blob: 86860ce0174db535a9612a9644564949a5afab5f [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
#include <stdlib.h>
#include "v8.h"
#include "execution.h"
#include "factory.h"
#include "macro-assembler.h"
#include "global-handles.h"
#include "cctest.h"
using namespace v8::internal;
static v8::Persistent<v8::Context> env;
static void InitializeVM() {
if (env.IsEmpty()) env = v8::Context::New();
v8::HandleScope scope;
env->Enter();
}
static void CheckMap(Map* map, int type, int instance_size) {
CHECK(map->IsHeapObject());
#ifdef DEBUG
CHECK(HEAP->Contains(map));
#endif
CHECK_EQ(HEAP->meta_map(), map->map());
CHECK_EQ(type, map->instance_type());
CHECK_EQ(instance_size, map->instance_size());
}
TEST(HeapMaps) {
InitializeVM();
CheckMap(HEAP->meta_map(), MAP_TYPE, Map::kSize);
CheckMap(HEAP->heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize);
CheckMap(HEAP->fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel);
CheckMap(HEAP->string_map(), STRING_TYPE, kVariableSizeSentinel);
}
static void CheckOddball(Object* obj, const char* string) {
CHECK(obj->IsOddball());
bool exc;
Object* print_string = *Execution::ToString(Handle<Object>(obj), &exc);
CHECK(String::cast(print_string)->IsEqualTo(CStrVector(string)));
}
static void CheckSmi(int value, const char* string) {
bool exc;
Object* print_string =
*Execution::ToString(Handle<Object>(Smi::FromInt(value)), &exc);
CHECK(String::cast(print_string)->IsEqualTo(CStrVector(string)));
}
static void CheckNumber(double value, const char* string) {
Object* obj = HEAP->NumberFromDouble(value)->ToObjectChecked();
CHECK(obj->IsNumber());
bool exc;
Object* print_string = *Execution::ToString(Handle<Object>(obj), &exc);
CHECK(String::cast(print_string)->IsEqualTo(CStrVector(string)));
}
static void CheckFindCodeObject() {
// Test FindCodeObject
#define __ assm.
Assembler assm(NULL, 0);
__ nop(); // supported on all architectures
CodeDesc desc;
assm.GetCode(&desc);
Object* code = HEAP->CreateCode(
desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
CHECK(code->IsCode());
HeapObject* obj = HeapObject::cast(code);
Address obj_addr = obj->address();
for (int i = 0; i < obj->Size(); i += kPointerSize) {
Object* found = HEAP->FindCodeObject(obj_addr + i);
CHECK_EQ(code, found);
}
Object* copy = HEAP->CreateCode(
desc,
Code::ComputeFlags(Code::STUB),
Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
CHECK(copy->IsCode());
HeapObject* obj_copy = HeapObject::cast(copy);
Object* not_right = HEAP->FindCodeObject(obj_copy->address() +
obj_copy->Size() / 2);
CHECK(not_right != code);
}
TEST(HeapObjects) {
InitializeVM();
v8::HandleScope sc;
Object* value = HEAP->NumberFromDouble(1.000123)->ToObjectChecked();
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(1.000123, value->Number());
value = HEAP->NumberFromDouble(1.0)->ToObjectChecked();
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(1.0, value->Number());
value = HEAP->NumberFromInt32(1024)->ToObjectChecked();
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(1024.0, value->Number());
value = HEAP->NumberFromInt32(Smi::kMinValue)->ToObjectChecked();
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(Smi::kMinValue, Smi::cast(value)->value());
value = HEAP->NumberFromInt32(Smi::kMaxValue)->ToObjectChecked();
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(Smi::kMaxValue, Smi::cast(value)->value());
#ifndef V8_TARGET_ARCH_X64
// TODO(lrn): We need a NumberFromIntptr function in order to test this.
value = HEAP->NumberFromInt32(Smi::kMinValue - 1)->ToObjectChecked();
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(Smi::kMinValue - 1), value->Number());
#endif
MaybeObject* maybe_value =
HEAP->NumberFromUint32(static_cast<uint32_t>(Smi::kMaxValue) + 1);
value = maybe_value->ToObjectChecked();
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(Smi::kMaxValue) + 1),
value->Number());
// nan oddball checks
CHECK(HEAP->nan_value()->IsNumber());
CHECK(isnan(HEAP->nan_value()->Number()));
Handle<String> s = FACTORY->NewStringFromAscii(CStrVector("fisk hest "));
CHECK(s->IsString());
CHECK_EQ(10, s->length());
String* object_symbol = String::cast(HEAP->Object_symbol());
CHECK(
Isolate::Current()->context()->global()->HasLocalProperty(object_symbol));
// Check ToString for oddballs
CheckOddball(HEAP->true_value(), "true");
CheckOddball(HEAP->false_value(), "false");
CheckOddball(HEAP->null_value(), "null");
CheckOddball(HEAP->undefined_value(), "undefined");
// Check ToString for Smis
CheckSmi(0, "0");
CheckSmi(42, "42");
CheckSmi(-42, "-42");
// Check ToString for Numbers
CheckNumber(1.1, "1.1");
CheckFindCodeObject();
}
TEST(Tagging) {
InitializeVM();
int request = 24;
CHECK_EQ(request, static_cast<int>(OBJECT_POINTER_ALIGN(request)));
CHECK(Smi::FromInt(42)->IsSmi());
CHECK(Failure::RetryAfterGC(NEW_SPACE)->IsFailure());
CHECK_EQ(NEW_SPACE,
Failure::RetryAfterGC(NEW_SPACE)->allocation_space());
CHECK_EQ(OLD_POINTER_SPACE,
Failure::RetryAfterGC(OLD_POINTER_SPACE)->allocation_space());
CHECK(Failure::Exception()->IsFailure());
CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi());
CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi());
}
TEST(GarbageCollection) {
InitializeVM();
v8::HandleScope sc;
// Check GC.
