blob: 21d3e54ad08c437f861f2e37545a0faacc712875 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "codegen-inl.h"
#include "deoptimizer.h"
#include "full-codegen.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- rax : number of arguments excluding receiver
// -- rdi : called function (only guaranteed when
// extra_args requires it)
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[8 * argc] : first argument (argc == rax)
// -- rsp[8 * (argc +1)] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ pop(kScratchRegister); // Save return address.
__ push(rdi);
__ push(kScratchRegister); // Restore return address.
} else {
ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects rax to contain the number of arguments
// including the receiver and the extra arguments.
__ addq(rax, Immediate(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1);
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rdi: constructor function
// -----------------------------------
Label non_function_call;
// Check that function is not a smi.
__ JumpIfSmi(rdi, &non_function_call);
// Check that function is a JSFunction.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &non_function_call);
// Jump to the function-specific construct stub.
__ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset));
__ lea(rbx, FieldOperand(rbx, Code::kHeaderSize));
__ jmp(rbx);
// rdi: called object
// rax: number of arguments
__ bind(&non_function_call);
// Set expected number of arguments to zero (not changing rax).
__ movq(rbx, Immediate(0));
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool count_constructions) {
// Should never count constructions for api objects.
ASSERT(!is_api_function || !count_constructions);
// Enter a construct frame.
__ EnterConstructFrame();
// Store a smi-tagged arguments count on the stack.
__ Integer32ToSmi(rax, rax);
__ push(rax);
// Push the function to invoke on the stack.
__ push(rdi);
// Try to allocate the object without transitioning into C code. If any of the
// preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ movq(kScratchRegister, debug_step_in_fp);
__ cmpq(Operand(kScratchRegister, 0), Immediate(0));
__ j(not_equal, &rt_call);
#endif
// Verified that the constructor is a JSFunction.
// Load the initial map and verify that it is in fact a map.
// rdi: constructor
__ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
ASSERT(kSmiTag == 0);
__ JumpIfSmi(rax, &rt_call);
// rdi: constructor
// rax: initial map (if proven valid below)
__ CmpObjectType(rax, MAP_TYPE, rbx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see comments
// in Runtime_NewObject in runtime.cc). In which case the initial map's
// instance type would be JS_FUNCTION_TYPE.
// rdi: constructor
// rax: initial map
__ CmpInstanceType(rax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
if (count_constructions) {
Label allocate;
// Decrease generous allocation count.
__ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ decb(FieldOperand(rcx, SharedFunctionInfo::kConstructionCountOffset));
__ j(not_zero, &allocate);
__ push(rax);
__ push(rdi);
__ push(rdi); // constructor
// The call will replace the stub, so the countdown is only done once.
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ pop(rdi);
__ pop(rax);
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
__ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
__ shl(rdi, Immediate(kPointerSizeLog2));
// rdi: size of new object
__ AllocateInNewSpace(rdi,
rbx,
rdi,
no_reg,
&rt_call,
NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields.
// rax: initial map
// rbx: JSObject (not HeapObject tagged - the actual address).
// rdi: start of next object
__ movq(Operand(rbx, JSObject::kMapOffset), rax);
__ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
__ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx);
__ movq(Operand(rbx, JSObject::kElementsOffset), rcx);
// Set extra fields in the newly allocated object.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
{ Label loop, entry;
// To allow for truncation.
if (count_constructions) {
__ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
} else {
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
}
__ lea(rcx, Operand(rbx, JSObject::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(rcx, 0), rdx);
__ addq(rcx, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(rcx, rdi);
__ j(less, &loop);
}
// Add the object tag to make the JSObject real, so that we can continue and
// jump into the continuation code at any time from now on. Any failures
// need to undo the allocation, so that the heap is in a consistent state
// and verifiable.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
__ or_(rbx, Immediate(kHeapObjectTag));
// Check if a non-empty properties array is needed.
// Allocate and initialize a FixedArray if it is.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
// Calculate total properties described map.
__ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
__ movzxbq(rcx, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
__ addq(rdx, rcx);
// Calculate unused properties past the end of the in-object properties.
__ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
__ subq(rdx, rcx);
// Done if no extra properties are to be allocated.
