| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| |
| #include "codegen.h" |
| #include "deoptimizer.h" |
| #include "full-codegen.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define __ ACCESS_MASM(masm) |
| |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, |
| CFunctionId id, |
| BuiltinExtraArguments extra_args) { |
| // ----------- S t a t e ------------- |
| // -- eax : number of arguments excluding receiver |
| // -- edi : called function (only guaranteed when |
| // extra_args requires it) |
| // -- esi : context |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // -- ... |
| // -- esp[4 * argc] : first argument (argc == eax) |
| // -- esp[4 * (argc +1)] : receiver |
| // ----------------------------------- |
| |
| // Insert extra arguments. |
| int num_extra_args = 0; |
| if (extra_args == NEEDS_CALLED_FUNCTION) { |
| num_extra_args = 1; |
| Register scratch = ebx; |
| __ pop(scratch); // Save return address. |
| __ push(edi); |
| __ push(scratch); // Restore return address. |
| } else { |
| ASSERT(extra_args == NO_EXTRA_ARGUMENTS); |
| } |
| |
| // JumpToExternalReference expects eax to contain the number of arguments |
| // including the receiver and the extra arguments. |
| __ add(eax, Immediate(num_extra_args + 1)); |
| __ JumpToExternalReference(ExternalReference(id, masm->isolate())); |
| } |
| |
| |
| static void Generate_JSConstructStubHelper(MacroAssembler* masm, |
| bool is_api_function, |
| bool count_constructions) { |
| // ----------- S t a t e ------------- |
| // -- eax: number of arguments |
| // -- edi: constructor function |
| // ----------------------------------- |
| |
| // Should never count constructions for api objects. |
| ASSERT(!is_api_function || !count_constructions); |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Store a smi-tagged arguments count on the stack. |
| __ SmiTag(eax); |
| __ push(eax); |
| |
| // Push the function to invoke on the stack. |
| __ push(edi); |
| |
| // Try to allocate the object without transitioning into C code. If any of |
| // the preconditions is not met, the code bails out to the runtime call. |
| Label rt_call, allocated; |
| if (FLAG_inline_new) { |
| Label undo_allocation; |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ExternalReference debug_step_in_fp = |
| ExternalReference::debug_step_in_fp_address(masm->isolate()); |
| __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0)); |
| __ j(not_equal, &rt_call); |
| #endif |
| |
| // Verified that the constructor is a JSFunction. |
| // Load the initial map and verify that it is in fact a map. |
| // edi: constructor |
| __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a NULL and a Smi |
| __ JumpIfSmi(eax, &rt_call); |
| // edi: constructor |
| // eax: initial map (if proven valid below) |
| __ CmpObjectType(eax, MAP_TYPE, ebx); |
| __ j(not_equal, &rt_call); |
| |
| // Check that the constructor is not constructing a JSFunction (see |
| // comments in Runtime_NewObject in runtime.cc). In which case the |
| // initial map's instance type would be JS_FUNCTION_TYPE. |
| // edi: constructor |
| // eax: initial map |
| __ CmpInstanceType(eax, JS_FUNCTION_TYPE); |
| __ j(equal, &rt_call); |
| |
| if (count_constructions) { |
| Label allocate; |
| // Decrease generous allocation count. |
| __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ dec_b(FieldOperand(ecx, |
| SharedFunctionInfo::kConstructionCountOffset)); |
| __ j(not_zero, &allocate); |
| |
| __ push(eax); |
| __ push(edi); |
| |
| __ push(edi); // constructor |
| // The call will replace the stub, so the countdown is only done once. |
| __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); |
| |
| __ pop(edi); |
| __ pop(eax); |
| |
| __ bind(&allocate); |
| } |
| |
| // Now allocate the JSObject on the heap. |
| // edi: constructor |
| // eax: initial map |
| __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset)); |
| __ shl(edi, kPointerSizeLog2); |
| __ AllocateInNewSpace( |
| edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS); |
| // Allocated the JSObject, now initialize the fields. |
| // eax: initial map |
| // ebx: JSObject |
| // edi: start of next object |
| __ mov(Operand(ebx, JSObject::kMapOffset), eax); |
| Factory* factory = masm->isolate()->factory(); |
| __ mov(ecx, factory->empty_fixed_array()); |
| __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx); |
| __ mov(Operand(ebx, JSObject::kElementsOffset), ecx); |
| // Set extra fields in the newly allocated object. |
| // eax: initial map |
| // ebx: JSObject |
| // edi: start of next object |
| __ lea(ecx, Operand(ebx, JSObject::kHeaderSize)); |
| __ mov(edx, factory->undefined_value()); |
| if (count_constructions) { |
| __ movzx_b(esi, |
| FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset)); |
| __ lea(esi, |
| Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize)); |
| // esi: offset of first field after pre-allocated fields |
| if (FLAG_debug_code) { |
| __ cmp(esi, edi); |
| __ Assert(less_equal, |
| "Unexpected number of pre-allocated property fields."); |
| } |
| __ InitializeFieldsWithFiller(ecx, esi, edx); |
| __ mov(edx, factory->one_pointer_filler_map()); |
| } |
| __ InitializeFieldsWithFiller(ecx, edi, edx); |
| |
| // Add the object tag to make the JSObject real, so that we can continue |
| // and jump into the continuation code at any time from now on. Any |
| // failures need to undo the allocation, so that the heap is in a |
| // consistent state and verifiable. |
| // eax: initial map |
| // ebx: JSObject |
| // edi: start of next object |
| __ or_(ebx, Immediate(kHeapObjectTag)); |
| |
| // Check if a non-empty properties array is needed. |
| // Allocate and initialize a FixedArray if it is. |
| // eax: initial map |
| // ebx: JSObject |
| // edi: start of next object |
| // Calculate the total number of properties described by the map. |
| __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset)); |
| __ movzx_b(ecx, |
| FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset)); |
| __ add(edx, ecx); |
| // Calculate unused properties past the end of the in-object properties. |
| __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset)); |
| __ sub(edx, ecx); |
| // Done if no extra properties are to be allocated. |
| __ j(zero, &allocated); |
| __ Assert(positive, "Property allocation count failed."); |
| |
| // Scale the number of elements by pointer size and add the header for |
| // FixedArrays to the start of the next object calculation from above. |
| // ebx: JSObject |
| // edi: start of next object (will be start of FixedArray) |
| // edx: number of elements in properties array |
| __ AllocateInNewSpace(FixedArray::kHeaderSize, |
| times_pointer_size, |
| edx, |
| edi, |
| ecx, |
| no_reg, |
| &undo_allocation, |
| RESULT_CONTAINS_TOP); |
| |
| // Initialize the FixedArray. |
| // ebx: JSObject |
| // edi: FixedArray |
| // edx: number of elements |
