| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_X64_CODE_STUBS_X64_H_ |
| #define V8_X64_CODE_STUBS_X64_H_ |
| |
| #include "ic-inl.h" |
| #include "type-info.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| // Compute a transcendental math function natively, or call the |
| // TranscendentalCache runtime function. |
| class TranscendentalCacheStub: public CodeStub { |
| public: |
| enum ArgumentType { |
| TAGGED = 0, |
| UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits |
| }; |
| |
| explicit TranscendentalCacheStub(TranscendentalCache::Type type, |
| ArgumentType argument_type) |
| : type_(type), argument_type_(argument_type) {} |
| void Generate(MacroAssembler* masm); |
| static void GenerateOperation(MacroAssembler* masm, |
| TranscendentalCache::Type type); |
| private: |
| TranscendentalCache::Type type_; |
| ArgumentType argument_type_; |
| |
| Major MajorKey() { return TranscendentalCache; } |
| int MinorKey() { return type_ | argument_type_; } |
| Runtime::FunctionId RuntimeFunction(); |
| }; |
| |
| |
| class StoreBufferOverflowStub: public CodeStub { |
| public: |
| explicit StoreBufferOverflowStub(SaveFPRegsMode save_fp) |
| : save_doubles_(save_fp) { } |
| |
| void Generate(MacroAssembler* masm); |
| |
| virtual bool IsPregenerated() { return true; } |
| static void GenerateFixedRegStubsAheadOfTime(); |
| virtual bool SometimesSetsUpAFrame() { return false; } |
| |
| private: |
| SaveFPRegsMode save_doubles_; |
| |
| Major MajorKey() { return StoreBufferOverflow; } |
| int MinorKey() { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; } |
| }; |
| |
| |
| // Flag that indicates how to generate code for the stub GenericBinaryOpStub. |
| enum GenericBinaryFlags { |
| NO_GENERIC_BINARY_FLAGS = 0, |
| NO_SMI_CODE_IN_STUB = 1 << 0 // Omit smi code in stub. |
| }; |
| |
| |
| class UnaryOpStub: public CodeStub { |
| public: |
| UnaryOpStub(Token::Value op, |
| UnaryOverwriteMode mode, |
| UnaryOpIC::TypeInfo operand_type = UnaryOpIC::UNINITIALIZED) |
| : op_(op), |
| mode_(mode), |
| operand_type_(operand_type) { |
| } |
| |
| private: |
| Token::Value op_; |
| UnaryOverwriteMode mode_; |
| |
| // Operand type information determined at runtime. |
| UnaryOpIC::TypeInfo operand_type_; |
| |
| virtual void PrintName(StringStream* stream); |
| |
| class ModeBits: public BitField<UnaryOverwriteMode, 0, 1> {}; |
| class OpBits: public BitField<Token::Value, 1, 7> {}; |
| class OperandTypeInfoBits: public BitField<UnaryOpIC::TypeInfo, 8, 3> {}; |
| |
| Major MajorKey() { return UnaryOp; } |
| int MinorKey() { |
| return ModeBits::encode(mode_) |
| | OpBits::encode(op_) |
| | OperandTypeInfoBits::encode(operand_type_); |
| } |
| |
| // Note: A lot of the helper functions below will vanish when we use virtual |
| // function instead of switch more often. |
| void Generate(MacroAssembler* masm); |
| |
| void GenerateTypeTransition(MacroAssembler* masm); |
| |
| void GenerateSmiStub(MacroAssembler* masm); |
| void GenerateSmiStubSub(MacroAssembler* masm); |
| void GenerateSmiStubBitNot(MacroAssembler* masm); |
| void GenerateSmiCodeSub(MacroAssembler* masm, |
| Label* non_smi, |
| Label* slow, |
| Label::Distance non_smi_near = Label::kFar, |
| Label::Distance slow_near = Label::kFar); |
| void GenerateSmiCodeBitNot(MacroAssembler* masm, |
| Label* non_smi, |
| Label::Distance non_smi_near); |
| |
| void GenerateHeapNumberStub(MacroAssembler* masm); |
| void GenerateHeapNumberStubSub(MacroAssembler* masm); |
| void GenerateHeapNumberStubBitNot(MacroAssembler* masm); |