__ j(zero, &allocated);
__ Assert(positive, "Property allocation count failed.");
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// rbx: JSObject
// rdi: start of next object (will be start of FixedArray)
// rdx: number of elements in properties array
__ AllocateInNewSpace(FixedArray::kHeaderSize,
times_pointer_size,
rdx,
rdi,
rax,
no_reg,
&undo_allocation,
RESULT_CONTAINS_TOP);
// Initialize the FixedArray.
// rbx: JSObject
// rdi: FixedArray
// rdx: number of elements
// rax: start of next object
__ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
__ movq(Operand(rdi, HeapObject::kMapOffset), rcx); // setup the map
__ Integer32ToSmi(rdx, rdx);
__ movq(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length
// Initialize the fields to undefined.
// rbx: JSObject
// rdi: FixedArray
// rax: start of next object
// rdx: number of elements
{ Label loop, entry;
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ lea(rcx, Operand(rdi, FixedArray::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(rcx, 0), rdx);
__ addq(rcx, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(rcx, rax);
__ j(below, &loop);
}
// Store the initialized FixedArray into the properties field of
// the JSObject
// rbx: JSObject
// rdi: FixedArray
__ or_(rdi, Immediate(kHeapObjectTag)); // add the heap tag
__ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
// Continue with JSObject being successfully allocated
// rbx: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// rbx: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(rbx);
}
// Allocate the new receiver object using the runtime call.
// rdi: function (constructor)
__ bind(&rt_call);
// Must restore rdi (constructor) before calling runtime.
__ movq(rdi, Operand(rsp, 0));
__ push(rdi);
__ CallRuntime(Runtime::kNewObject, 1);
__ movq(rbx, rax); // store result in rbx
// New object allocated.
// rbx: newly allocated object
__ bind(&allocated);
// Retrieve the function from the stack.
__ pop(rdi);
// Retrieve smi-tagged arguments count from the stack.
__ movq(rax, Operand(rsp, 0));
__ SmiToInteger32(rax, rax);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(rbx);
__ push(rbx);
// Setup pointer to last argument.
__ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movq(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decq(rcx);
__ j(greater_equal, &loop);
// Call the function.
if (is_api_function) {
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
ParameterCount expected(0);
__ InvokeCode(code, expected, expected,
RelocInfo::CODE_TARGET, CALL_FUNCTION);
} else {
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
}
// Restore context from the frame.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(rax, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movq(rax, Operand(rsp, 0));
// Restore the arguments count and leave the construct frame.
__ bind(&exit);
__ movq(rbx, Operand(rsp, kPointerSize)); // get arguments count
__ LeaveConstructFrame();
// Remove caller arguments from the stack and return.
__ pop(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ push(rcx);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1);
__ ret(0);
}
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Expects five C++ function parameters.
// - Address entry (ignored)
// - JSFunction* function (
// - Object* receiver
// - int argc
// - Object*** argv
// (see Handle::Invoke in execution.cc).
// Platform specific argument handling. After this, the stack contains
// an internal frame and the pushed function and receiver, and
// register rax and rbx holds the argument count and argument array,
// while rdi holds the function pointer and rsi the context.
#ifdef _WIN64
// MSVC parameters in:
// rcx : entry (ignored)
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Clear the context before we push it when entering the JS frame.
__ Set(rsi, 0);
__ EnterInternalFrame();
// Load the function context into rsi.
__ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ push(rdx);
__ push(r8);
// Load the number of arguments and setup pointer to the arguments.
__ movq(rax, r9);
// Load the previous frame pointer to access C argument on stack
__ movq(kScratchRegister, Operand(rbp, 0));
__ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
// Load the function pointer into rdi.
__ movq(rdi, rdx);
#else // _WIN64
// GCC parameters in:
// rdi : entry (ignored)
// rsi : function
// rdx : receiver
// rcx : argc
// r8 : argv
__ movq(rdi, rsi);
// rdi : function
// Clear the context before we push it when entering the JS frame.
__ Set(rsi, 0);
// Enter an internal frame.
__ EnterInternalFrame();
// Push the function and receiver and setup the context.
__ push(rdi);
__ push(rdx);
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Load the number of arguments and setup pointer to the arguments.