HEAP->CollectGarbage(NEW_SPACE);
Handle<String> name = FACTORY->LookupAsciiSymbol("theFunction");
Handle<String> prop_name = FACTORY->LookupAsciiSymbol("theSlot");
Handle<String> prop_namex = FACTORY->LookupAsciiSymbol("theSlotx");
Handle<String> obj_name = FACTORY->LookupAsciiSymbol("theObject");
{
v8::HandleScope inner_scope;
// Allocate a function and keep it in global object's property.
Handle<JSFunction> function =
FACTORY->NewFunction(name, FACTORY->undefined_value());
Handle<Map> initial_map =
FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
function->set_initial_map(*initial_map);
Isolate::Current()->context()->global()->SetProperty(
*name, *function, NONE, kNonStrictMode)->ToObjectChecked();
// Allocate an object. Unrooted after leaving the scope.
Handle<JSObject> obj = FACTORY->NewJSObject(function);
obj->SetProperty(
*prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*prop_namex, Smi::FromInt(24), NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name));
CHECK_EQ(Smi::FromInt(24), obj->GetProperty(*prop_namex));
}
HEAP->CollectGarbage(NEW_SPACE);
// Function should be alive.
CHECK(Isolate::Current()->context()->global()->HasLocalProperty(*name));
// Check function is retained.
Object* func_value = Isolate::Current()->context()->global()->
GetProperty(*name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function(JSFunction::cast(func_value));
{
HandleScope inner_scope;
// Allocate another object, make it reachable from global.
Handle<JSObject> obj = FACTORY->NewJSObject(function);
Isolate::Current()->context()->global()->SetProperty(
*obj_name, *obj, NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked();
}
// After gc, it should survive.
HEAP->CollectGarbage(NEW_SPACE);
CHECK(Isolate::Current()->context()->global()->HasLocalProperty(*obj_name));
CHECK(Isolate::Current()->context()->global()->
GetProperty(*obj_name)->ToObjectChecked()->IsJSObject());
Object* obj = Isolate::Current()->context()->global()->
GetProperty(*obj_name)->ToObjectChecked();
JSObject* js_obj = JSObject::cast(obj);
CHECK_EQ(Smi::FromInt(23), js_obj->GetProperty(*prop_name));
}
static void VerifyStringAllocation(const char* string) {
v8::HandleScope scope;
Handle<String> s = FACTORY->NewStringFromUtf8(CStrVector(string));
CHECK_EQ(StrLength(string), s->length());
for (int index = 0; index < s->length(); index++) {
CHECK_EQ(static_cast<uint16_t>(string[index]), s->Get(index));
}
}
TEST(String) {
InitializeVM();
VerifyStringAllocation("a");
VerifyStringAllocation("ab");
VerifyStringAllocation("abc");
VerifyStringAllocation("abcd");
VerifyStringAllocation("fiskerdrengen er paa havet");
}
TEST(LocalHandles) {
InitializeVM();
v8::HandleScope scope;
const char* name = "Kasper the spunky";
Handle<String> string = FACTORY->NewStringFromAscii(CStrVector(name));
CHECK_EQ(StrLength(name), string->length());
}
TEST(GlobalHandles) {
GlobalHandles* global_handles = Isolate::Current()->global_handles();
InitializeVM();
Handle<Object> h1;
Handle<Object> h2;
Handle<Object> h3;
Handle<Object> h4;
{
HandleScope scope;
Handle<Object> i = FACTORY->NewStringFromAscii(CStrVector("fisk"));
Handle<Object> u = FACTORY->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
h3 = global_handles->Create(*i);
h4 = global_handles->Create(*u);
}
// after gc, it should survive
HEAP->CollectGarbage(NEW_SPACE);
CHECK((*h1)->IsString());
CHECK((*h2)->IsHeapNumber());
CHECK((*h3)->IsString());
CHECK((*h4)->IsHeapNumber());
CHECK_EQ(*h3, *h1);
global_handles->Destroy(h1.location());
global_handles->Destroy(h3.location());
CHECK_EQ(*h4, *h2);
global_handles->Destroy(h2.location());
global_handles->Destroy(h4.location());
}
static bool WeakPointerCleared = false;
static void TestWeakGlobalHandleCallback(v8::Persistent<v8::Value> handle,
void* id) {
if (1234 == reinterpret_cast<intptr_t>(id)) WeakPointerCleared = true;
handle.Dispose();
}
TEST(WeakGlobalHandlesScavenge) {
GlobalHandles* global_handles = Isolate::Current()->global_handles();
InitializeVM();
WeakPointerCleared = false;
Handle<Object> h1;
Handle<Object> h2;
{
HandleScope scope;
Handle<Object> i = FACTORY->NewStringFromAscii(CStrVector("fisk"));
Handle<Object> u = FACTORY->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
}
global_handles->MakeWeak(h2.location(),
reinterpret_cast<void*>(1234),
&TestWeakGlobalHandleCallback);
// Scavenge treats weak pointers as normal roots.