| // ecx: start of next object |
| __ mov(eax, factory->fixed_array_map()); |
| __ mov(Operand(edi, FixedArray::kMapOffset), eax); // setup the map |
| __ SmiTag(edx); |
| __ mov(Operand(edi, FixedArray::kLengthOffset), edx); // and length |
| |
| // Initialize the fields to undefined. |
| // ebx: JSObject |
| // edi: FixedArray |
| // ecx: start of next object |
| { Label loop, entry; |
| __ mov(edx, factory->undefined_value()); |
| __ lea(eax, Operand(edi, FixedArray::kHeaderSize)); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ mov(Operand(eax, 0), edx); |
| __ add(eax, Immediate(kPointerSize)); |
| __ bind(&entry); |
| __ cmp(eax, ecx); |
| __ j(below, &loop); |
| } |
| |
| // Store the initialized FixedArray into the properties field of |
| // the JSObject |
| // ebx: JSObject |
| // edi: FixedArray |
| __ or_(edi, Immediate(kHeapObjectTag)); // add the heap tag |
| __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi); |
| |
| |
| // Continue with JSObject being successfully allocated |
| // ebx: JSObject |
| __ jmp(&allocated); |
| |
| // Undo the setting of the new top so that the heap is verifiable. For |
| // example, the map's unused properties potentially do not match the |
| // allocated objects unused properties. |
| // ebx: JSObject (previous new top) |
| __ bind(&undo_allocation); |
| __ UndoAllocationInNewSpace(ebx); |
| } |
| |
| // Allocate the new receiver object using the runtime call. |
| __ bind(&rt_call); |
| // Must restore edi (constructor) before calling runtime. |
| __ mov(edi, Operand(esp, 0)); |
| // edi: function (constructor) |
| __ push(edi); |
| __ CallRuntime(Runtime::kNewObject, 1); |
| __ mov(ebx, eax); // store result in ebx |
| |
| // New object allocated. |
| // ebx: newly allocated object |
| __ bind(&allocated); |
| // Retrieve the function from the stack. |
| __ pop(edi); |
| |
| // Retrieve smi-tagged arguments count from the stack. |
| __ mov(eax, Operand(esp, 0)); |
| __ SmiUntag(eax); |
| |
| // Push the allocated receiver to the stack. We need two copies |
| // because we may have to return the original one and the calling |
| // conventions dictate that the called function pops the receiver. |
| __ push(ebx); |
| __ push(ebx); |
| |
| // Set up pointer to last argument. |
| __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ mov(ecx, eax); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ push(Operand(ebx, ecx, times_4, 0)); |
| __ bind(&entry); |
| __ dec(ecx); |
| __ j(greater_equal, &loop); |
| |
| // Call the function. |
| if (is_api_function) { |
| __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| Handle<Code> code = |
| masm->isolate()->builtins()->HandleApiCallConstruct(); |
| ParameterCount expected(0); |
| __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET, |
| CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); |
| } else { |
| ParameterCount actual(eax); |
| __ InvokeFunction(edi, actual, CALL_FUNCTION, |
| NullCallWrapper(), CALL_AS_METHOD); |
| } |
| |
| // Store offset of return address for deoptimizer. |
| if (!is_api_function && !count_constructions) { |
| masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); |
| } |
| |
| // Restore context from the frame. |
| __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, exit; |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(eax, &use_receiver); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. |
| __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); |
| __ j(above_equal, &exit); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ mov(eax, Operand(esp, 0)); |
| |
| // Restore the arguments count and leave the construct frame. |
| __ bind(&exit); |
| __ mov(ebx, Operand(esp, kPointerSize)); // Get arguments count. |
| |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ pop(ecx); |
| __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver |
| __ push(ecx); |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); |
| __ ret(0); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false, true); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false, false); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, true, false); |
| } |
| |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Clear the context before we push it when entering the internal frame. |
| __ Set(esi, Immediate(0)); |
| |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Load the previous frame pointer (ebx) to access C arguments |
| __ mov(ebx, Operand(ebp, 0)); |
| |
| // Get the function from the frame and setup the context. |
| __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); |
| __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset)); |
| |
| // Push the function and the receiver onto the stack. |
| __ push(ecx); |
| __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset)); |
| |
| // Load the number of arguments and setup pointer to the arguments. |
| __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset)); |
| __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset)); |
| |
| // Copy arguments to the stack in a loop. |
| Label loop, entry; |
| __ Set(ecx, Immediate(0)); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv |
| __ push(Operand(edx, 0)); // dereference handle |
| __ inc(ecx); |
| __ bind(&entry); |
| __ cmp(ecx, eax); |
| __ j(not_equal, &loop); |
| |
| // Get the function from the stack and call it. |
| // kPointerSize for the receiver. |
| __ mov(edi, Operand(esp, eax, times_4, kPointerSize)); |
| |
| // Invoke the code. |
| if (is_construct) { |
| CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); |
| __ CallStub(&stub); |
| } else { |
| ParameterCount actual(eax); |
| __ InvokeFunction(edi, actual, CALL_FUNCTION, |
| NullCallWrapper(), CALL_AS_METHOD); |
| } |
| |
| // Exit the internal frame. Notice that this also removes the empty. |
| // context and the function left on the stack by the code |
| // invocation. |
| } |
| __ ret(kPointerSize); // Remove receiver. |
| } |
| |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| |
| void Builtins::Generate_LazyCompile(MacroAssembler* masm) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Push a copy of the function. |
| __ push(edi); |
| // Push call kind information. |
| __ push(ecx); |
| |
| __ push(edi); // Function is also the parameter to the runtime call. |
| __ CallRuntime(Runtime::kLazyCompile, 1); |
| |
| // Restore call kind information. |
| __ pop(ecx); |
| // Restore receiver. |
| __ pop(edi); |
| |
| // Tear down internal frame. |
| } |
| |
| // Do a tail-call of the compiled function. |
| __ lea(eax, FieldOperand(eax, Code::kHeaderSize)); |
| __ jmp(eax); |
| } |
| |
| |
| void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Push a copy of the function onto the stack. |
| __ push(edi); |
| // Push call kind information. |
| __ push(ecx); |
| |
| __ push(edi); // Function is also the parameter to the runtime call. |