__ movq(rax, rcx);
__ movq(rbx, r8);
#endif // _WIN64
// Current stack contents:
// [rsp + 2 * kPointerSize ... ]: Internal frame
// [rsp + kPointerSize] : function
// [rsp] : receiver
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// Copy arguments to the stack in a loop.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
Label loop, entry;
__ Set(rcx, 0); // Set loop variable to 0.
__ jmp(&entry);
__ bind(&loop);
__ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ push(Operand(kScratchRegister, 0)); // dereference handle
__ addq(rcx, Immediate(1));
__ bind(&entry);
__ cmpq(rcx, rax);
__ j(not_equal, &loop);
// Invoke the code.
if (is_construct) {
// Expects rdi to hold function pointer.
__ Call(masm->isolate()->builtins()->JSConstructCall(),
RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(rax);
// Function must be in rdi.
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
}
// Exit the JS frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
__ LeaveInternalFrame();
// TODO(X64): Is argument correct? Is there a receiver to remove?
__ ret(1 * kPointerSize); // remove receiver
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function onto the stack.
__ push(rdi);
__ push(rdi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyCompile, 1);
__ pop(rdi);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(rcx, FieldOperand(rax, Code::kHeaderSize));
__ jmp(rcx);
}
void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function onto the stack.
__ push(rdi);
__ push(rdi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyRecompile, 1);
// Restore function and tear down temporary frame.
__ pop(rdi);
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(rcx, FieldOperand(rax, Code::kHeaderSize));
__ jmp(rcx);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
// Enter an internal frame.
__ EnterInternalFrame();
// Pass the deoptimization type to the runtime system.
__ Push(Smi::FromInt(static_cast<int>(type)));
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Get the full codegen state from the stack and untag it.
__ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
// Switch on the state.
NearLabel not_no_registers, not_tos_rax;
__ cmpq(rcx, Immediate(FullCodeGenerator::NO_REGISTERS));
__ j(not_equal, &not_no_registers);
__ ret(1 * kPointerSize); // Remove state.
__ bind(&not_no_registers);
__ movq(rax, Operand(rsp, 2 * kPointerSize));
__ cmpq(rcx, Immediate(FullCodeGenerator::TOS_REG));
__ j(not_equal, &not_tos_rax);
__ ret(2 * kPointerSize); // Remove state, rax.
__ bind(&not_tos_rax);
__ Abort("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
// For now, we are relying on the fact that Runtime::NotifyOSR
// doesn't do any garbage collection which allows us to save/restore
// the registers without worrying about which of them contain
// pointers. This seems a bit fragile.
__ Pushad();
__ EnterInternalFrame();
__ CallRuntime(Runtime::kNotifyOSR, 0);
__ LeaveInternalFrame();
__ Popad();
__ ret(0);
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// Stack Layout:
// rsp[0]: Return address
// rsp[1]: Argument n
// rsp[2]: Argument n-1
// ...
// rsp[n]: Argument 1
// rsp[n+1]: Receiver (function to call)
//
// rax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{ Label done;
__ testq(rax, rax);
__ j(not_zero, &done);
__ pop(rbx);
__ Push(FACTORY->undefined_value());
__ push(rbx);
__ incq(rax);
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
Label non_function;
// The function to call is at position n+1 on the stack.
__ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ JumpIfSmi(rdi, &non_function);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &non_function);
// 3a. Patch the first argument if necessary when calling a function.
Label shift_arguments;
{ Label convert_to_object, use_global_receiver, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(rbx, SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &shift_arguments);
// Compute the receiver in non-strict mode.
__ movq(rbx, Operand(rsp, rax, times_pointer_size, 0));
__ JumpIfSmi(rbx, &convert_to_object);
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
__ j(equal, &use_global_receiver);
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &use_global_receiver);
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &convert_to_object);
__ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE);
__ j(below_equal, &shift_arguments);
__ bind(&convert_to_object);
__ EnterInternalFrame(); // In order to preserve argument count.
__ Integer32ToSmi(rax, rax);
__ push(rax);
__ push(rbx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ movq(rbx, rax);
__ pop(rax);
__ SmiToInteger32(rax, rax);
__ LeaveInternalFrame();
// Restore the function to rdi.
__ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ jmp(&patch_receiver);
// Use the global receiver object from the called function as the
// receiver.