| void GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow); |
| void GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow); |
| |
| void GenerateGenericStub(MacroAssembler* masm); |
| void GenerateGenericStubSub(MacroAssembler* masm); |
| void GenerateGenericStubBitNot(MacroAssembler* masm); |
| void GenerateGenericCodeFallback(MacroAssembler* masm); |
| |
| virtual int GetCodeKind() { return Code::UNARY_OP_IC; } |
| |
| virtual InlineCacheState GetICState() { |
| return UnaryOpIC::ToState(operand_type_); |
| } |
| |
| virtual void FinishCode(Handle<Code> code) { |
| code->set_unary_op_type(operand_type_); |
| } |
| }; |
| |
| |
| class BinaryOpStub: public CodeStub { |
| public: |
| BinaryOpStub(Token::Value op, OverwriteMode mode) |
| : op_(op), |
| mode_(mode), |
| operands_type_(BinaryOpIC::UNINITIALIZED), |
| result_type_(BinaryOpIC::UNINITIALIZED) { |
| ASSERT(OpBits::is_valid(Token::NUM_TOKENS)); |
| } |
| |
| BinaryOpStub( |
| int key, |
| BinaryOpIC::TypeInfo operands_type, |
| BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED) |
| : op_(OpBits::decode(key)), |
| mode_(ModeBits::decode(key)), |
| operands_type_(operands_type), |
| result_type_(result_type) { } |
| |
| private: |
| enum SmiCodeGenerateHeapNumberResults { |
| ALLOW_HEAPNUMBER_RESULTS, |
| NO_HEAPNUMBER_RESULTS |
| }; |
| |
| Token::Value op_; |
| OverwriteMode mode_; |
| |
| // Operand type information determined at runtime. |
| BinaryOpIC::TypeInfo operands_type_; |
| BinaryOpIC::TypeInfo result_type_; |
| |
| virtual void PrintName(StringStream* stream); |
| |
| // Minor key encoding in 15 bits RRRTTTOOOOOOOMM. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 7> {}; |
| class OperandTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 9, 3> {}; |
| class ResultTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 12, 3> {}; |
| |
| Major MajorKey() { return BinaryOp; } |
| int MinorKey() { |
| return OpBits::encode(op_) |
| | ModeBits::encode(mode_) |
| | OperandTypeInfoBits::encode(operands_type_) |
| | ResultTypeInfoBits::encode(result_type_); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| void GenerateGeneric(MacroAssembler* masm); |
| void GenerateSmiCode(MacroAssembler* masm, |
| Label* slow, |
| SmiCodeGenerateHeapNumberResults heapnumber_results); |
| void GenerateFloatingPointCode(MacroAssembler* masm, |
| Label* allocation_failure, |
| Label* non_numeric_failure); |
| void GenerateStringAddCode(MacroAssembler* masm); |
| void GenerateCallRuntimeCode(MacroAssembler* masm); |
| void GenerateLoadArguments(MacroAssembler* masm); |
| void GenerateReturn(MacroAssembler* masm); |
| void GenerateUninitializedStub(MacroAssembler* masm); |
| void GenerateSmiStub(MacroAssembler* masm); |
| void GenerateInt32Stub(MacroAssembler* masm); |
| void GenerateHeapNumberStub(MacroAssembler* masm); |
| void GenerateOddballStub(MacroAssembler* masm); |
| void GenerateStringStub(MacroAssembler* masm); |
| void GenerateBothStringStub(MacroAssembler* masm); |
| void GenerateGenericStub(MacroAssembler* masm); |
| |
| void GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure); |
| void GenerateRegisterArgsPush(MacroAssembler* masm); |
| void GenerateTypeTransition(MacroAssembler* masm); |
| void GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm); |
| |
| virtual int GetCodeKind() { return Code::BINARY_OP_IC; } |
| |
| virtual InlineCacheState GetICState() { |
| return BinaryOpIC::ToState(operands_type_); |
| } |
| |
| virtual void FinishCode(Handle<Code> code) { |
| code->set_binary_op_type(operands_type_); |
| code->set_binary_op_result_type(result_type_); |
