| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_X64) |
| |
| #include "macro-assembler.h" |
| #include "serialize.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of CpuFeatures |
| |
| CpuFeatures::CpuFeatures() |
| : supported_(kDefaultCpuFeatures), |
| enabled_(0), |
| found_by_runtime_probing_(0) { |
| } |
| |
| |
| void CpuFeatures::Probe(bool portable) { |
| ASSERT(HEAP->HasBeenSetup()); |
| supported_ = kDefaultCpuFeatures; |
| if (portable && Serializer::enabled()) { |
| supported_ |= OS::CpuFeaturesImpliedByPlatform(); |
| return; // No features if we might serialize. |
| } |
| |
| Assembler assm(NULL, 0); |
| Label cpuid, done; |
| #define __ assm. |
| // Save old rsp, since we are going to modify the stack. |
| __ push(rbp); |
| __ pushfq(); |
| __ push(rcx); |
| __ push(rbx); |
| __ movq(rbp, rsp); |
| |
| // If we can modify bit 21 of the EFLAGS register, then CPUID is supported. |
| __ pushfq(); |
| __ pop(rax); |
| __ movq(rdx, rax); |
| __ xor_(rax, Immediate(0x200000)); // Flip bit 21. |
| __ push(rax); |
| __ popfq(); |
| __ pushfq(); |
| __ pop(rax); |
| __ xor_(rax, rdx); // Different if CPUID is supported. |
| __ j(not_zero, &cpuid); |
| |
| // CPUID not supported. Clear the supported features in rax. |
| __ xor_(rax, rax); |
| __ jmp(&done); |
| |
| // Invoke CPUID with 1 in eax to get feature information in |
| // ecx:edx. Temporarily enable CPUID support because we know it's |
| // safe here. |
| __ bind(&cpuid); |
| __ movq(rax, Immediate(1)); |
| supported_ = kDefaultCpuFeatures | (1 << CPUID); |
| { Scope fscope(CPUID); |
| __ cpuid(); |
| // Move the result from ecx:edx to rdi. |
| __ movl(rdi, rdx); // Zero-extended to 64 bits. |
| __ shl(rcx, Immediate(32)); |
| __ or_(rdi, rcx); |
| |
| // Get the sahf supported flag, from CPUID(0x80000001) |
| __ movq(rax, 0x80000001, RelocInfo::NONE); |
| __ cpuid(); |
| } |
| supported_ = kDefaultCpuFeatures; |
| |
| // Put the CPU flags in rax. |
| // rax = (rcx & 1) | (rdi & ~1) | (1 << CPUID). |
| __ movl(rax, Immediate(1)); |
| __ and_(rcx, rax); // Bit 0 is set if SAHF instruction supported. |
| __ not_(rax); |
| __ and_(rax, rdi); |
| __ or_(rax, rcx); |
| __ or_(rax, Immediate(1 << CPUID)); |
| |
| // Done. |
| __ bind(&done); |
| __ movq(rsp, rbp); |
| __ pop(rbx); |
| __ pop(rcx); |
| __ popfq(); |
| __ pop(rbp); |
| __ ret(0); |
| #undef __ |
| |
| CodeDesc desc; |
| assm.GetCode(&desc); |
| Isolate* isolate = Isolate::Current(); |
| MaybeObject* maybe_code = |
| isolate->heap()->CreateCode(desc, |
| Code::ComputeFlags(Code::STUB), |
| Handle<Object>()); |
| Object* code; |
| if (!maybe_code->ToObject(&code)) return; |
| if (!code->IsCode()) return; |
| PROFILE(isolate, |
| CodeCreateEvent(Logger::BUILTIN_TAG, |
| Code::cast(code), "CpuFeatures::Probe")); |
| typedef uint64_t (*F0)(); |
| F0 probe = FUNCTION_CAST<F0>(Code::cast(code)->entry()); |
| supported_ = probe(); |
| found_by_runtime_probing_ = supported_; |
| found_by_runtime_probing_ &= ~kDefaultCpuFeatures; |
| uint64_t os_guarantees = OS::CpuFeaturesImpliedByPlatform(); |
| supported_ |= os_guarantees; |
| found_by_runtime_probing_ &= portable ? ~os_guarantees : 0; |
| // SSE2 and CMOV must be available on an X64 CPU. |
| ASSERT(IsSupported(CPUID)); |
| ASSERT(IsSupported(SSE2)); |
| ASSERT(IsSupported(CMOV)); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| // Patch the code at the current PC with a call to the target address. |
| // Additional guard int3 instructions can be added if required. |
| void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| // Load register with immediate 64 and call through a register instructions |
| // takes up 13 bytes and int3 takes up one byte. |
| static const int kCallCodeSize = 13; |
| int code_size = kCallCodeSize + guard_bytes; |
| |
| // Create a code patcher. |
| CodePatcher patcher(pc_, code_size); |
| |
| // Add a label for checking the size of the code used for returning. |
| #ifdef DEBUG |
| Label check_codesize; |
| patcher.masm()->bind(&check_codesize); |
| #endif |
| |
| // Patch the code. |
| patcher.masm()->movq(r10, target, RelocInfo::NONE); |
| patcher.masm()->call(r10); |
| |
| // Check that the size of the code generated is as expected. |
| ASSERT_EQ(kCallCodeSize, |
| patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize)); |
| |
| // Add the requested number of int3 instructions after the call. |
| for (int i = 0; i < guard_bytes; i++) { |
| patcher.masm()->int3(); |
| } |
| } |
| |
| |
| void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| // Patch the code at the current address with the supplied instructions. |
| for (int i = 0; i < instruction_count; i++) { |
| *(pc_ + i) = *(instructions + i); |
| } |
| |
| // Indicate that code has changed. |
| CPU::FlushICache(pc_, instruction_count); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Register constants. |
| |
| const int Register::kRegisterCodeByAllocationIndex[kNumAllocatableRegisters] = { |
| // rax, rbx, rdx, rcx, rdi, r8, r9, r11, r14, r15 |
| 0, 3, 2, 1, 7, 8, 9, 11, 14, 15 |
| }; |
| |
| const int Register::kAllocationIndexByRegisterCode[kNumRegisters] = { |
| 0, 3, 2, 1, -1, -1, -1, 4, 5, 6, -1, 7, -1, -1, 8, 9 |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand |
| |
| Operand::Operand(Register base, int32_t disp) : rex_(0) { |
| len_ = 1; |
| if (base.is(rsp) || base.is(r12)) { |
| // SIB byte is needed to encode (rsp + offset) or (r12 + offset). |
| set_sib(times_1, rsp, base); |
| } |
| |
| if (disp == 0 && !base.is(rbp) && !base.is(r13)) { |
| set_modrm(0, base); |
| } else if (is_int8(disp)) { |
| set_modrm(1, base); |
| set_disp8(disp); |
| } else { |
| set_modrm(2, base); |
| set_disp32(disp); |
| } |
| } |
| |
| |
| Operand::Operand(Register base, |
| Register index, |
| ScaleFactor scale, |
| int32_t disp) : rex_(0) { |
| ASSERT(!index.is(rsp)); |
| len_ = 1; |
| set_sib(scale, index, base); |
| if (disp == 0 && !base.is(rbp) && !base.is(r13)) { |
| // This call to set_modrm doesn't overwrite the REX.B (or REX.X) bits |
| // possibly set by set_sib. |
| set_modrm(0, rsp); |
| } else if (is_int8(disp)) { |
| set_modrm(1, rsp); |
| set_disp8(disp); |
| } else { |
| set_modrm(2, rsp); |
| set_disp32(disp); |
| } |
| } |
| |
| |
| Operand::Operand(Register index, |
| ScaleFactor scale, |
| int32_t disp) : rex_(0) { |
| ASSERT(!index.is(rsp)); |
| len_ = 1; |
| set_modrm(0, rsp); |
| set_sib(scale, index, rbp); |
| set_disp32(disp); |
| } |
| |
| |
| Operand::Operand(const Operand& operand, int32_t offset) { |
| ASSERT(operand.len_ >= 1); |
| // Operand encodes REX ModR/M [SIB] [Disp]. |
| byte modrm = operand.buf_[0]; |
| ASSERT(modrm < 0xC0); // Disallow mode 3 (register target). |
| bool has_sib = ((modrm & 0x07) == 0x04); |
| byte mode = modrm & 0xC0; |
| int disp_offset = has_sib ? 2 : 1; |
| int base_reg = (has_sib ? operand.buf_[1] : modrm) & 0x07; |
| // Mode 0 with rbp/r13 as ModR/M or SIB base register always has a 32-bit |
| // displacement. |
| bool is_baseless = (mode == 0) && (base_reg == 0x05); // No base or RIP base. |
| int32_t disp_value = 0; |
| if (mode == 0x80 || is_baseless) { |
| // Mode 2 or mode 0 with rbp/r13 as base: Word displacement. |
| disp_value = *BitCast<const int32_t*>(&operand.buf_[disp_offset]); |
| } else if (mode == 0x40) { |
| // Mode 1: Byte displacement. |
| disp_value = static_cast<signed char>(operand.buf_[disp_offset]); |
| } |
| |
| // Write new operand with same registers, but with modified displacement. |
| ASSERT(offset >= 0 ? disp_value + offset > disp_value |
| : disp_value + offset < disp_value); // No overflow. |
| disp_value += offset; |
| rex_ = operand.rex_; |
| if (!is_int8(disp_value) || is_baseless) { |
| // Need 32 bits of displacement, mode 2 or mode 1 with register rbp/r13. |
| buf_[0] = (modrm & 0x3f) | (is_baseless ? 0x00 : 0x80); |
| len_ = disp_offset + 4; |
| Memory::int32_at(&buf_[disp_offset]) = disp_value; |
| } else if (disp_value != 0 || (base_reg == 0x05)) { |