| __ CallRuntime(Runtime::kLazyRecompile, 1); |
| |
| // Restore call kind information. |
| __ pop(ecx); |
| // Restore receiver. |
| __ pop(edi); |
| |
| // Tear down internal frame. |
| } |
| |
| // Do a tail-call of the compiled function. |
| __ lea(eax, FieldOperand(eax, Code::kHeaderSize)); |
| __ jmp(eax); |
| } |
| |
| |
| static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, |
| Deoptimizer::BailoutType type) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Pass deoptimization type to the runtime system. |
| __ push(Immediate(Smi::FromInt(static_cast<int>(type)))); |
| __ CallRuntime(Runtime::kNotifyDeoptimized, 1); |
| |
| // Tear down internal frame. |
| } |
| |
| // Get the full codegen state from the stack and untag it. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| __ SmiUntag(ecx); |
| |
| // Switch on the state. |
| Label not_no_registers, not_tos_eax; |
| __ cmp(ecx, FullCodeGenerator::NO_REGISTERS); |
| __ j(not_equal, ¬_no_registers, Label::kNear); |
| __ ret(1 * kPointerSize); // Remove state. |
| |
| __ bind(¬_no_registers); |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); |
| __ cmp(ecx, FullCodeGenerator::TOS_REG); |
| __ j(not_equal, ¬_tos_eax, Label::kNear); |
| __ ret(2 * kPointerSize); // Remove state, eax. |
| |
| __ bind(¬_tos_eax); |
| __ Abort("no cases left"); |
| } |
| |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); |
| } |
| |
| |
| void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { |
| Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); |
| } |
| |
| |
| void Builtins::Generate_NotifyOSR(MacroAssembler* masm) { |
| // TODO(kasperl): Do we need to save/restore the XMM registers too? |
| |
| // For now, we are relying on the fact that Runtime::NotifyOSR |
| // doesn't do any garbage collection which allows us to save/restore |
| // the registers without worrying about which of them contain |
| // pointers. This seems a bit fragile. |
| __ pushad(); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyOSR, 0); |
| } |
| __ popad(); |
| __ ret(0); |
| } |
| |
| |
| void Builtins::Generate_FunctionCall(MacroAssembler* masm) { |
| Factory* factory = masm->isolate()->factory(); |
| |
| // 1. Make sure we have at least one argument. |
| { Label done; |
| __ test(eax, eax); |
| __ j(not_zero, &done); |
| __ pop(ebx); |
| __ push(Immediate(factory->undefined_value())); |
| __ push(ebx); |
| __ inc(eax); |
| __ bind(&done); |
| } |
| |
| // 2. Get the function to call (passed as receiver) from the stack, check |
| // if it is a function. |
| Label slow, non_function; |
| // 1 ~ return address. |
| __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize)); |
| __ JumpIfSmi(edi, &non_function); |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &slow); |
| |
| |
| // 3a. Patch the first argument if necessary when calling a function. |
| Label shift_arguments; |
| __ Set(edx, Immediate(0)); // indicate regular JS_FUNCTION |
| { Label convert_to_object, use_global_receiver, patch_receiver; |
| // Change context eagerly in case we need the global receiver. |
| __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| |
| // Do not transform the receiver for strict mode functions. |
| __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset), |
| 1 << SharedFunctionInfo::kStrictModeBitWithinByte); |
| __ j(not_equal, &shift_arguments); |
| |
| // Do not transform the receiver for natives (shared already in ebx). |
| __ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset), |
| 1 << SharedFunctionInfo::kNativeBitWithinByte); |
| __ j(not_equal, &shift_arguments); |
| |
| // Compute the receiver in non-strict mode. |
| __ mov(ebx, Operand(esp, eax, times_4, 0)); // First argument. |
| |
| // Call ToObject on the receiver if it is not an object, or use the |
| // global object if it is null or undefined. |
| __ JumpIfSmi(ebx, &convert_to_object); |
| __ cmp(ebx, factory->null_value()); |
| __ j(equal, &use_global_receiver); |
| __ cmp(ebx, factory->undefined_value()); |
| __ j(equal, &use_global_receiver); |
| STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
| __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx); |
| __ j(above_equal, &shift_arguments); |
| |
| __ bind(&convert_to_object); |
| |
| { // In order to preserve argument count. |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(eax); |
| __ push(eax); |
| |
| __ push(ebx); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ mov(ebx, eax); |
| __ Set(edx, Immediate(0)); // restore |
| |
| __ pop(eax); |
| __ SmiUntag(eax); |
| } |
| |
| // Restore the function to edi. |
| __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize)); |
| __ jmp(&patch_receiver); |
| |
| // Use the global receiver object from the called function as the |
| // receiver. |
| __ bind(&use_global_receiver); |
| const int kGlobalIndex = |
| Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| __ mov(ebx, FieldOperand(esi, kGlobalIndex)); |
| __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset)); |
| __ mov(ebx, FieldOperand(ebx, kGlobalIndex)); |
| __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); |
| |
| __ bind(&patch_receiver); |
| __ mov(Operand(esp, eax, times_4, 0), ebx); |
| |
| __ jmp(&shift_arguments); |
| } |
| |
| // 3b. Check for function proxy. |
| __ bind(&slow); |
| __ Set(edx, Immediate(1)); // indicate function proxy |
| __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); |
| __ j(equal, &shift_arguments); |
| __ bind(&non_function); |
| __ Set(edx, Immediate(2)); // indicate non-function |
| |
| // 3c. Patch the first argument when calling a non-function. The |
| // CALL_NON_FUNCTION builtin expects the non-function callee as |
| // receiver, so overwrite the first argument which will ultimately |
| // become the receiver. |
| __ mov(Operand(esp, eax, times_4, 0), edi); |
| |
| // 4. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| __ bind(&shift_arguments); |
| { Label loop; |
| __ mov(ecx, eax); |
| __ bind(&loop); |
| __ mov(ebx, Operand(esp, ecx, times_4, 0)); |
| __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx); |
| __ dec(ecx); |
| __ j(not_sign, &loop); // While non-negative (to copy return address). |
| __ pop(ebx); // Discard copy of return address. |
| __ dec(eax); // One fewer argument (first argument is new receiver). |
| } |
| |
| // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, |
| // or a function proxy via CALL_FUNCTION_PROXY. |
| { Label function, non_proxy; |
| __ test(edx, edx); |
| __ j(zero, &function); |
| __ Set(ebx, Immediate(0)); |
| __ cmp(edx, Immediate(1)); |
| __ j(not_equal, &non_proxy); |
| |
| __ pop(edx); // return address |
| __ push(edi); // re-add proxy object as additional argument |
| __ push(edx); |
| __ inc(eax); |
| __ SetCallKind(ecx, CALL_AS_FUNCTION); |
| __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY); |
| __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| RelocInfo::CODE_TARGET); |