| } |
| |
| friend class CodeGenerator; |
| }; |
| |
| |
| class StringHelper : public AllStatic { |
| public: |
| // Generate code for copying characters using a simple loop. This should only |
| // be used in places where the number of characters is small and the |
| // additional setup and checking in GenerateCopyCharactersREP adds too much |
| // overhead. Copying of overlapping regions is not supported. |
| static void GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| bool ascii); |
| |
| // Generate code for copying characters using the rep movs instruction. |
| // Copies rcx characters from rsi to rdi. Copying of overlapping regions is |
| // not supported. |
| static void GenerateCopyCharactersREP(MacroAssembler* masm, |
| Register dest, // Must be rdi. |
| Register src, // Must be rsi. |
| Register count, // Must be rcx. |
| bool ascii); |
| |
| |
| // Probe the symbol table for a two character string. If the string is |
| // not found by probing a jump to the label not_found is performed. This jump |
| // does not guarantee that the string is not in the symbol table. If the |
| // string is found the code falls through with the string in register rax. |
| static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Label* not_found); |
| |
| // Generate string hash. |
| static void GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character, |
| Register scratch); |
| static void GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character, |
| Register scratch); |
| static void GenerateHashGetHash(MacroAssembler* masm, |
| Register hash, |
| Register scratch); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); |
| }; |
| |
| |
| // Flag that indicates how to generate code for the stub StringAddStub. |
| enum StringAddFlags { |
| NO_STRING_ADD_FLAGS = 0, |
| // Omit left string check in stub (left is definitely a string). |
| NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0, |
| // Omit right string check in stub (right is definitely a string). |
| NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1, |
| // Omit both string checks in stub. |
| NO_STRING_CHECK_IN_STUB = |
| NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB |
| }; |
| |
| |
| class StringAddStub: public CodeStub { |
| public: |
| explicit StringAddStub(StringAddFlags flags) : flags_(flags) {} |
| |
| private: |
| Major MajorKey() { return StringAdd; } |
| int MinorKey() { return flags_; } |
| |
| void Generate(MacroAssembler* masm); |
| |
| void GenerateConvertArgument(MacroAssembler* masm, |
| int stack_offset, |
| Register arg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* slow); |
| |
| const StringAddFlags flags_; |
| }; |
| |
| |
| class SubStringStub: public CodeStub { |
| public: |
| SubStringStub() {} |
| |
| private: |
| Major MajorKey() { return SubString; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| class StringCompareStub: public CodeStub { |
| public: |
| StringCompareStub() {} |
| |
| // Compares two flat ASCII strings and returns result in rax. |
| static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4); |
| |
| // Compares two flat ASCII strings for equality and returns result |
| // in rax. |
| static void GenerateFlatAsciiStringEquals(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2); |
| |
| private: |
| virtual Major MajorKey() { return StringCompare; } |
| virtual int MinorKey() { return 0; } |
| virtual void Generate(MacroAssembler* masm); |
| |
| static void GenerateAsciiCharsCompareLoop( |
| MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register length, |