| // Need 8 bits of displacement. |
| buf_[0] = (modrm & 0x3f) | 0x40; // Mode 1. |
| len_ = disp_offset + 1; |
| buf_[disp_offset] = static_cast<byte>(disp_value); |
| } else { |
| // Need no displacement. |
| buf_[0] = (modrm & 0x3f); // Mode 0. |
| len_ = disp_offset; |
| } |
| if (has_sib) { |
| buf_[1] = operand.buf_[1]; |
| } |
| } |
| |
| |
| bool Operand::AddressUsesRegister(Register reg) const { |
| int code = reg.code(); |
| ASSERT((buf_[0] & 0xC0) != 0xC0); // Always a memory operand. |
| // Start with only low three bits of base register. Initial decoding doesn't |
| // distinguish on the REX.B bit. |
| int base_code = buf_[0] & 0x07; |
| if (base_code == rsp.code()) { |
| // SIB byte present in buf_[1]. |
| // Check the index register from the SIB byte + REX.X prefix. |
| int index_code = ((buf_[1] >> 3) & 0x07) | ((rex_ & 0x02) << 2); |
| // Index code (including REX.X) of 0x04 (rsp) means no index register. |
| if (index_code != rsp.code() && index_code == code) return true; |
| // Add REX.B to get the full base register code. |
| base_code = (buf_[1] & 0x07) | ((rex_ & 0x01) << 3); |
| // A base register of 0x05 (rbp) with mod = 0 means no base register. |
| if (base_code == rbp.code() && ((buf_[0] & 0xC0) == 0)) return false; |
| return code == base_code; |
| } else { |
| // A base register with low bits of 0x05 (rbp or r13) and mod = 0 means |
| // no base register. |
| if (base_code == rbp.code() && ((buf_[0] & 0xC0) == 0)) return false; |
| base_code |= ((rex_ & 0x01) << 3); |
| return code == base_code; |
| } |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Assembler. |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| static void InitCoverageLog(); |
| #endif |
| |
| Assembler::Assembler(void* buffer, int buffer_size) |
| : AssemblerBase(Isolate::Current()), |
| code_targets_(100), |
| positions_recorder_(this), |
| emit_debug_code_(FLAG_debug_code) { |
| if (buffer == NULL) { |
| // Do our own buffer management. |
| if (buffer_size <= kMinimalBufferSize) { |
| buffer_size = kMinimalBufferSize; |
| |
| if (isolate()->assembler_spare_buffer() != NULL) { |
| buffer = isolate()->assembler_spare_buffer(); |
| isolate()->set_assembler_spare_buffer(NULL); |
| } |
| } |
| if (buffer == NULL) { |
| buffer_ = NewArray<byte>(buffer_size); |
| } else { |
| buffer_ = static_cast<byte*>(buffer); |
| } |
| buffer_size_ = buffer_size; |
| own_buffer_ = true; |
| } else { |
| // Use externally provided buffer instead. |
| ASSERT(buffer_size > 0); |
| buffer_ = static_cast<byte*>(buffer); |
| buffer_size_ = buffer_size; |
| own_buffer_ = false; |
| } |
| |
| // Clear the buffer in debug mode unless it was provided by the |
| // caller in which case we can't be sure it's okay to overwrite |
| // existing code in it. |
| #ifdef DEBUG |
| if (own_buffer_) { |
| memset(buffer_, 0xCC, buffer_size); // int3 |
| } |
| #endif |
| |
| // Setup buffer pointers. |
| ASSERT(buffer_ != NULL); |
| pc_ = buffer_; |
| reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| |
| last_pc_ = NULL; |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| InitCoverageLog(); |
| #endif |
| } |
| |
| |
| Assembler::~Assembler() { |
| if (own_buffer_) { |
| if (isolate()->assembler_spare_buffer() == NULL && |
| buffer_size_ == kMinimalBufferSize) { |
| isolate()->set_assembler_spare_buffer(buffer_); |
| } else { |
| DeleteArray(buffer_); |
| } |
| } |
| } |
| |
| |
| void Assembler::GetCode(CodeDesc* desc) { |
| // Finalize code (at this point overflow() may be true, but the gap ensures |
| // that we are still not overlapping instructions and relocation info). |
| ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. |
| // Setup code descriptor. |
| desc->buffer = buffer_; |
| desc->buffer_size = buffer_size_; |
| desc->instr_size = pc_offset(); |
| ASSERT(desc->instr_size > 0); // Zero-size code objects upset the system. |
| desc->reloc_size = |
| static_cast<int>((buffer_ + buffer_size_) - reloc_info_writer.pos()); |
| desc->origin = this; |
| } |
| |
| |
| void Assembler::Align(int m) { |
| ASSERT(IsPowerOf2(m)); |
| int delta = (m - (pc_offset() & (m - 1))) & (m - 1); |
| while (delta >= 9) { |
| nop(9); |
| delta -= 9; |
| } |
| if (delta > 0) { |
| nop(delta); |
| } |
| } |
| |
| |
| void Assembler::CodeTargetAlign() { |
| Align(16); // Preferred alignment of jump targets on x64. |
| } |
| |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| ASSERT(!L->is_bound()); // Label may only be bound once. |
| last_pc_ = NULL; |
| ASSERT(0 <= pos && pos <= pc_offset()); // Position must be valid. |
| if (L->is_linked()) { |
| int current = L->pos(); |
| int next = long_at(current); |
| while (next != current) { |
| // Relative address, relative to point after address. |
| int imm32 = pos - (current + sizeof(int32_t)); |
| long_at_put(current, imm32); |
| current = next; |
| next = long_at(next); |
| } |
| // Fix up last fixup on linked list. |
| int last_imm32 = pos - (current + sizeof(int32_t)); |
| long_at_put(current, last_imm32); |
| } |
| L->bind_to(pos); |
| } |
| |
| |
| void Assembler::bind(Label* L) { |
| bind_to(L, pc_offset()); |
| } |
| |
| |
| void Assembler::bind(NearLabel* L) { |
| ASSERT(!L->is_bound()); |
| last_pc_ = NULL; |
| while (L->unresolved_branches_ > 0) { |
| int branch_pos = L->unresolved_positions_[L->unresolved_branches_ - 1]; |
| int disp = pc_offset() - branch_pos; |
| ASSERT(is_int8(disp)); |
| set_byte_at(branch_pos - sizeof(int8_t), disp); |
| L->unresolved_branches_--; |
| } |
| L->bind_to(pc_offset()); |
| } |
| |
| |
| void Assembler::GrowBuffer() { |
| ASSERT(buffer_overflow()); |
| if (!own_buffer_) FATAL("external code buffer is too small"); |
| |
| // Compute new buffer size. |
| CodeDesc desc; // the new buffer |
| if (buffer_size_ < 4*KB) { |
| desc.buffer_size = 4*KB; |
| } else { |
| desc.buffer_size = 2*buffer_size_; |
| } |
| // Some internal data structures overflow for very large buffers, |
| // they must ensure that kMaximalBufferSize is not too large. |
| if ((desc.buffer_size > kMaximalBufferSize) || |
| (desc.buffer_size > HEAP->MaxOldGenerationSize())) { |
| V8::FatalProcessOutOfMemory("Assembler::GrowBuffer"); |
| } |
| |
| // Setup new buffer. |
| desc.buffer = NewArray<byte>(desc.buffer_size); |
| desc.instr_size = pc_offset(); |
| desc.reloc_size = |
| static_cast<int>((buffer_ + buffer_size_) - (reloc_info_writer.pos())); |
| |
| // Clear the buffer in debug mode. Use 'int3' instructions to make |
| // sure to get into problems if we ever run uninitialized code. |
| #ifdef DEBUG |
| memset(desc.buffer, 0xCC, desc.buffer_size); |
| #endif |
| |
| // Copy the data. |
| intptr_t pc_delta = desc.buffer - buffer_; |
| intptr_t rc_delta = (desc.buffer + desc.buffer_size) - |
| (buffer_ + buffer_size_); |
| memmove(desc.buffer, buffer_, desc.instr_size); |
| memmove(rc_delta + reloc_info_writer.pos(), |
| reloc_info_writer.pos(), desc.reloc_size); |
| |
| // Switch buffers. |
| if (isolate()->assembler_spare_buffer() == NULL && |
| buffer_size_ == kMinimalBufferSize) { |
| isolate()->set_assembler_spare_buffer(buffer_); |
| } else { |
| DeleteArray(buffer_); |
| } |
| buffer_ = desc.buffer; |
| buffer_size_ = desc.buffer_size; |
| pc_ += pc_delta; |
| if (last_pc_ != NULL) { |
| last_pc_ += pc_delta; |
| } |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| // Relocate runtime entries. |
| for (RelocIterator it(desc); !it.done(); it.next()) { |
| RelocInfo::Mode rmode = it.rinfo()->rmode(); |
| if (rmode == RelocInfo::INTERNAL_REFERENCE) { |
| intptr_t* p = reinterpret_cast<intptr_t*>(it.rinfo()->pc()); |
| if (*p != 0) { // 0 means uninitialized. |
| *p += pc_delta; |
| } |
| } |
| } |
| |
| ASSERT(!buffer_overflow()); |
| } |
| |
| |
| void Assembler::emit_operand(int code, const Operand& adr) { |
| ASSERT(is_uint3(code)); |
| const unsigned length = adr.len_; |
| ASSERT(length > 0); |
| |
| // Emit updated ModR/M byte containing the given register. |
