registration(callback, space, action); |
| ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback)); |
| return memory_allocation_callbacks_.Add(registration); |
| } |
| |
| |
| void MemoryAllocator::RemoveMemoryAllocationCallback( |
| MemoryAllocationCallback callback) { |
| ASSERT(callback != NULL); |
| for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { |
| if (memory_allocation_callbacks_[i].callback == callback) { |
| memory_allocation_callbacks_.Remove(i); |
| return; |
| } |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| #ifdef DEBUG |
| void MemoryAllocator::ReportStatistics() { |
| float pct = static_cast<float>(capacity_ - size_) / capacity_; |
| PrintF(" capacity: %" V8_PTR_PREFIX "d" |
| ", used: %" V8_PTR_PREFIX "d" |
| ", available: %%%d\n\n", |
| capacity_, size_, static_cast<int>(pct*100)); |
| } |
| #endif |
| |
| |
| int MemoryAllocator::CodePageGuardStartOffset() { |
| // We are guarding code pages: the first OS page after the header |
| // will be protected as non-writable. |
| return RoundUp(Page::kObjectStartOffset, OS::CommitPageSize()); |
| } |
| |
| |
| int MemoryAllocator::CodePageGuardSize() { |
| return static_cast<int>(OS::CommitPageSize()); |
| } |
| |
| |
| int MemoryAllocator::CodePageAreaStartOffset() { |
| // We are guarding code pages: the first OS page after the header |
| // will be protected as non-writable. |
| return CodePageGuardStartOffset() + CodePageGuardSize(); |
| } |
| |
| |
| int MemoryAllocator::CodePageAreaEndOffset() { |
| // We are guarding code pages: the last OS page will be protected as |
| // non-writable. |
| return Page::kPageSize - static_cast<int>(OS::CommitPageSize()); |
| } |
| |
| |
| bool MemoryAllocator::CommitCodePage(VirtualMemory* vm, |
| Address start, |
| size_t size) { |
| // Commit page header (not executable). |
| if (!vm->Commit(start, |
| CodePageGuardStartOffset(), |
| false)) { |
| return false; |
| } |
| |
| // Create guard page after the header. |
| if (!vm->Guard(start + CodePageGuardStartOffset())) { |
| return false; |
| } |
| |
| // Commit page body (executable). |
| size_t area_size = size - CodePageAreaStartOffset() - CodePageGuardSize(); |
| if (!vm->Commit(start + CodePageAreaStartOffset(), |
| area_size, |
| true)) { |
| return false; |
| } |
| |
| // Create guard page after the allocatable area. |
| if (!vm->Guard(start + CodePageAreaStartOffset() + area_size)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // MemoryChunk implementation |
| |
| void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) { |
| MemoryChunk* chunk = MemoryChunk::FromAddress(address); |
| if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->WasSwept()) { |
| static_cast<PagedSpace*>(chunk->owner())->IncrementUnsweptFreeBytes(-by); |
| } |
| chunk->IncrementLiveBytes(by); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // PagedSpace implementation |
| |
| PagedSpace::PagedSpace(Heap* heap, |
| intptr_t max_capacity, |
| AllocationSpace id, |
| Executability executable) |
| : Space(heap, id, executable), |
| free_list_(this), |
| was_swept_conservatively_(false), |
| first_unswept_page_(Page::FromAddress(NULL)), |
| unswept_free_bytes_(0) { |
| if (id == CODE_SPACE) { |
| area_size_ = heap->isolate()->memory_allocator()-> |
| CodePageAreaSize(); |
| } else { |
| area_size_ = Page::kPageSize - Page::kObjectStartOffset; |
| } |
| max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize) |
| * AreaSize(); |
| accounting_stats_.Clear(); |
| |
| allocation_info_.top = NULL; |
| allocation_info_.limit = NULL; |
| |
| anchor_.InitializeAsAnchor(this); |
| } |
| |
| |
| bool PagedSpace::SetUp() { |
| return true; |
| } |
| |
| |
| bool PagedSpace::HasBeenSetUp() { |
| return true; |
| } |
| |
| |
| void PagedSpace::TearDown() { |
| PageIterator iterator(this); |
| while (iterator.has_next()) { |
| heap()->isolate()->memory_allocator()->Free(iterator.next()); |
| } |
| anchor_.set_next_page(&anchor_); |
| anchor_.set_prev_page(&anchor_); |
| accounting_stats_.Clear(); |
| } |
| |
| |
| MaybeObject* PagedSpace::FindObject(Address addr) { |
| // Note: this function can only be called on precisely swept spaces. |
| ASSERT(!heap()->mark_compact_collector()->in_use()); |
| |
| if (!Contains(addr)) return Failure::Exception(); |
| |
| Page* p = Page::FromAddress(addr); |
| HeapObjectIterator it(p, NULL); |
| for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { |
| Address cur = obj->address(); |
| Address next = cur + obj->Size(); |
| if ((cur <= addr) && (addr < next)) return obj; |
| } |
| |
| UNREACHABLE(); |
| return Failure::Exception(); |
| } |
| |
| bool PagedSpace::CanExpand() { |
| ASSERT(max_capacity_ % AreaSize() == 0); |
| ASSERT(Capacity() % AreaSize() == 0); |
| |
| if (Capacity() == max_capacity_) return false; |
| |
| ASSERT(Capacity() < max_capacity_); |
| |
| // Are we going to exceed capacity for this space? |
| if ((Capacity() + Page::kPageSize) > max_capacity_) return false; |
| |
| return true; |
| } |
| |
| bool PagedSpace::Expand() { |
| if (!CanExpand()) return false; |
| |
| Page* p = heap()->isolate()->memory_allocator()-> |
| AllocatePage(this, executable()); |
| if (p == NULL) return false; |
| |
| ASSERT(Capacity() <= max_capacity_); |
| |
| p->InsertAfter(anchor_.prev_page()); |
| |
| return true; |
| } |
| |
| |
| int PagedSpace::CountTotalPages() { |
| PageIterator it(this); |
| int count = 0; |
| while (it.has_next()) { |
| it.next(); |
| count++; |
| } |
| return count; |
| } |
| |
| |
| void PagedSpace::ReleasePage(Page* page) { |
| ASSERT(page->LiveBytes() == 0); |
| ASSERT(AreaSize() == page->area_size()); |
| |
| // Adjust list of unswept pages if the page is the head of the list. |
| if (first_unswept_page_ == page) { |
| first_unswept_page_ = page->next_page(); |
| if (first_unswept_page_ == anchor()) { |
| first_unswept_page_ = Page::FromAddress(NULL); |
| } |
| } |
| |
| if (page->WasSwept()) { |
| intptr_t size = free_list_.EvictFreeListItems(page); |
| accounting_stats_.AllocateBytes(size); |
| ASSERT_EQ(AreaSize(), static_cast<int>(size)); |
| } else { |
| DecreaseUnsweptFreeBytes(page); |
| } |
| |
| if (Page::FromAllocationTop(allocation_info_.top) == page) { |
| allocation_info_.top = allocation_info_.limit = NULL; |
| } |
| |
| page->Unlink(); |
| if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) { |
| heap()->isolate()->memory_allocator()->Free(page); |
| } else { |
| heap()->QueueMemoryChunkForFree(page); |
| } |
| |
| ASSERT(Capacity() > 0); |
| ASSERT(Capacity() % AreaSize() == 0); |
| accounting_stats_.ShrinkSpace(AreaSize()); |
| } |
| |
| |
| void PagedSpace::ReleaseAllUnusedPages() { |
| PageIterator it(this); |
| while (it.has_next()) { |
| Page* page = it.next(); |
| if (!page->WasSwept()) { |
| if (page->LiveBytes() == 0) ReleasePage(page); |
| } else { |
| HeapObject* obj = HeapObject::FromAddress(page->area_start()); |
| if (obj->IsFreeSpace() && |
| FreeSpace::cast(obj)->size() == AreaSize()) { |
| // Sometimes we allocate memory from free list but don't |
| // immediately initialize it (e.g. see PagedSpace::ReserveSpace |
| // called from Heap::ReserveSpace that can cause GC before |
| // reserved space is actually initialized). |
| // Thus we can't simply assume that obj represents a valid |
| // node still owned by a free list |
| // Instead we should verify that the page is fully covered |
| // by free list items. |
| FreeList::SizeStats sizes; |
| free_list_.CountFreeListItems(page, &sizes); |
| if (sizes.Total() == AreaSize()) { |
| ReleasePage(page); |
| } |
| } |
| } |
| } |
| heap()->FreeQueuedChunks(); |
| } |
| |
| |
| #ifdef DEBUG |
| void PagedSpace::Print() { } |
| #endif |
| |
| |
| #ifdef DEBUG |
| void PagedSpace::Verify(ObjectVisitor* visitor) { |
| // We can only iterate over the pages if they were swept precisely. |
| if (was_swept_conservatively_) return; |
| |
| bool allocation_pointer_found_in_space = |
| (allocation_info_.top == allocation_info_.limit); |
| PageIterator page_iterator(this); |
| while (page_iterator.has_next()) { |
| Page* page = page_iterator.next(); |
| ASSERT(page->owner() == this); |
| if (page == Page::FromAllocationTop(allocation_info_.top)) { |
| allocation_pointer_found_in_space = true; |
| } |
| ASSERT(page->WasSweptPrecisely()); |
| HeapObjectIterator it(page, NULL); |
| Address end_of_previous_object = page->area_start(); |
| Address top = page->area_end(); |
| int black_size = 0; |
| for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { |
| ASSERT(end_of_previous_object <= object->address()); |
| |
| // The first word should be a map, and we expect all map pointers to |