| |
| __ bind(&non_proxy); |
| __ SetCallKind(ecx, CALL_AS_METHOD); |
| __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); |
| __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| RelocInfo::CODE_TARGET); |
| __ bind(&function); |
| } |
| |
| // 5b. Get the code to call from the function and check that the number of |
| // expected arguments matches what we're providing. If so, jump |
| // (tail-call) to the code in register edx without checking arguments. |
| __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(ebx, |
| FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset)); |
| __ SmiUntag(ebx); |
| __ SetCallKind(ecx, CALL_AS_METHOD); |
| __ cmp(eax, ebx); |
| __ j(not_equal, |
| masm->isolate()->builtins()->ArgumentsAdaptorTrampoline()); |
| |
| ParameterCount expected(0); |
| __ InvokeCode(edx, expected, expected, JUMP_FUNCTION, NullCallWrapper(), |
| CALL_AS_METHOD); |
| } |
| |
| |
| void Builtins::Generate_FunctionApply(MacroAssembler* masm) { |
| static const int kArgumentsOffset = 2 * kPointerSize; |
| static const int kReceiverOffset = 3 * kPointerSize; |
| static const int kFunctionOffset = 4 * kPointerSize; |
| { |
| FrameScope frame_scope(masm, StackFrame::INTERNAL); |
| |
| __ push(Operand(ebp, kFunctionOffset)); // push this |
| __ push(Operand(ebp, kArgumentsOffset)); // push arguments |
| __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); |
| |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| Label okay; |
| ExternalReference real_stack_limit = |
| ExternalReference::address_of_real_stack_limit(masm->isolate()); |
| __ mov(edi, Operand::StaticVariable(real_stack_limit)); |
| // Make ecx the space we have left. The stack might already be overflowed |
| // here which will cause ecx to become negative. |
| __ mov(ecx, esp); |
| __ sub(ecx, edi); |
| // Make edx the space we need for the array when it is unrolled onto the |
| // stack. |
| __ mov(edx, eax); |
| __ shl(edx, kPointerSizeLog2 - kSmiTagSize); |
| // Check if the arguments will overflow the stack. |
| __ cmp(ecx, edx); |
| __ j(greater, &okay); // Signed comparison. |
| |
| // Out of stack space. |
| __ push(Operand(ebp, 4 * kPointerSize)); // push this |
| __ push(eax); |
| __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); |
| __ bind(&okay); |
| // End of stack check. |
| |
| // Push current index and limit. |
| const int kLimitOffset = |
| StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize; |
| const int kIndexOffset = kLimitOffset - 1 * kPointerSize; |
| __ push(eax); // limit |
| __ push(Immediate(0)); // index |
| |
| // Get the receiver. |
| __ mov(ebx, Operand(ebp, kReceiverOffset)); |
| |
| // Check that the function is a JS function (otherwise it must be a proxy). |
| Label push_receiver; |
| __ mov(edi, Operand(ebp, kFunctionOffset)); |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &push_receiver); |
| |
| // Change context eagerly to get the right global object if necessary. |
| __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| |
| // Compute the receiver. |
| // Do not transform the receiver for strict mode functions. |
| Label call_to_object, use_global_receiver; |
| __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset), |
| 1 << SharedFunctionInfo::kStrictModeBitWithinByte); |
| __ j(not_equal, &push_receiver); |
| |
| Factory* factory = masm->isolate()->factory(); |
| |
| // Do not transform the receiver for natives (shared already in ecx). |
| __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset), |
| 1 << SharedFunctionInfo::kNativeBitWithinByte); |
| __ j(not_equal, &push_receiver); |
| |
| // Compute the receiver in non-strict mode. |
| // Call ToObject on the receiver if it is not an object, or use the |
| // global object if it is null or undefined. |
| __ JumpIfSmi(ebx, &call_to_object); |
| __ cmp(ebx, factory->null_value()); |
| __ j(equal, &use_global_receiver); |
| __ cmp(ebx, factory->undefined_value()); |
| __ j(equal, &use_global_receiver); |
| STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
| __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx); |
| __ j(above_equal, &push_receiver); |
| |
| __ bind(&call_to_object); |
| __ push(ebx); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ mov(ebx, eax); |
| __ jmp(&push_receiver); |
| |
| // Use the current global receiver object as the receiver. |
| __ bind(&use_global_receiver); |
| const int kGlobalOffset = |
| Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| __ mov(ebx, FieldOperand(esi, kGlobalOffset)); |
| __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset)); |
| __ mov(ebx, FieldOperand(ebx, kGlobalOffset)); |
| __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); |
| |
| // Push the receiver. |
| __ bind(&push_receiver); |
| __ push(ebx); |
| |
| // Copy all arguments from the array to the stack. |
| Label entry, loop; |
| __ mov(eax, Operand(ebp, kIndexOffset)); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ mov(edx, Operand(ebp, kArgumentsOffset)); // load arguments |
| |
| // Use inline caching to speed up access to arguments. |
| Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize(); |
| __ call(ic, RelocInfo::CODE_TARGET); |
| // It is important that we do not have a test instruction after the |
| // call. A test instruction after the call is used to indicate that |
| // we have generated an inline version of the keyed load. In this |
| // case, we know that we are not generating a test instruction next. |
| |
| // Push the nth argument. |
| __ push(eax); |
| |
| // Update the index on the stack and in register eax. |
| __ mov(eax, Operand(ebp, kIndexOffset)); |
| __ add(eax, Immediate(1 << kSmiTagSize)); |
| __ mov(Operand(ebp, kIndexOffset), eax); |
| |
| __ bind(&entry); |
| __ cmp(eax, Operand(ebp, kLimitOffset)); |
| __ j(not_equal, &loop); |
| |
| // Invoke the function. |
| Label call_proxy; |
| ParameterCount actual(eax); |
| __ SmiUntag(eax); |
| __ mov(edi, Operand(ebp, kFunctionOffset)); |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &call_proxy); |
| __ InvokeFunction(edi, actual, CALL_FUNCTION, |
| NullCallWrapper(), CALL_AS_METHOD); |
| |
| frame_scope.GenerateLeaveFrame(); |
| __ ret(3 * kPointerSize); // remove this, receiver, and arguments |
| |
| // Invoke the function proxy. |
| __ bind(&call_proxy); |
| __ push(edi); // add function proxy as last argument |
| __ inc(eax); |
| __ Set(ebx, Immediate(0)); |
| __ SetCallKind(ecx, CALL_AS_METHOD); |
| __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY); |
| __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
| RelocInfo::CODE_TARGET); |
| |
| // Leave internal frame. |
| } |
| __ ret(3 * kPointerSize); // remove this, receiver, and arguments |
| } |
| |
| |
| // Allocate an empty JSArray. The allocated array is put into the result |
| // register. If the parameter initial_capacity is larger than zero an elements |