| ASSERT((adr.buf_[0] & 0x38) == 0); |
| pc_[0] = adr.buf_[0] | code << 3; |
| |
| // Emit the rest of the encoded operand. |
| for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i]; |
| pc_ += length; |
| } |
| |
| |
| // Assembler Instruction implementations. |
| |
| void Assembler::arithmetic_op(byte opcode, Register reg, const Operand& op) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(reg, op); |
| emit(opcode); |
| emit_operand(reg, op); |
| } |
| |
| |
| void Assembler::arithmetic_op(byte opcode, Register reg, Register rm_reg) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT((opcode & 0xC6) == 2); |
| if (rm_reg.low_bits() == 4) { // Forces SIB byte. |
| // Swap reg and rm_reg and change opcode operand order. |
| emit_rex_64(rm_reg, reg); |
| emit(opcode ^ 0x02); |
| emit_modrm(rm_reg, reg); |
| } else { |
| emit_rex_64(reg, rm_reg); |
| emit(opcode); |
| emit_modrm(reg, rm_reg); |
| } |
| } |
| |
| |
| void Assembler::arithmetic_op_16(byte opcode, Register reg, Register rm_reg) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT((opcode & 0xC6) == 2); |
| if (rm_reg.low_bits() == 4) { // Forces SIB byte. |
| // Swap reg and rm_reg and change opcode operand order. |
| emit(0x66); |
| emit_optional_rex_32(rm_reg, reg); |
| emit(opcode ^ 0x02); |
| emit_modrm(rm_reg, reg); |
| } else { |
| emit(0x66); |
| emit_optional_rex_32(reg, rm_reg); |
| emit(opcode); |
| emit_modrm(reg, rm_reg); |
| } |
| } |
| |
| |
| void Assembler::arithmetic_op_16(byte opcode, |
| Register reg, |
| const Operand& rm_reg) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(reg, rm_reg); |
| emit(opcode); |
| emit_operand(reg, rm_reg); |
| } |
| |
| |
| void Assembler::arithmetic_op_32(byte opcode, Register reg, Register rm_reg) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT((opcode & 0xC6) == 2); |
| if (rm_reg.low_bits() == 4) { // Forces SIB byte. |
| // Swap reg and rm_reg and change opcode operand order. |
| emit_optional_rex_32(rm_reg, reg); |
| emit(opcode ^ 0x02); // E.g. 0x03 -> 0x01 for ADD. |
| emit_modrm(rm_reg, reg); |
| } else { |
| emit_optional_rex_32(reg, rm_reg); |
| emit(opcode); |
| emit_modrm(reg, rm_reg); |
| } |
| } |
| |
| |
| void Assembler::arithmetic_op_32(byte opcode, |
| Register reg, |
| const Operand& rm_reg) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(reg, rm_reg); |
| emit(opcode); |
| emit_operand(reg, rm_reg); |
| } |
| |
| |
| void Assembler::immediate_arithmetic_op(byte subcode, |
| Register dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| if (is_int8(src.value_)) { |
| emit(0x83); |
| emit_modrm(subcode, dst); |
| emit(src.value_); |
| } else if (dst.is(rax)) { |
| emit(0x05 | (subcode << 3)); |
| emitl(src.value_); |
| } else { |
| emit(0x81); |
| emit_modrm(subcode, dst); |
| emitl(src.value_); |
| } |
| } |
| |
| void Assembler::immediate_arithmetic_op(byte subcode, |
| const Operand& dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| if (is_int8(src.value_)) { |
| emit(0x83); |
| emit_operand(subcode, dst); |
| emit(src.value_); |
| } else { |
| emit(0x81); |
| emit_operand(subcode, dst); |
| emitl(src.value_); |
| } |
| } |
| |
| |
| void Assembler::immediate_arithmetic_op_16(byte subcode, |
| Register dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); // Operand size override prefix. |
| emit_optional_rex_32(dst); |
| if (is_int8(src.value_)) { |
| emit(0x83); |
| emit_modrm(subcode, dst); |
| emit(src.value_); |
| } else if (dst.is(rax)) { |
| emit(0x05 | (subcode << 3)); |
| emitw(src.value_); |
| } else { |
| emit(0x81); |
| emit_modrm(subcode, dst); |
| emitw(src.value_); |
| } |
| } |
| |
| |
| void Assembler::immediate_arithmetic_op_16(byte subcode, |
| const Operand& dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); // Operand size override prefix. |
| emit_optional_rex_32(dst); |
| if (is_int8(src.value_)) { |
| emit(0x83); |
| emit_operand(subcode, dst); |
| emit(src.value_); |
| } else { |
| emit(0x81); |
| emit_operand(subcode, dst); |
| emitw(src.value_); |
| } |
| } |
| |
| |
| void Assembler::immediate_arithmetic_op_32(byte subcode, |
| Register dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| if (is_int8(src.value_)) { |
| emit(0x83); |
| emit_modrm(subcode, dst); |
| emit(src.value_); |
| } else if (dst.is(rax)) { |
| emit(0x05 | (subcode << 3)); |
| emitl(src.value_); |
| } else { |
| emit(0x81); |
| emit_modrm(subcode, dst); |
| emitl(src.value_); |
| } |
| } |
| |
| |
| void Assembler::immediate_arithmetic_op_32(byte subcode, |
| const Operand& dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| if (is_int8(src.value_)) { |
| emit(0x83); |
| emit_operand(subcode, dst); |
| emit(src.value_); |
| } else { |
| emit(0x81); |
| emit_operand(subcode, dst); |
| emitl(src.value_); |
| } |
| } |
| |
| |
| void Assembler::immediate_arithmetic_op_8(byte subcode, |
| const Operand& dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| ASSERT(is_int8(src.value_) || is_uint8(src.value_)); |
| emit(0x80); |
| emit_operand(subcode, dst); |
| emit(src.value_); |
| } |
| |
| |
| void Assembler::immediate_arithmetic_op_8(byte subcode, |
| Register dst, |
| Immediate src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (dst.code() > 3) { |
| // Use 64-bit mode byte registers. |
| emit_rex_64(dst); |
| } |
| ASSERT(is_int8(src.value_) || is_uint8(src.value_)); |
| emit(0x80); |
| emit_modrm(subcode, dst); |
| emit(src.value_); |
| } |
| |
| |
| void Assembler::shift(Register dst, Immediate shift_amount, int subcode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint6(shift_amount.value_)); // illegal shift count |
| if (shift_amount.value_ == 1) { |
| emit_rex_64(dst); |
| emit(0xD1); |
| emit_modrm(subcode, dst); |
| } else { |
| emit_rex_64(dst); |
| emit(0xC1); |
| emit_modrm(subcode, dst); |
| emit(shift_amount.value_); |
| } |
| } |
| |
| |
| void Assembler::shift(Register dst, int subcode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xD3); |
| emit_modrm(subcode, dst); |
| } |
| |
| |
| void Assembler::shift_32(Register dst, int subcode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xD3); |
| emit_modrm(subcode, dst); |
| } |
| |
| |
| void Assembler::shift_32(Register dst, Immediate shift_amount, int subcode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint5(shift_amount.value_)); // illegal shift count |
| if (shift_amount.value_ == 1) { |
| emit_optional_rex_32(dst); |
| emit(0xD1); |
| emit_modrm(subcode, dst); |
| } else { |
| emit_optional_rex_32(dst); |
| emit(0xC1); |
| emit_modrm(subcode, dst); |
| emit(shift_amount.value_); |
| } |
| } |
| |
| |
| void Assembler::bt(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0xA3); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::bts(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0xAB); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::call(Label* L) { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // 1110 1000 #32-bit disp. |
| emit(0xE8); |
| if (L->is_bound()) { |
| int offset = L->pos() - pc_offset() - sizeof(int32_t); |
| ASSERT(offset <= 0); |
| emitl(offset); |
| } else if (L->is_linked()) { |
| emitl(L->pos()); |
| L->link_to(pc_offset() - sizeof(int32_t)); |
| } else { |
| ASSERT(L->is_unused()); |
| int32_t current = pc_offset(); |
| emitl(current); |
| L->link_to(current); |
| } |
| } |
| |
| |
| void Assembler::call(Handle<Code> target, RelocInfo::Mode rmode) { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // 1110 1000 #32-bit disp. |
| emit(0xE8); |
| emit_code_target(target, rmode); |
| } |
| |
| |
| void Assembler::call(Register adr) { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode: FF /2 r64. |
| emit_optional_rex_32(adr); |
| emit(0xFF); |
| emit_modrm(0x2, adr); |
| } |
| |
| |
| void Assembler::call(const Operand& op) { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode: FF /2 m64. |
| emit_optional_rex_32(op); |
| emit(0xFF); |
| emit_operand(0x2, op); |
| } |
| |
| |