| Register scratch, |
| Label* chars_not_equal, |
| Label::Distance near_jump = Label::kFar); |
| }; |
| |
| |
| class NumberToStringStub: public CodeStub { |
| public: |
| NumberToStringStub() { } |
| |
| // Generate code to do a lookup in the number string cache. If the number in |
| // the register object is found in the cache the generated code falls through |
| // with the result in the result register. The object and the result register |
| // can be the same. If the number is not found in the cache the code jumps to |
| // the label not_found with only the content of register object unchanged. |
| static void GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| bool object_is_smi, |
| Label* not_found); |
| |
| private: |
| static void GenerateConvertHashCodeToIndex(MacroAssembler* masm, |
| Register hash, |
| Register mask); |
| |
| Major MajorKey() { return NumberToString; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| class StringDictionaryLookupStub: public CodeStub { |
| public: |
| enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP }; |
| |
| StringDictionaryLookupStub(Register dictionary, |
| Register result, |
| Register index, |
| LookupMode mode) |
| : dictionary_(dictionary), result_(result), index_(index), mode_(mode) { } |
| |
| void Generate(MacroAssembler* masm); |
| |
| static void GenerateNegativeLookup(MacroAssembler* masm, |
| Label* miss, |
| Label* done, |
| Register properties, |
| Handle<String> name, |
| Register r0); |
| |
| static void GeneratePositiveLookup(MacroAssembler* masm, |
| Label* miss, |
| Label* done, |
| Register elements, |
| Register name, |
| Register r0, |
| Register r1); |
| |
| virtual bool SometimesSetsUpAFrame() { return false; } |
| |
| private: |
| static const int kInlinedProbes = 4; |
| static const int kTotalProbes = 20; |
| |
| static const int kCapacityOffset = |
| StringDictionary::kHeaderSize + |
| StringDictionary::kCapacityIndex * kPointerSize; |
| |
| static const int kElementsStartOffset = |
| StringDictionary::kHeaderSize + |
| StringDictionary::kElementsStartIndex * kPointerSize; |
| |
| Major MajorKey() { return StringDictionaryLookup; } |
| |
| int MinorKey() { |
| return DictionaryBits::encode(dictionary_.code()) | |
| ResultBits::encode(result_.code()) | |
| IndexBits::encode(index_.code()) | |
| LookupModeBits::encode(mode_); |
| } |
| |
| class DictionaryBits: public BitField<int, 0, 4> {}; |
| class ResultBits: public BitField<int, 4, 4> {}; |
| class IndexBits: public BitField<int, 8, 4> {}; |
| class LookupModeBits: public BitField<LookupMode, 12, 1> {}; |
| |
| Register dictionary_; |
| Register result_; |
| Register index_; |
| LookupMode mode_; |
| }; |
| |
| |
| class RecordWriteStub: public CodeStub { |
| public: |
| RecordWriteStub(Register object, |
| Register value, |
| Register address, |
| RememberedSetAction remembered_set_action, |
| SaveFPRegsMode fp_mode) |
| : object_(object), |
| value_(value), |
| address_(address), |
| remembered_set_action_(remembered_set_action), |
| save_fp_regs_mode_(fp_mode), |
| regs_(object, // An input reg. |
| address, // An input reg. |
| value) { // One scratch reg. |
| } |
| |
| enum Mode { |
| STORE_BUFFER_ONLY, |
| INCREMENTAL, |
| INCREMENTAL_COMPACTION |
| }; |
| |
| virtual bool IsPregenerated(); |
| static void GenerateFixedRegStubsAheadOfTime(); |
| virtual bool SometimesSetsUpAFrame() { return false; } |
| |
| static const byte kTwoByteNopInstruction = 0x3c; // Cmpb al, #imm8. |
| static const byte kTwoByteJumpInstruction = 0xeb; // Jmp #imm8. |
| |