| // backing store is allocated with this size and filled with the hole values. |
| // Otherwise the elements backing store is set to the empty FixedArray. |
| static void AllocateEmptyJSArray(MacroAssembler* masm, |
| Register array_function, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| const int initial_capacity = JSArray::kPreallocatedArrayElements; |
| STATIC_ASSERT(initial_capacity >= 0); |
| |
| __ LoadInitialArrayMap(array_function, scratch2, scratch1); |
| |
| // Allocate the JSArray object together with space for a fixed array with the |
| // requested elements. |
| int size = JSArray::kSize; |
| if (initial_capacity > 0) { |
| size += FixedArray::SizeFor(initial_capacity); |
| } |
| __ AllocateInNewSpace(size, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Allocated the JSArray. Now initialize the fields except for the elements |
| // array. |
| // result: JSObject |
| // scratch1: initial map |
| // scratch2: start of next object |
| __ mov(FieldOperand(result, JSObject::kMapOffset), scratch1); |
| Factory* factory = masm->isolate()->factory(); |
| __ mov(FieldOperand(result, JSArray::kPropertiesOffset), |
| factory->empty_fixed_array()); |
| // Field JSArray::kElementsOffset is initialized later. |
| __ mov(FieldOperand(result, JSArray::kLengthOffset), Immediate(0)); |
| |
| // If no storage is requested for the elements array just set the empty |
| // fixed array. |
| if (initial_capacity == 0) { |
| __ mov(FieldOperand(result, JSArray::kElementsOffset), |
| factory->empty_fixed_array()); |
| return; |
| } |
| |
| // Calculate the location of the elements array and set elements array member |
| // of the JSArray. |
| // result: JSObject |
| // scratch2: start of next object |
| __ lea(scratch1, Operand(result, JSArray::kSize)); |
| __ mov(FieldOperand(result, JSArray::kElementsOffset), scratch1); |
| |
| // Initialize the FixedArray and fill it with holes. FixedArray length is |
| // stored as a smi. |
| // result: JSObject |
| // scratch1: elements array |
| // scratch2: start of next object |
| __ mov(FieldOperand(scratch1, FixedArray::kMapOffset), |
| factory->fixed_array_map()); |
| __ mov(FieldOperand(scratch1, FixedArray::kLengthOffset), |
| Immediate(Smi::FromInt(initial_capacity))); |
| |
| // Fill the FixedArray with the hole value. Inline the code if short. |
| // Reconsider loop unfolding if kPreallocatedArrayElements gets changed. |
| static const int kLoopUnfoldLimit = 4; |
| if (initial_capacity <= kLoopUnfoldLimit) { |
| // Use a scratch register here to have only one reloc info when unfolding |
| // the loop. |
| __ mov(scratch3, factory->the_hole_value()); |
| for (int i = 0; i < initial_capacity; i++) { |
| __ mov(FieldOperand(scratch1, |
| FixedArray::kHeaderSize + i * kPointerSize), |
| scratch3); |
| } |
| } else { |
| Label loop, entry; |
| __ mov(scratch2, Immediate(initial_capacity)); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ mov(FieldOperand(scratch1, |
| scratch2, |
| times_pointer_size, |
| FixedArray::kHeaderSize), |
| factory->the_hole_value()); |
| __ bind(&entry); |
| __ dec(scratch2); |
| __ j(not_sign, &loop); |
| } |
| } |
| |
| |
| // Allocate a JSArray with the number of elements stored in a register. The |
| // register array_function holds the built-in Array function and the register |
| // array_size holds the size of the array as a smi. The allocated array is put |
| // into the result register and beginning and end of the FixedArray elements |
| // storage is put into registers elements_array and elements_array_end (see |
| // below for when that is not the case). If the parameter fill_with_holes is |
| // true the allocated elements backing store is filled with the hole values |
| // otherwise it is left uninitialized. When the backing store is filled the |
| // register elements_array is scratched. |
| static void AllocateJSArray(MacroAssembler* masm, |
| Register array_function, // Array function. |
| Register array_size, // As a smi, cannot be 0. |
| Register result, |
| Register elements_array, |
| Register elements_array_end, |
| Register scratch, |
| bool fill_with_hole, |
| Label* gc_required) { |
| ASSERT(scratch.is(edi)); // rep stos destination |
| ASSERT(!fill_with_hole || array_size.is(ecx)); // rep stos count |
| ASSERT(!fill_with_hole || !result.is(eax)); // result is never eax |
| |
| __ LoadInitialArrayMap(array_function, scratch, elements_array); |
| |
| // Allocate the JSArray object together with space for a FixedArray with the |
| // requested elements. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize, |
| times_half_pointer_size, // array_size is a smi. |
| array_size, |
| result, |
| elements_array_end, |
| scratch, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Allocated the JSArray. Now initialize the fields except for the elements |
| // array. |
| // result: JSObject |
| // elements_array: initial map |
| // elements_array_end: start of next object |
| // array_size: size of array (smi) |
| __ mov(FieldOperand(result, JSObject::kMapOffset), elements_array); |
| Factory* factory = masm->isolate()->factory(); |
| __ mov(elements_array, factory->empty_fixed_array()); |
| __ mov(FieldOperand(result, JSArray::kPropertiesOffset), elements_array); |
| // Field JSArray::kElementsOffset is initialized later. |
| __ mov(FieldOperand(result, JSArray::kLengthOffset), array_size); |
| |
| // Calculate the location of the elements array and set elements array member |
| // of the JSArray. |
| // result: JSObject |
| // elements_array_end: start of next object |
| // array_size: size of array (smi) |
| __ lea(elements_array, Operand(result, JSArray::kSize)); |
| __ mov(FieldOperand(result, JSArray::kElementsOffset), elements_array); |
| |
| // Initialize the fixed array. FixedArray length is stored as a smi. |
| // result: JSObject |
| // elements_array: elements array |
| // elements_array_end: start of next object |
| // array_size: size of array (smi) |
| __ mov(FieldOperand(elements_array, FixedArray::kMapOffset), |
| factory->fixed_array_map()); |
| // For non-empty JSArrays the length of the FixedArray and the JSArray is the |
| // same. |
| __ mov(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size); |
| |
| // Fill the allocated FixedArray with the hole value if requested. |
| // result: JSObject |
| // elements_array: elements array |
| if (fill_with_hole) { |
| __ SmiUntag(array_size); |
| __ lea(edi, Operand(elements_array, |
| FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ mov(eax, factory->the_hole_value()); |
| __ cld(); |
| // Do not use rep stos when filling less than kRepStosThreshold |
| // words. |
| const int kRepStosThreshold = 16; |
| Label loop, entry, done; |
| __ cmp(ecx, kRepStosThreshold); |
| __ j(below, &loop); // Note: ecx > 0. |
| __ rep_stos(); |
| __ jmp(&done); |
| __ bind(&loop); |
| __ stos(); |
| __ bind(&entry); |
| __ cmp(edi, elements_array_end); |
| __ j(below, &loop); |