| // Calls directly to the given address using a relative offset. |
| // Should only ever be used in Code objects for calls within the |
| // same Code object. Should not be used when generating new code (use labels), |
| // but only when patching existing code. |
| void Assembler::call(Address target) { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // 1110 1000 #32-bit disp. |
| emit(0xE8); |
| Address source = pc_ + 4; |
| intptr_t displacement = target - source; |
| ASSERT(is_int32(displacement)); |
| emitl(static_cast<int32_t>(displacement)); |
| } |
| |
| |
| void Assembler::clc() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF8); |
| } |
| |
| void Assembler::cld() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xFC); |
| } |
| |
| void Assembler::cdq() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x99); |
| } |
| |
| |
| void Assembler::cmovq(Condition cc, Register dst, Register src) { |
| if (cc == always) { |
| movq(dst, src); |
| } else if (cc == never) { |
| return; |
| } |
| // No need to check CpuInfo for CMOV support, it's a required part of the |
| // 64-bit architecture. |
| ASSERT(cc >= 0); // Use mov for unconditional moves. |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode: REX.W 0f 40 + cc /r. |
| emit_rex_64(dst, src); |
| emit(0x0f); |
| emit(0x40 + cc); |
| emit_modrm(dst, src); |
| } |
| |
| |
| void Assembler::cmovq(Condition cc, Register dst, const Operand& src) { |
| if (cc == always) { |
| movq(dst, src); |
| } else if (cc == never) { |
| return; |
| } |
| ASSERT(cc >= 0); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode: REX.W 0f 40 + cc /r. |
| emit_rex_64(dst, src); |
| emit(0x0f); |
| emit(0x40 + cc); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cmovl(Condition cc, Register dst, Register src) { |
| if (cc == always) { |
| movl(dst, src); |
| } else if (cc == never) { |
| return; |
| } |
| ASSERT(cc >= 0); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode: 0f 40 + cc /r. |
| emit_optional_rex_32(dst, src); |
| emit(0x0f); |
| emit(0x40 + cc); |
| emit_modrm(dst, src); |
| } |
| |
| |
| void Assembler::cmovl(Condition cc, Register dst, const Operand& src) { |
| if (cc == always) { |
| movl(dst, src); |
| } else if (cc == never) { |
| return; |
| } |
| ASSERT(cc >= 0); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode: 0f 40 + cc /r. |
| emit_optional_rex_32(dst, src); |
| emit(0x0f); |
| emit(0x40 + cc); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cmpb_al(Immediate imm8) { |
| ASSERT(is_int8(imm8.value_) || is_uint8(imm8.value_)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x3c); |
| emit(imm8.value_); |
| } |
| |
| |
| void Assembler::cpuid() { |
| ASSERT(isolate()->cpu_features()->IsEnabled(CPUID)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x0F); |
| emit(0xA2); |
| } |
| |
| |
| void Assembler::cqo() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(); |
| emit(0x99); |
| } |
| |
| |
| void Assembler::decq(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xFF); |
| emit_modrm(0x1, dst); |
| } |
| |
| |
| void Assembler::decq(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xFF); |
| emit_operand(1, dst); |
| } |
| |
| |
| void Assembler::decl(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xFF); |
| emit_modrm(0x1, dst); |
| } |
| |
| |
| void Assembler::decl(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xFF); |
| emit_operand(1, dst); |
| } |
| |
| |
| void Assembler::decb(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (dst.code() > 3) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(dst); |
| } |
| emit(0xFE); |
| emit_modrm(0x1, dst); |
| } |
| |
| |
| void Assembler::decb(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xFE); |
| emit_operand(1, dst); |
| } |
| |
| |
| void Assembler::enter(Immediate size) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xC8); |
| emitw(size.value_); // 16 bit operand, always. |
| emit(0); |
| } |
| |
| |
| void Assembler::hlt() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF4); |
| } |
| |
| |
| void Assembler::idivq(Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(src); |
| emit(0xF7); |
| emit_modrm(0x7, src); |
| } |
| |
| |
| void Assembler::idivl(Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(src); |
| emit(0xF7); |
| emit_modrm(0x7, src); |
| } |
| |
| |
| void Assembler::imul(Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(src); |
| emit(0xF7); |
| emit_modrm(0x5, src); |
| } |
| |
| |
| void Assembler::imul(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xAF); |
| emit_modrm(dst, src); |
| } |
| |
| |
| void Assembler::imul(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xAF); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::imul(Register dst, Register src, Immediate imm) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| if (is_int8(imm.value_)) { |
| emit(0x6B); |
| emit_modrm(dst, src); |
| emit(imm.value_); |
| } else { |
| emit(0x69); |
| emit_modrm(dst, src); |
| emitl(imm.value_); |
| } |
| } |
| |
| |
| void Assembler::imull(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xAF); |
| emit_modrm(dst, src); |
| } |
| |
| |
| void Assembler::imull(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xAF); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::imull(Register dst, Register src, Immediate imm) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| if (is_int8(imm.value_)) { |
| emit(0x6B); |
| emit_modrm(dst, src); |
| emit(imm.value_); |
| } else { |
| emit(0x69); |
| emit_modrm(dst, src); |
| emitl(imm.value_); |
| } |
| } |
| |
| |
| void Assembler::incq(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xFF); |
| emit_modrm(0x0, dst); |
| } |
| |
| |
| void Assembler::incq(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xFF); |
| emit_operand(0, dst); |
| } |
| |
| |
| void Assembler::incl(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xFF); |
| emit_operand(0, dst); |
| } |
| |
| |
| void Assembler::incl(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xFF); |
| emit_modrm(0, dst); |
| } |
| |
| |
| void Assembler::int3() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xCC); |
| } |
| |
| |
| void Assembler::j(Condition cc, Label* L) { |
| if (cc == always) { |
| jmp(L); |
| return; |
| } else if (cc == never) { |
| return; |
| } |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint4(cc)); |
| if (L->is_bound()) { |
| const int short_size = 2; |
| const int long_size = 6; |
| int offs = L->pos() - pc_offset(); |
| ASSERT(offs <= 0); |
| if (is_int8(offs - short_size)) { |
| // 0111 tttn #8-bit disp. |
| emit(0x70 | cc); |
| emit((offs - short_size) & 0xFF); |
| } else { |
| // 0000 1111 1000 tttn #32-bit disp. |
| emit(0x0F); |
| emit(0x80 | cc); |
| emitl(offs - long_size); |
| } |
| } else if (L->is_linked()) { |
| // 0000 1111 1000 tttn #32-bit disp. |
| emit(0x0F); |
| emit(0x80 | cc); |
| emitl(L->pos()); |
| L->link_to(pc_offset() - sizeof(int32_t)); |
| } else { |
| ASSERT(L->is_unused()); |
| emit(0x0F); |
| emit(0x80 | cc); |
| int32_t current = pc_offset(); |
| emitl(current); |
| L->link_to(current); |
| } |
| } |
| |
| |
| void Assembler::j(Condition cc, |
| Handle<Code> target, |
| RelocInfo::Mode rmode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint4(cc)); |
| // 0000 1111 1000 tttn #32-bit disp. |
| emit(0x0F); |
| emit(0x80 | cc); |
| emit_code_target(target, rmode); |
| } |
| |
| |
| void Assembler::j(Condition cc, NearLabel* L, Hint hint) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(0 <= cc && cc < 16); |
| if (FLAG_emit_branch_hints && hint != no_hint) emit(hint); |
| if (L->is_bound()) { |
| const int short_size = 2; |
| int offs = L->pos() - pc_offset(); |
| ASSERT(offs <= 0); |
| ASSERT(is_int8(offs - short_size)); |
| // 0111 tttn #8-bit disp |
| emit(0x70 | cc); |
| emit((offs - short_size) & 0xFF); |
| } else { |
| emit(0x70 | cc); |
| emit(0x00); // The displacement will be resolved later. |
| L->link_to(pc_offset()); |
