blob: 8c18760fd109f9007c0513d47a4e034cfb29977e [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_LITHIUM_ARM_H_
#define V8_ARM_LITHIUM_ARM_H_
#include "hydrogen.h"
#include "lithium-allocator.h"
#include "lithium.h"
#include "safepoint-table.h"
#include "utils.h"
namespace v8 {
namespace internal {
// Forward declarations.
class LCodeGen;
#define LITHIUM_ALL_INSTRUCTION_LIST(V) \
V(ControlInstruction) \
V(Call) \
LITHIUM_CONCRETE_INSTRUCTION_LIST(V)
#define LITHIUM_CONCRETE_INSTRUCTION_LIST(V) \
V(AccessArgumentsAt) \
V(AddI) \
V(ApplyArguments) \
V(ArgumentsElements) \
V(ArgumentsLength) \
V(ArithmeticD) \
V(ArithmeticT) \
V(ArrayLiteral) \
V(BitI) \
V(BitNotI) \
V(BoundsCheck) \
V(Branch) \
V(CallConstantFunction) \
V(CallFunction) \
V(CallGlobal) \
V(CallKeyed) \
V(CallKnownGlobal) \
V(CallNamed) \
V(CallNew) \
V(CallRuntime) \
V(CallStub) \
V(CheckFunction) \
V(CheckInstanceType) \
V(CheckNonSmi) \
V(CheckMap) \
V(CheckPrototypeMaps) \
V(CheckSmi) \
V(ClampDToUint8) \
V(ClampIToUint8) \
V(ClampTToUint8) \
V(ClassOfTestAndBranch) \
V(CmpConstantEqAndBranch) \
V(CmpIDAndBranch) \
V(CmpObjectEqAndBranch) \
V(CmpMapAndBranch) \
V(CmpT) \
V(ConstantD) \
V(ConstantI) \
V(ConstantT) \
V(Context) \
V(DeleteProperty) \
V(Deoptimize) \
V(DivI) \
V(DoubleToI) \
V(ElementsKind) \
V(FixedArrayBaseLength) \
V(FunctionLiteral) \
V(GetCachedArrayIndex) \
V(GlobalObject) \
V(GlobalReceiver) \
V(Goto) \
V(HasCachedArrayIndexAndBranch) \
V(HasInstanceTypeAndBranch) \
V(In) \
V(InstanceOf) \
V(InstanceOfKnownGlobal) \
V(InstructionGap) \
V(Integer32ToDouble) \
V(InvokeFunction) \
V(IsConstructCallAndBranch) \
V(IsNullAndBranch) \
V(IsObjectAndBranch) \
V(IsSmiAndBranch) \
V(IsUndetectableAndBranch) \
V(JSArrayLength) \
V(Label) \
V(LazyBailout) \
V(LoadContextSlot) \
V(LoadElements) \
V(LoadExternalArrayPointer) \
V(LoadFunctionPrototype) \
V(LoadGlobalCell) \
V(LoadGlobalGeneric) \
V(LoadKeyedFastDoubleElement) \
V(LoadKeyedFastElement) \
V(LoadKeyedGeneric) \
V(LoadKeyedSpecializedArrayElement) \
V(LoadNamedField) \
V(LoadNamedFieldPolymorphic) \
V(LoadNamedGeneric) \
V(ModI) \
V(MulI) \
V(NumberTagD) \
V(NumberTagI) \
V(NumberUntagD) \
V(ObjectLiteral) \
V(OsrEntry) \
V(OuterContext) \
V(Parameter) \
V(Power) \
V(PushArgument) \
V(RegExpLiteral) \
V(Return) \
V(ShiftI) \
V(SmiTag) \
V(SmiUntag) \
V(StackCheck) \
V(StoreContextSlot) \
V(StoreGlobalCell) \
V(StoreGlobalGeneric) \
V(StoreKeyedFastDoubleElement) \
V(StoreKeyedFastElement) \
V(StoreKeyedGeneric) \
V(StoreKeyedSpecializedArrayElement) \
V(StoreNamedField) \
V(StoreNamedGeneric) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
V(StringLength) \
V(SubI) \
V(TaggedToI) \
V(ThisFunction) \
V(Throw) \
V(ToFastProperties) \
V(Typeof) \
V(TypeofIsAndBranch) \
V(UnaryMathOperation) \
V(UnknownOSRValue) \
V(ValueOf)
#define DECLARE_CONCRETE_INSTRUCTION(type, mnemonic) \
virtual Opcode opcode() const { return LInstruction::k##type; } \
virtual void CompileToNative(LCodeGen* generator); \
virtual const char* Mnemonic() const { return mnemonic; } \
static L##type* cast(LInstruction* instr) { \
ASSERT(instr->Is##type()); \
return reinterpret_cast<L##type*>(instr); \
}
#define DECLARE_HYDROGEN_ACCESSOR(type) \
H##type* hydrogen() const { \
return H##type::cast(hydrogen_value()); \
}
class LInstruction: public ZoneObject {
public:
LInstruction()
: environment_(NULL),
hydrogen_value_(NULL),
is_call_(false),
is_save_doubles_(false) { }
virtual ~LInstruction() { }
virtual void CompileToNative(LCodeGen* generator) = 0;
virtual const char* Mnemonic() const = 0;
virtual void PrintTo(StringStream* stream);
virtual void PrintDataTo(StringStream* stream) = 0;
virtual void PrintOutputOperandTo(StringStream* stream) = 0;
enum Opcode {
// Declare a unique enum value for each instruction.
#define DECLARE_OPCODE(type) k##type,
LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE)
kNumberOfInstructions
#undef DECLARE_OPCODE
};
virtual Opcode opcode() const = 0;
// Declare non-virtual type testers for all leaf IR classes.