| // be in map space. |
| Map* map = object->map(); |
| ASSERT(map->IsMap()); |
| ASSERT(heap()->map_space()->Contains(map)); |
| |
| // Perform space-specific object verification. |
| VerifyObject(object); |
| |
| // The object itself should look OK. |
| object->Verify(); |
| |
| // All the interior pointers should be contained in the heap. |
| int size = object->Size(); |
| object->IterateBody(map->instance_type(), size, visitor); |
| if (Marking::IsBlack(Marking::MarkBitFrom(object))) { |
| black_size += size; |
| } |
| |
| ASSERT(object->address() + size <= top); |
| end_of_previous_object = object->address() + size; |
| } |
| ASSERT_LE(black_size, page->LiveBytes()); |
| } |
| ASSERT(allocation_pointer_found_in_space); |
| } |
| #endif |
| |
| |
| // ----------------------------------------------------------------------------- |
| // NewSpace implementation |
| |
| |
| bool NewSpace::SetUp(int reserved_semispace_capacity, |
| int maximum_semispace_capacity) { |
| // Set up new space based on the preallocated memory block defined by |
| // start and size. The provided space is divided into two semi-spaces. |
| // To support fast containment testing in the new space, the size of |
| // this chunk must be a power of two and it must be aligned to its size. |
| int initial_semispace_capacity = heap()->InitialSemiSpaceSize(); |
| |
| size_t size = 2 * reserved_semispace_capacity; |
| Address base = |
| heap()->isolate()->memory_allocator()->ReserveAlignedMemory( |
| size, size, &reservation_); |
| if (base == NULL) return false; |
| |
| chunk_base_ = base; |
| chunk_size_ = static_cast<uintptr_t>(size); |
| LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_)); |
| |
| ASSERT(initial_semispace_capacity <= maximum_semispace_capacity); |
| ASSERT(IsPowerOf2(maximum_semispace_capacity)); |
| |
| // Allocate and set up the histogram arrays if necessary. |
| allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); |
| promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); |
| |
| #define SET_NAME(name) allocated_histogram_[name].set_name(#name); \ |
| promoted_histogram_[name].set_name(#name); |
| INSTANCE_TYPE_LIST(SET_NAME) |
| #undef SET_NAME |
| |
| ASSERT(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize()); |
| ASSERT(static_cast<intptr_t>(chunk_size_) >= |
| 2 * heap()->ReservedSemiSpaceSize()); |
| ASSERT(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0)); |
| |
| to_space_.SetUp(chunk_base_, |
| initial_semispace_capacity, |
| maximum_semispace_capacity); |
| from_space_.SetUp(chunk_base_ + reserved_semispace_capacity, |
| initial_semispace_capacity, |
| maximum_semispace_capacity); |
| if (!to_space_.Commit()) { |
| return false; |
| } |
| |
| start_ = chunk_base_; |
| address_mask_ = ~(2 * reserved_semispace_capacity - 1); |
| object_mask_ = address_mask_ | kHeapObjectTagMask; |
| object_expected_ = reinterpret_cast<uintptr_t>(start_) | kHeapObjectTag; |
| |
| ResetAllocationInfo(); |
| |
| return true; |
| } |
| |
| |
| void NewSpace::TearDown() { |
| if (allocated_histogram_) { |
| DeleteArray(allocated_histogram_); |
| allocated_histogram_ = NULL; |
| } |
| if (promoted_histogram_) { |
| DeleteArray(promoted_histogram_); |
| promoted_histogram_ = NULL; |
| } |
| |
| start_ = NULL; |
| allocation_info_.top = NULL; |
| allocation_info_.limit = NULL; |
| |
| to_space_.TearDown(); |
| from_space_.TearDown(); |
| |
| LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_)); |
| |
| ASSERT(reservation_.IsReserved()); |
| heap()->isolate()->memory_allocator()->FreeMemory(&reservation_, |
| NOT_EXECUTABLE); |
| chunk_base_ = NULL; |
| chunk_size_ = 0; |
| } |
| |
| |
| void NewSpace::Flip() { |
| SemiSpace::Swap(&from_space_, &to_space_); |
| } |
| |
| |
| void NewSpace::Grow() { |
| // Double the semispace size but only up to maximum capacity. |
| ASSERT(Capacity() < MaximumCapacity()); |
| int new_capacity = Min(MaximumCapacity(), 2 * static_cast<int>(Capacity())); |
| if (to_space_.GrowTo(new_capacity)) { |
| // Only grow from space if we managed to grow to-space. |
| if (!from_space_.GrowTo(new_capacity)) { |
| // If we managed to grow to-space but couldn't grow from-space, |
| // attempt to shrink to-space. |
| if (!to_space_.ShrinkTo(from_space_.Capacity())) { |
| // We are in an inconsistent state because we could not |
| // commit/uncommit memory from new space. |
| V8::FatalProcessOutOfMemory("Failed to grow new space."); |
| } |
| } |
| } |
| ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| } |
| |
| |
| void NewSpace::Shrink() { |
| int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt()); |
| int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize); |
| if (rounded_new_capacity < Capacity() && |
| to_space_.ShrinkTo(rounded_new_capacity)) { |
| // Only shrink from-space if we managed to shrink to-space. |
| from_space_.Reset(); |
| if (!from_space_.ShrinkTo(rounded_new_capacity)) { |
| // If we managed to shrink to-space but couldn't shrink from |
| // space, attempt to grow to-space again. |
| if (!to_space_.GrowTo(from_space_.Capacity())) { |
| // We are in an inconsistent state because we could not |
| // commit/uncommit memory from new space. |
| V8::FatalProcessOutOfMemory("Failed to shrink new space."); |
| } |
| } |
| } |
| allocation_info_.limit = to_space_.page_high(); |
| ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| } |
| |
| |
| void NewSpace::UpdateAllocationInfo() { |
| allocation_info_.top = to_space_.page_low(); |
| allocation_info_.limit = to_space_.page_high(); |
| |
| // Lower limit during incremental marking. |
| if (heap()->incremental_marking()->IsMarking() && |
| inline_allocation_limit_step() != 0) { |
| Address new_limit = |
| allocation_info_.top + inline_allocation_limit_step(); |
| allocation_info_.limit = Min(new_limit, allocation_info_.limit); |
| } |
| ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| } |
| |
| |
| void NewSpace::ResetAllocationInfo() { |
| to_space_.Reset(); |
| UpdateAllocationInfo(); |
| pages_used_ = 0; |
| // Clear all mark-bits in the to-space. |
| NewSpacePageIterator it(&to_space_); |
| while (it.has_next()) { |
| Bitmap::Clear(it.next()); |
| } |
| } |
| |
| |
| bool NewSpace::AddFreshPage() { |
| Address top = allocation_info_.top; |
| if (NewSpacePage::IsAtStart(top)) { |
| // The current page is already empty. Don't try to make another. |
| |
| // We should only get here if someone asks to allocate more |
| // than what can be stored in a single page. |
| // TODO(gc): Change the limit on new-space allocation to prevent this |
| // from happening (all such allocations should go directly to LOSpace). |
| return false; |
| } |
| if (!to_space_.AdvancePage()) { |
| // Failed to get a new page in to-space. |
| return false; |
| } |
| |
| // Clear remainder of current page. |
| Address limit = NewSpacePage::FromLimit(top)->area_end(); |
| if (heap()->gc_state() == Heap::SCAVENGE) { |
| heap()->promotion_queue()->SetNewLimit(limit); |
| heap()->promotion_queue()->ActivateGuardIfOnTheSamePage(); |
| } |
| |
| int remaining_in_page = static_cast<int>(limit - top); |
| heap()->CreateFillerObjectAt(top, remaining_in_page); |
| pages_used_++; |
| UpdateAllocationInfo(); |
| |
| return true; |
| } |
| |
| |
| MaybeObject* NewSpace::SlowAllocateRaw(int size_in_bytes) { |
| Address old_top = allocation_info_.top; |
| Address new_top = old_top + size_in_bytes; |
| Address high = to_space_.page_high(); |
| if (allocation_info_.limit < high) { |
| // Incremental marking has lowered the limit to get a |
| // chance to do a step. |
| allocation_info_.limit = Min( |
| allocation_info_.limit + inline_allocation_limit_step_, |
| high); |
| int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_); |
| heap()->incremental_marking()->Step( |
| bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); |
| top_on_previous_step_ = new_top; |
| return AllocateRaw(size_in_bytes); |
| } else if (AddFreshPage()) { |
| // Switched to new page. Try allocating again. |
| int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_); |
| heap()->incremental_marking()->Step( |
| bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); |
| top_on_previous_step_ = to_space_.page_low(); |
| return AllocateRaw(size_in_bytes); |
| } else { |
| return Failure::RetryAfterGC(); |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| // We do not use the SemiSpaceIterator because verification doesn't assume |
| // that it works (it depends on the invariants we are checking). |
| void NewSpace::Verify() { |
| // The allocation pointer should be in the space or at the very end. |
| ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| |
| // There should be objects packed in from the low address up to the |
| // allocation pointer. |
| Address current = to_space_.first_page()->area_start(); |
| CHECK_EQ(current, to_space_.space_start()); |
| |
| while (current != top()) { |
| if (!NewSpacePage::IsAtEnd(current)) { |
| // The allocation pointer should not be in the middle of an object. |
| CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) || |
| current < top()); |
| |
| HeapObject* object = HeapObject::FromAddress(current); |
| |
| // The first word should be a map, and we expect all map pointers to |
| // be in map space. |
| Map* map = object->map(); |
| CHECK(map->IsMap()); |
| CHECK(heap()->map_space()->Contains(map)); |
| |
| // The object should not be code or a map. |
| CHECK(!object->IsMap()); |
| CHECK(!object->IsCode()); |
| |
| // The object itself should look OK. |
| object->Verify(); |
| |
| // All the interior pointers should be contained in the heap. |
| VerifyPointersVisitor visitor; |
| int size = object->Size(); |
| object->IterateBody(map->instance_type(), size, &visitor); |
| |
| current += size; |
| } else { |
| // At end of page, switch to next page. |
| NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page(); |
| // Next page should be valid. |
| CHECK(!page->is_anchor()); |
| current = page->area_start(); |
| } |
| } |
| |
| // Check semi-spaces. |
| ASSERT_EQ(from_space_.id(), kFromSpace); |
| ASSERT_EQ(to_space_.id(), kToSpace); |
| from_space_.Verify(); |
| to_space_.Verify(); |
| } |
| #endif |
| |
| // ----------------------------------------------------------------------------- |
| // SemiSpace implementation |
| |
| void SemiSpace::SetUp(Address start, |
| int initial_capacity, |
| int maximum_capacity) { |
| // Creates a space in the young generation. The constructor does not |
| // allocate memory from the OS. A SemiSpace is given a contiguous chunk of |
| // memory of size 'capacity' when set up, and does not grow or shrink |
| // otherwise. In the mark-compact collector, the memory region of the from |
| // space is used as the marking stack. It requires contiguous memory |
| // addresses. |
| ASSERT(maximum_capacity >= Page::kPageSize); |
| initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize); |
| capacity_ = initial_capacity; |
| maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize); |
| committed_ = false; |
| start_ = start; |
| address_mask_ = ~(maximum_capacity - 1); |
| object_mask_ = address_mask_ | kHeapObjectTagMask; |
| object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; |
| age_mark_ = start_; |
| } |
| |
| |
| void SemiSpace::TearDown() { |
| start_ = NULL; |
| capacity_ = 0; |
| } |
| |
| |
| bool SemiSpace::Commit() { |
| ASSERT(!is_committed()); |
| int pages = capacity_ / Page::kPageSize; |
| Address end = start_ + maximum_capacity_; |
| Address start = end - pages * Page::kPageSize; |
| if (!heap()->isolate()->memory_allocator()->CommitBlock(start, |
| capacity_, |
| executable())) { |
| return false; |
| } |
| |
| NewSpacePage* page = anchor(); |
| for (int i = 1; i <= pages; i++) { |
| NewSpacePage* new_page = |
| NewSpacePage::Initialize(heap(), end - i * Page::kPageSize, this); |
| new_page->InsertAfter(page); |
| page = new_page; |
| } |
| |
| committed_ = true; |
| Reset(); |
| return true; |
| } |
| |
| |
| bool SemiSpace::Uncommit() { |
| ASSERT(is_committed()); |
| Address start = start_ + maximum_capacity_ - capacity_; |
| if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) { |
| return false; |
| } |
| anchor()->set_next_page(anchor()); |
| anchor()->set_prev_page(anchor()); |
| |
| committed_ = false; |
| return true; |
| } |
| |
| |
| bool SemiSpace::GrowTo(int new_capacity) { |
| if (!is_committed()) { |
| if (!Commit()) return false; |
| } |
| ASSERT((new_capacity & Page::kPageAlignmentMask) == 0); |
| ASSERT(new_capacity <= maximum_capacity_); |
| ASSERT(new_capacity > capacity_); |
| int pages_before = capacity_ / Page::kPageSize; |
| int pages_after = new_capacity / Page::kPageSize; |
| |
| Address end = start_ + maximum_capacity_; |
| Address start = end - new_capacity; |
| size_t delta = new_capacity - capacity_; |
| |
| ASSERT(IsAligned(delta, OS::AllocateAlignment())); |
| if (!heap()->isolate()->memory_allocator()->CommitBlock( |
| start, delta, executable())) { |
| return false; |
| } |
| capacity_ = new_capacity; |
| NewSpacePage* last_page = anchor()->prev_page(); |
| ASSERT(last_page != anchor()); |
| for (int i = pages_before + 1; i <= pages_after; i++) { |
| Address page_address = end - i * Page::kPageSize; |
| NewSpacePage* new_page = NewSpacePage::Initialize(heap(), |
| page_address, |
| this); |
| new_page->InsertAfter(last_page); |
| Bitmap::Clear(new_page); |
| // Duplicate the flags that was set on the old page. |
| new_page->SetFlags(last_page->GetFlags(), |
| NewSpacePage::kCopyOnFlipFlagsMask); |
| last_page = new_page; |
| } |
| return true; |
| } |
| |
| |
| bool SemiSpace::ShrinkTo(int new_capacity) { |
| ASSERT((new_capacity & Page::kPageAlignmentMask) == 0); |
| ASSERT(new_capacity >= initial_capacity_); |
| ASSERT(new_capacity < capacity_); |
| if (is_committed()) { |
| // Semispaces grow backwards from the end of their allocated capacity, |
| // so we find the before and after start addresses relative to the |
| // end of the space. |
| Address space_end = start_ + maximum_capacity_; |
| Address old_start = space_end - capacity_; |
| size_t delta = capacity_ - new_capacity; |
| ASSERT(IsAligned(delta, OS::AllocateAlignment())); |
| |
| MemoryAllocator* allocator = heap()->isolate()->memory_allocator(); |
| if (!allocator->UncommitBlock(old_start, delta)) { |
| return false; |
| } |
| |
| int pages_after = new_capacity / Page::kPageSize; |
| NewSpacePage* new_last_page = |
| NewSpacePage::FromAddress(space_end - pages_after * Page::kPageSize); |
| new_last_page->set_next_page(anchor()); |
| anchor()->set_prev_page(new_last_page); |
| ASSERT((current_page_ <= first_page()) && (current_page_ >= new_last_page)); |
| } |
| |
| capacity_ = new_capacity; |
| |
| return true; |
| } |
| |
| |
| void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) { |
| anchor_.set_owner(this); |
| // Fixup back-pointers to anchor. Address of anchor changes |
| // when we swap. |
| anchor_.prev_page()->set_next_page(&anchor_); |
| anchor_.next_page()->set_prev_page(&anchor_); |
| |
| bool becomes_to_space = (id_ == kFromSpace); |
| id_ = becomes_to_space ? kToSpace : kFromSpace; |
| NewSpacePage* page = anchor_.next_page(); |
| while (page != &anchor_) { |
| page->set_owner(this); |
| page->SetFlags(flags, mask); |
| if (becomes_to_space) { |
| page->ClearFlag(MemoryChunk::IN_FROM_SPACE); |
| page->SetFlag(MemoryChunk::IN_TO_SPACE); |
| page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); |
| page->ResetLiveBytes(); |
| } else { |
| page->SetFlag(MemoryChunk::IN_FROM_SPACE); |
| page->ClearFlag(MemoryChunk::IN_TO_SPACE); |
| } |
| ASSERT(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); |
| ASSERT(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) || |
| page->IsFlagSet(MemoryChunk::IN_FROM_SPACE)); |
| page = page->next_page(); |
| } |
| } |
| |
| |
| void SemiSpace::Reset() { |
| ASSERT(anchor_.next_page() != &anchor_); |
| current_page_ = anchor_.next_page(); |
| } |
| |
| |
| void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) { |
| // We won't be swapping semispaces without data in them. |
| ASSERT(from->anchor_.next_page() != &from->anchor_); |
| ASSERT(to->anchor_.next_page() != &to->anchor_); |
| |
| // Swap bits. |
| SemiSpace tmp = *from; |
| *from = *to; |
| *to = tmp; |
| |
| // Fixup back-pointers to the page list anchor now that its address |
| // has changed. |
| // Swap to/from-space bits on pages. |
| // Copy GC flags from old active space (from-space) to new (to-space). |
| intptr_t flags = from->current_page()->GetFlags(); |
| to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask); |
| |
| from->FlipPages(0, 0); |
| } |
| |
| |
| void SemiSpace::set_age_mark(Address mark) { |
| ASSERT(NewSpacePage::FromLimit(mark)->semi_space() == this); |
| age_mark_ = mark; |
| // Mark all pages up to the one containing mark. |
| NewSpacePageIterator it(space_start(), mark); |
| while (it.has_next()) { |
| it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| void SemiSpace::Print() { } |
| |
| |
| void SemiSpace::Verify() { |
| bool is_from_space = (id_ == kFromSpace); |
| NewSpacePage* page = anchor_.next_page(); |
| CHECK(anchor_.semi_space() == this); |
| while (page != &anchor_) { |
| CHECK(page->semi_space() == this); |