| } |
| } |
| |
| |
| void Assembler::jmp(Label* L) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| const int short_size = sizeof(int8_t); |
| const int long_size = sizeof(int32_t); |
| if (L->is_bound()) { |
| int offs = L->pos() - pc_offset() - 1; |
| ASSERT(offs <= 0); |
| if (is_int8(offs - short_size)) { |
| // 1110 1011 #8-bit disp. |
| emit(0xEB); |
| emit((offs - short_size) & 0xFF); |
| } else { |
| // 1110 1001 #32-bit disp. |
| emit(0xE9); |
| emitl(offs - long_size); |
| } |
| } else if (L->is_linked()) { |
| // 1110 1001 #32-bit disp. |
| emit(0xE9); |
| emitl(L->pos()); |
| L->link_to(pc_offset() - long_size); |
| } else { |
| // 1110 1001 #32-bit disp. |
| ASSERT(L->is_unused()); |
| emit(0xE9); |
| int32_t current = pc_offset(); |
| emitl(current); |
| L->link_to(current); |
| } |
| } |
| |
| |
| void Assembler::jmp(Handle<Code> target, RelocInfo::Mode rmode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // 1110 1001 #32-bit disp. |
| emit(0xE9); |
| emit_code_target(target, rmode); |
| } |
| |
| |
| void Assembler::jmp(NearLabel* L) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (L->is_bound()) { |
| const int short_size = sizeof(int8_t); |
| int offs = L->pos() - pc_offset(); |
| ASSERT(offs <= 0); |
| ASSERT(is_int8(offs - short_size)); |
| // 1110 1011 #8-bit disp. |
| emit(0xEB); |
| emit((offs - short_size) & 0xFF); |
| } else { |
| emit(0xEB); |
| emit(0x00); // The displacement will be resolved later. |
| L->link_to(pc_offset()); |
| } |
| } |
| |
| |
| void Assembler::jmp(Register target) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode FF/4 r64. |
| emit_optional_rex_32(target); |
| emit(0xFF); |
| emit_modrm(0x4, target); |
| } |
| |
| |
| void Assembler::jmp(const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode FF/4 m64. |
| emit_optional_rex_32(src); |
| emit(0xFF); |
| emit_operand(0x4, src); |
| } |
| |
| |
| void Assembler::lea(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| emit(0x8D); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::leal(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| emit(0x8D); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::load_rax(void* value, RelocInfo::Mode mode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x48); // REX.W |
| emit(0xA1); |
| emitq(reinterpret_cast<uintptr_t>(value), mode); |
| } |
| |
| |
| void Assembler::load_rax(ExternalReference ref) { |
| load_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE); |
| } |
| |
| |
| void Assembler::leave() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xC9); |
| } |
| |
| |
| void Assembler::movb(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_32(dst, src); |
| emit(0x8A); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movb(Register dst, Immediate imm) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_32(dst); |
| emit(0xC6); |
| emit_modrm(0x0, dst); |
| emit(imm.value_); |
| } |
| |
| |
| void Assembler::movb(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_32(src, dst); |
| emit(0x88); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::movw(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(src, dst); |
| emit(0x89); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::movl(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| emit(0x8B); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movl(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (src.low_bits() == 4) { |
| emit_optional_rex_32(src, dst); |
| emit(0x89); |
| emit_modrm(src, dst); |
| } else { |
| emit_optional_rex_32(dst, src); |
| emit(0x8B); |
| emit_modrm(dst, src); |
| } |
| } |
| |
| |
| void Assembler::movl(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(src, dst); |
| emit(0x89); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::movl(const Operand& dst, Immediate value) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xC7); |
| emit_operand(0x0, dst); |
| emit(value); // Only 32-bit immediates are possible, not 8-bit immediates. |
| } |
| |
| |
| void Assembler::movl(Register dst, Immediate value) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xC7); |
| emit_modrm(0x0, dst); |
| emit(value); // Only 32-bit immediates are possible, not 8-bit immediates. |
| } |
| |
| |
| void Assembler::movq(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| emit(0x8B); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movq(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (src.low_bits() == 4) { |
| emit_rex_64(src, dst); |
| emit(0x89); |
| emit_modrm(src, dst); |
| } else { |
| emit_rex_64(dst, src); |
| emit(0x8B); |
| emit_modrm(dst, src); |
| } |
| } |
| |
| |
| void Assembler::movq(Register dst, Immediate value) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xC7); |
| emit_modrm(0x0, dst); |
| emit(value); // Only 32-bit immediates are possible, not 8-bit immediates. |
| } |
| |
| |
| void Assembler::movq(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(src, dst); |
| emit(0x89); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::movq(Register dst, void* value, RelocInfo::Mode rmode) { |
| // This method must not be used with heap object references. The stored |
| // address is not GC safe. Use the handle version instead. |
| ASSERT(rmode > RelocInfo::LAST_GCED_ENUM); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xB8 | dst.low_bits()); |
| emitq(reinterpret_cast<uintptr_t>(value), rmode); |
| } |
| |
| |
| void Assembler::movq(Register dst, int64_t value, RelocInfo::Mode rmode) { |
| // Non-relocatable values might not need a 64-bit representation. |
| if (rmode == RelocInfo::NONE) { |
| // Sadly, there is no zero or sign extending move for 8-bit immediates. |
| if (is_int32(value)) { |
| movq(dst, Immediate(static_cast<int32_t>(value))); |
| return; |
| } else if (is_uint32(value)) { |
| movl(dst, Immediate(static_cast<int32_t>(value))); |
| return; |
| } |
| // Value cannot be represented by 32 bits, so do a full 64 bit immediate |
| // value. |
| } |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xB8 | dst.low_bits()); |
| emitq(value, rmode); |
| } |
| |
| |
| void Assembler::movq(Register dst, ExternalReference ref) { |
| int64_t value = reinterpret_cast<int64_t>(ref.address()); |
| movq(dst, value, RelocInfo::EXTERNAL_REFERENCE); |
| } |
| |
| |
| void Assembler::movq(const Operand& dst, Immediate value) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xC7); |
| emit_operand(0, dst); |
| emit(value); |
| } |
| |
| |
| // Loads the ip-relative location of the src label into the target location |
| // (as a 32-bit offset sign extended to 64-bit). |
| void Assembler::movl(const Operand& dst, Label* src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xC7); |
| emit_operand(0, dst); |
| if (src->is_bound()) { |
| int offset = src->pos() - pc_offset() - sizeof(int32_t); |
| ASSERT(offset <= 0); |
| emitl(offset); |
| } else if (src->is_linked()) { |
| emitl(src->pos()); |
| src->link_to(pc_offset() - sizeof(int32_t)); |
| } else { |
| ASSERT(src->is_unused()); |
| int32_t current = pc_offset(); |
| emitl(current); |
| src->link_to(current); |
| } |
| } |
| |
| |
| void Assembler::movq(Register dst, Handle<Object> value, RelocInfo::Mode mode) { |
| // If there is no relocation info, emit the value of the handle efficiently |
| // (possibly using less that 8 bytes for the value). |
| if (mode == RelocInfo::NONE) { |
| // There is no possible reason to store a heap pointer without relocation |
| // info, so it must be a smi. |
| ASSERT(value->IsSmi()); |
| movq(dst, reinterpret_cast<int64_t>(*value), RelocInfo::NONE); |
| } else { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(value->IsHeapObject()); |
| ASSERT(!HEAP->InNewSpace(*value)); |
| emit_rex_64(dst); |
| emit(0xB8 | dst.low_bits()); |
| emitq(reinterpret_cast<uintptr_t>(value.location()), mode); |
| } |
| } |
| |
| |