#define DECLARE_PREDICATE(type) \
bool Is##type() const { return opcode() == k##type; }
LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE)
#undef DECLARE_PREDICATE
// Declare virtual predicates for instructions that don't have
// an opcode.
virtual bool IsGap() const { return false; }
virtual bool IsControl() const { return false; }
void set_environment(LEnvironment* env) { environment_ = env; }
LEnvironment* environment() const { return environment_; }
bool HasEnvironment() const { return environment_ != NULL; }
void set_pointer_map(LPointerMap* p) { pointer_map_.set(p); }
LPointerMap* pointer_map() const { return pointer_map_.get(); }
bool HasPointerMap() const { return pointer_map_.is_set(); }
void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; }
HValue* hydrogen_value() const { return hydrogen_value_; }
void set_deoptimization_environment(LEnvironment* env) {
deoptimization_environment_.set(env);
}
LEnvironment* deoptimization_environment() const {
return deoptimization_environment_.get();
}
bool HasDeoptimizationEnvironment() const {
return deoptimization_environment_.is_set();
}
void MarkAsCall() { is_call_ = true; }
void MarkAsSaveDoubles() { is_save_doubles_ = true; }
// Interface to the register allocator and iterators.
bool IsMarkedAsCall() const { return is_call_; }
bool IsMarkedAsSaveDoubles() const { return is_save_doubles_; }
virtual bool HasResult() const = 0;
virtual LOperand* result() = 0;
virtual int InputCount() = 0;
virtual LOperand* InputAt(int i) = 0;
virtual int TempCount() = 0;
virtual LOperand* TempAt(int i) = 0;
LOperand* FirstInput() { return InputAt(0); }
LOperand* Output() { return HasResult() ? result() : NULL; }
#ifdef DEBUG
void VerifyCall();
#endif
private:
LEnvironment* environment_;
SetOncePointer<LPointerMap> pointer_map_;
HValue* hydrogen_value_;
SetOncePointer<LEnvironment> deoptimization_environment_;
bool is_call_;
bool is_save_doubles_;
};
// R = number of result operands (0 or 1).
// I = number of input operands.
// T = number of temporary operands.
template<int R, int I, int T>
class LTemplateInstruction: public LInstruction {
public:
// Allow 0 or 1 output operands.
STATIC_ASSERT(R == 0 || R == 1);
virtual bool HasResult() const { return R != 0; }
void set_result(LOperand* operand) { results_[0] = operand; }
LOperand* result() { return results_[0]; }
int InputCount() { return I; }
LOperand* InputAt(int i) { return inputs_[i]; }
int TempCount() { return T; }
LOperand* TempAt(int i) { return temps_[i]; }
virtual void PrintDataTo(StringStream* stream);
virtual void PrintOutputOperandTo(StringStream* stream);
protected:
EmbeddedContainer<LOperand*, R> results_;
EmbeddedContainer<LOperand*, I> inputs_;
EmbeddedContainer<LOperand*, T> temps_;
};
class LGap: public LTemplateInstruction<0, 0, 0> {
public:
explicit LGap(HBasicBlock* block)
: block_(block) {
parallel_moves_[BEFORE] = NULL;
parallel_moves_[START] = NULL;
parallel_moves_[END] = NULL;
parallel_moves_[AFTER] = NULL;
}
// Can't use the DECLARE-macro here because of sub-classes.
virtual bool IsGap() const { return true; }
virtual void PrintDataTo(StringStream* stream);
static LGap* cast(LInstruction* instr) {
ASSERT(instr->IsGap());
return reinterpret_cast<LGap*>(instr);
}
bool IsRedundant() const;
HBasicBlock* block() const { return block_; }
enum InnerPosition {
BEFORE,
START,
END,
AFTER,
FIRST_INNER_POSITION = BEFORE,
LAST_INNER_POSITION = AFTER
};
LParallelMove* GetOrCreateParallelMove(InnerPosition pos) {
if (parallel_moves_[pos] == NULL) parallel_moves_[pos] = new LParallelMove;
return parallel_moves_[pos];
}
LParallelMove* GetParallelMove(InnerPosition pos) {
return parallel_moves_[pos];
}
private:
LParallelMove* parallel_moves_[LAST_INNER_POSITION + 1];
HBasicBlock* block_;
};
class LInstructionGap: public LGap {
public:
explicit LInstructionGap(HBasicBlock* block) : LGap(block) { }
DECLARE_CONCRETE_INSTRUCTION(InstructionGap, "gap")
};
class LGoto: public LTemplateInstruction<0, 0, 0> {
public:
explicit LGoto(int block_id) : block_id_(block_id) { }
DECLARE_CONCRETE_INSTRUCTION(Goto, "goto")
virtual void PrintDataTo(StringStream* stream);
virtual bool IsControl() const { return true; }
int block_id() const { return block_id_; }
private:
int block_id_;
};
class LLazyBailout: public LTemplateInstruction<0, 0, 0> {
public:
LLazyBailout() : gap_instructions_size_(0) { }
DECLARE_CONCRETE_INSTRUCTION(LazyBailout, "lazy-bailout")
void set_gap_instructions_size(int gap_instructions_size) {
gap_instructions_size_ = gap_instructions_size;
}
int gap_instructions_size() { return gap_instructions_size_; }
private:
int gap_instructions_size_;
};
class LDeoptimize: public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize")
};
class LLabel: public LGap {
public:
explicit LLabel(HBasicBlock* block)
: LGap(block), replacement_(NULL) { }
DECLARE_CONCRETE_INSTRUCTION(Label, "label")
virtual void PrintDataTo(StringStream* stream);
int block_id() const { return block()->block_id(); }
bool is_loop_header() const { return block()->IsLoopHeader(); }
Label* label() { return &label_; }
LLabel* replacement() const { return replacement_; }
void set_replacement(LLabel* label) { replacement_ = label; }
bool HasReplacement() const { return replacement_ != NULL; }
private:
Label label_;
LLabel* replacement_;
};
class LParameter: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter")
};
class LCallStub: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallStub, "call-stub")
DECLARE_HYDROGEN_ACCESSOR(CallStub)
TranscendentalCache::Type transcendental_type() {
return hydrogen()->transcendental_type();
}
};
class LUnknownOSRValue: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value")
};
template<int I, int T>
class LControlInstruction: public LTemplateInstruction<0, I, T> {
public:
virtual bool IsControl() const { return true; }
int SuccessorCount() { return hydrogen()->SuccessorCount(); }
HBasicBlock* SuccessorAt(int i) { return hydrogen()->SuccessorAt(i); }
int true_block_id() { return hydrogen()->SuccessorAt(0)->block_id(); }
int false_block_id() { return hydrogen()->SuccessorAt(1)->block_id(); }
private:
HControlInstruction* hydrogen() {
return HControlInstruction::cast(this->hydrogen_value());
}
};
class LApplyArguments: public LTemplateInstruction<1, 4, 0> {
public:
LApplyArguments(LOperand* function,
LOperand* receiver,
LOperand* length,
LOperand* elements) {
inputs_[0] = function;
inputs_[1] = receiver;
inputs_[2] = length;
inputs_[3] = elements;
}
DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments")
LOperand* function() { return inputs_[0]; }
LOperand* receiver() { return inputs_[1]; }
LOperand* length() { return inputs_[2]; }
LOperand* elements() { return inputs_[3]; }
};
class LAccessArgumentsAt: public LTemplateInstruction<1, 3, 0> {
public:
LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index) {
inputs_[0] = arguments;
inputs_[1] = length;
inputs_[2] = index;
}
DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at")
LOperand* arguments() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
virtual void PrintDataTo(StringStream* stream);
};
class LArgumentsLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LArgumentsLength(LOperand* elements) {
inputs_[0] = elements;
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length")
};
class LArgumentsElements: public LTemplateInstruction<1, 0, 0> {
public:
LArgumentsElements() { }
DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements, "arguments-elements")
};
class LModI: public LTemplateInstruction<1, 2, 3> {
public:
// Used when the right hand is a constant power of 2.