| CHECK(page->InNewSpace()); |
| CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE |
| : MemoryChunk::IN_TO_SPACE)); |
| CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE |
| : MemoryChunk::IN_FROM_SPACE)); |
| CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING)); |
| if (!is_from_space) { |
| // The pointers-from-here-are-interesting flag isn't updated dynamically |
| // on from-space pages, so it might be out of sync with the marking state. |
| if (page->heap()->incremental_marking()->IsMarking()) { |
| CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); |
| } else { |
| CHECK(!page->IsFlagSet( |
| MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); |
| } |
| // TODO(gc): Check that the live_bytes_count_ field matches the |
| // black marking on the page (if we make it match in new-space). |
| } |
| CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); |
| CHECK(page->prev_page()->next_page() == page); |
| page = page->next_page(); |
| } |
| } |
| |
| |
| void SemiSpace::AssertValidRange(Address start, Address end) { |
| // Addresses belong to same semi-space |
| NewSpacePage* page = NewSpacePage::FromLimit(start); |
| NewSpacePage* end_page = NewSpacePage::FromLimit(end); |
| SemiSpace* space = page->semi_space(); |
| CHECK_EQ(space, end_page->semi_space()); |
| // Start address is before end address, either on same page, |
| // or end address is on a later page in the linked list of |
| // semi-space pages. |
| if (page == end_page) { |
| CHECK(start <= end); |
| } else { |
| while (page != end_page) { |
| page = page->next_page(); |
| CHECK_NE(page, space->anchor()); |
| } |
| } |
| } |
| #endif |
| |
| |
| // ----------------------------------------------------------------------------- |
| // SemiSpaceIterator implementation. |
| SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { |
| Initialize(space->bottom(), space->top(), NULL); |
| } |
| |
| |
| SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, |
| HeapObjectCallback size_func) { |
| Initialize(space->bottom(), space->top(), size_func); |
| } |
| |
| |
| SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) { |
| Initialize(start, space->top(), NULL); |
| } |
| |
| |
| SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) { |
| Initialize(from, to, NULL); |
| } |
| |
| |
| void SemiSpaceIterator::Initialize(Address start, |
| Address end, |
| HeapObjectCallback size_func) { |
| SemiSpace::AssertValidRange(start, end); |
| current_ = start; |
| limit_ = end; |
| size_func_ = size_func; |
| } |
| |
| |
| #ifdef DEBUG |
| // heap_histograms is shared, always clear it before using it. |
| static void ClearHistograms() { |
| Isolate* isolate = Isolate::Current(); |
| // We reset the name each time, though it hasn't changed. |
| #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name); |
| INSTANCE_TYPE_LIST(DEF_TYPE_NAME) |
| #undef DEF_TYPE_NAME |
| |
| #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear(); |
| INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) |
| #undef CLEAR_HISTOGRAM |
| |
| isolate->js_spill_information()->Clear(); |
| } |
| |
| |
| static void ClearCodeKindStatistics() { |
| Isolate* isolate = Isolate::Current(); |
| for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { |
| isolate->code_kind_statistics()[i] = 0; |
| } |
| } |
| |
| |
| static void ReportCodeKindStatistics() { |
| Isolate* isolate = Isolate::Current(); |
| const char* table[Code::NUMBER_OF_KINDS] = { NULL }; |
| |
| #define CASE(name) \ |
| case Code::name: table[Code::name] = #name; \ |
| break |
| |
| for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { |
| switch (static_cast<Code::Kind>(i)) { |
| CASE(FUNCTION); |
| CASE(OPTIMIZED_FUNCTION); |
| CASE(STUB); |
| CASE(BUILTIN); |
| CASE(LOAD_IC); |
| CASE(KEYED_LOAD_IC); |
| CASE(STORE_IC); |
| CASE(KEYED_STORE_IC); |
| CASE(CALL_IC); |
| CASE(KEYED_CALL_IC); |
| CASE(UNARY_OP_IC); |
| CASE(BINARY_OP_IC); |
| CASE(COMPARE_IC); |
| CASE(TO_BOOLEAN_IC); |
| } |
| } |
| |
| #undef CASE |
| |
| PrintF("\n Code kind histograms: \n"); |
| for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { |
| if (isolate->code_kind_statistics()[i] > 0) { |
| PrintF(" %-20s: %10d bytes\n", table[i], |
| isolate->code_kind_statistics()[i]); |
| } |
| } |
| PrintF("\n"); |
| } |
| |
| |
| static int CollectHistogramInfo(HeapObject* obj) { |
| Isolate* isolate = Isolate::Current(); |
| InstanceType type = obj->map()->instance_type(); |
| ASSERT(0 <= type && type <= LAST_TYPE); |
| ASSERT(isolate->heap_histograms()[type].name() != NULL); |
| isolate->heap_histograms()[type].increment_number(1); |
| isolate->heap_histograms()[type].increment_bytes(obj->Size()); |
| |
| if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { |
| JSObject::cast(obj)->IncrementSpillStatistics( |
| isolate->js_spill_information()); |
| } |
| |
| return obj->Size(); |
| } |
| |
| |
| static void ReportHistogram(bool print_spill) { |
| Isolate* isolate = Isolate::Current(); |
| PrintF("\n Object Histogram:\n"); |
| for (int i = 0; i <= LAST_TYPE; i++) { |
| if (isolate->heap_histograms()[i].number() > 0) { |
| PrintF(" %-34s%10d (%10d bytes)\n", |
| isolate->heap_histograms()[i].name(), |
| isolate->heap_histograms()[i].number(), |
| isolate->heap_histograms()[i].bytes()); |
| } |
| } |
| PrintF("\n"); |
| |
| // Summarize string types. |
| int string_number = 0; |
| int string_bytes = 0; |
| #define INCREMENT(type, size, name, camel_name) \ |
| string_number += isolate->heap_histograms()[type].number(); \ |
| string_bytes += isolate->heap_histograms()[type].bytes(); |
| STRING_TYPE_LIST(INCREMENT) |
| #undef INCREMENT |
| if (string_number > 0) { |
| PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, |
| string_bytes); |
| } |
| |
| if (FLAG_collect_heap_spill_statistics && print_spill) { |
| isolate->js_spill_information()->Print(); |
| } |
| } |
| #endif // DEBUG |
| |
| |
| // Support for statistics gathering for --heap-stats and --log-gc. |
| void NewSpace::ClearHistograms() { |
| for (int i = 0; i <= LAST_TYPE; i++) { |
| allocated_histogram_[i].clear(); |
| promoted_histogram_[i].clear(); |
| } |
| } |
| |
| // Because the copying collector does not touch garbage objects, we iterate |
| // the new space before a collection to get a histogram of allocated objects. |
| // This only happens when --log-gc flag is set. |
| void NewSpace::CollectStatistics() { |
| ClearHistograms(); |
| SemiSpaceIterator it(this); |
| for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) |
| RecordAllocation(obj); |
| } |
| |
| |
| static void DoReportStatistics(Isolate* isolate, |
| HistogramInfo* info, const char* description) { |
| LOG(isolate, HeapSampleBeginEvent("NewSpace", description)); |
| // Lump all the string types together. |
| int string_number = 0; |
| int string_bytes = 0; |
| #define INCREMENT(type, size, name, camel_name) \ |
| string_number += info[type].number(); \ |
| string_bytes += info[type].bytes(); |
| STRING_TYPE_LIST(INCREMENT) |
| #undef INCREMENT |
| if (string_number > 0) { |
| LOG(isolate, |
| HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); |
| } |
| |
| // Then do the other types. |
| for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { |
| if (info[i].number() > 0) { |
| LOG(isolate, |
| HeapSampleItemEvent(info[i].name(), info[i].number(), |
| info[i].bytes())); |
| } |
| } |
| LOG(isolate, HeapSampleEndEvent("NewSpace", description)); |
| } |
| |
| |
| void NewSpace::ReportStatistics() { |
| #ifdef DEBUG |
| if (FLAG_heap_stats) { |
| float pct = static_cast<float>(Available()) / Capacity(); |
| PrintF(" capacity: %" V8_PTR_PREFIX "d" |
| ", available: %" V8_PTR_PREFIX "d, %%%d\n", |
| Capacity(), Available(), static_cast<int>(pct*100)); |
| PrintF("\n Object Histogram:\n"); |
| for (int i = 0; i <= LAST_TYPE; i++) { |
| if (allocated_histogram_[i].number() > 0) { |
| PrintF(" %-34s%10d (%10d bytes)\n", |
| allocated_histogram_[i].name(), |
| allocated_histogram_[i].number(), |
| allocated_histogram_[i].bytes()); |
| } |
| } |
| PrintF("\n"); |
| } |
| #endif // DEBUG |
| |
| if (FLAG_log_gc) { |
| Isolate* isolate = ISOLATE; |
| DoReportStatistics(isolate, allocated_histogram_, "allocated"); |
| DoReportStatistics(isolate, promoted_histogram_, "promoted"); |
| } |
| } |
| |
| |
| void NewSpace::RecordAllocation(HeapObject* obj) { |
| InstanceType type = obj->map()->instance_type(); |
| ASSERT(0 <= type && type <= LAST_TYPE); |
| allocated_histogram_[type].increment_number(1); |
| allocated_histogram_[type].increment_bytes(obj->Size()); |
| } |
| |
| |
| void NewSpace::RecordPromotion(HeapObject* obj) { |
