| // Copyright 2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "unicode.h" |
| #include "log.h" |
| #include "code-stubs.h" |
| #include "regexp-stack.h" |
| #include "macro-assembler.h" |
| #include "regexp-macro-assembler.h" |
| #include "arm/regexp-macro-assembler-arm.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #ifndef V8_INTERPRETED_REGEXP |
| /* |
| * This assembler uses the following register assignment convention |
| * - r5 : Pointer to current code object (Code*) including heap object tag. |
| * - r6 : Current position in input, as negative offset from end of string. |
| * Please notice that this is the byte offset, not the character offset! |
| * - r7 : Currently loaded character. Must be loaded using |
| * LoadCurrentCharacter before using any of the dispatch methods. |
| * - r8 : points to tip of backtrack stack |
| * - r9 : Unused, might be used by C code and expected unchanged. |
| * - r10 : End of input (points to byte after last character in input). |
| * - r11 : Frame pointer. Used to access arguments, local variables and |
| * RegExp registers. |
| * - r12 : IP register, used by assembler. Very volatile. |
| * - r13/sp : points to tip of C stack. |
| * |
| * The remaining registers are free for computations. |
| * Each call to a public method should retain this convention. |
| * |
| * The stack will have the following structure: |
| * - fp[52] Isolate* isolate (Address of the current isolate) |
| * - fp[48] direct_call (if 1, direct call from JavaScript code, |
| * if 0, call through the runtime system). |
| * - fp[44] stack_area_base (High end of the memory area to use as |
| * backtracking stack). |
| * - fp[40] int* capture_array (int[num_saved_registers_], for output). |
| * - fp[36] secondary link/return address used by native call. |
| * --- sp when called --- |
| * - fp[32] return address (lr). |
| * - fp[28] old frame pointer (r11). |
| * - fp[0..24] backup of registers r4..r10. |
| * --- frame pointer ---- |
| * - fp[-4] end of input (Address of end of string). |
| * - fp[-8] start of input (Address of first character in string). |
| * - fp[-12] start index (character index of start). |
| * - fp[-16] void* input_string (location of a handle containing the string). |
| * - fp[-20] Offset of location before start of input (effectively character |
| * position -1). Used to initialize capture registers to a |
| * non-position. |
| * - fp[-24] At start (if 1, we are starting at the start of the |
| * string, otherwise 0) |
| * - fp[-28] register 0 (Only positions must be stored in the first |
| * - register 1 num_saved_registers_ registers) |
| * - ... |
| * - register num_registers-1 |
| * --- sp --- |
| * |
| * The first num_saved_registers_ registers are initialized to point to |
| * "character -1" in the string (i.e., char_size() bytes before the first |
| * character of the string). The remaining registers start out as garbage. |
| * |
| * The data up to the return address must be placed there by the calling |
| * code and the remaining arguments are passed in registers, e.g. by calling the |
| * code entry as cast to a function with the signature: |
| * int (*match)(String* input_string, |
| * int start_index, |
| * Address start, |
| * Address end, |
| * Address secondary_return_address, // Only used by native call. |
| * int* capture_output_array, |
| * byte* stack_area_base, |
| * bool direct_call = false) |
| * The call is performed by NativeRegExpMacroAssembler::Execute() |
| * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro |
| * in arm/simulator-arm.h. |
| * When calling as a non-direct call (i.e., from C++ code), the return address |
| * area is overwritten with the LR register by the RegExp code. When doing a |
| * direct call from generated code, the return address is placed there by |
| * the calling code, as in a normal exit frame. |
| */ |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| RegExpMacroAssemblerARM::RegExpMacroAssemblerARM( |
| Mode mode, |
| int registers_to_save) |