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ movq(rbx, FieldOperand(rsi, kGlobalIndex));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset));
__ movq(rbx, FieldOperand(rbx, kGlobalIndex));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ movq(Operand(rsp, rax, times_pointer_size, 0), rbx);
__ jmp(&shift_arguments);
}
// 3b. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
__ bind(&non_function);
__ movq(Operand(rsp, rax, times_pointer_size, 0), rdi);
__ Set(rdi, 0);
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
__ bind(&shift_arguments);
{ Label loop;
__ movq(rcx, rax);
__ bind(&loop);
__ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0));
__ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx);
__ decq(rcx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(rbx); // Discard copy of return address.
__ decq(rax); // One fewer argument (first argument is new receiver).
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
{ Label function;
__ testq(rdi, rdi);
__ j(not_zero, &function);
__ Set(rbx, 0);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
__ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movsxlq(rbx,
FieldOperand(rdx,
SharedFunctionInfo::kFormalParameterCountOffset));
__ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ cmpq(rax, rbx);
__ j(not_equal,
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
ParameterCount expected(0);
__ InvokeCode(rdx, expected, expected, JUMP_FUNCTION);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
// Stack at entry:
// rsp: return address
// rsp+8: arguments
// rsp+16: receiver ("this")
// rsp+24: function
__ EnterInternalFrame();
// Stack frame:
// rbp: Old base pointer
// rbp[1]: return address
// rbp[2]: function arguments
// rbp[3]: receiver
// rbp[4]: function
static const int kArgumentsOffset = 2 * kPointerSize;
static const int kReceiverOffset = 3 * kPointerSize;
static const int kFunctionOffset = 4 * kPointerSize;
__ push(Operand(rbp, kFunctionOffset));
__ push(Operand(rbp, kArgumentsOffset));
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying need to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movq(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subq(rcx, kScratchRegister);
// Make rdx the space we need for the array when it is unrolled onto the
// stack.
__ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmpq(rcx, rdx);
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ push(Operand(rbp, kFunctionOffset));
__ push(rax);
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
__ bind(&okay);
// End of stack check.
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ push(rax); // limit
__ push(Immediate(0)); // index
// Change context eagerly to get the right global object if
// necessary.
__ movq(rdi, Operand(rbp, kFunctionOffset));
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Compute the receiver.
Label call_to_object, use_global_receiver, push_receiver;
__ movq(rbx, Operand(rbp, kReceiverOffset));
// Do not transform the receiver for strict mode functions.
__ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(rdx, SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &push_receiver);
// Compute the receiver in non-strict mode.
__ JumpIfSmi(rbx, &call_to_object);
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
__ j(equal, &use_global_receiver);
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &use_global_receiver);
// If given receiver is already a JavaScript object then there's no
// reason for converting it.
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &call_to_object);
__ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE);
__ j(below_equal, &push_receiver);
// Convert the receiver to an object.
__ bind(&call_to_object);
__ push(rbx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ movq(rbx, rax);
__ jmp(&push_receiver);
// Use the current global receiver object as the receiver.
__ bind(&use_global_receiver);
const int kGlobalOffset =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ movq(rbx, FieldOperand(rsi, kGlobalOffset));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset));
__ movq(rbx, FieldOperand(rbx, kGlobalOffset));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
__ bind(&push_receiver);
__ push(rbx);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ movq(rax, Operand(rbp, kIndexOffset));
__ jmp(&entry);
__ bind(&loop);
__ movq(rdx, Operand(rbp, kArgumentsOffset)); // load arguments
// Use inline caching to speed up access to arguments.
Handle<Code> ic =
masm->isolate()->builtins()->KeyedLoadIC_Initialize();
__ Call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Push the nth argument.
__ push(rax);
// Update the index on the stack and in register rax.
__ movq(rax, Operand(rbp, kIndexOffset));
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
__ movq(Operand(rbp, kIndexOffset), rax);
__ bind(&entry);
__ cmpq(rax, Operand(rbp, kLimitOffset));
__ j(not_equal, &loop);
// Invoke the function.
ParameterCount actual(rax);
__ SmiToInteger32(rax, rax);
__ movq(rdi, Operand(rbp, kFunctionOffset));
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
__ LeaveInternalFrame();
__ ret(3 * kPointerSize); // remove function, receiver, and arguments
}
// Number of empty elements to allocate for an empty array.
static const int kPreallocatedArrayElements = 4;
// Allocate an empty JSArray. The allocated array is put into the result
// register. If the parameter initial_capacity is larger than zero an elements
// backing store is allocated with this size and filled with the hole values.