| InstanceType type = obj->map()->instance_type(); |
| ASSERT(0 <= type && type <= LAST_TYPE); |
| promoted_histogram_[type].increment_number(1); |
| promoted_histogram_[type].increment_bytes(obj->Size()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Free lists for old object spaces implementation |
| |
| void FreeListNode::set_size(Heap* heap, int size_in_bytes) { |
| ASSERT(size_in_bytes > 0); |
| ASSERT(IsAligned(size_in_bytes, kPointerSize)); |
| |
| // We write a map and possibly size information to the block. If the block |
| // is big enough to be a FreeSpace with at least one extra word (the next |
| // pointer), we set its map to be the free space map and its size to an |
| // appropriate array length for the desired size from HeapObject::Size(). |
| // If the block is too small (eg, one or two words), to hold both a size |
| // field and a next pointer, we give it a filler map that gives it the |
| // correct size. |
| if (size_in_bytes > FreeSpace::kHeaderSize) { |
| set_map_no_write_barrier(heap->raw_unchecked_free_space_map()); |
| // Can't use FreeSpace::cast because it fails during deserialization. |
| FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this); |
| this_as_free_space->set_size(size_in_bytes); |
| } else if (size_in_bytes == kPointerSize) { |
| set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map()); |
| } else if (size_in_bytes == 2 * kPointerSize) { |
| set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map()); |
| } else { |
| UNREACHABLE(); |
| } |
| // We would like to ASSERT(Size() == size_in_bytes) but this would fail during |
| // deserialization because the free space map is not done yet. |
| } |
| |
| |
| FreeListNode* FreeListNode::next() { |
| ASSERT(IsFreeListNode(this)); |
| if (map() == HEAP->raw_unchecked_free_space_map()) { |
| ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize); |
| return reinterpret_cast<FreeListNode*>( |
| Memory::Address_at(address() + kNextOffset)); |
| } else { |
| return reinterpret_cast<FreeListNode*>( |
| Memory::Address_at(address() + kPointerSize)); |
| } |
| } |
| |
| |
| FreeListNode** FreeListNode::next_address() { |
| ASSERT(IsFreeListNode(this)); |
| if (map() == HEAP->raw_unchecked_free_space_map()) { |
| ASSERT(Size() >= kNextOffset + kPointerSize); |
| return reinterpret_cast<FreeListNode**>(address() + kNextOffset); |
| } else { |
| return reinterpret_cast<FreeListNode**>(address() + kPointerSize); |
| } |
| } |
| |
| |
| void FreeListNode::set_next(FreeListNode* next) { |
| ASSERT(IsFreeListNode(this)); |
| // While we are booting the VM the free space map will actually be null. So |
| // we have to make sure that we don't try to use it for anything at that |
| // stage. |
| if (map() == HEAP->raw_unchecked_free_space_map()) { |
| ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize); |
| Memory::Address_at(address() + kNextOffset) = |
| reinterpret_cast<Address>(next); |
| } else { |
| Memory::Address_at(address() + kPointerSize) = |
| reinterpret_cast<Address>(next); |
| } |
| } |
| |
| |
| FreeList::FreeList(PagedSpace* owner) |
| : owner_(owner), heap_(owner->heap()) { |
| Reset(); |
| } |
| |
| |
| void FreeList::Reset() { |
| available_ = 0; |
| small_list_ = NULL; |
| medium_list_ = NULL; |
| large_list_ = NULL; |
| huge_list_ = NULL; |
| } |
| |
| |
| int FreeList::Free(Address start, int size_in_bytes) { |
| if (size_in_bytes == 0) return 0; |
| FreeListNode* node = FreeListNode::FromAddress(start); |
| node->set_size(heap_, size_in_bytes); |
| |
| // Early return to drop too-small blocks on the floor. |
| if (size_in_bytes < kSmallListMin) return size_in_bytes; |
| |
| // Insert other blocks at the head of a free list of the appropriate |
| // magnitude. |
| if (size_in_bytes <= kSmallListMax) { |
| node->set_next(small_list_); |
| small_list_ = node; |
| } else if (size_in_bytes <= kMediumListMax) { |
| node->set_next(medium_list_); |
| medium_list_ = node; |
| } else if (size_in_bytes <= kLargeListMax) { |
| node->set_next(large_list_); |
| large_list_ = node; |
| } else { |
| node->set_next(huge_list_); |
| huge_list_ = node; |
| } |
| available_ += size_in_bytes; |
| ASSERT(IsVeryLong() || available_ == SumFreeLists()); |
| return 0; |
| } |
| |
| |
| FreeListNode* FreeList::PickNodeFromList(FreeListNode** list, int* node_size) { |
| FreeListNode* node = *list; |
| |
| if (node == NULL) return NULL; |
| |
| while (node != NULL && |
| Page::FromAddress(node->address())->IsEvacuationCandidate()) { |
| available_ -= node->Size(); |
| node = node->next(); |
| } |
| |
| if (node != NULL) { |
| *node_size = node->Size(); |
| *list = node->next(); |
| } else { |
| *list = NULL; |
| } |
| |
| return node; |
| } |
| |
| |
| FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) { |
| FreeListNode* node = NULL; |
| |
| if (size_in_bytes <= kSmallAllocationMax) { |
| node = PickNodeFromList(&small_list_, node_size); |
| if (node != NULL) return node; |
| } |
| |
| if (size_in_bytes <= kMediumAllocationMax) { |
| node = PickNodeFromList(&medium_list_, node_size); |
| if (node != NULL) return node; |
| } |
| |
| if (size_in_bytes <= kLargeAllocationMax) { |
| node = PickNodeFromList(&large_list_, node_size); |
| if (node != NULL) return node; |
| } |
| |
| for (FreeListNode** cur = &huge_list_; |
| *cur != NULL; |
| cur = (*cur)->next_address()) { |
| FreeListNode* cur_node = *cur; |
| while (cur_node != NULL && |
| Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) { |
| available_ -= reinterpret_cast<FreeSpace*>(cur_node)->Size(); |
| cur_node = cur_node->next(); |
| } |
| |
| *cur = cur_node; |
| if (cur_node == NULL) break; |
| |
| ASSERT((*cur)->map() == HEAP->raw_unchecked_free_space_map()); |
| FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur); |
| int size = cur_as_free_space->Size(); |
| if (size >= size_in_bytes) { |
| // Large enough node found. Unlink it from the list. |
| node = *cur; |
| *node_size = size; |
| *cur = node->next(); |
| break; |
| } |
| } |
| |
| return node; |
| } |
| |
| |
| // Allocation on the old space free list. If it succeeds then a new linear |
| // allocation space has been set up with the top and limit of the space. If |
| // the allocation fails then NULL is returned, and the caller can perform a GC |
| // or allocate a new page before retrying. |
| HeapObject* FreeList::Allocate(int size_in_bytes) { |
| ASSERT(0 < size_in_bytes); |
| ASSERT(size_in_bytes <= kMaxBlockSize); |
| ASSERT(IsAligned(size_in_bytes, kPointerSize)); |
| // Don't free list allocate if there is linear space available. |
| ASSERT(owner_->limit() - owner_->top() < size_in_bytes); |
| |
| int new_node_size = 0; |
| FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size); |
| if (new_node == NULL) return NULL; |
| |
| available_ -= new_node_size; |
| ASSERT(IsVeryLong() || available_ == SumFreeLists()); |
| |
| int bytes_left = new_node_size - size_in_bytes; |
| ASSERT(bytes_left >= 0); |
| |
| int old_linear_size = static_cast<int>(owner_->limit() - owner_->top()); |
| // Mark the old linear allocation area with a free space map so it can be |
| // skipped when scanning the heap. This also puts it back in the free list |
| // if it is big enough. |
| owner_->Free(owner_->top(), old_linear_size); |
| |
| #ifdef DEBUG |
| for (int i = 0; i < size_in_bytes / kPointerSize; i++) { |
| reinterpret_cast<Object**>(new_node->address())[i] = Smi::FromInt(0); |
| } |
| #endif |
| |
| owner_->heap()->incremental_marking()->OldSpaceStep( |
| size_in_bytes - old_linear_size); |
| |
| // The old-space-step might have finished sweeping and restarted marking. |
| // Verify that it did not turn the page of the new node into an evacuation |
| // candidate. |
| ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_node)); |
| |
| const int kThreshold = IncrementalMarking::kAllocatedThreshold; |
| |
| // Memory in the linear allocation area is counted as allocated. We may free |
| // a little of this again immediately - see below. |
| owner_->Allocate(new_node_size); |
| |
| if (bytes_left > kThreshold && |
| owner_->heap()->incremental_marking()->IsMarkingIncomplete() && |
| FLAG_incremental_marking_steps) { |
| int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold); |
| // We don't want to give too large linear areas to the allocator while |
| // incremental marking is going on, because we won't check again whether |
| // we want to do another increment until the linear area is used up. |
| owner_->Free(new_node->address() + size_in_bytes + linear_size, |
| new_node_size - size_in_bytes - linear_size); |
| owner_->SetTop(new_node->address() + size_in_bytes, |