| void Assembler::movsxbq(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBE); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movsxwq(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0xBF); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movsxlq(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| emit(0x63); |
| emit_modrm(dst, src); |
| } |
| |
| |
| void Assembler::movsxlq(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst, src); |
| emit(0x63); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movzxbq(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xB6); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movzxbl(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xB6); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movzxwq(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xB7); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movzxwl(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0xB7); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::repmovsb() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); |
| emit(0xA4); |
| } |
| |
| |
| void Assembler::repmovsw() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); // Operand size override. |
| emit(0xF3); |
| emit(0xA4); |
| } |
| |
| |
| void Assembler::repmovsl() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); |
| emit(0xA5); |
| } |
| |
| |
| void Assembler::repmovsq() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); |
| emit_rex_64(); |
| emit(0xA5); |
| } |
| |
| |
| void Assembler::mul(Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(src); |
| emit(0xF7); |
| emit_modrm(0x4, src); |
| } |
| |
| |
| void Assembler::neg(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xF7); |
| emit_modrm(0x3, dst); |
| } |
| |
| |
| void Assembler::negl(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xF7); |
| emit_modrm(0x3, dst); |
| } |
| |
| |
| void Assembler::neg(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xF7); |
| emit_operand(3, dst); |
| } |
| |
| |
| void Assembler::nop() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x90); |
| } |
| |
| |
| void Assembler::not_(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xF7); |
| emit_modrm(0x2, dst); |
| } |
| |
| |
| void Assembler::not_(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(dst); |
| emit(0xF7); |
| emit_operand(2, dst); |
| } |
| |
| |
| void Assembler::notl(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0xF7); |
| emit_modrm(0x2, dst); |
| } |
| |
| |
| void Assembler::nop(int n) { |
| // The recommended muti-byte sequences of NOP instructions from the Intel 64 |
| // and IA-32 Architectures Software Developer's Manual. |
| // |
| // Length Assembly Byte Sequence |
| // 2 bytes 66 NOP 66 90H |
| // 3 bytes NOP DWORD ptr [EAX] 0F 1F 00H |
| // 4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H |
| // 5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H |
| // 6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H |
| // 7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H |
| // 8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H |
| // 9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 66 0F 1F 84 00 00 00 00 |
| // 00000000H] 00H |
| |
| ASSERT(1 <= n); |
| ASSERT(n <= 9); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| switch (n) { |
| case 1: |
| emit(0x90); |
| return; |
| case 2: |
| emit(0x66); |
| emit(0x90); |
| return; |
| case 3: |
| emit(0x0f); |
| emit(0x1f); |
| emit(0x00); |
| return; |
| case 4: |
| emit(0x0f); |
| emit(0x1f); |
| emit(0x40); |
| emit(0x00); |
| return; |
| case 5: |
| emit(0x0f); |
| emit(0x1f); |
| emit(0x44); |
| emit(0x00); |
| emit(0x00); |
| return; |
| case 6: |
| emit(0x66); |
| emit(0x0f); |
| emit(0x1f); |
| emit(0x44); |
| emit(0x00); |
| emit(0x00); |
| return; |
| case 7: |
| emit(0x0f); |
| emit(0x1f); |
| emit(0x80); |
| emit(0x00); |
| emit(0x00); |
| emit(0x00); |
| emit(0x00); |
| return; |
| case 8: |
| emit(0x0f); |
| emit(0x1f); |
| emit(0x84); |
| emit(0x00); |
| emit(0x00); |
| emit(0x00); |
| emit(0x00); |
| emit(0x00); |
| return; |
| case 9: |
| emit(0x66); |
| emit(0x0f); |
| emit(0x1f); |
| emit(0x84); |
| emit(0x00); |
| emit(0x00); |
| emit(0x00); |
| emit(0x00); |
| emit(0x00); |
| return; |
| } |
| } |
| |
| |
| void Assembler::pop(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0x58 | dst.low_bits()); |
| } |
| |
| |
| void Assembler::pop(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(dst); |
| emit(0x8F); |
| emit_operand(0, dst); |
| } |
| |
| |
| void Assembler::popfq() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x9D); |
| } |
| |
| |
| void Assembler::push(Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(src); |
| emit(0x50 | src.low_bits()); |
| } |
| |
| |
| void Assembler::push(const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(src); |
| emit(0xFF); |
| emit_operand(6, src); |
| } |
| |
| |
| void Assembler::push(Immediate value) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (is_int8(value.value_)) { |
| emit(0x6A); |
| emit(value.value_); // Emit low byte of value. |
| } else { |
| emit(0x68); |
| emitl(value.value_); |
| } |
| } |
| |
| |
| void Assembler::push_imm32(int32_t imm32) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x68); |
| emitl(imm32); |
| } |
| |
| |
| void Assembler::pushfq() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x9C); |
| } |
| |
| |
| void Assembler::rdtsc() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x0F); |
| emit(0x31); |
| } |
| |
| |
| void Assembler::ret(int imm16) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint16(imm16)); |
| if (imm16 == 0) { |
| emit(0xC3); |
| } else { |
| emit(0xC2); |
| emit(imm16 & 0xFF); |
| emit((imm16 >> 8) & 0xFF); |
| } |
| } |
| |
| |
| void Assembler::setcc(Condition cc, Register reg) { |
| if (cc > last_condition) { |
| movb(reg, Immediate(cc == always ? 1 : 0)); |
| return; |
| } |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint4(cc)); |
| if (reg.code() > 3) { // Use x64 byte registers, where different. |
| emit_rex_32(reg); |
| } |
| emit(0x0F); |
| emit(0x90 | cc); |
| emit_modrm(0x0, reg); |
| } |
| |
| |
| void Assembler::shld(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0xA5); |
| emit_modrm(src, dst); |
| } |
| |
| |
| void Assembler::shrd(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0xAD); |
| emit_modrm(src, dst); |
| } |
| |
| |
| void Assembler::xchg(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (src.is(rax) || dst.is(rax)) { // Single-byte encoding |
| Register other = src.is(rax) ? dst : src; |
| emit_rex_64(other); |
| emit(0x90 | other.low_bits()); |
| } else if (dst.low_bits() == 4) { |
| emit_rex_64(dst, src); |
| emit(0x87); |
| emit_modrm(dst, src); |
| } else { |
| emit_rex_64(src, dst); |
| emit(0x87); |
| emit_modrm(src, dst); |
| } |
| } |
| |
| |
| void Assembler::store_rax(void* dst, RelocInfo::Mode mode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x48); // REX.W |
| emit(0xA3); |
| emitq(reinterpret_cast<uintptr_t>(dst), mode); |
| } |
| |
| |
| void Assembler::store_rax(ExternalReference ref) { |
| store_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE); |
| } |
| |
| |
| void Assembler::testb(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (src.low_bits() == 4) { |
| emit_rex_32(src, dst); |
| emit(0x84); |
| emit_modrm(src, dst); |
| } else { |
| if (dst.code() > 3 || src.code() > 3) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(dst, src); |
| } |
| emit(0x84); |
| emit_modrm(dst, src); |
| } |
| } |
| |
| |
| void Assembler::testb(Register reg, Immediate mask) { |
| ASSERT(is_int8(mask.value_) || is_uint8(mask.value_)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (reg.is(rax)) { |
| emit(0xA8); |
| emit(mask.value_); // Low byte emitted. |
| } else { |
| if (reg.code() > 3) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(reg); |
| } |
| emit(0xF6); |
| emit_modrm(0x0, reg); |
| emit(mask.value_); // Low byte emitted. |
| } |
| } |
| |
| |
| void Assembler::testb(const Operand& op, Immediate mask) { |