// Otherwise the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
int initial_capacity,
Label* gc_required) {
ASSERT(initial_capacity >= 0);
// Load the initial map from the array function.
__ movq(scratch1, FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Allocate the JSArray object together with space for a fixed array with the
// requested elements.
int size = JSArray::kSize;
if (initial_capacity > 0) {
size += FixedArray::SizeFor(initial_capacity);
}
__ AllocateInNewSpace(size,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// scratch1: initial map
// scratch2: start of next object
__ movq(FieldOperand(result, JSObject::kMapOffset), scratch1);
__ Move(FieldOperand(result, JSArray::kPropertiesOffset),
FACTORY->empty_fixed_array());
// Field JSArray::kElementsOffset is initialized later.
__ Move(FieldOperand(result, JSArray::kLengthOffset), Smi::FromInt(0));
// If no storage is requested for the elements array just set the empty
// fixed array.
if (initial_capacity == 0) {
__ Move(FieldOperand(result, JSArray::kElementsOffset),
FACTORY->empty_fixed_array());
return;
}
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// scratch2: start of next object
__ lea(scratch1, Operand(result, JSArray::kSize));
__ movq(FieldOperand(result, JSArray::kElementsOffset), scratch1);
// Initialize the FixedArray and fill it with holes. FixedArray length is
// stored as a smi.
// result: JSObject
// scratch1: elements array
// scratch2: start of next object
__ Move(FieldOperand(scratch1, HeapObject::kMapOffset),
FACTORY->fixed_array_map());
__ Move(FieldOperand(scratch1, FixedArray::kLengthOffset),
Smi::FromInt(initial_capacity));
// Fill the FixedArray with the hole value. Inline the code if short.
// Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
static const int kLoopUnfoldLimit = 4;
ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit);
__ Move(scratch3, FACTORY->the_hole_value());
if (initial_capacity <= kLoopUnfoldLimit) {
// Use a scratch register here to have only one reloc info when unfolding
// the loop.
for (int i = 0; i < initial_capacity; i++) {
__ movq(FieldOperand(scratch1,
FixedArray::kHeaderSize + i * kPointerSize),
scratch3);
}
} else {
Label loop, entry;
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(scratch1, 0), scratch3);
__ addq(scratch1, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(scratch1, scratch2);
__ j(below, &loop);
}
}
// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi.
Register result,
Register elements_array,
Register elements_array_end,
Register scratch,
bool fill_with_hole,
Label* gc_required) {
Label not_empty, allocated;
// Load the initial map from the array function.
__ movq(elements_array,
FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Check whether an empty sized array is requested.
__ testq(array_size, array_size);
__ j(not_zero, &not_empty);
// If an empty array is requested allocate a small elements array anyway. This
// keeps the code below free of special casing for the empty array.
int size = JSArray::kSize + FixedArray::SizeFor(kPreallocatedArrayElements);
__ AllocateInNewSpace(size,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
__ jmp(&allocated);
// Allocate the JSArray object together with space for a FixedArray with the
// requested elements.
__ bind(&not_empty);
SmiIndex index =
masm->SmiToIndex(kScratchRegister, array_size, kPointerSizeLog2);
__ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
index.scale,
index.reg,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array: initial map
// elements_array_end: start of next object
// array_size: size of array (smi)
__ bind(&allocated);
__ movq(FieldOperand(result, JSObject::kMapOffset), elements_array);
__ Move(elements_array, FACTORY->empty_fixed_array());
__ movq(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
// Field JSArray::kElementsOffset is initialized later.
__ movq(FieldOperand(result, JSArray::kLengthOffset), array_size);
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// elements_array_end: start of next object
// array_size: size of array (smi)
__ lea(elements_array, Operand(result, JSArray::kSize));
__ movq(FieldOperand(result, JSArray::kElementsOffset), elements_array);
// Initialize the fixed array. FixedArray length is stored as a smi.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
// array_size: size of array (smi)
__ Move(FieldOperand(elements_array, JSObject::kMapOffset),
FACTORY->fixed_array_map());
Label not_empty_2, fill_array;
__ SmiTest(array_size);
__ j(not_zero, &not_empty_2);
// Length of the FixedArray is the number of pre-allocated elements even
// though the actual JSArray has length 0.