| static const byte kFiveByteNopInstruction = 0x3d; // Cmpl eax, #imm32. |
| static const byte kFiveByteJumpInstruction = 0xe9; // Jmp #imm32. |
| |
| static Mode GetMode(Code* stub) { |
| byte first_instruction = stub->instruction_start()[0]; |
| byte second_instruction = stub->instruction_start()[2]; |
| |
| if (first_instruction == kTwoByteJumpInstruction) { |
| return INCREMENTAL; |
| } |
| |
| ASSERT(first_instruction == kTwoByteNopInstruction); |
| |
| if (second_instruction == kFiveByteJumpInstruction) { |
| return INCREMENTAL_COMPACTION; |
| } |
| |
| ASSERT(second_instruction == kFiveByteNopInstruction); |
| |
| return STORE_BUFFER_ONLY; |
| } |
| |
| static void Patch(Code* stub, Mode mode) { |
| switch (mode) { |
| case STORE_BUFFER_ONLY: |
| ASSERT(GetMode(stub) == INCREMENTAL || |
| GetMode(stub) == INCREMENTAL_COMPACTION); |
| stub->instruction_start()[0] = kTwoByteNopInstruction; |
| stub->instruction_start()[2] = kFiveByteNopInstruction; |
| break; |
| case INCREMENTAL: |
| ASSERT(GetMode(stub) == STORE_BUFFER_ONLY); |
| stub->instruction_start()[0] = kTwoByteJumpInstruction; |
| break; |
| case INCREMENTAL_COMPACTION: |
| ASSERT(GetMode(stub) == STORE_BUFFER_ONLY); |
| stub->instruction_start()[0] = kTwoByteNopInstruction; |
| stub->instruction_start()[2] = kFiveByteJumpInstruction; |
| break; |
| } |
| ASSERT(GetMode(stub) == mode); |
| CPU::FlushICache(stub->instruction_start(), 7); |
| } |
| |
| private: |
| // This is a helper class for freeing up 3 scratch registers, where the third |
| // is always rcx (needed for shift operations). The input is two registers |
| // that must be preserved and one scratch register provided by the caller. |
| class RegisterAllocation { |
| public: |
| RegisterAllocation(Register object, |
| Register address, |
| Register scratch0) |
| : object_orig_(object), |
| address_orig_(address), |
| scratch0_orig_(scratch0), |
| object_(object), |
| address_(address), |
| scratch0_(scratch0) { |
| ASSERT(!AreAliased(scratch0, object, address, no_reg)); |
| scratch1_ = GetRegThatIsNotRcxOr(object_, address_, scratch0_); |
| if (scratch0.is(rcx)) { |
| scratch0_ = GetRegThatIsNotRcxOr(object_, address_, scratch1_); |
| } |
| if (object.is(rcx)) { |
| object_ = GetRegThatIsNotRcxOr(address_, scratch0_, scratch1_); |
| } |
| if (address.is(rcx)) { |
| address_ = GetRegThatIsNotRcxOr(object_, scratch0_, scratch1_); |
| } |
| ASSERT(!AreAliased(scratch0_, object_, address_, rcx)); |
| } |
| |
| void Save(MacroAssembler* masm) { |
| ASSERT(!address_orig_.is(object_)); |
| ASSERT(object_.is(object_orig_) || address_.is(address_orig_)); |
| ASSERT(!AreAliased(object_, address_, scratch1_, scratch0_)); |
| ASSERT(!AreAliased(object_orig_, address_, scratch1_, scratch0_)); |
| ASSERT(!AreAliased(object_, address_orig_, scratch1_, scratch0_)); |
| // We don't have to save scratch0_orig_ because it was given to us as |
| // a scratch register. But if we had to switch to a different reg then |
| // we should save the new scratch0_. |
| if (!scratch0_.is(scratch0_orig_)) masm->push(scratch0_); |
| if (!rcx.is(scratch0_orig_) && |
| !rcx.is(object_orig_) && |
| !rcx.is(address_orig_)) { |
| masm->push(rcx); |
| } |
| masm->push(scratch1_); |
| if (!address_.is(address_orig_)) { |
| masm->push(address_); |
| masm->movq(address_, address_orig_); |
| } |
| if (!object_.is(object_orig_)) { |
| masm->push(object_); |
| masm->movq(object_, object_orig_); |
| } |
| } |
| |
| void Restore(MacroAssembler* masm) { |
| // These will have been preserved the entire time, so we just need to move |
| // them back. Only in one case is the orig_ reg different from the plain |