LModI(LOperand* left,
LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = NULL;
temps_[1] = NULL;
temps_[2] = NULL;
}
// Used for the standard case.
LModI(LOperand* left,
LOperand* right,
LOperand* temp1,
LOperand* temp2,
LOperand* temp3) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp1;
temps_[1] = temp2;
temps_[2] = temp3;
}
DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
};
class LDivI: public LTemplateInstruction<1, 2, 0> {
public:
LDivI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
DECLARE_HYDROGEN_ACCESSOR(Div)
};
class LMulI: public LTemplateInstruction<1, 2, 1> {
public:
LMulI(LOperand* left, LOperand* right, LOperand* temp) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i")
DECLARE_HYDROGEN_ACCESSOR(Mul)
};
class LCmpIDAndBranch: public LControlInstruction<2, 0> {
public:
LCmpIDAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpIDAndBranch, "cmp-id-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareIDAndBranch)
Token::Value op() const { return hydrogen()->token(); }
bool is_double() const {
return hydrogen()->GetInputRepresentation().IsDouble();
}
virtual void PrintDataTo(StringStream* stream);
};
class LUnaryMathOperation: public LTemplateInstruction<1, 1, 1> {
public:
LUnaryMathOperation(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(UnaryMathOperation, "unary-math-operation")
DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
virtual void PrintDataTo(StringStream* stream);
BuiltinFunctionId op() const { return hydrogen()->op(); }
};
class LCmpObjectEqAndBranch: public LControlInstruction<2, 0> {
public:
LCmpObjectEqAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpObjectEqAndBranch,
"cmp-object-eq-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareObjectEqAndBranch)
};
class LCmpConstantEqAndBranch: public LControlInstruction<1, 0> {
public:
explicit LCmpConstantEqAndBranch(LOperand* left) {
inputs_[0] = left;
}
DECLARE_CONCRETE_INSTRUCTION(CmpConstantEqAndBranch,
"cmp-constant-eq-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareConstantEqAndBranch)
};
class LIsNullAndBranch: public LControlInstruction<1, 0> {
public:
explicit LIsNullAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsNullAndBranch, "is-null-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsNullAndBranch)
bool is_strict() const { return hydrogen()->is_strict(); }
virtual void PrintDataTo(StringStream* stream);
};
class LIsObjectAndBranch: public LControlInstruction<1, 1> {
public:
LIsObjectAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(IsObjectAndBranch, "is-object-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsObjectAndBranch)
virtual void PrintDataTo(StringStream* stream);
};
class LIsSmiAndBranch: public LControlInstruction<1, 0> {
public:
explicit LIsSmiAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsSmiAndBranch)
virtual void PrintDataTo(StringStream* stream);
};
class LIsUndetectableAndBranch: public LControlInstruction<1, 1> {
public:
explicit LIsUndetectableAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch,
"is-undetectable-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsUndetectableAndBranch)
virtual void PrintDataTo(StringStream* stream);
};
class LHasInstanceTypeAndBranch: public LControlInstruction<1, 0> {
public:
explicit LHasInstanceTypeAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch,
"has-instance-type-and-branch")
DECLARE_HYDROGEN_ACCESSOR(HasInstanceTypeAndBranch)
virtual void PrintDataTo(StringStream* stream);
};
class LGetCachedArrayIndex: public LTemplateInstruction<1, 1, 0> {
public:
explicit LGetCachedArrayIndex(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(GetCachedArrayIndex, "get-cached-array-index")
DECLARE_HYDROGEN_ACCESSOR(GetCachedArrayIndex)
};
class LHasCachedArrayIndexAndBranch: public LControlInstruction<1, 0> {
public:
explicit LHasCachedArrayIndexAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch,
"has-cached-array-index-and-branch")
DECLARE_HYDROGEN_ACCESSOR(HasCachedArrayIndexAndBranch)
virtual void PrintDataTo(StringStream* stream);
};
class LClassOfTestAndBranch: public LControlInstruction<1, 1> {
public:
LClassOfTestAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch,
"class-of-test-and-branch")
DECLARE_HYDROGEN_ACCESSOR(ClassOfTestAndBranch)
virtual void PrintDataTo(StringStream* stream);
};
class LCmpT: public LTemplateInstruction<1, 2, 0> {
public:
LCmpT(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t")
DECLARE_HYDROGEN_ACCESSOR(CompareGeneric)
Token::Value op() const { return hydrogen()->token(); }
};
class LInstanceOf: public LTemplateInstruction<1, 2, 0> {
public:
LInstanceOf(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(InstanceOf, "instance-of")
};
class LInstanceOfKnownGlobal: public LTemplateInstruction<1, 1, 1> {
public:
LInstanceOfKnownGlobal(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(InstanceOfKnownGlobal,
"instance-of-known-global")
DECLARE_HYDROGEN_ACCESSOR(InstanceOfKnownGlobal)
Handle<JSFunction> function() const { return hydrogen()->function(); }
};
class LBoundsCheck: public LTemplateInstruction<0, 2, 0> {
public:
LBoundsCheck(LOperand* index, LOperand* length) {
inputs_[0] = index;
inputs_[1] = length;
}
LOperand* index() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check")
};
class LBitI: public LTemplateInstruction<1, 2, 0> {
public:
LBitI(Token::Value op, LOperand* left, LOperand* right)
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
DECLARE_CONCRETE_INSTRUCTION(BitI, "bit-i")
private:
Token::Value op_;
};
class LShiftI: public LTemplateInstruction<1, 2, 0> {
public:
LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt)
: op_(op), can_deopt_(can_deopt) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
bool can_deopt() const { return can_deopt_; }
DECLARE_CONCRETE_INSTRUCTION(ShiftI, "shift-i")
private:
Token::Value op_;
bool can_deopt_;
};
class LSubI: public LTemplateInstruction<1, 2, 0> {
public:
LSubI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i")
DECLARE_HYDROGEN_ACCESSOR(Sub)
};
class LConstantI: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantI, "constant-i")
DECLARE_HYDROGEN_ACCESSOR(Constant)
int32_t value() const { return hydrogen()->Integer32Value(); }
};
class LConstantD: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantD, "constant-d")
DECLARE_HYDROGEN_ACCESSOR(Constant)
double value() const { return hydrogen()->DoubleValue(); }
};