__ Move(FieldOperand(elements_array, FixedArray::kLengthOffset),
Smi::FromInt(kPreallocatedArrayElements));
__ jmp(&fill_array);
__ bind(&not_empty_2);
// For non-empty JSArrays the length of the FixedArray and the JSArray is the
// same.
__ movq(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
// Fill the allocated FixedArray with the hole value if requested.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
__ bind(&fill_array);
if (fill_with_hole) {
Label loop, entry;
__ Move(scratch, FACTORY->the_hole_value());
__ lea(elements_array, Operand(elements_array,
FixedArray::kHeaderSize - kHeapObjectTag));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(elements_array, 0), scratch);
__ addq(elements_array, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(elements_array, elements_array_end);
__ j(below, &loop);
}
}
// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
// rdi: constructor (built-in Array function)
// rax: argc
// rsp[0]: return address
// rsp[8]: last argument
// This function is used for both construct and normal calls of Array. The only
// difference between handling a construct call and a normal call is that for a
// construct call the constructor function in rdi needs to be preserved for
// entering the generic code. In both cases argc in rax needs to be preserved.
// Both registers are preserved by this code so no need to differentiate between
// a construct call and a normal call.
static void ArrayNativeCode(MacroAssembler* masm,
Label *call_generic_code) {
Label argc_one_or_more, argc_two_or_more;
// Check for array construction with zero arguments.
__ testq(rax, rax);
__ j(not_zero, &argc_one_or_more);
// Handle construction of an empty array.
AllocateEmptyJSArray(masm,
rdi,
rbx,
rcx,
rdx,
r8,
kPreallocatedArrayElements,
call_generic_code);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->array_function_native(), 1);
__ movq(rax, rbx);
__ ret(kPointerSize);
// Check for one argument. Bail out if argument is not smi or if it is
// negative.
__ bind(&argc_one_or_more);
__ cmpq(rax, Immediate(1));
__ j(not_equal, &argc_two_or_more);
__ movq(rdx, Operand(rsp, kPointerSize)); // Get the argument from the stack.
__ JumpUnlessNonNegativeSmi(rdx, call_generic_code);
// Handle construction of an empty array of a certain size. Bail out if size
// is to large to actually allocate an elements array.
__ SmiCompare(rdx, Smi::FromInt(JSObject::kInitialMaxFastElementArray));
__ j(greater_equal, call_generic_code);
// rax: argc
// rdx: array_size (smi)
// rdi: constructor
// esp[0]: return address
// esp[8]: argument
AllocateJSArray(masm,
rdi,
rdx,
rbx,
rcx,
r8,
r9,
true,
call_generic_code);
__ IncrementCounter(counters->array_function_native(), 1);
__ movq(rax, rbx);
__ ret(2 * kPointerSize);
// Handle construction of an array from a list of arguments.
__ bind(&argc_two_or_more);
__ movq(rdx, rax);
__ Integer32ToSmi(rdx, rdx); // Convet argc to a smi.
// rax: argc
// rdx: array_size (smi)
// rdi: constructor
// esp[0] : return address
// esp[8] : last argument
AllocateJSArray(masm,
rdi,
rdx,
rbx,
rcx,
r8,
r9,
false,
call_generic_code);
__ IncrementCounter(counters->array_function_native(), 1);
// rax: argc
// rbx: JSArray
// rcx: elements_array
// r8: elements_array_end (untagged)
// esp[0]: return address
// esp[8]: last argument
// Location of the last argument
__ lea(r9, Operand(rsp, kPointerSize));
// Location of the first array element (Parameter fill_with_holes to
// AllocateJSArrayis false, so the FixedArray is returned in rcx).
__ lea(rdx, Operand(rcx, FixedArray::kHeaderSize - kHeapObjectTag));
// rax: argc
// rbx: JSArray
// rdx: location of the first array element
// r9: location of the last argument
// esp[0]: return address
// esp[8]: last argument
Label loop, entry;
__ movq(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ movq(kScratchRegister, Operand(r9, rcx, times_pointer_size, 0));
__ movq(Operand(rdx, 0), kScratchRegister);
__ addq(rdx, Immediate(kPointerSize));
__ bind(&entry);
__ decq(rcx);
__ j(greater_equal, &loop);
// Remove caller arguments from the stack and return.
// rax: argc
// rbx: JSArray
// esp[0]: return address
// esp[8]: last argument
__ pop(rcx);
__ lea(rsp, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ push(rcx);
__ movq(rax, rbx);
__ ret(0);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, "Unexpected initial map for Array function");
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as a normal function.