| __ bind(&done); |
| } |
| } |
| |
| |
| // Create a new array for the built-in Array function. This function allocates |
| // the JSArray object and the FixedArray elements array and initializes these. |
| // If the Array cannot be constructed in native code the runtime is called. This |
| // function assumes the following state: |
| // edi: constructor (built-in Array function) |
| // eax: argc |
| // esp[0]: return address |
| // esp[4]: last argument |
| // This function is used for both construct and normal calls of Array. Whether |
| // it is a construct call or not is indicated by the construct_call parameter. |
| // The only difference between handling a construct call and a normal call is |
| // that for a construct call the constructor function in edi needs to be |
| // preserved for entering the generic code. In both cases argc in eax needs to |
| // be preserved. |
| static void ArrayNativeCode(MacroAssembler* masm, |
| bool construct_call, |
| Label* call_generic_code) { |
| Label argc_one_or_more, argc_two_or_more, prepare_generic_code_call, |
| empty_array, not_empty_array, finish, cant_transition_map, not_double; |
| |
| // Push the constructor and argc. No need to tag argc as a smi, as there will |
| // be no garbage collection with this on the stack. |
| int push_count = 0; |
| if (construct_call) { |
| push_count++; |
| __ push(edi); |
| } |
| push_count++; |
| __ push(eax); |
| |
| // Check for array construction with zero arguments. |
| __ test(eax, eax); |
| __ j(not_zero, &argc_one_or_more); |
| |
| __ bind(&empty_array); |
| // Handle construction of an empty array. |
| AllocateEmptyJSArray(masm, |
| edi, |
| eax, |
| ebx, |
| ecx, |
| edi, |
| &prepare_generic_code_call); |
| __ IncrementCounter(masm->isolate()->counters()->array_function_native(), 1); |
| __ pop(ebx); |
| if (construct_call) { |
| __ pop(edi); |
| } |
| __ ret(kPointerSize); |
| |
| // Check for one argument. Bail out if argument is not smi or if it is |
| // negative. |
| __ bind(&argc_one_or_more); |
| __ cmp(eax, 1); |
| __ j(not_equal, &argc_two_or_more); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ mov(ecx, Operand(esp, (push_count + 1) * kPointerSize)); |
| __ test(ecx, ecx); |
| __ j(not_zero, ¬_empty_array); |
| |
| // The single argument passed is zero, so we jump to the code above used to |
| // handle the case of no arguments passed. To adapt the stack for that we move |
| // the return address and the pushed constructor (if pushed) one stack slot up |
| // thereby removing the passed argument. Argc is also on the stack - at the |
| // bottom - and it needs to be changed from 1 to 0 to have the call into the |
| // runtime system work in case a GC is required. |
| for (int i = push_count; i > 0; i--) { |
| __ mov(eax, Operand(esp, i * kPointerSize)); |
| __ mov(Operand(esp, (i + 1) * kPointerSize), eax); |
| } |
| __ Drop(2); // Drop two stack slots. |
| __ push(Immediate(0)); // Treat this as a call with argc of zero. |
| __ jmp(&empty_array); |
| |
| __ bind(¬_empty_array); |
| __ test(ecx, Immediate(kIntptrSignBit | kSmiTagMask)); |
| __ j(not_zero, &prepare_generic_code_call); |
| |
| // Handle construction of an empty array of a certain size. Get the size from |
| // the stack and bail out if size is to large to actually allocate an elements |
| // array. |
| __ cmp(ecx, JSObject::kInitialMaxFastElementArray << kSmiTagSize); |
| __ j(greater_equal, &prepare_generic_code_call); |
| |
| // edx: array_size (smi) |
| // edi: constructor |
| // esp[0]: argc (cannot be 0 here) |
| // esp[4]: constructor (only if construct_call) |
| // esp[8]: return address |
| // esp[C]: argument |
| AllocateJSArray(masm, |
| edi, |
| ecx, |
| ebx, |
| eax, |
| edx, |
| edi, |
| true, |
| &prepare_generic_code_call); |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->array_function_native(), 1); |
| __ mov(eax, ebx); |
| __ pop(ebx); |
| if (construct_call) { |
| __ pop(edi); |
| } |
| __ ret(2 * kPointerSize); |
| |
| // Handle construction of an array from a list of arguments. |
| __ bind(&argc_two_or_more); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ SmiTag(eax); // Convet argc to a smi. |
| // eax: array_size (smi) |
| // edi: constructor |
| // esp[0] : argc |
| // esp[4]: constructor (only if construct_call) |
| // esp[8] : return address |
| // esp[C] : last argument |
| AllocateJSArray(masm, |
| edi, |
| eax, |
| ebx, |
| ecx, |
| edx, |
| edi, |
| false, |
| &prepare_generic_code_call); |
| __ IncrementCounter(counters->array_function_native(), 1); |
| __ push(ebx); |
| __ mov(ebx, Operand(esp, kPointerSize)); |
| // ebx: argc |
| // edx: elements_array_end (untagged) |
| // esp[0]: JSArray |
| // esp[4]: argc |
| // esp[8]: constructor (only if construct_call) |
| // esp[12]: return address |
| // esp[16]: last argument |
| |
| // Location of the last argument |
| int last_arg_offset = (construct_call ? 4 : 3) * kPointerSize; |
| __ lea(edi, Operand(esp, last_arg_offset)); |
| |
| // Location of the first array element (Parameter fill_with_holes to |
| // AllocateJSArray is false, so the FixedArray is returned in ecx). |
| __ lea(edx, Operand(ecx, FixedArray::kHeaderSize - kHeapObjectTag)); |
| |
| Label has_non_smi_element; |
| |
| // ebx: argc |
| // edx: location of the first array element |
| // edi: location of the last argument |
| // esp[0]: JSArray |
| // esp[4]: argc |
| // esp[8]: constructor (only if construct_call) |
| // esp[12]: return address |
| // esp[16]: last argument |
| Label loop, entry; |
| __ mov(ecx, ebx); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ mov(eax, Operand(edi, ecx, times_pointer_size, 0)); |
| if (FLAG_smi_only_arrays) { |
| __ JumpIfNotSmi(eax, &has_non_smi_element); |
| } |
| __ mov(Operand(edx, 0), eax); |
| __ add(edx, Immediate(kPointerSize)); |
| __ bind(&entry); |
| __ dec(ecx); |
| __ j(greater_equal, &loop); |
| |
| // Remove caller arguments from the stack and return. |
| // ebx: argc |
| // esp[0]: JSArray |
| // esp[4]: argc |
| // esp[8]: constructor (only if construct_call) |
| // esp[12]: return address |
| // esp[16]: last argument |
| __ bind(&finish); |
| __ mov(ecx, Operand(esp, last_arg_offset - kPointerSize)); |
| __ pop(eax); |
| __ pop(ebx); |
| __ lea(esp, Operand(esp, ebx, times_pointer_size, |
| last_arg_offset - kPointerSize)); |
| __ jmp(ecx); |
| |
| __ bind(&has_non_smi_element); |
| // Double values are handled by the runtime. |
| __ CheckMap(eax, |
| masm->isolate()->factory()->heap_number_map(), |
| ¬_double, |
| DONT_DO_SMI_CHECK); |
| __ bind(&cant_transition_map); |
| // Throw away the array that's only been partially constructed. |
| __ pop(eax); |
| __ UndoAllocationInNewSpace(eax); |
| __ jmp(&prepare_generic_code_call); |
| |
| __ bind(¬_double); |
| // Transition FAST_SMI_ONLY_ELEMENTS to FAST_ELEMENTS. |
| __ mov(ebx, Operand(esp, 0)); |
| __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset)); |