HEAP->PerformScavenge();
CHECK((*h1)->IsString());
CHECK((*h2)->IsHeapNumber());
CHECK(!WeakPointerCleared);
CHECK(!global_handles->IsNearDeath(h2.location()));
CHECK(!global_handles->IsNearDeath(h1.location()));
global_handles->Destroy(h1.location());
global_handles->Destroy(h2.location());
}
TEST(WeakGlobalHandlesMark) {
GlobalHandles* global_handles = Isolate::Current()->global_handles();
InitializeVM();
WeakPointerCleared = false;
Handle<Object> h1;
Handle<Object> h2;
{
HandleScope scope;
Handle<Object> i = FACTORY->NewStringFromAscii(CStrVector("fisk"));
Handle<Object> u = FACTORY->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
}
HEAP->CollectGarbage(OLD_POINTER_SPACE);
HEAP->CollectGarbage(NEW_SPACE);
// Make sure the object is promoted.
global_handles->MakeWeak(h2.location(),
reinterpret_cast<void*>(1234),
&TestWeakGlobalHandleCallback);
CHECK(!GlobalHandles::IsNearDeath(h1.location()));
CHECK(!GlobalHandles::IsNearDeath(h2.location()));
HEAP->CollectGarbage(OLD_POINTER_SPACE);
CHECK((*h1)->IsString());
CHECK(WeakPointerCleared);
CHECK(!GlobalHandles::IsNearDeath(h1.location()));
global_handles->Destroy(h1.location());
}
TEST(DeleteWeakGlobalHandle) {
GlobalHandles* global_handles = Isolate::Current()->global_handles();
InitializeVM();
WeakPointerCleared = false;
Handle<Object> h;
{
HandleScope scope;
Handle<Object> i = FACTORY->NewStringFromAscii(CStrVector("fisk"));
h = global_handles->Create(*i);
}
global_handles->MakeWeak(h.location(),
reinterpret_cast<void*>(1234),
&TestWeakGlobalHandleCallback);
// Scanvenge does not recognize weak reference.
HEAP->PerformScavenge();
CHECK(!WeakPointerCleared);
// Mark-compact treats weak reference properly.
HEAP->CollectGarbage(OLD_POINTER_SPACE);
CHECK(WeakPointerCleared);
}
static const char* not_so_random_string_table[] = {
"abstract",
"boolean",
"break",
"byte",
"case",
"catch",
"char",
"class",
"const",
"continue",
"debugger",
"default",
"delete",
"do",
"double",
"else",
"enum",
"export",
"extends",
"false",
"final",
"finally",
"float",
"for",
"function",
"goto",
"if",
"implements",
"import",
"in",
"instanceof",
"int",
"interface",
"long",
"native",
"new",
"null",
"package",
"private",
"protected",
"public",
"return",
"short",
"static",
"super",
"switch",
"synchronized",
"this",
"throw",
"throws",
"transient",
"true",
"try",
"typeof",
"var",
"void",
"volatile",
"while",
"with",
0
};
static void CheckSymbols(const char** strings) {
for (const char* string = *strings; *strings != 0; string = *strings++) {
Object* a;
MaybeObject* maybe_a = HEAP->LookupAsciiSymbol(string);
// LookupAsciiSymbol may return a failure if a GC is needed.
if (!maybe_a->ToObject(&a)) continue;
CHECK(a->IsSymbol());
Object* b;
MaybeObject* maybe_b = HEAP->LookupAsciiSymbol(string);
if (!maybe_b->ToObject(&b)) continue;
CHECK_EQ(b, a);
CHECK(String::cast(b)->IsEqualTo(CStrVector(string)));
}
}
TEST(SymbolTable) {
InitializeVM();
CheckSymbols(not_so_random_string_table);
CheckSymbols(not_so_random_string_table);
}
TEST(FunctionAllocation) {
InitializeVM();
v8::HandleScope sc;
Handle<String> name = FACTORY->LookupAsciiSymbol("theFunction");
Handle<JSFunction> function =
FACTORY->NewFunction(name, FACTORY->undefined_value());
Handle<Map> initial_map =
FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
function->set_initial_map(*initial_map);
Handle<String> prop_name = FACTORY->LookupAsciiSymbol("theSlot");
Handle<JSObject> obj = FACTORY->NewJSObject(function);
obj->SetProperty(
*prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name));
// Check that we can add properties to function objects.