class LConstantT: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ConstantT, "constant-t")
DECLARE_HYDROGEN_ACCESSOR(Constant)
Handle<Object> value() const { return hydrogen()->handle(); }
};
class LBranch: public LControlInstruction<1, 0> {
public:
explicit LBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Branch, "branch")
DECLARE_HYDROGEN_ACCESSOR(Branch)
virtual void PrintDataTo(StringStream* stream);
};
class LCmpMapAndBranch: public LTemplateInstruction<0, 1, 1> {
public:
LCmpMapAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareMap)
virtual bool IsControl() const { return true; }
Handle<Map> map() const { return hydrogen()->map(); }
int true_block_id() const {
return hydrogen()->FirstSuccessor()->block_id();
}
int false_block_id() const {
return hydrogen()->SecondSuccessor()->block_id();
}
};
class LJSArrayLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LJSArrayLength(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(JSArrayLength, "js-array-length")
DECLARE_HYDROGEN_ACCESSOR(JSArrayLength)
};
class LFixedArrayBaseLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LFixedArrayBaseLength(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(FixedArrayBaseLength,
"fixed-array-base-length")
DECLARE_HYDROGEN_ACCESSOR(FixedArrayBaseLength)
};
class LElementsKind: public LTemplateInstruction<1, 1, 0> {
public:
explicit LElementsKind(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(ElementsKind, "elements-kind")
DECLARE_HYDROGEN_ACCESSOR(ElementsKind)
};
class LValueOf: public LTemplateInstruction<1, 1, 1> {
public:
LValueOf(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(ValueOf, "value-of")
DECLARE_HYDROGEN_ACCESSOR(ValueOf)
};
class LThrow: public LTemplateInstruction<0, 1, 0> {
public:
explicit LThrow(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Throw, "throw")
};
class LBitNotI: public LTemplateInstruction<1, 1, 0> {
public:
explicit LBitNotI(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(BitNotI, "bit-not-i")
};
class LAddI: public LTemplateInstruction<1, 2, 0> {
public:
LAddI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i")
DECLARE_HYDROGEN_ACCESSOR(Add)
};
class LPower: public LTemplateInstruction<1, 2, 0> {
public:
LPower(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(Power, "power")
DECLARE_HYDROGEN_ACCESSOR(Power)
};
class LArithmeticD: public LTemplateInstruction<1, 2, 0> {
public:
LArithmeticD(Token::Value op, LOperand* left, LOperand* right)
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
virtual Opcode opcode() const { return LInstruction::kArithmeticD; }
virtual void CompileToNative(LCodeGen* generator);
virtual const char* Mnemonic() const;
private:
Token::Value op_;
};
class LArithmeticT: public LTemplateInstruction<1, 2, 0> {
public:
LArithmeticT(Token::Value op, LOperand* left, LOperand* right)
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
virtual Opcode opcode() const { return LInstruction::kArithmeticT; }
virtual void CompileToNative(LCodeGen* generator);
virtual const char* Mnemonic() const;
Token::Value op() const { return op_; }
private:
Token::Value op_;
};
class LReturn: public LTemplateInstruction<0, 1, 0> {
public:
explicit LReturn(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Return, "return")
};
class LLoadNamedField: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedField(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedField)
};
class LLoadNamedFieldPolymorphic: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedFieldPolymorphic(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field-polymorphic")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedFieldPolymorphic)
LOperand* object() { return inputs_[0]; }
};
class LLoadNamedGeneric: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedGeneric(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric, "load-named-generic")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedGeneric)
LOperand* object() { return inputs_[0]; }
Handle<Object> name() const { return hydrogen()->name(); }
};
class LLoadFunctionPrototype: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadFunctionPrototype(LOperand* function) {
inputs_[0] = function;
}
DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype")
DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype)
LOperand* function() { return inputs_[0]; }
};
class LLoadElements: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadElements(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadElements, "load-elements")
};
class LLoadExternalArrayPointer: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadExternalArrayPointer(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadExternalArrayPointer,
"load-external-array-pointer")
};
class LLoadKeyedFastElement: public LTemplateInstruction<1, 2, 0> {
public:
LLoadKeyedFastElement(LOperand* elements, LOperand* key) {
inputs_[0] = elements;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFastElement, "load-keyed-fast-element")
DECLARE_HYDROGEN_ACCESSOR(LoadKeyedFastElement)
LOperand* elements() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LLoadKeyedFastDoubleElement: public LTemplateInstruction<1, 2, 0> {
public:
LLoadKeyedFastDoubleElement(LOperand* elements, LOperand* key) {
inputs_[0] = elements;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFastDoubleElement,
"load-keyed-fast-double-element")
DECLARE_HYDROGEN_ACCESSOR(LoadKeyedFastDoubleElement)
LOperand* elements() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LLoadKeyedSpecializedArrayElement: public LTemplateInstruction<1, 2, 0> {
public:
LLoadKeyedSpecializedArrayElement(LOperand* external_pointer,
LOperand* key) {
inputs_[0] = external_pointer;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedSpecializedArrayElement,
"load-keyed-specialized-array-element")
DECLARE_HYDROGEN_ACCESSOR(LoadKeyedSpecializedArrayElement)
LOperand* external_pointer() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
ElementsKind elements_kind() const {
return hydrogen()->elements_kind();
}
};
class LLoadKeyedGeneric: public LTemplateInstruction<1, 2, 0> {
public:
LLoadKeyedGeneric(LOperand* obj, LOperand* key) {
inputs_[0] = obj;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric, "load-keyed-generic")
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LLoadGlobalCell: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalCell, "load-global-cell")
DECLARE_HYDROGEN_ACCESSOR(LoadGlobalCell)
};