| __ LoadTransitionedArrayMapConditional( |
| FAST_SMI_ONLY_ELEMENTS, |
| FAST_ELEMENTS, |
| edi, |
| eax, |
| &cant_transition_map); |
| __ mov(FieldOperand(ebx, HeapObject::kMapOffset), edi); |
| __ RecordWriteField(ebx, HeapObject::kMapOffset, edi, eax, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| |
| // Prepare to re-enter the loop |
| __ lea(edi, Operand(esp, last_arg_offset)); |
| |
| // Finish the array initialization loop. |
| Label loop2; |
| __ bind(&loop2); |
| __ mov(eax, Operand(edi, ecx, times_pointer_size, 0)); |
| __ mov(Operand(edx, 0), eax); |
| __ add(edx, Immediate(kPointerSize)); |
| __ dec(ecx); |
| __ j(greater_equal, &loop2); |
| __ jmp(&finish); |
| |
| // Restore argc and constructor before running the generic code. |
| __ bind(&prepare_generic_code_call); |
| __ pop(eax); |
| if (construct_call) { |
| __ pop(edi); |
| } |
| __ jmp(call_generic_code); |
| } |
| |
| |
| void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // ----------------------------------- |
| Label generic_array_code; |
| |
| // Get the InternalArray function. |
| __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin InternalArray function should be a map. |
| __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a NULL and a Smi. |
| __ test(ebx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, "Unexpected initial map for InternalArray function"); |
| __ CmpObjectType(ebx, MAP_TYPE, ecx); |
| __ Assert(equal, "Unexpected initial map for InternalArray function"); |
| } |
| |
| // Run the native code for the InternalArray function called as a normal |
| // function. |
| ArrayNativeCode(masm, false, &generic_array_code); |
| |
| // Jump to the generic internal array code in case the specialized code cannot |
| // handle the construction. |
| __ bind(&generic_array_code); |
| Handle<Code> array_code = |
| masm->isolate()->builtins()->InternalArrayCodeGeneric(); |
| __ jmp(array_code, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_ArrayCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // ----------------------------------- |
| Label generic_array_code; |
| |
| // Get the Array function. |
| __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin Array function should be a map. |
| __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a NULL and a Smi. |
| __ test(ebx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, "Unexpected initial map for Array function"); |
| __ CmpObjectType(ebx, MAP_TYPE, ecx); |
| __ Assert(equal, "Unexpected initial map for Array function"); |
| } |
| |
| // Run the native code for the Array function called as a normal function. |
| ArrayNativeCode(masm, false, &generic_array_code); |
| |
| // Jump to the generic array code in case the specialized code cannot handle |
| // the construction. |
| __ bind(&generic_array_code); |
| Handle<Code> array_code = |
| masm->isolate()->builtins()->ArrayCodeGeneric(); |
| __ jmp(array_code, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- edi : constructor |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // ----------------------------------- |
| Label generic_constructor; |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a NULL and a Smi. |
| __ test(ebx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, "Unexpected initial map for Array function"); |
| __ CmpObjectType(ebx, MAP_TYPE, ecx); |
| __ Assert(equal, "Unexpected initial map for Array function"); |
| } |
| |
| // Run the native code for the Array function called as constructor. |
| ArrayNativeCode(masm, true, &generic_constructor); |
| |
| // Jump to the generic construct code in case the specialized code cannot |
| // handle the construction. |
| __ bind(&generic_constructor); |
| Handle<Code> generic_construct_stub = |
| masm->isolate()->builtins()->JSConstructStubGeneric(); |
| __ jmp(generic_construct_stub, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : number of arguments |
| // -- edi : constructor function |
| // -- esp[0] : return address |
| // -- esp[(argc - n) * 4] : arg[n] (zero-based) |
| // -- esp[(argc + 1) * 4] : receiver |
| // ----------------------------------- |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->string_ctor_calls(), 1); |
| |
| if (FLAG_debug_code) { |
| __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx); |
| __ cmp(edi, ecx); |
| __ Assert(equal, "Unexpected String function"); |
| } |
| |
| // Load the first argument into eax and get rid of the rest |
| // (including the receiver). |
| Label no_arguments; |
| __ test(eax, eax); |
| __ j(zero, &no_arguments); |
| __ mov(ebx, Operand(esp, eax, times_pointer_size, 0)); |
| __ pop(ecx); |
| __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); |
| __ push(ecx); |
| __ mov(eax, ebx); |
| |
| // Lookup the argument in the number to string cache. |
| Label not_cached, argument_is_string; |
| NumberToStringStub::GenerateLookupNumberStringCache( |
| masm, |
| eax, // Input. |
| ebx, // Result. |
| ecx, // Scratch 1. |
| edx, // Scratch 2. |
| false, // Input is known to be smi? |
| ¬_cached); |
| __ IncrementCounter(counters->string_ctor_cached_number(), 1); |
| __ bind(&argument_is_string); |
| // ----------- S t a t e ------------- |
| // -- ebx : argument converted to string |
| // -- edi : constructor function |
| // -- esp[0] : return address |
| // ----------------------------------- |
| |
| // Allocate a JSValue and put the tagged pointer into eax. |
| Label gc_required; |
| __ AllocateInNewSpace(JSValue::kSize, |
| eax, // Result. |
| ecx, // New allocation top (we ignore it). |
| no_reg, |
| &gc_required, |
| TAG_OBJECT); |
| |
| // Set the map. |
| __ LoadGlobalFunctionInitialMap(edi, ecx); |
| if (FLAG_debug_code) { |
| __ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset), |
| JSValue::kSize >> kPointerSizeLog2); |
| __ Assert(equal, "Unexpected string wrapper instance size"); |
| __ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0); |
| __ Assert(equal, "Unexpected unused properties of string wrapper"); |
| } |
| __ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx); |
| |
| // Set properties and elements. |
| Factory* factory = masm->isolate()->factory(); |
| __ Set(ecx, Immediate(factory->empty_fixed_array())); |
| __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx); |
| |
| // Set the value. |
| __ mov(FieldOperand(eax, JSValue::kValueOffset), ebx); |
| |
| // Ensure the object is fully initialized. |
| STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); |
| |
| // We're done. Return. |
| __ ret(0); |
| |
| // The argument was not found in the number to string cache. Check |
| // if it's a string already before calling the conversion builtin. |
| Label convert_argument; |
| __ bind(¬_cached); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(eax, &convert_argument); |
| Condition is_string = masm->IsObjectStringType(eax, ebx, ecx); |
| __ j(NegateCondition(is_string), &convert_argument); |