function->SetProperty(
*prop_name, Smi::FromInt(24), NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(24), function->GetProperty(*prop_name));
}
TEST(ObjectProperties) {
InitializeVM();
v8::HandleScope sc;
String* object_symbol = String::cast(HEAP->Object_symbol());
Object* raw_object = Isolate::Current()->context()->global()->
GetProperty(object_symbol)->ToObjectChecked();
JSFunction* object_function = JSFunction::cast(raw_object);
Handle<JSFunction> constructor(object_function);
Handle<JSObject> obj = FACTORY->NewJSObject(constructor);
Handle<String> first = FACTORY->LookupAsciiSymbol("first");
Handle<String> second = FACTORY->LookupAsciiSymbol("second");
// check for empty
CHECK(!obj->HasLocalProperty(*first));
// add first
obj->SetProperty(
*first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
CHECK(obj->HasLocalProperty(*first));
// delete first
CHECK(obj->DeleteProperty(*first, JSObject::NORMAL_DELETION));
CHECK(!obj->HasLocalProperty(*first));
// add first and then second
obj->SetProperty(
*first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked();
CHECK(obj->HasLocalProperty(*first));
CHECK(obj->HasLocalProperty(*second));
// delete first and then second
CHECK(obj->DeleteProperty(*first, JSObject::NORMAL_DELETION));
CHECK(obj->HasLocalProperty(*second));
CHECK(obj->DeleteProperty(*second, JSObject::NORMAL_DELETION));
CHECK(!obj->HasLocalProperty(*first));
CHECK(!obj->HasLocalProperty(*second));
// add first and then second
obj->SetProperty(
*first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked();
CHECK(obj->HasLocalProperty(*first));
CHECK(obj->HasLocalProperty(*second));
// delete second and then first
CHECK(obj->DeleteProperty(*second, JSObject::NORMAL_DELETION));
CHECK(obj->HasLocalProperty(*first));
CHECK(obj->DeleteProperty(*first, JSObject::NORMAL_DELETION));
CHECK(!obj->HasLocalProperty(*first));
CHECK(!obj->HasLocalProperty(*second));
// check string and symbol match
static const char* string1 = "fisk";
Handle<String> s1 = FACTORY->NewStringFromAscii(CStrVector(string1));
obj->SetProperty(
*s1, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
Handle<String> s1_symbol = FACTORY->LookupAsciiSymbol(string1);
CHECK(obj->HasLocalProperty(*s1_symbol));
// check symbol and string match
static const char* string2 = "fugl";
Handle<String> s2_symbol = FACTORY->LookupAsciiSymbol(string2);
obj->SetProperty(
*s2_symbol, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
Handle<String> s2 = FACTORY->NewStringFromAscii(CStrVector(string2));
CHECK(obj->HasLocalProperty(*s2));
}
TEST(JSObjectMaps) {
InitializeVM();
v8::HandleScope sc;
Handle<String> name = FACTORY->LookupAsciiSymbol("theFunction");
Handle<JSFunction> function =
FACTORY->NewFunction(name, FACTORY->undefined_value());
Handle<Map> initial_map =
FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
function->set_initial_map(*initial_map);
Handle<String> prop_name = FACTORY->LookupAsciiSymbol("theSlot");
Handle<JSObject> obj = FACTORY->NewJSObject(function);
// Set a propery
obj->SetProperty(
*prop_name, Smi::FromInt(23), NONE, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(23), obj->GetProperty(*prop_name));
// Check the map has changed
CHECK(*initial_map != obj->map());
}
TEST(JSArray) {
InitializeVM();
v8::HandleScope sc;
Handle<String> name = FACTORY->LookupAsciiSymbol("Array");
Object* raw_object = Isolate::Current()->context()->global()->
GetProperty(*name)->ToObjectChecked();
Handle<JSFunction> function = Handle<JSFunction>(
JSFunction::cast(raw_object));
// Allocate the object.
Handle<JSObject> object = FACTORY->NewJSObject(function);
Handle<JSArray> array = Handle<JSArray>::cast(object);
// We just initialized the VM, no heap allocation failure yet.
Object* ok = array->Initialize(0)->ToObjectChecked();
// Set array length to 0.
ok = array->SetElementsLength(Smi::FromInt(0))->ToObjectChecked();
CHECK_EQ(Smi::FromInt(0), array->length());
CHECK(array->HasFastElements()); // Must be in fast mode.
// array[length] = name.
ok = array->SetElement(0, *name, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(Smi::FromInt(1), array->length());
CHECK_EQ(array->GetElement(0), *name);
// Set array length with larger than smi value.
Handle<Object> length =
FACTORY->NewNumberFromUint(static_cast<uint32_t>(Smi::kMaxValue) + 1);
ok = array->SetElementsLength(*length)->ToObjectChecked();
uint32_t int_length = 0;
CHECK(length->ToArrayIndex(&int_length));
CHECK_EQ(*length, array->length());
CHECK(array->HasDictionaryElements()); // Must be in slow mode.