| new_node->address() + size_in_bytes + linear_size); |
| } else if (bytes_left > 0) { |
| // Normally we give the rest of the node to the allocator as its new |
| // linear allocation area. |
| owner_->SetTop(new_node->address() + size_in_bytes, |
| new_node->address() + new_node_size); |
| } else { |
| // TODO(gc) Try not freeing linear allocation region when bytes_left |
| // are zero. |
| owner_->SetTop(NULL, NULL); |
| } |
| |
| return new_node; |
| } |
| |
| |
| static intptr_t CountFreeListItemsInList(FreeListNode* n, Page* p) { |
| intptr_t sum = 0; |
| while (n != NULL) { |
| if (Page::FromAddress(n->address()) == p) { |
| FreeSpace* free_space = reinterpret_cast<FreeSpace*>(n); |
| sum += free_space->Size(); |
| } |
| n = n->next(); |
| } |
| return sum; |
| } |
| |
| |
| void FreeList::CountFreeListItems(Page* p, SizeStats* sizes) { |
| sizes->huge_size_ = CountFreeListItemsInList(huge_list_, p); |
| if (sizes->huge_size_ < p->area_size()) { |
| sizes->small_size_ = CountFreeListItemsInList(small_list_, p); |
| sizes->medium_size_ = CountFreeListItemsInList(medium_list_, p); |
| sizes->large_size_ = CountFreeListItemsInList(large_list_, p); |
| } else { |
| sizes->small_size_ = 0; |
| sizes->medium_size_ = 0; |
| sizes->large_size_ = 0; |
| } |
| } |
| |
| |
| static intptr_t EvictFreeListItemsInList(FreeListNode** n, Page* p) { |
| intptr_t sum = 0; |
| while (*n != NULL) { |
| if (Page::FromAddress((*n)->address()) == p) { |
| FreeSpace* free_space = reinterpret_cast<FreeSpace*>(*n); |
| sum += free_space->Size(); |
| *n = (*n)->next(); |
| } else { |
| n = (*n)->next_address(); |
| } |
| } |
| return sum; |
| } |
| |
| |
| intptr_t FreeList::EvictFreeListItems(Page* p) { |
| intptr_t sum = EvictFreeListItemsInList(&huge_list_, p); |
| |
| if (sum < p->area_size()) { |
| sum += EvictFreeListItemsInList(&small_list_, p) + |
| EvictFreeListItemsInList(&medium_list_, p) + |
| EvictFreeListItemsInList(&large_list_, p); |
| } |
| |
| available_ -= static_cast<int>(sum); |
| |
| return sum; |
| } |
| |
| |
| #ifdef DEBUG |
| intptr_t FreeList::SumFreeList(FreeListNode* cur) { |
| intptr_t sum = 0; |
| while (cur != NULL) { |
| ASSERT(cur->map() == HEAP->raw_unchecked_free_space_map()); |
| FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur); |
| sum += cur_as_free_space->Size(); |
| cur = cur->next(); |
| } |
| return sum; |
| } |
| |
| |
| static const int kVeryLongFreeList = 500; |
| |
| |
| int FreeList::FreeListLength(FreeListNode* cur) { |
| int length = 0; |
| while (cur != NULL) { |
| length++; |
| cur = cur->next(); |
| if (length == kVeryLongFreeList) return length; |
| } |
| return length; |
| } |
| |
| |
| bool FreeList::IsVeryLong() { |
| if (FreeListLength(small_list_) == kVeryLongFreeList) return true; |
| if (FreeListLength(medium_list_) == kVeryLongFreeList) return true; |
| if (FreeListLength(large_list_) == kVeryLongFreeList) return true; |
| if (FreeListLength(huge_list_) == kVeryLongFreeList) return true; |
| return false; |
| } |
| |
| |
| // This can take a very long time because it is linear in the number of entries |
| // on the free list, so it should not be called if FreeListLength returns |
| // kVeryLongFreeList. |
| intptr_t FreeList::SumFreeLists() { |
| intptr_t sum = SumFreeList(small_list_); |
| sum += SumFreeList(medium_list_); |
| sum += SumFreeList(large_list_); |
| sum += SumFreeList(huge_list_); |
| return sum; |
| } |
| #endif |
| |
| |
| // ----------------------------------------------------------------------------- |
| // OldSpace implementation |
| |
| bool NewSpace::ReserveSpace(int bytes) { |
| // We can't reliably unpack a partial snapshot that needs more new space |
| // space than the minimum NewSpace size. The limit can be set lower than |
| // the end of new space either because there is more space on the next page |
| // or because we have lowered the limit in order to get periodic incremental |
| // marking. The most reliable way to ensure that there is linear space is |
| // to do the allocation, then rewind the limit. |
| ASSERT(bytes <= InitialCapacity()); |
| MaybeObject* maybe = AllocateRaw(bytes); |
| Object* object = NULL; |
| if (!maybe->ToObject(&object)) return false; |
| HeapObject* allocation = HeapObject::cast(object); |
| Address top = allocation_info_.top; |
| if ((top - bytes) == allocation->address()) { |
| allocation_info_.top = allocation->address(); |
| return true; |
| } |
| // There may be a borderline case here where the allocation succeeded, but |
| // the limit and top have moved on to a new page. In that case we try again. |
| return ReserveSpace(bytes); |
| } |
| |
| |
| void PagedSpace::PrepareForMarkCompact() { |
| // We don't have a linear allocation area while sweeping. It will be restored |
| // on the first allocation after the sweep. |
| // Mark the old linear allocation area with a free space map so it can be |
| // skipped when scanning the heap. |
| int old_linear_size = static_cast<int>(limit() - top()); |
| Free(top(), old_linear_size); |
| SetTop(NULL, NULL); |
| |
| // Stop lazy sweeping and clear marking bits for unswept pages. |
| if (first_unswept_page_ != NULL) { |
| Page* p = first_unswept_page_; |
| do { |
| // Do not use ShouldBeSweptLazily predicate here. |
| // New evacuation candidates were selected but they still have |
| // to be swept before collection starts. |
| if (!p->WasSwept()) { |
| Bitmap::Clear(p); |
| if (FLAG_gc_verbose) { |
| PrintF("Sweeping 0x%" V8PRIxPTR " lazily abandoned.\n", |
| reinterpret_cast<intptr_t>(p)); |
| } |
| } |
| p = p->next_page(); |
| } while (p != anchor()); |
| } |
| first_unswept_page_ = Page::FromAddress(NULL); |
| unswept_free_bytes_ = 0; |
| |
| // Clear the free list before a full GC---it will be rebuilt afterward. |
| free_list_.Reset(); |
| } |
| |
| |
| bool PagedSpace::ReserveSpace(int size_in_bytes) { |
| ASSERT(size_in_bytes <= AreaSize()); |
| ASSERT(size_in_bytes == RoundSizeDownToObjectAlignment(size_in_bytes)); |
| Address current_top = allocation_info_.top; |
| Address new_top = current_top + size_in_bytes; |
| if (new_top <= allocation_info_.limit) return true; |
| |
| HeapObject* new_area = free_list_.Allocate(size_in_bytes); |
| if (new_area == NULL) new_area = SlowAllocateRaw(size_in_bytes); |
| if (new_area == NULL) return false; |
| |
| int old_linear_size = static_cast<int>(limit() - top()); |
| // Mark the old linear allocation area with a free space so it can be |
| // skipped when scanning the heap. This also puts it back in the free list |
| // if it is big enough. |
| Free(top(), old_linear_size); |
| |
| SetTop(new_area->address(), new_area->address() + size_in_bytes); |
| Allocate(size_in_bytes); |
| return true; |
| } |
| |
| |
| // You have to call this last, since the implementation from PagedSpace |
| // doesn't know that memory was 'promised' to large object space. |
| bool LargeObjectSpace::ReserveSpace(int bytes) { |
| return heap()->OldGenerationCapacityAvailable() >= bytes && |
| (!heap()->incremental_marking()->IsStopped() || |
| heap()->OldGenerationSpaceAvailable() >= bytes); |
| } |
| |
| |
| bool PagedSpace::AdvanceSweeper(intptr_t bytes_to_sweep) { |
| if (IsSweepingComplete()) return true; |
| |
| intptr_t freed_bytes = 0; |
| Page* p = first_unswept_page_; |
| do { |
| Page* next_page = p->next_page(); |
| if (ShouldBeSweptLazily(p)) { |
| if (FLAG_gc_verbose) { |
| PrintF("Sweeping 0x%" V8PRIxPTR " lazily advanced.\n", |
| reinterpret_cast<intptr_t>(p)); |
| } |
| DecreaseUnsweptFreeBytes(p); |
| freed_bytes += MarkCompactCollector::SweepConservatively(this, p); |
| } |
| p = next_page; |
| } while (p != anchor() && freed_bytes < bytes_to_sweep); |
| |
| if (p == anchor()) { |
| first_unswept_page_ = Page::FromAddress(NULL); |
| } else { |
| first_unswept_page_ = p; |
| } |
| |
| heap()->LowerOldGenLimits(freed_bytes); |
| |
| heap()->FreeQueuedChunks(); |
| |
| return IsSweepingComplete(); |
| } |
| |
| |
| void PagedSpace::EvictEvacuationCandidatesFromFreeLists() { |
| if (allocation_info_.top >= allocation_info_.limit) return; |
| |
| if (Page::FromAllocationTop(allocation_info_.top)->IsEvacuationCandidate()) { |
| // Create filler object to keep page iterable if it was iterable. |
| int remaining = |
| static_cast<int>(allocation_info_.limit - allocation_info_.top); |
| heap()->CreateFillerObjectAt(allocation_info_.top, remaining); |
| |
| allocation_info_.top = NULL; |
| allocation_info_.limit = NULL; |
| } |
| } |
| |
| |
| HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) { |
| // Allocation in this space has failed. |
| |
| // If there are unswept pages advance lazy sweeper then sweep one page before |