| // one, since only one of them can alias with rcx. |
| if (!object_.is(object_orig_)) { |
| masm->movq(object_orig_, object_); |
| masm->pop(object_); |
| } |
| if (!address_.is(address_orig_)) { |
| masm->movq(address_orig_, address_); |
| masm->pop(address_); |
| } |
| masm->pop(scratch1_); |
| if (!rcx.is(scratch0_orig_) && |
| !rcx.is(object_orig_) && |
| !rcx.is(address_orig_)) { |
| masm->pop(rcx); |
| } |
| if (!scratch0_.is(scratch0_orig_)) masm->pop(scratch0_); |
| } |
| |
| // If we have to call into C then we need to save and restore all caller- |
| // saved registers that were not already preserved. |
| |
| // The three scratch registers (incl. rcx) will be restored by other means |
| // so we don't bother pushing them here. Rbx, rbp and r12-15 are callee |
| // save and don't need to be preserved. |
| void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) { |
| masm->PushCallerSaved(mode, scratch0_, scratch1_, rcx); |
| } |
| |
| inline void RestoreCallerSaveRegisters(MacroAssembler*masm, |
| SaveFPRegsMode mode) { |
| masm->PopCallerSaved(mode, scratch0_, scratch1_, rcx); |
| } |
| |
| inline Register object() { return object_; } |
| inline Register address() { return address_; } |
| inline Register scratch0() { return scratch0_; } |
| inline Register scratch1() { return scratch1_; } |
| |
| private: |
| Register object_orig_; |
| Register address_orig_; |
| Register scratch0_orig_; |
| Register object_; |
| Register address_; |
| Register scratch0_; |
| Register scratch1_; |
| // Third scratch register is always rcx. |
| |
| Register GetRegThatIsNotRcxOr(Register r1, |
| Register r2, |
| Register r3) { |
| for (int i = 0; i < Register::kNumAllocatableRegisters; i++) { |
| Register candidate = Register::FromAllocationIndex(i); |
| if (candidate.is(rcx)) continue; |
| if (candidate.is(r1)) continue; |
| if (candidate.is(r2)) continue; |
| if (candidate.is(r3)) continue; |
| return candidate; |
| } |
| UNREACHABLE(); |
| return no_reg; |
| } |
| friend class RecordWriteStub; |
| }; |
| |
| enum OnNoNeedToInformIncrementalMarker { |
| kReturnOnNoNeedToInformIncrementalMarker, |
| kUpdateRememberedSetOnNoNeedToInformIncrementalMarker |
| }; |
| |
| void Generate(MacroAssembler* masm); |
| void GenerateIncremental(MacroAssembler* masm, Mode mode); |
| void CheckNeedsToInformIncrementalMarker( |
| MacroAssembler* masm, |
| OnNoNeedToInformIncrementalMarker on_no_need, |
| Mode mode); |
| void InformIncrementalMarker(MacroAssembler* masm, Mode mode); |
| |
| Major MajorKey() { return RecordWrite; } |
| |
| int MinorKey() { |
| return ObjectBits::encode(object_.code()) | |
| ValueBits::encode(value_.code()) | |
| AddressBits::encode(address_.code()) | |
| RememberedSetActionBits::encode(remembered_set_action_) | |
| SaveFPRegsModeBits::encode(save_fp_regs_mode_); |
| } |
| |
| void Activate(Code* code) { |
| code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code); |
| } |
| |
| class ObjectBits: public BitField<int, 0, 4> {}; |
| class ValueBits: public BitField<int, 4, 4> {}; |
| class AddressBits: public BitField<int, 8, 4> {}; |
| class RememberedSetActionBits: public BitField<RememberedSetAction, 12, 1> {}; |
| class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 13, 1> {}; |
| |
| Register object_; |
| Register value_; |
| Register address_; |
| RememberedSetAction remembered_set_action_; |
| SaveFPRegsMode save_fp_regs_mode_; |
| Label slow_; |
| RegisterAllocation regs_; |
| }; |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_X64_CODE_STUBS_X64_H_ |