// array[length] = name.
ok = array->SetElement(int_length, *name, kNonStrictMode)->ToObjectChecked();
uint32_t new_int_length = 0;
CHECK(array->length()->ToArrayIndex(&new_int_length));
CHECK_EQ(static_cast<double>(int_length), new_int_length - 1);
CHECK_EQ(array->GetElement(int_length), *name);
CHECK_EQ(array->GetElement(0), *name);
}
TEST(JSObjectCopy) {
InitializeVM();
v8::HandleScope sc;
String* object_symbol = String::cast(HEAP->Object_symbol());
Object* raw_object = Isolate::Current()->context()->global()->
GetProperty(object_symbol)->ToObjectChecked();
JSFunction* object_function = JSFunction::cast(raw_object);
Handle<JSFunction> constructor(object_function);
Handle<JSObject> obj = FACTORY->NewJSObject(constructor);
Handle<String> first = FACTORY->LookupAsciiSymbol("first");
Handle<String> second = FACTORY->LookupAsciiSymbol("second");
obj->SetProperty(
*first, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
obj->SetProperty(
*second, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked();
Object* ok = obj->SetElement(0, *first, kNonStrictMode)->ToObjectChecked();
ok = obj->SetElement(1, *second, kNonStrictMode)->ToObjectChecked();
// Make the clone.
Handle<JSObject> clone = Copy(obj);
CHECK(!clone.is_identical_to(obj));
CHECK_EQ(obj->GetElement(0), clone->GetElement(0));
CHECK_EQ(obj->GetElement(1), clone->GetElement(1));
CHECK_EQ(obj->GetProperty(*first), clone->GetProperty(*first));
CHECK_EQ(obj->GetProperty(*second), clone->GetProperty(*second));
// Flip the values.
clone->SetProperty(
*first, Smi::FromInt(2), NONE, kNonStrictMode)->ToObjectChecked();
clone->SetProperty(
*second, Smi::FromInt(1), NONE, kNonStrictMode)->ToObjectChecked();
ok = clone->SetElement(0, *second, kNonStrictMode)->ToObjectChecked();
ok = clone->SetElement(1, *first, kNonStrictMode)->ToObjectChecked();
CHECK_EQ(obj->GetElement(1), clone->GetElement(0));
CHECK_EQ(obj->GetElement(0), clone->GetElement(1));
CHECK_EQ(obj->GetProperty(*second), clone->GetProperty(*first));
CHECK_EQ(obj->GetProperty(*first), clone->GetProperty(*second));
}
TEST(StringAllocation) {
InitializeVM();
const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 };
for (int length = 0; length < 100; length++) {
v8::HandleScope scope;
char* non_ascii = NewArray<char>(3 * length + 1);
char* ascii = NewArray<char>(length + 1);
non_ascii[3 * length] = 0;
ascii[length] = 0;
for (int i = 0; i < length; i++) {
ascii[i] = 'a';
non_ascii[3 * i] = chars[0];
non_ascii[3 * i + 1] = chars[1];
non_ascii[3 * i + 2] = chars[2];
}
Handle<String> non_ascii_sym =
FACTORY->LookupSymbol(Vector<const char>(non_ascii, 3 * length));
CHECK_EQ(length, non_ascii_sym->length());
Handle<String> ascii_sym =
FACTORY->LookupSymbol(Vector<const char>(ascii, length));
CHECK_EQ(length, ascii_sym->length());
Handle<String> non_ascii_str =
FACTORY->NewStringFromUtf8(Vector<const char>(non_ascii, 3 * length));
non_ascii_str->Hash();
CHECK_EQ(length, non_ascii_str->length());
Handle<String> ascii_str =
FACTORY->NewStringFromUtf8(Vector<const char>(ascii, length));
ascii_str->Hash();
CHECK_EQ(length, ascii_str->length());
DeleteArray(non_ascii);
DeleteArray(ascii);
}
}
static int ObjectsFoundInHeap(Handle<Object> objs[], int size) {
// Count the number of objects found in the heap.
int found_count = 0;
HeapIterator iterator;
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
for (int i = 0; i < size; i++) {
if (*objs[i] == obj) {
found_count++;
}
}
}
return found_count;
}
TEST(Iteration) {
InitializeVM();
v8::HandleScope scope;
// Array of objects to scan haep for.
const int objs_count = 6;
Handle<Object> objs[objs_count];
int next_objs_index = 0;
// Allocate a JS array to OLD_POINTER_SPACE and NEW_SPACE
objs[next_objs_index++] = FACTORY->NewJSArray(10);
objs[next_objs_index++] = FACTORY->NewJSArray(10, TENURED);
// Allocate a small string to OLD_DATA_SPACE and NEW_SPACE
objs[next_objs_index++] =
FACTORY->NewStringFromAscii(CStrVector("abcdefghij"));
objs[next_objs_index++] =
FACTORY->NewStringFromAscii(CStrVector("abcdefghij"), TENURED);
// Allocate a large string (for large object space).
int large_size = HEAP->MaxObjectSizeInPagedSpace() + 1;
char* str = new char[large_size];
for (int i = 0; i < large_size - 1; ++i) str[i] = 'a';
str[large_size - 1] = '\0';
objs[next_objs_index++] =
FACTORY->NewStringFromAscii(CStrVector(str), TENURED);
delete[] str;
// Add a Map object to look for.