| ASSERT(is_int8(mask.value_) || is_uint8(mask.value_)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(rax, op); |
| emit(0xF6); |
| emit_operand(rax, op); // Operation code 0 |
| emit(mask.value_); // Low byte emitted. |
| } |
| |
| |
| void Assembler::testb(const Operand& op, Register reg) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (reg.code() > 3) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(reg, op); |
| } else { |
| emit_optional_rex_32(reg, op); |
| } |
| emit(0x84); |
| emit_operand(reg, op); |
| } |
| |
| |
| void Assembler::testl(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (src.low_bits() == 4) { |
| emit_optional_rex_32(src, dst); |
| emit(0x85); |
| emit_modrm(src, dst); |
| } else { |
| emit_optional_rex_32(dst, src); |
| emit(0x85); |
| emit_modrm(dst, src); |
| } |
| } |
| |
| |
| void Assembler::testl(Register reg, Immediate mask) { |
| // testl with a mask that fits in the low byte is exactly testb. |
| if (is_uint8(mask.value_)) { |
| testb(reg, mask); |
| return; |
| } |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (reg.is(rax)) { |
| emit(0xA9); |
| emit(mask); |
| } else { |
| emit_optional_rex_32(rax, reg); |
| emit(0xF7); |
| emit_modrm(0x0, reg); |
| emit(mask); |
| } |
| } |
| |
| |
| void Assembler::testl(const Operand& op, Immediate mask) { |
| // testl with a mask that fits in the low byte is exactly testb. |
| if (is_uint8(mask.value_)) { |
| testb(op, mask); |
| return; |
| } |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(rax, op); |
| emit(0xF7); |
| emit_operand(rax, op); // Operation code 0 |
| emit(mask); |
| } |
| |
| |
| void Assembler::testq(const Operand& op, Register reg) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_rex_64(reg, op); |
| emit(0x85); |
| emit_operand(reg, op); |
| } |
| |
| |
| void Assembler::testq(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (src.low_bits() == 4) { |
| emit_rex_64(src, dst); |
| emit(0x85); |
| emit_modrm(src, dst); |
| } else { |
| emit_rex_64(dst, src); |
| emit(0x85); |
| emit_modrm(dst, src); |
| } |
| } |
| |
| |
| void Assembler::testq(Register dst, Immediate mask) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (dst.is(rax)) { |
| emit_rex_64(); |
| emit(0xA9); |
| emit(mask); |
| } else { |
| emit_rex_64(dst); |
| emit(0xF7); |
| emit_modrm(0, dst); |
| emit(mask); |
| } |
| } |
| |
| |
| // FPU instructions. |
| |
| |
| void Assembler::fld(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xD9, 0xC0, i); |
| } |
| |
| |
| void Assembler::fld1() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xE8); |
| } |
| |
| |
| void Assembler::fldz() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xEE); |
| } |
| |
| |
| void Assembler::fldpi() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xEB); |
| } |
| |
| |
| void Assembler::fldln2() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xED); |
| } |
| |
| |
| void Assembler::fld_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xD9); |
| emit_operand(0, adr); |
| } |
| |
| |
| void Assembler::fld_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDD); |
| emit_operand(0, adr); |
| } |
| |
| |
| void Assembler::fstp_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xD9); |
| emit_operand(3, adr); |
| } |
| |
| |
| void Assembler::fstp_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDD); |
| emit_operand(3, adr); |
| } |
| |
| |
| void Assembler::fstp(int index) { |
| ASSERT(is_uint3(index)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDD, 0xD8, index); |
| } |
| |
| |
| void Assembler::fild_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDB); |
| emit_operand(0, adr); |
| } |
| |
| |
| void Assembler::fild_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDF); |
| emit_operand(5, adr); |
| } |
| |
| |
| void Assembler::fistp_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDB); |
| emit_operand(3, adr); |
| } |
| |
| |
| void Assembler::fisttp_s(const Operand& adr) { |
| ASSERT(isolate()->cpu_features()->IsEnabled(SSE3)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDB); |
| emit_operand(1, adr); |
| } |
| |
| |
| void Assembler::fisttp_d(const Operand& adr) { |
| ASSERT(isolate()->cpu_features()->IsEnabled(SSE3)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDD); |
| emit_operand(1, adr); |
| } |
| |
| |
| void Assembler::fist_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDB); |
| emit_operand(2, adr); |
| } |
| |
| |
| void Assembler::fistp_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDF); |
| emit_operand(7, adr); |
| } |
| |
| |
| void Assembler::fabs() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xE1); |
| } |
| |
| |
| void Assembler::fchs() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xE0); |
| } |
| |
| |
| void Assembler::fcos() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xFF); |
| } |
| |
| |
| void Assembler::fsin() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xFE); |
| } |
| |
| |
| void Assembler::fyl2x() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xF1); |
| } |
| |
| |
| void Assembler::fadd(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDC, 0xC0, i); |
| } |
| |
| |
| void Assembler::fsub(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDC, 0xE8, i); |
| } |
| |
| |
| void Assembler::fisub_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_optional_rex_32(adr); |
| emit(0xDA); |
| emit_operand(4, adr); |
| } |
| |
| |
| void Assembler::fmul(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDC, 0xC8, i); |
| } |
| |
| |
| void Assembler::fdiv(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDC, 0xF8, i); |
| } |
| |
| |
| void Assembler::faddp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xC0, i); |
| } |
| |
| |
| void Assembler::fsubp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xE8, i); |
| } |
| |
| |
| void Assembler::fsubrp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xE0, i); |
| } |
| |
| |
| void Assembler::fmulp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xC8, i); |
| } |
| |
| |
| void Assembler::fdivp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xF8, i); |
| } |
| |
| |
| void Assembler::fprem() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xF8); |
| } |
| |
| |
| void Assembler::fprem1() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xF5); |
| } |
| |
| |
| void Assembler::fxch(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xD9, 0xC8, i); |
| } |
| |
| |
| void Assembler::fincstp() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xF7); |
| } |
| |
| |
| void Assembler::ffree(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDD, 0xC0, i); |
| } |
| |
| |
| void Assembler::ftst() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xE4); |
| } |
| |
| |
| void Assembler::fucomp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDD, 0xE8, i); |
| } |
| |
| |
| void Assembler::fucompp() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xDA); |
| emit(0xE9); |
| } |
| |
| |
| void Assembler::fucomi(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xDB); |
| emit(0xE8 + i); |
| } |
| |
| |
| void Assembler::fucomip() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xDF); |
| emit(0xE9); |
| } |
| |
| |
| void Assembler::fcompp() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xDE); |
| emit(0xD9); |
| } |
| |
| |
| void Assembler::fnstsw_ax() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xDF); |
| emit(0xE0); |
| } |
| |
| |
| void Assembler::fwait() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x9B); |
| } |
| |
| |
| void Assembler::frndint() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xD9); |
| emit(0xFC); |
| } |
| |
| |
| void Assembler::fnclex() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xDB); |
| emit(0xE2); |
| } |
| |
| |
| void Assembler::sahf() { |
| // TODO(X64): Test for presence. Not all 64-bit intel CPU's have sahf |