| : masm_(new MacroAssembler(Isolate::Current(), NULL, kRegExpCodeSize)), |
| mode_(mode), |
| num_registers_(registers_to_save), |
| num_saved_registers_(registers_to_save), |
| entry_label_(), |
| start_label_(), |
| success_label_(), |
| backtrack_label_(), |
| exit_label_() { |
| ASSERT_EQ(0, registers_to_save % 2); |
| __ jmp(&entry_label_); // We'll write the entry code later. |
| EmitBacktrackConstantPool(); |
| __ bind(&start_label_); // And then continue from here. |
| } |
| |
| |
| RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() { |
| delete masm_; |
| // Unuse labels in case we throw away the assembler without calling GetCode. |
| entry_label_.Unuse(); |
| start_label_.Unuse(); |
| success_label_.Unuse(); |
| backtrack_label_.Unuse(); |
| exit_label_.Unuse(); |
| check_preempt_label_.Unuse(); |
| stack_overflow_label_.Unuse(); |
| } |
| |
| |
| int RegExpMacroAssemblerARM::stack_limit_slack() { |
| return RegExpStack::kStackLimitSlack; |
| } |
| |
| |
| void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) { |
| if (by != 0) { |
| __ add(current_input_offset(), |
| current_input_offset(), Operand(by * char_size())); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) { |
| ASSERT(reg >= 0); |
| ASSERT(reg < num_registers_); |
| if (by != 0) { |
| __ ldr(r0, register_location(reg)); |
| __ add(r0, r0, Operand(by)); |
| __ str(r0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Backtrack() { |
| CheckPreemption(); |
| // Pop Code* offset from backtrack stack, add Code* and jump to location. |
| Pop(r0); |
| __ add(pc, r0, Operand(code_pointer())); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Bind(Label* label) { |
| __ bind(label); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) { |
| __ cmp(current_character(), Operand(c)); |
| BranchOrBacktrack(eq, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) { |
| __ cmp(current_character(), Operand(limit)); |
| BranchOrBacktrack(gt, on_greater); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckAtStart(Label* on_at_start) { |
| Label not_at_start; |
| // Did we start the match at the start of the string at all? |
| __ ldr(r0, MemOperand(frame_pointer(), kAtStart)); |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| BranchOrBacktrack(eq, ¬_at_start); |
| |
| // If we did, are we still at the start of the input? |
| __ ldr(r1, MemOperand(frame_pointer(), kInputStart)); |
| __ add(r0, end_of_input_address(), Operand(current_input_offset())); |
| __ cmp(r0, r1); |
| BranchOrBacktrack(eq, on_at_start); |
| __ bind(¬_at_start); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotAtStart(Label* on_not_at_start) { |
| // Did we start the match at the start of the string at all? |
| __ ldr(r0, MemOperand(frame_pointer(), kAtStart)); |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| BranchOrBacktrack(eq, on_not_at_start); |
| // If we did, are we still at the start of the input? |
| __ ldr(r1, MemOperand(frame_pointer(), kInputStart)); |
| __ add(r0, end_of_input_address(), Operand(current_input_offset())); |
| __ cmp(r0, r1); |
| BranchOrBacktrack(ne, on_not_at_start); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) { |
| __ cmp(current_character(), Operand(limit)); |
| BranchOrBacktrack(lt, on_less); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacters(Vector<const uc16> str, |
| int cp_offset, |
| Label* on_failure, |
| bool check_end_of_string) { |
| if (on_failure == NULL) { |
| // Instead of inlining a backtrack for each test, (re)use the global |
| // backtrack target. |
| on_failure = &backtrack_label_; |
| } |
| |
| if (check_end_of_string) { |
| // Is last character of required match inside string. |
| CheckPosition(cp_offset + str.length() - 1, on_failure); |
| } |
| |
| __ add(r0, end_of_input_address(), Operand(current_input_offset())); |
| if (cp_offset != 0) { |
| int byte_offset = cp_offset * char_size(); |
| __ add(r0, r0, Operand(byte_offset)); |
| } |
| |
| // r0 : Address of characters to match against str. |
| int stored_high_byte = 0; |
| for (int i = 0; i < str.length(); i++) { |