class LLoadGlobalGeneric: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadGlobalGeneric(LOperand* global_object) {
inputs_[0] = global_object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalGeneric, "load-global-generic")
DECLARE_HYDROGEN_ACCESSOR(LoadGlobalGeneric)
LOperand* global_object() { return inputs_[0]; }
Handle<Object> name() const { return hydrogen()->name(); }
bool for_typeof() const { return hydrogen()->for_typeof(); }
};
class LStoreGlobalCell: public LTemplateInstruction<0, 1, 1> {
public:
LStoreGlobalCell(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(StoreGlobalCell, "store-global-cell")
DECLARE_HYDROGEN_ACCESSOR(StoreGlobalCell)
};
class LStoreGlobalGeneric: public LTemplateInstruction<0, 2, 0> {
public:
explicit LStoreGlobalGeneric(LOperand* global_object,
LOperand* value) {
inputs_[0] = global_object;
inputs_[1] = value;
}
DECLARE_CONCRETE_INSTRUCTION(StoreGlobalGeneric, "store-global-generic")
DECLARE_HYDROGEN_ACCESSOR(StoreGlobalGeneric)
LOperand* global_object() { return InputAt(0); }
Handle<Object> name() const { return hydrogen()->name(); }
LOperand* value() { return InputAt(1); }
bool strict_mode() { return hydrogen()->strict_mode(); }
};
class LLoadContextSlot: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadContextSlot(LOperand* context) {
inputs_[0] = context;
}
DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot")
DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot)
LOperand* context() { return InputAt(0); }
int slot_index() { return hydrogen()->slot_index(); }
virtual void PrintDataTo(StringStream* stream);
};
class LStoreContextSlot: public LTemplateInstruction<0, 2, 0> {
public:
LStoreContextSlot(LOperand* context, LOperand* value) {
inputs_[0] = context;
inputs_[1] = value;
}
DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot, "store-context-slot")
DECLARE_HYDROGEN_ACCESSOR(StoreContextSlot)
LOperand* context() { return InputAt(0); }
LOperand* value() { return InputAt(1); }
int slot_index() { return hydrogen()->slot_index(); }
int needs_write_barrier() { return hydrogen()->NeedsWriteBarrier(); }
virtual void PrintDataTo(StringStream* stream);
};
class LPushArgument: public LTemplateInstruction<0, 1, 0> {
public:
explicit LPushArgument(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(PushArgument, "push-argument")
};
class LThisFunction: public LTemplateInstruction<1, 0, 0> {
DECLARE_CONCRETE_INSTRUCTION(ThisFunction, "this-function")
};
class LContext: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Context, "context")
};
class LOuterContext: public LTemplateInstruction<1, 1, 0> {
public:
explicit LOuterContext(LOperand* context) {
inputs_[0] = context;
}
DECLARE_CONCRETE_INSTRUCTION(OuterContext, "outer-context")
LOperand* context() { return InputAt(0); }
};
class LGlobalObject: public LTemplateInstruction<1, 1, 0> {
public:
explicit LGlobalObject(LOperand* context) {
inputs_[0] = context;
}
DECLARE_CONCRETE_INSTRUCTION(GlobalObject, "global-object")
LOperand* context() { return InputAt(0); }
};
class LGlobalReceiver: public LTemplateInstruction<1, 1, 0> {
public:
explicit LGlobalReceiver(LOperand* global_object) {
inputs_[0] = global_object;
}
DECLARE_CONCRETE_INSTRUCTION(GlobalReceiver, "global-receiver")
LOperand* global() { return InputAt(0); }
};
class LCallConstantFunction: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallConstantFunction, "call-constant-function")
DECLARE_HYDROGEN_ACCESSOR(CallConstantFunction)
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> function() { return hydrogen()->function(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LInvokeFunction: public LTemplateInstruction<1, 1, 0> {
public:
explicit LInvokeFunction(LOperand* function) {
inputs_[0] = function;
}
DECLARE_CONCRETE_INSTRUCTION(InvokeFunction, "invoke-function")
DECLARE_HYDROGEN_ACCESSOR(InvokeFunction)
LOperand* function() { return inputs_[0]; }
virtual void PrintDataTo(StringStream* stream);
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallKeyed: public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallKeyed(LOperand* key) {
inputs_[0] = key;
}
DECLARE_CONCRETE_INSTRUCTION(CallKeyed, "call-keyed")
DECLARE_HYDROGEN_ACCESSOR(CallKeyed)
virtual void PrintDataTo(StringStream* stream);
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallNamed: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallNamed, "call-named")
DECLARE_HYDROGEN_ACCESSOR(CallNamed)
virtual void PrintDataTo(StringStream* stream);
Handle<String> name() const { return hydrogen()->name(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallFunction: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallFunction, "call-function")
DECLARE_HYDROGEN_ACCESSOR(CallFunction)
int arity() const { return hydrogen()->argument_count() - 2; }
};
class LCallGlobal: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallGlobal, "call-global")
DECLARE_HYDROGEN_ACCESSOR(CallGlobal)
virtual void PrintDataTo(StringStream* stream);
Handle<String> name() const {return hydrogen()->name(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallKnownGlobal: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallKnownGlobal, "call-known-global")
DECLARE_HYDROGEN_ACCESSOR(CallKnownGlobal)
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> target() const { return hydrogen()->target(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallNew: public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallNew(LOperand* constructor) {
inputs_[0] = constructor;
}
DECLARE_CONCRETE_INSTRUCTION(CallNew, "call-new")
DECLARE_HYDROGEN_ACCESSOR(CallNew)
virtual void PrintDataTo(StringStream* stream);
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallRuntime: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime")
DECLARE_HYDROGEN_ACCESSOR(CallRuntime)
const Runtime::Function* function() const { return hydrogen()->function(); }
int arity() const { return hydrogen()->argument_count(); }
};
class LInteger32ToDouble: public LTemplateInstruction<1, 1, 0> {
public:
explicit LInteger32ToDouble(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double")
};
class LNumberTagI: public LTemplateInstruction<1, 1, 0> {
public:
explicit LNumberTagI(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(NumberTagI, "number-tag-i")
};
class LNumberTagD: public LTemplateInstruction<1, 1, 2> {
public:
LNumberTagD(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d")
};
// Sometimes truncating conversion from a tagged value to an int32.