objs[next_objs_index++] = Handle<Map>(HeapObject::cast(*objs[0])->map());
CHECK_EQ(objs_count, next_objs_index);
CHECK_EQ(objs_count, ObjectsFoundInHeap(objs, objs_count));
}
TEST(LargeObjectSpaceContains) {
InitializeVM();
HEAP->CollectGarbage(NEW_SPACE);
Address current_top = HEAP->new_space()->top();
Page* page = Page::FromAddress(current_top);
Address current_page = page->address();
Address next_page = current_page + Page::kPageSize;
int bytes_to_page = static_cast<int>(next_page - current_top);
if (bytes_to_page <= FixedArray::kHeaderSize) {
// Alas, need to cross another page to be able to
// put desired value.
next_page += Page::kPageSize;
bytes_to_page = static_cast<int>(next_page - current_top);
}
CHECK(bytes_to_page > FixedArray::kHeaderSize);
intptr_t* flags_ptr = &Page::FromAddress(next_page)->flags_;
Address flags_addr = reinterpret_cast<Address>(flags_ptr);
int bytes_to_allocate =
static_cast<int>(flags_addr - current_top) + kPointerSize;
int n_elements = (bytes_to_allocate - FixedArray::kHeaderSize) /
kPointerSize;
CHECK_EQ(bytes_to_allocate, FixedArray::SizeFor(n_elements));
FixedArray* array = FixedArray::cast(
HEAP->AllocateFixedArray(n_elements)->ToObjectChecked());
int index = n_elements - 1;
CHECK_EQ(flags_ptr,
HeapObject::RawField(array, FixedArray::OffsetOfElementAt(index)));
array->set(index, Smi::FromInt(0));
// This chould have turned next page into LargeObjectPage:
// CHECK(Page::FromAddress(next_page)->IsLargeObjectPage());
HeapObject* addr = HeapObject::FromAddress(next_page + 2 * kPointerSize);
CHECK(HEAP->new_space()->Contains(addr));
CHECK(!HEAP->lo_space()->Contains(addr));
}
TEST(EmptyHandleEscapeFrom) {
InitializeVM();
v8::HandleScope scope;
Handle<JSObject> runaway;
{
v8::HandleScope nested;
Handle<JSObject> empty;
runaway = empty.EscapeFrom(&nested);
}
CHECK(runaway.is_null());
}
static int LenFromSize(int size) {
return (size - FixedArray::kHeaderSize) / kPointerSize;
}
TEST(Regression39128) {
// Test case for crbug.com/39128.
InitializeVM();
// Increase the chance of 'bump-the-pointer' allocation in old space.
bool force_compaction = true;
HEAP->CollectAllGarbage(force_compaction);
v8::HandleScope scope;
// The plan: create JSObject which references objects in new space.
// Then clone this object (forcing it to go into old space) and check
// that region dirty marks are updated correctly.
// Step 1: prepare a map for the object. We add 1 inobject property to it.
Handle<JSFunction> object_ctor(
Isolate::Current()->global_context()->object_function());
CHECK(object_ctor->has_initial_map());
Handle<Map> object_map(object_ctor->initial_map());
// Create a map with single inobject property.
Handle<Map> my_map = FACTORY->CopyMap(object_map, 1);
int n_properties = my_map->inobject_properties();
CHECK_GT(n_properties, 0);
int object_size = my_map->instance_size();
// Step 2: allocate a lot of objects so to almost fill new space: we need
// just enough room to allocate JSObject and thus fill the newspace.
int allocation_amount = Min(FixedArray::kMaxSize,
HEAP->MaxObjectSizeInNewSpace());
int allocation_len = LenFromSize(allocation_amount);
NewSpace* new_space = HEAP->new_space();
Address* top_addr = new_space->allocation_top_address();
Address* limit_addr = new_space->allocation_limit_address();
while ((*limit_addr - *top_addr) > allocation_amount) {
CHECK(!HEAP->always_allocate());
Object* array = HEAP->AllocateFixedArray(allocation_len)->ToObjectChecked();
CHECK(!array->IsFailure());
CHECK(new_space->Contains(array));
}
// Step 3: now allocate fixed array and JSObject to fill the whole new space.
int to_fill = static_cast<int>(*limit_addr - *top_addr - object_size);
int fixed_array_len = LenFromSize(to_fill);
CHECK(fixed_array_len < FixedArray::kMaxLength);
CHECK(!HEAP->always_allocate());
Object* array = HEAP->AllocateFixedArray(fixed_array_len)->ToObjectChecked();
CHECK(!array->IsFailure());
CHECK(new_space->Contains(array));
Object* object = HEAP->AllocateJSObjectFromMap(*my_map)->ToObjectChecked();
CHECK(new_space->Contains(object));
JSObject* jsobject = JSObject::cast(object);
CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length());
CHECK_EQ(0, jsobject->properties()->length());
// Create a reference to object in new space in jsobject.
jsobject->FastPropertyAtPut(-1, array);
CHECK_EQ(0, static_cast<int>(*limit_addr - *top_addr));
// Step 4: clone jsobject, but force always allocate first to create a clone
// in old pointer space.