| __ mov(ebx, eax); |
| __ IncrementCounter(counters->string_ctor_string_value(), 1); |
| __ jmp(&argument_is_string); |
| |
| // Invoke the conversion builtin and put the result into ebx. |
| __ bind(&convert_argument); |
| __ IncrementCounter(counters->string_ctor_conversions(), 1); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(edi); // Preserve the function. |
| __ push(eax); |
| __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); |
| __ pop(edi); |
| } |
| __ mov(ebx, eax); |
| __ jmp(&argument_is_string); |
| |
| // Load the empty string into ebx, remove the receiver from the |
| // stack, and jump back to the case where the argument is a string. |
| __ bind(&no_arguments); |
| __ Set(ebx, Immediate(factory->empty_string())); |
| __ pop(ecx); |
| __ lea(esp, Operand(esp, kPointerSize)); |
| __ push(ecx); |
| __ jmp(&argument_is_string); |
| |
| // At this point the argument is already a string. Call runtime to |
| // create a string wrapper. |
| __ bind(&gc_required); |
| __ IncrementCounter(counters->string_ctor_gc_required(), 1); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(ebx); |
| __ CallRuntime(Runtime::kNewStringWrapper, 1); |
| } |
| __ ret(0); |
| } |
| |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ push(ebp); |
| __ mov(ebp, esp); |
| |
| // Store the arguments adaptor context sentinel. |
| __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Push the function on the stack. |
| __ push(edi); |
| |
| // Preserve the number of arguments on the stack. Must preserve eax, |
| // ebx and ecx because these registers are used when copying the |
| // arguments and the receiver. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ lea(edi, Operand(eax, eax, times_1, kSmiTag)); |
| __ push(edi); |
| } |
| |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // Retrieve the number of arguments from the stack. |
| __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| // Leave the frame. |
| __ leave(); |
| |
| // Remove caller arguments from the stack. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ pop(ecx); |
| __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver |
| __ push(ecx); |
| } |
| |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : actual number of arguments |
| // -- ebx : expected number of arguments |
| // -- ecx : call kind information |
| // -- edx : code entry to call |
| // ----------------------------------- |
| |
| Label invoke, dont_adapt_arguments; |
| __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1); |
| |
| Label enough, too_few; |
| __ cmp(eax, ebx); |
| __ j(less, &too_few); |
| __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel); |
| __ j(equal, &dont_adapt_arguments); |
| |
| { // Enough parameters: Actual >= expected. |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| // Copy receiver and all expected arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ lea(eax, Operand(ebp, eax, times_4, offset)); |
| __ mov(edi, -1); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ inc(edi); |
| __ push(Operand(eax, 0)); |
| __ sub(eax, Immediate(kPointerSize)); |
| __ cmp(edi, ebx); |
| __ j(less, ©); |
| __ jmp(&invoke); |
| } |
| |
| { // Too few parameters: Actual < expected. |
| __ bind(&too_few); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| // Copy receiver and all actual arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ lea(edi, Operand(ebp, eax, times_4, offset)); |
| // ebx = expected - actual. |
| __ sub(ebx, eax); |
| // eax = -actual - 1 |
| __ neg(eax); |
| __ sub(eax, Immediate(1)); |
| |
| Label copy; |
| __ bind(©); |
| __ inc(eax); |
| __ push(Operand(edi, 0)); |
| __ sub(edi, Immediate(kPointerSize)); |
| __ test(eax, eax); |
| __ j(not_zero, ©); |
| |
| // Fill remaining expected arguments with undefined values. |
| Label fill; |
| __ bind(&fill); |
| __ inc(eax); |
| __ push(Immediate(masm->isolate()->factory()->undefined_value())); |
| __ cmp(eax, ebx); |
| __ j(less, &fill); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| // Restore function pointer. |
| __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ call(edx); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); |
| |
| // Leave frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ ret(0); |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| __ jmp(edx); |
| } |
| |
| |
| void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { |
| CpuFeatures::TryForceFeatureScope scope(SSE2); |
| if (!CpuFeatures::IsSupported(SSE2) && FLAG_debug_code) { |
| __ Abort("Unreachable code: Cannot optimize without SSE2 support."); |
| return; |
| } |
| |
| // Get the loop depth of the stack guard check. This is recorded in |
| // a test(eax, depth) instruction right after the call. |
| Label stack_check; |
| __ mov(ebx, Operand(esp, 0)); // return address |
| if (FLAG_debug_code) { |
| __ cmpb(Operand(ebx, 0), Assembler::kTestAlByte); |
| __ Assert(equal, "test eax instruction not found after loop stack check"); |
| } |
| __ movzx_b(ebx, Operand(ebx, 1)); // depth |
| |
| // Get the loop nesting level at which we allow OSR from the |
| // unoptimized code and check if we want to do OSR yet. If not we |
| // should perform a stack guard check so we can get interrupts while |
| // waiting for on-stack replacement. |
| __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset)); |
| __ cmpb(ebx, FieldOperand(ecx, Code::kAllowOSRAtLoopNestingLevelOffset)); |
| __ j(greater, &stack_check); |
| |
| // Pass the function to optimize as the argument to the on-stack |
| // replacement runtime function. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(eax); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); |
| } |
| |
| // If the result was -1 it means that we couldn't optimize the |
| // function. Just return and continue in the unoptimized version. |
| Label skip; |
| __ cmp(eax, Immediate(Smi::FromInt(-1))); |
| __ j(not_equal, &skip, Label::kNear); |
| __ ret(0); |
| |
| // Insert a stack guard check so that if we decide not to perform |
| // on-stack replacement right away, the function calling this stub can |
| // still be interrupted. |
| __ bind(&stack_check); |
| Label ok; |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(masm->isolate()); |
| __ cmp(esp, Operand::StaticVariable(stack_limit)); |
| __ j(above_equal, &ok, Label::kNear); |
| StackCheckStub stub; |
| __ TailCallStub(&stub); |
| if (FLAG_debug_code) { |
| __ Abort("Unreachable code: returned from tail call."); |
| } |
| __ bind(&ok); |
| __ ret(0); |
| |
| __ bind(&skip); |
| // Untag the AST id and push it on the stack. |
| __ SmiUntag(eax); |
| __ push(eax); |
| |
| // Generate the code for doing the frame-to-frame translation using |
| // the deoptimizer infrastructure. |
| Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR); |
| generator.Generate(); |
| } |
| |
| |
| #undef __ |
| } |
| } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_IA32 |