| // in 64-bit mode. Test CpuID. |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x9E); |
| } |
| |
| |
| void Assembler::emit_farith(int b1, int b2, int i) { |
| ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode |
| ASSERT(is_uint3(i)); // illegal stack offset |
| emit(b1); |
| emit(b2 + i); |
| } |
| |
| // SSE 2 operations. |
| |
| void Assembler::movd(XMMRegister dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x6E); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movd(Register dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(src, dst); |
| emit(0x0F); |
| emit(0x7E); |
| emit_sse_operand(src, dst); |
| } |
| |
| |
| void Assembler::movq(XMMRegister dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x6E); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movq(Register dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0x7E); |
| emit_sse_operand(src, dst); |
| } |
| |
| |
| void Assembler::movdqa(const Operand& dst, XMMRegister src) { |
| ASSERT(isolate()->cpu_features()->IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_rex_64(src, dst); |
| emit(0x0F); |
| emit(0x7F); |
| emit_sse_operand(src, dst); |
| } |
| |
| |
| void Assembler::movdqa(XMMRegister dst, const Operand& src) { |
| ASSERT(isolate()->cpu_features()->IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x6F); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::extractps(Register dst, XMMRegister src, byte imm8) { |
| ASSERT(is_uint2(imm8)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x3A); |
| emit(0x17); |
| emit_sse_operand(dst, src); |
| emit(imm8); |
| } |
| |
| |
| void Assembler::movsd(const Operand& dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); // double |
| emit_optional_rex_32(src, dst); |
| emit(0x0F); |
| emit(0x11); // store |
| emit_sse_operand(src, dst); |
| } |
| |
| |
| void Assembler::movsd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); // double |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x10); // load |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movsd(XMMRegister dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); // double |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x10); // load |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movss(XMMRegister dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); // single |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x10); // load |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movss(const Operand& src, XMMRegister dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); // single |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x11); // store |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvttss2si(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x2C); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvttss2si(Register dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x2C); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvttsd2si(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x2C); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvttsd2si(Register dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x2C); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvttsd2siq(Register dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x2C); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtlsi2sd(XMMRegister dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x2A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtlsi2sd(XMMRegister dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x2A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtlsi2ss(XMMRegister dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x2A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtqsi2sd(XMMRegister dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x2A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x5A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtss2sd(XMMRegister dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF3); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x5A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x5A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtsd2si(Register dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x2D); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtsd2siq(Register dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_rex_64(dst, src); |
| emit(0x0F); |
| emit(0x2D); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::addsd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x58); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::mulsd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x59); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::subsd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x5C); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::divsd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x5E); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::andpd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x54); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::orpd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x56); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::xorpd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x57); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0xF2); |
| emit_optional_rex_32(dst, src); |
| emit(0x0F); |
| emit(0x51); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::ucomisd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0f); |
| emit(0x2e); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::ucomisd(XMMRegister dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0f); |
| emit(0x2e); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movmskpd(Register dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit(0x66); |
| emit_optional_rex_32(dst, src); |
| emit(0x0f); |
| emit(0x50); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) { |
| Register ireg = { reg.code() }; |
| emit_operand(ireg, adr); |
| } |
| |
| |
| void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { |
| emit(0xC0 | (dst.low_bits() << 3) | src.low_bits()); |
| } |
| |
| void Assembler::emit_sse_operand(XMMRegister dst, Register src) { |
| emit(0xC0 | (dst.low_bits() << 3) | src.low_bits()); |
| } |
| |
| void Assembler::emit_sse_operand(Register dst, XMMRegister src) { |
| emit(0xC0 | (dst.low_bits() << 3) | src.low_bits()); |
| } |
| |
| |
| void Assembler::db(uint8_t data) { |
| EnsureSpace ensure_space(this); |
| emit(data); |
| } |
| |
| |
| void Assembler::dd(uint32_t data) { |
| EnsureSpace ensure_space(this); |
| emitl(data); |
| } |
| |
| |
| // Relocation information implementations. |
| |
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| ASSERT(rmode != RelocInfo::NONE); |
| // Don't record external references unless the heap will be serialized. |
| if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| #ifdef DEBUG |
| if (!Serializer::enabled()) { |
| Serializer::TooLateToEnableNow(); |
| } |
| #endif |
| if (!Serializer::enabled() && !emit_debug_code()) { |
| return; |
| } |
| } |
| RelocInfo rinfo(pc_, rmode, data); |
| reloc_info_writer.Write(&rinfo); |
| } |
| |
| void Assembler::RecordJSReturn() { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| RecordRelocInfo(RelocInfo::JS_RETURN); |
| } |
| |
| |
| void Assembler::RecordDebugBreakSlot() { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); |
| } |
| |
| |
| void Assembler::RecordComment(const char* msg, bool force) { |
| if (FLAG_code_comments || force) { |
| EnsureSpace ensure_space(this); |
| RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| } |
| } |
| |
| |
| const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask | |
| 1 << RelocInfo::INTERNAL_REFERENCE; |
| |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Being |
| // specially coded on x64 means that it is a relative 32 bit address, as used |
| // by branch instructions. |
| return (1 << rmode_) & kApplyMask; |
| } |
| |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_X64 |