Address old_pointer_space_top = HEAP->old_pointer_space()->top();
AlwaysAllocateScope aa_scope;
Object* clone_obj = HEAP->CopyJSObject(jsobject)->ToObjectChecked();
JSObject* clone = JSObject::cast(clone_obj);
if (clone->address() != old_pointer_space_top) {
// Alas, got allocated from free list, we cannot do checks.
return;
}
CHECK(HEAP->old_pointer_space()->Contains(clone->address()));
// Step 5: verify validity of region dirty marks.
Address clone_addr = clone->address();
Page* page = Page::FromAddress(clone_addr);
// Check that region covering inobject property 1 is marked dirty.
CHECK(page->IsRegionDirty(clone_addr + (object_size - kPointerSize)));
}
TEST(TestCodeFlushing) {
i::FLAG_allow_natives_syntax = true;
// If we do not flush code this test is invalid.
if (!FLAG_flush_code) return;
InitializeVM();
v8::HandleScope scope;
const char* source = "function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = FACTORY->LookupAsciiSymbol("foo");
// This compile will add the code to the compilation cache.
{ v8::HandleScope scope;
CompileRun(source);
}
// Check function is compiled.
Object* func_value = Isolate::Current()->context()->global()->
GetProperty(*foo_name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function(JSFunction::cast(func_value));
CHECK(function->shared()->is_compiled());
HEAP->CollectAllGarbage(true);
HEAP->CollectAllGarbage(true);
CHECK(function->shared()->is_compiled());
HEAP->CollectAllGarbage(true);
HEAP->CollectAllGarbage(true);
HEAP->CollectAllGarbage(true);
HEAP->CollectAllGarbage(true);
HEAP->CollectAllGarbage(true);
HEAP->CollectAllGarbage(true);
// foo should no longer be in the compilation cache
CHECK(!function->shared()->is_compiled() || function->IsOptimized());
CHECK(!function->is_compiled() || function->IsOptimized());
// Call foo to get it recompiled.
CompileRun("foo()");
CHECK(function->shared()->is_compiled());
CHECK(function->is_compiled());
}
// Count the number of global contexts in the weak list of global contexts.
static int CountGlobalContexts() {
int count = 0;
Object* object = HEAP->global_contexts_list();
while (!object->IsUndefined()) {
count++;
object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK);
}
return count;
}
// Count the number of user functions in the weak list of optimized
// functions attached to a global context.
static int CountOptimizedUserFunctions(v8::Handle<v8::Context> context) {
int count = 0;
Handle<Context> icontext = v8::Utils::OpenHandle(*context);
Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST);
while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) {
count++;
object = JSFunction::cast(object)->next_function_link();
}
return count;
}
TEST(TestInternalWeakLists) {
v8::V8::Initialize();
static const int kNumTestContexts = 10;
v8::HandleScope scope;
v8::Persistent<v8::Context> ctx[kNumTestContexts];
CHECK_EQ(0, CountGlobalContexts());
// Create a number of global contests which gets linked together.
for (int i = 0; i < kNumTestContexts; i++) {
ctx[i] = v8::Context::New();
bool opt = (FLAG_always_opt && i::V8::UseCrankshaft());
CHECK_EQ(i + 1, CountGlobalContexts());
ctx[i]->Enter();
// Create a handle scope so no function objects get stuch in the outer
// handle scope
v8::HandleScope scope;
const char* source = "function f1() { };"
"function f2() { };"
"function f3() { };"
"function f4() { };"
"function f5() { };";
CompileRun(source);
CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f1()");
CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f2()");
CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f3()");
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f4()");
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f5()");
CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i]));
// Remove function f1, and
CompileRun("f1=null");
// Scavenge treats these references as strong.
for (int j = 0; j < 10; j++) {
HEAP->PerformScavenge();
CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i]));
}
// Mark compact handles the weak references.
HEAP->CollectAllGarbage(true);
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i]));
// Get rid of f3 and f5 in the same way.
CompileRun("f3=null");
for (int j = 0; j < 10; j++) {
HEAP->PerformScavenge();
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i]));
}
HEAP->CollectAllGarbage(true);
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i]));
CompileRun("f5=null");
for (int j = 0; j < 10; j++) {
HEAP->PerformScavenge();
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i]));
}
HEAP->CollectAllGarbage(true);
CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i]));
ctx[i]->Exit();
}
// Force compilation cache cleanup.
HEAP->CollectAllGarbage(true);
// Dispose the global contexts one by one.
for (int i = 0; i < kNumTestContexts; i++) {
ctx[i].Dispose();
ctx[i].Clear();
// Scavenge treats these references as strong.
for (int j = 0; j < 10; j++) {
HEAP->PerformScavenge();
CHECK_EQ(kNumTestContexts - i, CountGlobalContexts());
}
// Mark compact handles the weak references.