| // allocating a new page. |
| if (first_unswept_page_->is_valid()) { |
| AdvanceSweeper(size_in_bytes); |
| |
| // Retry the free list allocation. |
| HeapObject* object = free_list_.Allocate(size_in_bytes); |
| if (object != NULL) return object; |
| } |
| |
| // Free list allocation failed and there is no next page. Fail if we have |
| // hit the old generation size limit that should cause a garbage |
| // collection. |
| if (!heap()->always_allocate() && |
| heap()->OldGenerationAllocationLimitReached()) { |
| return NULL; |
| } |
| |
| // Try to expand the space and allocate in the new next page. |
| if (Expand()) { |
| return free_list_.Allocate(size_in_bytes); |
| } |
| |
| // Last ditch, sweep all the remaining pages to try to find space. This may |
| // cause a pause. |
| if (!IsSweepingComplete()) { |
| AdvanceSweeper(kMaxInt); |
| |
| // Retry the free list allocation. |
| HeapObject* object = free_list_.Allocate(size_in_bytes); |
| if (object != NULL) return object; |
| } |
| |
| // Finally, fail. |
| return NULL; |
| } |
| |
| |
| #ifdef DEBUG |
| void PagedSpace::ReportCodeStatistics() { |
| Isolate* isolate = Isolate::Current(); |
| CommentStatistic* comments_statistics = |
| isolate->paged_space_comments_statistics(); |
| ReportCodeKindStatistics(); |
| PrintF("Code comment statistics (\" [ comment-txt : size/ " |
| "count (average)\"):\n"); |
| for (int i = 0; i <= CommentStatistic::kMaxComments; i++) { |
| const CommentStatistic& cs = comments_statistics[i]; |
| if (cs.size > 0) { |
| PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count, |
| cs.size/cs.count); |
| } |
| } |
| PrintF("\n"); |
| } |
| |
| |
| void PagedSpace::ResetCodeStatistics() { |
| Isolate* isolate = Isolate::Current(); |
| CommentStatistic* comments_statistics = |
| isolate->paged_space_comments_statistics(); |
| ClearCodeKindStatistics(); |
| for (int i = 0; i < CommentStatistic::kMaxComments; i++) { |
| comments_statistics[i].Clear(); |
| } |
| comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown"; |
| comments_statistics[CommentStatistic::kMaxComments].size = 0; |
| comments_statistics[CommentStatistic::kMaxComments].count = 0; |
| } |
| |
| |
| // Adds comment to 'comment_statistics' table. Performance OK as long as |
| // 'kMaxComments' is small |
| static void EnterComment(Isolate* isolate, const char* comment, int delta) { |
| CommentStatistic* comments_statistics = |
| isolate->paged_space_comments_statistics(); |
| // Do not count empty comments |
| if (delta <= 0) return; |
| CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments]; |
| // Search for a free or matching entry in 'comments_statistics': 'cs' |
| // points to result. |
| for (int i = 0; i < CommentStatistic::kMaxComments; i++) { |
| if (comments_statistics[i].comment == NULL) { |
| cs = &comments_statistics[i]; |
| cs->comment = comment; |
| break; |
| } else if (strcmp(comments_statistics[i].comment, comment) == 0) { |
| cs = &comments_statistics[i]; |
| break; |
| } |
| } |
| // Update entry for 'comment' |
| cs->size += delta; |
| cs->count += 1; |
| } |
| |
| |
| // Call for each nested comment start (start marked with '[ xxx', end marked |
| // with ']'. RelocIterator 'it' must point to a comment reloc info. |
| static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) { |
| ASSERT(!it->done()); |
| ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT); |
| const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data()); |
| if (tmp[0] != '[') { |
| // Not a nested comment; skip |
| return; |
| } |
| |
| // Search for end of nested comment or a new nested comment |
| const char* const comment_txt = |
| reinterpret_cast<const char*>(it->rinfo()->data()); |
| const byte* prev_pc = it->rinfo()->pc(); |
| int flat_delta = 0; |
| it->next(); |
| while (true) { |
| // All nested comments must be terminated properly, and therefore exit |
| // from loop. |
| ASSERT(!it->done()); |
| if (it->rinfo()->rmode() == RelocInfo::COMMENT) { |
| const char* const txt = |
| reinterpret_cast<const char*>(it->rinfo()->data()); |
| flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc); |
| if (txt[0] == ']') break; // End of nested comment |
| // A new comment |
| CollectCommentStatistics(isolate, it); |
| // Skip code that was covered with previous comment |
| prev_pc = it->rinfo()->pc(); |
| } |
| it->next(); |
| } |
| EnterComment(isolate, comment_txt, flat_delta); |
| } |
| |
| |
| // Collects code size statistics: |
| // - by code kind |
| // - by code comment |
| void PagedSpace::CollectCodeStatistics() { |
| Isolate* isolate = heap()->isolate(); |
| HeapObjectIterator obj_it(this); |
| for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { |
| if (obj->IsCode()) { |
| Code* code = Code::cast(obj); |
| isolate->code_kind_statistics()[code->kind()] += code->Size(); |
| RelocIterator it(code); |
| int delta = 0; |
| const byte* prev_pc = code->instruction_start(); |
| while (!it.done()) { |
| if (it.rinfo()->rmode() == RelocInfo::COMMENT) { |
| delta += static_cast<int>(it.rinfo()->pc() - prev_pc); |
| CollectCommentStatistics(isolate, &it); |
| prev_pc = it.rinfo()->pc(); |
| } |
| it.next(); |
| } |
| |
| ASSERT(code->instruction_start() <= prev_pc && |
| prev_pc <= code->instruction_end()); |
| delta += static_cast<int>(code->instruction_end() - prev_pc); |
| EnterComment(isolate, "NoComment", delta); |
| } |
| } |
| } |
| |
| |
| void PagedSpace::ReportStatistics() { |
| int pct = static_cast<int>(Available() * 100 / Capacity()); |
| PrintF(" capacity: %" V8_PTR_PREFIX "d" |
| ", waste: %" V8_PTR_PREFIX "d" |
| ", available: %" V8_PTR_PREFIX "d, %%%d\n", |
| Capacity(), Waste(), Available(), pct); |
| |
| if (was_swept_conservatively_) return; |
| ClearHistograms(); |
| HeapObjectIterator obj_it(this); |
| for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) |
| CollectHistogramInfo(obj); |
| ReportHistogram(true); |
| } |
| #endif |
| |
| // ----------------------------------------------------------------------------- |
| // FixedSpace implementation |
| |
| void FixedSpace::PrepareForMarkCompact() { |
| // Call prepare of the super class. |
| PagedSpace::PrepareForMarkCompact(); |
| |
| // During a non-compacting collection, everything below the linear |
| // allocation pointer except wasted top-of-page blocks is considered |
| // allocated and we will rediscover available bytes during the |
| // collection. |
| accounting_stats_.AllocateBytes(free_list_.available()); |
| |
| // Clear the free list before a full GC---it will be rebuilt afterward. |
| free_list_.Reset(); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // MapSpace implementation |
| |
| #ifdef DEBUG |
| void MapSpace::VerifyObject(HeapObject* object) { |
| // The object should be a map or a free-list node. |
| ASSERT(object->IsMap() || object->IsFreeSpace()); |
| } |
| #endif |
| |
| |
| // ----------------------------------------------------------------------------- |
| // GlobalPropertyCellSpace implementation |
| |
| #ifdef DEBUG |
| void CellSpace::VerifyObject(HeapObject* object) { |
| // The object should be a global object property cell or a free-list node. |
| ASSERT(object->IsJSGlobalPropertyCell() || |
| object->map() == heap()->two_pointer_filler_map()); |
| } |
| #endif |
| |
| |
| // ----------------------------------------------------------------------------- |
| // LargeObjectIterator |
| |
| LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { |
| current_ = space->first_page_; |
| size_func_ = NULL; |
| } |
| |
| |
| LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space, |
| HeapObjectCallback size_func) { |
| current_ = space->first_page_; |
| size_func_ = size_func; |
| } |
| |
| |
| HeapObject* LargeObjectIterator::Next() { |
| if (current_ == NULL) return NULL; |
| |
| HeapObject* object = current_->GetObject(); |
| current_ = current_->next_page(); |
| return object; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // LargeObjectSpace |
| static bool ComparePointers(void* key1, void* key2) { |
| return key1 == key2; |
| } |
| |
| |
| LargeObjectSpace::LargeObjectSpace(Heap* heap, |
| intptr_t max_capacity, |
| AllocationSpace id) |
| : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis |
| max_capacity_(max_capacity), |
| first_page_(NULL), |
| size_(0), |
| page_count_(0), |
| objects_size_(0), |
| chunk_map_(ComparePointers, 1024) {} |
| |
| |
| bool LargeObjectSpace::SetUp() { |
| first_page_ = NULL; |
| size_ = 0; |
| page_count_ = 0; |
| objects_size_ = 0; |
| chunk_map_.Clear(); |
| return true; |
| } |
| |
| |
| void LargeObjectSpace::TearDown() { |