ArrayNativeCode(masm, &generic_array_code);
// Jump to the generic array code in case the specialized code cannot handle
// the construction.
__ bind(&generic_array_code);
Handle<Code> array_code =
masm->isolate()->builtins()->ArrayCodeGeneric();
__ Jump(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rdi : constructor
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_constructor;
if (FLAG_debug_code) {
// The array construct code is only set for the builtin and internal
// Array functions which always have a map.
// Initial map for the builtin Array function should be a map.
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, "Unexpected initial map for Array function");
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as constructor.
ArrayNativeCode(masm, &generic_constructor);
// Jump to the generic construct code in case the specialized code cannot
// handle the construction.
__ bind(&generic_constructor);
Handle<Code> generic_construct_stub =
masm->isolate()->builtins()->JSConstructStubGeneric();
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// TODO(849): implement custom construct stub.
// Generate a copy of the generic stub for now.
Generate_JSConstructStubGeneric(masm);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(rbp);
__ movq(rbp, rsp);
// Store the arguments adaptor context sentinel.
__ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
// Push the function on the stack.
__ push(rdi);
// Preserve the number of arguments on the stack. Must preserve both
// rax and rbx because these registers are used when copying the
// arguments and the receiver.
__ Integer32ToSmi(rcx, rax);
__ push(rcx);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack. Number is a Smi.
__ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ movq(rsp, rbp);
__ pop(rbp);
// Remove caller arguments from the stack.
__ pop(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ push(rcx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdx : code entry to call
// -----------------------------------
Label invoke, dont_adapt_arguments;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->arguments_adaptors(), 1);
Label enough, too_few;
__ cmpq(rax, rbx);
__ j(less, &too_few);
__ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(rax, Operand(rbp, rax, times_pointer_size, offset));
__ movq(rcx, Immediate(-1)); // account for receiver
Label copy;
__ bind(&copy);
__ incq(rcx);
__ push(Operand(rax, 0));
__ subq(rax, Immediate(kPointerSize));
__ cmpq(rcx, rbx);
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(rdi, Operand(rbp, rax, times_pointer_size, offset));
__ movq(rcx, Immediate(-1)); // account for receiver
Label copy;
__ bind(&copy);
__ incq(rcx);
__ push(Operand(rdi, 0));
__ subq(rdi, Immediate(kPointerSize));
__ cmpq(rcx, rax);
__ j(less, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incq(rcx);
__ push(kScratchRegister);
__ cmpq(rcx, rbx);
__ j(less, &fill);
// Restore function pointer.
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ call(rdx);
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(rdx);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Get the loop depth of the stack guard check. This is recorded in
// a test(rax, depth) instruction right after the call.
Label stack_check;
__ movq(rbx, Operand(rsp, 0)); // return address
__ movzxbq(rbx, Operand(rbx, 1)); // depth
// Get the loop nesting level at which we allow OSR from the
// unoptimized code and check if we want to do OSR yet. If not we
// should perform a stack guard check so we can get interrupts while
// waiting for on-stack replacement.
__ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rcx, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
__ movq(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset));
__ cmpb(rbx, FieldOperand(rcx, Code::kAllowOSRAtLoopNestingLevelOffset));
__ j(greater, &stack_check);
// Pass the function to optimize as the argument to the on-stack
// replacement runtime function.
__ EnterInternalFrame();
__ push(rax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
__ LeaveInternalFrame();
// If the result was -1 it means that we couldn't optimize the
// function. Just return and continue in the unoptimized version.
NearLabel skip;
__ SmiCompare(rax, Smi::FromInt(-1));
__ j(not_equal, &skip);
__ ret(0);
// If we decide not to perform on-stack replacement we perform a
// stack guard check to enable interrupts.
__ bind(&stack_check);
NearLabel ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
StackCheckStub stub;
__ TailCallStub(&stub);
__ Abort("Unreachable code: returned from tail call.");
__ bind(&ok);
__ ret(0);
__ bind(&skip);
// Untag the AST id and push it on the stack.
__ SmiToInteger32(rax, rax);
__ push(rax);
// Generate the code for doing the frame-to-frame translation using
// the deoptimizer infrastructure.
Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
generator.Generate();
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64