HEAP->CollectAllGarbage(true);
CHECK_EQ(kNumTestContexts - i - 1, CountGlobalContexts());
}
CHECK_EQ(0, CountGlobalContexts());
}
// Count the number of global contexts in the weak list of global contexts
// causing a GC after the specified number of elements.
static int CountGlobalContextsWithGC(int n) {
int count = 0;
Handle<Object> object(HEAP->global_contexts_list());
while (!object->IsUndefined()) {
count++;
if (count == n) HEAP->CollectAllGarbage(true);
object =
Handle<Object>(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK));
}
return count;
}
// Count the number of user functions in the weak list of optimized
// functions attached to a global context causing a GC after the
// specified number of elements.
static int CountOptimizedUserFunctionsWithGC(v8::Handle<v8::Context> context,
int n) {
int count = 0;
Handle<Context> icontext = v8::Utils::OpenHandle(*context);
Handle<Object> object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST));
while (object->IsJSFunction() &&
!Handle<JSFunction>::cast(object)->IsBuiltin()) {
count++;
if (count == n) HEAP->CollectAllGarbage(true);
object = Handle<Object>(
Object::cast(JSFunction::cast(*object)->next_function_link()));
}
return count;
}
TEST(TestInternalWeakListsTraverseWithGC) {
v8::V8::Initialize();
static const int kNumTestContexts = 10;
v8::HandleScope scope;
v8::Persistent<v8::Context> ctx[kNumTestContexts];
CHECK_EQ(0, CountGlobalContexts());
// Create an number of contexts and check the length of the weak list both
// with and without GCs while iterating the list.
for (int i = 0; i < kNumTestContexts; i++) {
ctx[i] = v8::Context::New();
CHECK_EQ(i + 1, CountGlobalContexts());
CHECK_EQ(i + 1, CountGlobalContextsWithGC(i / 2 + 1));
}
bool opt = (FLAG_always_opt && i::V8::UseCrankshaft());
// Compile a number of functions the length of the weak list of optimized
// functions both with and without GCs while iterating the list.
ctx[0]->Enter();
const char* source = "function f1() { };"
"function f2() { };"
"function f3() { };"
"function f4() { };"
"function f5() { };";
CompileRun(source);
CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0]));
CompileRun("f1()");
CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
CompileRun("f2()");
CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
CompileRun("f3()");
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1));
CompileRun("f4()");
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 2));
CompileRun("f5()");
CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[0]));
CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 4));
ctx[0]->Exit();
}
TEST(TestSizeOfObjectsVsHeapIteratorPrecision) {
InitializeVM();
intptr_t size_of_objects_1 = HEAP->SizeOfObjects();
HeapIterator iterator(HeapIterator::kFilterFreeListNodes);
intptr_t size_of_objects_2 = 0;
for (HeapObject* obj = iterator.next();
obj != NULL;
obj = iterator.next()) {
size_of_objects_2 += obj->Size();
}
// Delta must be within 1% of the larger result.
if (size_of_objects_1 > size_of_objects_2) {
intptr_t delta = size_of_objects_1 - size_of_objects_2;
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
"Iterator: %" V8_PTR_PREFIX "d, "
"delta: %" V8_PTR_PREFIX "d\n",
size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_1 / 100, delta);
} else {
intptr_t delta = size_of_objects_2 - size_of_objects_1;
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
"Iterator: %" V8_PTR_PREFIX "d, "
"delta: %" V8_PTR_PREFIX "d\n",
size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_2 / 100, delta);
}
}
class HeapIteratorTestHelper {
public:
HeapIteratorTestHelper(Object* a, Object* b)
: a_(a), b_(b), a_found_(false), b_found_(false) {}
bool a_found() { return a_found_; }
bool b_found() { return b_found_; }
void IterateHeap(HeapIterator::HeapObjectsFiltering mode) {
HeapIterator iterator(mode);
for (HeapObject* obj = iterator.next();
obj != NULL;
obj = iterator.next()) {
if (obj == a_)
a_found_ = true;
else if (obj == b_)
b_found_ = true;
}
}
private:
Object* a_;
Object* b_;
bool a_found_;
bool b_found_;
};
TEST(HeapIteratorFilterUnreachable) {
InitializeVM();
v8::HandleScope scope;
CompileRun("a = {}; b = {};");
v8::Handle<Object> a(ISOLATE->context()->global()->GetProperty(
*FACTORY->LookupAsciiSymbol("a"))->ToObjectChecked());
v8::Handle<Object> b(ISOLATE->context()->global()->GetProperty(
*FACTORY->LookupAsciiSymbol("b"))->ToObjectChecked());
CHECK_NE(*a, *b);
{
HeapIteratorTestHelper helper(*a, *b);
helper.IterateHeap(HeapIterator::kFilterUnreachable);
CHECK(helper.a_found());
CHECK(helper.b_found());
}
CHECK(ISOLATE->context()->global()->DeleteProperty(
*FACTORY->LookupAsciiSymbol("a"), JSObject::FORCE_DELETION));
// We ensure that GC will not happen, so our raw pointer stays valid.
AssertNoAllocation no_alloc;
Object* a_saved = *a;
a.Clear();
// Verify that "a" object still resides in the heap...
{
HeapIteratorTestHelper helper(a_saved, *b);
helper.IterateHeap(HeapIterator::kNoFiltering);
CHECK(helper.a_found());
CHECK(helper.b_found());
}
// ...but is now unreachable.
{
HeapIteratorTestHelper helper(a_saved, *b);
helper.IterateHeap(HeapIterator::kFilterUnreachable);
CHECK(!helper.a_found());
CHECK(helper.b_found());
}
}