| while (first_page_ != NULL) { |
| LargePage* page = first_page_; |
| first_page_ = first_page_->next_page(); |
| LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address())); |
| |
| ObjectSpace space = static_cast<ObjectSpace>(1 << identity()); |
| heap()->isolate()->memory_allocator()->PerformAllocationCallback( |
| space, kAllocationActionFree, page->size()); |
| heap()->isolate()->memory_allocator()->Free(page); |
| } |
| SetUp(); |
| } |
| |
| |
| MaybeObject* LargeObjectSpace::AllocateRaw(int object_size, |
| Executability executable) { |
| // Check if we want to force a GC before growing the old space further. |
| // If so, fail the allocation. |
| if (!heap()->always_allocate() && |
| heap()->OldGenerationAllocationLimitReached()) { |
| return Failure::RetryAfterGC(identity()); |
| } |
| |
| if (Size() + object_size > max_capacity_) { |
| return Failure::RetryAfterGC(identity()); |
| } |
| |
| LargePage* page = heap()->isolate()->memory_allocator()-> |
| AllocateLargePage(object_size, executable, this); |
| if (page == NULL) return Failure::RetryAfterGC(identity()); |
| ASSERT(page->area_size() >= object_size); |
| |
| size_ += static_cast<int>(page->size()); |
| objects_size_ += object_size; |
| page_count_++; |
| page->set_next_page(first_page_); |
| first_page_ = page; |
| |
| // Register all MemoryChunk::kAlignment-aligned chunks covered by |
| // this large page in the chunk map. |
| uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment; |
| uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment; |
| for (uintptr_t key = base; key <= limit; key++) { |
| HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast<void*>(key), |
| static_cast<uint32_t>(key), |
| true); |
| ASSERT(entry != NULL); |
| entry->value = page; |
| } |
| |
| HeapObject* object = page->GetObject(); |
| |
| #ifdef DEBUG |
| // Make the object consistent so the heap can be vefified in OldSpaceStep. |
| reinterpret_cast<Object**>(object->address())[0] = |
| heap()->fixed_array_map(); |
| reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0); |
| #endif |
| |
| heap()->incremental_marking()->OldSpaceStep(object_size); |
| return object; |
| } |
| |
| |
| // GC support |
| MaybeObject* LargeObjectSpace::FindObject(Address a) { |
| LargePage* page = FindPage(a); |
| if (page != NULL) { |
| return page->GetObject(); |
| } |
| return Failure::Exception(); |
| } |
| |
| |
| LargePage* LargeObjectSpace::FindPage(Address a) { |
| uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment; |
| HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key), |
| static_cast<uint32_t>(key), |
| false); |
| if (e != NULL) { |
| ASSERT(e->value != NULL); |
| LargePage* page = reinterpret_cast<LargePage*>(e->value); |
| ASSERT(page->is_valid()); |
| if (page->Contains(a)) { |
| return page; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| void LargeObjectSpace::FreeUnmarkedObjects() { |
| LargePage* previous = NULL; |
| LargePage* current = first_page_; |
| while (current != NULL) { |
| HeapObject* object = current->GetObject(); |
| // Can this large page contain pointers to non-trivial objects. No other |
| // pointer object is this big. |
| bool is_pointer_object = object->IsFixedArray(); |
| MarkBit mark_bit = Marking::MarkBitFrom(object); |
| if (mark_bit.Get()) { |
| mark_bit.Clear(); |
| MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size()); |
| previous = current; |
| current = current->next_page(); |
| } else { |
| LargePage* page = current; |
| // Cut the chunk out from the chunk list. |
| current = current->next_page(); |
| if (previous == NULL) { |
| first_page_ = current; |
| } else { |
| previous->set_next_page(current); |
| } |
| |
| // Free the chunk. |
| heap()->mark_compact_collector()->ReportDeleteIfNeeded( |
| object, heap()->isolate()); |
| size_ -= static_cast<int>(page->size()); |
| objects_size_ -= object->Size(); |
| page_count_--; |
| |
| // Remove entries belonging to this page. |
| // Use variable alignment to help pass length check (<= 80 characters) |
| // of single line in tools/presubmit.py. |
| const intptr_t alignment = MemoryChunk::kAlignment; |
| uintptr_t base = reinterpret_cast<uintptr_t>(page)/alignment; |
| uintptr_t limit = base + (page->size()-1)/alignment; |
| for (uintptr_t key = base; key <= limit; key++) { |
| chunk_map_.Remove(reinterpret_cast<void*>(key), |
| static_cast<uint32_t>(key)); |
| } |
| |
| if (is_pointer_object) { |
| heap()->QueueMemoryChunkForFree(page); |
| } else { |
| heap()->isolate()->memory_allocator()->Free(page); |
| } |
| } |
| } |
| heap()->FreeQueuedChunks(); |
| } |
| |
| |
| bool LargeObjectSpace::Contains(HeapObject* object) { |
| Address address = object->address(); |
| MemoryChunk* chunk = MemoryChunk::FromAddress(address); |
| |
| bool owned = (chunk->owner() == this); |
| |
| SLOW_ASSERT(!owned || !FindObject(address)->IsFailure()); |
| |
| return owned; |
| } |
| |
| |
| #ifdef DEBUG |
| // We do not assume that the large object iterator works, because it depends |
| // on the invariants we are checking during verification. |
| void LargeObjectSpace::Verify() { |
| for (LargePage* chunk = first_page_; |
| chunk != NULL; |
| chunk = chunk->next_page()) { |
| // Each chunk contains an object that starts at the large object page's |
| // object area start. |
| HeapObject* object = chunk->GetObject(); |
| Page* page = Page::FromAddress(object->address()); |
| ASSERT(object->address() == page->area_start()); |
| |
| // The first word should be a map, and we expect all map pointers to be |
| // in map space. |
| Map* map = object->map(); |
| ASSERT(map->IsMap()); |
| ASSERT(heap()->map_space()->Contains(map)); |
| |
| // We have only code, sequential strings, external strings |
| // (sequential strings that have been morphed into external |
| // strings), fixed arrays, and byte arrays in large object space. |
| ASSERT(object->IsCode() || object->IsSeqString() || |
| object->IsExternalString() || object->IsFixedArray() || |
| object->IsFixedDoubleArray() || object->IsByteArray()); |
| |
| // The object itself should look OK. |
| object->Verify(); |
| |
| // Byte arrays and strings don't have interior pointers. |
| if (object->IsCode()) { |
| VerifyPointersVisitor code_visitor; |
| object->IterateBody(map->instance_type(), |
| object->Size(), |
| &code_visitor); |
| } else if (object->IsFixedArray()) { |
| FixedArray* array = FixedArray::cast(object); |
| for (int j = 0; j < array->length(); j++) { |
| Object* element = array->get(j); |
| if (element->IsHeapObject()) { |
| HeapObject* element_object = HeapObject::cast(element); |
| ASSERT(heap()->Contains(element_object)); |
| ASSERT(element_object->map()->IsMap()); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void LargeObjectSpace::Print() { |
| LargeObjectIterator it(this); |
| for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { |
| obj->Print(); |
| } |
| } |
| |
| |
| void LargeObjectSpace::ReportStatistics() { |
| PrintF(" size: %" V8_PTR_PREFIX "d\n", size_); |
| int num_objects = 0; |
| ClearHistograms(); |
| LargeObjectIterator it(this); |
| for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { |
| num_objects++; |
| CollectHistogramInfo(obj); |
| } |
| |
| PrintF(" number of objects %d, " |
| "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_); |
| if (num_objects > 0) ReportHistogram(false); |
| } |
| |
| |
| void LargeObjectSpace::CollectCodeStatistics() { |
| Isolate* isolate = heap()->isolate(); |
| LargeObjectIterator obj_it(this); |
| for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { |
| if (obj->IsCode()) { |
| Code* code = Code::cast(obj); |
| isolate->code_kind_statistics()[code->kind()] += code->Size(); |
| } |
| } |
| } |
| |
| |
| void Page::Print() { |
| // Make a best-effort to print the objects in the page. |
| PrintF("Page@%p in %s\n", |
| this->address(), |
| AllocationSpaceName(this->owner()->identity())); |
| printf(" --------------------------------------\n"); |
| HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction()); |
| unsigned mark_size = 0; |
| for (HeapObject* object = objects.Next(); |
| object != NULL; |
| object = objects.Next()) { |
| bool is_marked = Marking::MarkBitFrom(object).Get(); |
| PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little. |
| if (is_marked) { |
| mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object); |
| } |
| object->ShortPrint(); |
| PrintF("\n"); |
| } |
| printf(" --------------------------------------\n"); |
| printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes()); |
| } |
| |
| #endif // DEBUG |
| |
| } } // namespace v8::internal |