class LDoubleToI: public LTemplateInstruction<1, 1, 2> {
public:
LDoubleToI(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
DECLARE_CONCRETE_INSTRUCTION(DoubleToI, "double-to-i")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
// Truncating conversion from a tagged value to an int32.
class LTaggedToI: public LTemplateInstruction<1, 1, 3> {
public:
LTaggedToI(LOperand* value,
LOperand* temp1,
LOperand* temp2,
LOperand* temp3) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
temps_[2] = temp3;
}
DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
class LSmiTag: public LTemplateInstruction<1, 1, 0> {
public:
explicit LSmiTag(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag")
};
class LNumberUntagD: public LTemplateInstruction<1, 1, 0> {
public:
explicit LNumberUntagD(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag")
DECLARE_HYDROGEN_ACCESSOR(Change)
};
class LSmiUntag: public LTemplateInstruction<1, 1, 0> {
public:
LSmiUntag(LOperand* value, bool needs_check)
: needs_check_(needs_check) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag")
bool needs_check() const { return needs_check_; }
private:
bool needs_check_;
};
class LStoreNamedField: public LTemplateInstruction<0, 2, 0> {
public:
LStoreNamedField(LOperand* obj, LOperand* val) {
inputs_[0] = obj;
inputs_[1] = val;
}
DECLARE_CONCRETE_INSTRUCTION(StoreNamedField, "store-named-field")
DECLARE_HYDROGEN_ACCESSOR(StoreNamedField)
virtual void PrintDataTo(StringStream* stream);
LOperand* object() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
Handle<Object> name() const { return hydrogen()->name(); }
bool is_in_object() { return hydrogen()->is_in_object(); }
int offset() { return hydrogen()->offset(); }
bool needs_write_barrier() { return hydrogen()->NeedsWriteBarrier(); }
Handle<Map> transition() const { return hydrogen()->transition(); }
};
class LStoreNamedGeneric: public LTemplateInstruction<0, 2, 0> {
public:
LStoreNamedGeneric(LOperand* obj, LOperand* val) {
inputs_[0] = obj;
inputs_[1] = val;
}
DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric, "store-named-generic")
DECLARE_HYDROGEN_ACCESSOR(StoreNamedGeneric)
virtual void PrintDataTo(StringStream* stream);
LOperand* object() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
Handle<Object> name() const { return hydrogen()->name(); }
bool strict_mode() { return hydrogen()->strict_mode(); }
};
class LStoreKeyedFastElement: public LTemplateInstruction<0, 3, 0> {
public:
LStoreKeyedFastElement(LOperand* obj, LOperand* key, LOperand* val) {
inputs_[0] = obj;
inputs_[1] = key;
inputs_[2] = val;
}
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFastElement,
"store-keyed-fast-element")
DECLARE_HYDROGEN_ACCESSOR(StoreKeyedFastElement)
virtual void PrintDataTo(StringStream* stream);
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
LOperand* value() { return inputs_[2]; }
};
class LStoreKeyedFastDoubleElement: public LTemplateInstruction<0, 3, 0> {
public:
LStoreKeyedFastDoubleElement(LOperand* elements,
LOperand* key,
LOperand* val) {
inputs_[0] = elements;
inputs_[1] = key;
inputs_[2] = val;
}
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFastDoubleElement,
"store-keyed-fast-double-element")
DECLARE_HYDROGEN_ACCESSOR(StoreKeyedFastDoubleElement)
virtual void PrintDataTo(StringStream* stream);
LOperand* elements() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
LOperand* value() { return inputs_[2]; }
};
class LStoreKeyedGeneric: public LTemplateInstruction<0, 3, 0> {
public:
LStoreKeyedGeneric(LOperand* obj, LOperand* key, LOperand* val) {
inputs_[0] = obj;
inputs_[1] = key;
inputs_[2] = val;
}
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric, "store-keyed-generic")
DECLARE_HYDROGEN_ACCESSOR(StoreKeyedGeneric)
virtual void PrintDataTo(StringStream* stream);
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
LOperand* value() { return inputs_[2]; }
bool strict_mode() { return hydrogen()->strict_mode(); }
};
class LStoreKeyedSpecializedArrayElement: public LTemplateInstruction<0, 3, 0> {
public:
LStoreKeyedSpecializedArrayElement(LOperand* external_pointer,
LOperand* key,
LOperand* val) {
inputs_[0] = external_pointer;
inputs_[1] = key;
inputs_[2] = val;
}
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedSpecializedArrayElement,
"store-keyed-specialized-array-element")
DECLARE_HYDROGEN_ACCESSOR(StoreKeyedSpecializedArrayElement)
LOperand* external_pointer() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
LOperand* value() { return inputs_[2]; }
ElementsKind elements_kind() const {
return hydrogen()->elements_kind();
}
};
class LStringAdd: public LTemplateInstruction<1, 2, 0> {
public:
LStringAdd(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(StringAdd, "string-add")
DECLARE_HYDROGEN_ACCESSOR(StringAdd)
LOperand* left() { return inputs_[0]; }
LOperand* right() { return inputs_[1]; }
};
class LStringCharCodeAt: public LTemplateInstruction<1, 2, 0> {
public:
LStringCharCodeAt(LOperand* string, LOperand* index) {
inputs_[0] = string;
inputs_[1] = index;
}
DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at")
DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt)
LOperand* string() { return inputs_[0]; }
LOperand* index() { return inputs_[1]; }
};
class LStringCharFromCode: public LTemplateInstruction<1, 1, 0> {
public:
explicit LStringCharFromCode(LOperand* char_code) {
inputs_[0] = char_code;
}
DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode, "string-char-from-code")
DECLARE_HYDROGEN_ACCESSOR(StringCharFromCode)
LOperand* char_code() { return inputs_[0]; }
};
class LStringLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LStringLength(LOperand* string) {
inputs_[0] = string;
}
DECLARE_CONCRETE_INSTRUCTION(StringLength, "string-length")
DECLARE_HYDROGEN_ACCESSOR(StringLength)
LOperand* string() { return inputs_[0]; }
};
class LCheckFunction: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckFunction(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckFunction, "check-function")
DECLARE_HYDROGEN_ACCESSOR(CheckFunction)
};
class LCheckInstanceType: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckInstanceType(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type")
DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType)
};
class LCheckMap: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckMap(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckMap, "check-map")
DECLARE_HYDROGEN_ACCESSOR(CheckMap)
};
class LCheckPrototypeMaps: public LTemplateInstruction<0, 0, 2> {
public:
LCheckPrototypeMaps(LOperand* temp1, LOperand* temp2) {
temps_[0] = temp1;
temps_[1] = temp2;
}
DECLARE_CONCRETE_INSTRUCTION(CheckPrototypeMaps, "check-prototype-maps")
DECLARE_HYDROGEN_ACCESSOR(CheckPrototypeMaps)
Handle<JSObject> prototype() const { return hydrogen()->prototype(); }
Handle<JSObject> holder() const { return hydrogen()->holder(); }
};
class LCheckSmi: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckSmi(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckSmi, "check-smi")
};
class LCheckNonSmi: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckNonSmi(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi, "check-non-smi")
};
class LClampDToUint8: public LTemplateInstruction<1, 1, 1> {
public:
LClampDToUint8(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* unclamped() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ClampDToUint8, "clamp-d-to-uint8")
};
class LClampIToUint8: public LTemplateInstruction<1, 1, 0> {
public:
explicit LClampIToUint8(LOperand* value) {
inputs_[0] = value;
}
LOperand* unclamped() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ClampIToUint8, "clamp-i-to-uint8")
};
class LClampTToUint8: public LTemplateInstruction<1, 1, 1> {
public:
LClampTToUint8(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
LOperand* unclamped() { return inputs_[0]; }
DECLARE_CONCRETE_INSTRUCTION(ClampTToUint8, "clamp-t-to-uint8")
};
class LArrayLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ArrayLiteral, "array-literal")
DECLARE_HYDROGEN_ACCESSOR(ArrayLiteral)
};
class LObjectLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ObjectLiteral, "object-literal")
DECLARE_HYDROGEN_ACCESSOR(ObjectLiteral)
};
class LRegExpLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(RegExpLiteral, "regexp-literal")
DECLARE_HYDROGEN_ACCESSOR(RegExpLiteral)
};
class LFunctionLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(FunctionLiteral, "function-literal")
DECLARE_HYDROGEN_ACCESSOR(FunctionLiteral)
Handle<SharedFunctionInfo> shared_info() { return hydrogen()->shared_info(); }
};
class LToFastProperties: public LTemplateInstruction<1, 1, 0> {
public:
explicit LToFastProperties(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(ToFastProperties, "to-fast-properties")
DECLARE_HYDROGEN_ACCESSOR(ToFastProperties)
};
class LTypeof: public LTemplateInstruction<1, 1, 0> {
public:
explicit LTypeof(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof")
};
class LTypeofIsAndBranch: public LControlInstruction<1, 0> {
public:
explicit LTypeofIsAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch")
DECLARE_HYDROGEN_ACCESSOR(TypeofIsAndBranch)
Handle<String> type_literal() { return hydrogen()->type_literal(); }
virtual void PrintDataTo(StringStream* stream);
};
class LIsConstructCallAndBranch: public LControlInstruction<0, 1> {
public:
explicit LIsConstructCallAndBranch(LOperand* temp) {
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(IsConstructCallAndBranch,
"is-construct-call-and-branch")
};
class LDeleteProperty: public LTemplateInstruction<1, 2, 0> {
public:
LDeleteProperty(LOperand* obj, LOperand* key) {
inputs_[0] = obj;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(DeleteProperty, "delete-property")
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LOsrEntry: public LTemplateInstruction<0, 0, 0> {
public:
LOsrEntry();
DECLARE_CONCRETE_INSTRUCTION(OsrEntry, "osr-entry")
LOperand** SpilledRegisterArray() { return register_spills_; }
LOperand** SpilledDoubleRegisterArray() { return double_register_spills_; }
void MarkSpilledRegister(int allocation_index, LOperand* spill_operand);
void MarkSpilledDoubleRegister(int allocation_index,
LOperand* spill_operand);
private:
// Arrays of spill slot operands for registers with an assigned spill
// slot, i.e., that must also be restored to the spill slot on OSR entry.
// NULL if the register has no assigned spill slot. Indexed by allocation
// index.
LOperand* register_spills_[Register::kNumAllocatableRegisters];
LOperand* double_register_spills_[DoubleRegister::kNumAllocatableRegisters];
};
class LStackCheck: public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check")
DECLARE_HYDROGEN_ACCESSOR(StackCheck)
Label* done_label() { return &done_label_; }
private:
Label done_label_;
};
class LIn: public LTemplateInstruction<1, 2, 0> {
public:
LIn(LOperand* key, LOperand* object) {
inputs_[0] = key;
inputs_[1] = object;
}
LOperand* key() { return inputs_[0]; }
LOperand* object() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(In, "in")
};
class LChunkBuilder;
class LChunk: public ZoneObject {
public:
explicit LChunk(CompilationInfo* info, HGraph* graph);
void AddInstruction(LInstruction* instruction, HBasicBlock* block);
LConstantOperand* DefineConstantOperand(HConstant* constant);
Handle<Object> LookupLiteral(LConstantOperand* operand) const;
Representation LookupLiteralRepresentation(LConstantOperand* operand) const;
int GetNextSpillIndex(bool is_double);
LOperand* GetNextSpillSlot(bool is_double);
int ParameterAt(int index);
int GetParameterStackSlot(int index) const;
int spill_slot_count() const { return spill_slot_count_; }
CompilationInfo* info() const { return info_; }
HGraph* graph() const { return graph_; }
const ZoneList<LInstruction*>* instructions() const { return &instructions_; }
void AddGapMove(int index, LOperand* from, LOperand* to);
LGap* GetGapAt(int index) const;
bool IsGapAt(int index) const;
int NearestGapPos(int index) const;
void MarkEmptyBlocks();
const ZoneList<LPointerMap*>* pointer_maps() const { return &pointer_maps_; }
LLabel* GetLabel(int block_id) const {
HBasicBlock* block = graph_->blocks()->at(block_id);
int first_instruction = block->first_instruction_index();
return LLabel::cast(instructions_[first_instruction]);
}
int LookupDestination(int block_id) const {
LLabel* cur = GetLabel(block_id);
while (cur->replacement() != NULL) {
cur = cur->replacement();
}
return cur->block_id();
}
Label* GetAssemblyLabel(int block_id) const {
LLabel* label = GetLabel(block_id);
ASSERT(!label->HasReplacement());
return label->label();
}
const ZoneList<Handle<JSFunction> >* inlined_closures() const {
return &inlined_closures_;
}
void AddInlinedClosure(Handle<JSFunction> closure) {
inlined_closures_.Add(closure);
}
private:
int spill_slot_count_;
CompilationInfo* info_;
HGraph* const graph_;
ZoneList<LInstruction*> instructions_;
ZoneList<LPointerMap*> pointer_maps_;
ZoneList<Handle<JSFunction> > inlined_closures_;
};
class LChunkBuilder BASE_EMBEDDED {
public:
LChunkBuilder(CompilationInfo* info, HGraph* graph, LAllocator* allocator)
: chunk_(NULL),
info_(info),
graph_(graph),
status_(UNUSED),
current_instruction_(NULL),
current_block_(NULL),
next_block_(NULL),
argument_count_(0),
allocator_(allocator),
position_(RelocInfo::kNoPosition),
instruction_pending_deoptimization_environment_(NULL),
pending_deoptimization_ast_id_(AstNode::kNoNumber) { }
// Build the sequence for the graph.
LChunk* Build();
// Declare methods that deal with the individual node types.
#define DECLARE_DO(type) LInstruction* Do##type(H##type* node);
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
#undef DECLARE_DO
private:
enum Status {
UNUSED,
BUILDING,
DONE,
ABORTED
};
LChunk* chunk() const { return chunk_; }
CompilationInfo* info() const { return info_; }
HGraph* graph() const { return graph_; }
bool is_unused() const { return status_ == UNUSED; }
bool is_building() const { return status_ == BUILDING; }
bool is_done() const { return status_ == DONE; }
bool is_aborted() const { return status_ == ABORTED; }
void Abort(const char* format, ...);
// Methods for getting operands for Use / Define / Temp.
LRegister* ToOperand(Register reg);
LUnallocated* ToUnallocated(Register reg);
LUnallocated* ToUnallocated(DoubleRegister reg);
// Methods for setting up define-use relationships.
MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand);
MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register);
MUST_USE_RESULT LOperand* UseFixedDouble(HValue* value,
DoubleRegister fixed_register);
// A value that is guaranteed to be allocated to a register.
// Operand created by UseRegister is guaranteed to be live until the end of
// instruction. This means that register allocator will not reuse it's
// register for any other operand inside instruction.
// Operand created by UseRegisterAtStart is guaranteed to be live only at
// instruction start. Register allocator is free to assign the same register
// to some other operand used inside instruction (i.e. temporary or
// output).
MUST_USE_RESULT LOperand* UseRegister(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value);
// An input operand in a register that may be trashed.
MUST_USE_RESULT LOperand* UseTempRegister(HValue* value);
// An input operand in a register or stack slot.
MUST_USE_RESULT LOperand* Use(HValue* value);
MUST_USE_RESULT LOperand* UseAtStart(HValue* value);
// An input operand in a register, stack slot or a constant operand.
MUST_USE_RESULT LOperand* UseOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseOrConstantAtStart(HValue* value);
// An input operand in a register or a constant operand.
MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value);
// An input operand in register, stack slot or a constant operand.
// Will not be moved to a register even if one is freely available.
MUST_USE_RESULT LOperand* UseAny(HValue* value);
// Temporary operand that must be in a register.
MUST_USE_RESULT LUnallocated* TempRegister();
MUST_USE_RESULT LOperand* FixedTemp(Register reg);
MUST_USE_RESULT LOperand* FixedTemp(DoubleRegister reg);
// Methods for setting up define-use relationships.
// Return the same instruction that they are passed.
template<int I, int T>
LInstruction* Define(LTemplateInstruction<1, I, T>* instr,
LUnallocated* result);
template<int I, int T>
LInstruction* Define(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineAsRegister(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineAsSpilled(LTemplateInstruction<1, I, T>* instr,
int index);
template<int I, int T>
LInstruction* DefineSameAsFirst(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineFixed(LTemplateInstruction<1, I, T>* instr,
Register reg);
template<int I, int T>
LInstruction* DefineFixedDouble(LTemplateInstruction<1, I, T>* instr,
DoubleRegister reg);
LInstruction* AssignEnvironment(LInstruction* instr);
LInstruction* AssignPointerMap(LInstruction* instr);
enum CanDeoptimize { CAN_DEOPTIMIZE_EAGERLY, CANNOT_DEOPTIMIZE_EAGERLY };
// By default we assume that instruction sequences generated for calls
// cannot deoptimize eagerly and we do not attach environment to this
// instruction.
LInstruction* MarkAsCall(
LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
LInstruction* MarkAsSaveDoubles(LInstruction* instr);
LInstruction* SetInstructionPendingDeoptimizationEnvironment(
LInstruction* instr, int ast_id);
void ClearInstructionPendingDeoptimizationEnvironment();
LEnvironment* CreateEnvironment(HEnvironment* hydrogen_env);
void VisitInstruction(HInstruction* current);
void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
LInstruction* DoBit(Token::Value op, HBitwiseBinaryOperation* instr);
LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
LInstruction* DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr);
LInstruction* DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr);
LChunk* chunk_;
CompilationInfo* info_;
HGraph* const graph_;
Status status_;
HInstruction* current_instruction_;
HBasicBlock* current_block_;
HBasicBlock* next_block_;
int argument_count_;
LAllocator* allocator_;
int position_;
LInstruction* instruction_pending_deoptimization_environment_;
int pending_deoptimization_ast_id_;
DISALLOW_COPY_AND_ASSIGN(LChunkBuilder);
};
#undef DECLARE_HYDROGEN_ACCESSOR
#undef DECLARE_CONCRETE_INSTRUCTION
} } // namespace v8::internal
#endif // V8_ARM_LITHIUM_ARM_H_