| if (mode_ == ASCII) { |
| __ ldrb(r1, MemOperand(r0, char_size(), PostIndex)); |
| ASSERT(str[i] <= String::kMaxAsciiCharCode); |
| __ cmp(r1, Operand(str[i])); |
| } else { |
| __ ldrh(r1, MemOperand(r0, char_size(), PostIndex)); |
| uc16 match_char = str[i]; |
| int match_high_byte = (match_char >> 8); |
| if (match_high_byte == 0) { |
| __ cmp(r1, Operand(str[i])); |
| } else { |
| if (match_high_byte != stored_high_byte) { |
| __ mov(r2, Operand(match_high_byte)); |
| stored_high_byte = match_high_byte; |
| } |
| __ add(r3, r2, Operand(match_char & 0xff)); |
| __ cmp(r1, r3); |
| } |
| } |
| BranchOrBacktrack(ne, on_failure); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) { |
| __ ldr(r0, MemOperand(backtrack_stackpointer(), 0)); |
| __ cmp(current_input_offset(), r0); |
| __ add(backtrack_stackpointer(), |
| backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq); |
| BranchOrBacktrack(eq, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase( |
| int start_reg, |
| Label* on_no_match) { |
| Label fallthrough; |
| __ ldr(r0, register_location(start_reg)); // Index of start of capture |
| __ ldr(r1, register_location(start_reg + 1)); // Index of end of capture |
| __ sub(r1, r1, r0, SetCC); // Length of capture. |
| |
| // If length is zero, either the capture is empty or it is not participating. |
| // In either case succeed immediately. |
| __ b(eq, &fallthrough); |
| |
| // Check that there are enough characters left in the input. |
| __ cmn(r1, Operand(current_input_offset())); |
| BranchOrBacktrack(gt, on_no_match); |
| |
| if (mode_ == ASCII) { |
| Label success; |
| Label fail; |
| Label loop_check; |
| |
| // r0 - offset of start of capture |
| // r1 - length of capture |
| __ add(r0, r0, Operand(end_of_input_address())); |
| __ add(r2, end_of_input_address(), Operand(current_input_offset())); |
| __ add(r1, r0, Operand(r1)); |
| |
| // r0 - Address of start of capture. |
| // r1 - Address of end of capture |
| // r2 - Address of current input position. |
| |
| Label loop; |
| __ bind(&loop); |
| __ ldrb(r3, MemOperand(r0, char_size(), PostIndex)); |
| __ ldrb(r4, MemOperand(r2, char_size(), PostIndex)); |
| __ cmp(r4, r3); |
| __ b(eq, &loop_check); |
| |
| // Mismatch, try case-insensitive match (converting letters to lower-case). |
| __ orr(r3, r3, Operand(0x20)); // Convert capture character to lower-case. |
| __ orr(r4, r4, Operand(0x20)); // Also convert input character. |
| __ cmp(r4, r3); |
| __ b(ne, &fail); |
| __ sub(r3, r3, Operand('a')); |
| __ cmp(r3, Operand('z' - 'a')); // Is r3 a lowercase letter? |
| __ b(hi, &fail); |
| |
| |
| __ bind(&loop_check); |
| __ cmp(r0, r1); |
| __ b(lt, &loop); |
| __ jmp(&success); |
| |
| __ bind(&fail); |
| BranchOrBacktrack(al, on_no_match); |
| |
| __ bind(&success); |
| // Compute new value of character position after the matched part. |
| __ sub(current_input_offset(), r2, end_of_input_address()); |
| } else { |
| ASSERT(mode_ == UC16); |
| int argument_count = 4; |
| __ PrepareCallCFunction(argument_count, r2); |
| |
| // r0 - offset of start of capture |
| // r1 - length of capture |
| |
| // Put arguments into arguments registers. |
| // Parameters are |
| // r0: Address byte_offset1 - Address captured substring's start. |
| // r1: Address byte_offset2 - Address of current character position. |
| // r2: size_t byte_length - length of capture in bytes(!) |
| // r3: Isolate* isolate |
| |
| // Address of start of capture. |
| __ add(r0, r0, Operand(end_of_input_address())); |
| // Length of capture. |
| __ mov(r2, Operand(r1)); |
| // Save length in callee-save register for use on return. |
| __ mov(r4, Operand(r1)); |
| // Address of current input position. |
| __ add(r1, current_input_offset(), Operand(end_of_input_address())); |
| // Isolate. |
| __ mov(r3, Operand(ExternalReference::isolate_address())); |
| |
| ExternalReference function = |
| ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate()); |
| __ CallCFunction(function, argument_count); |
| |
| // Check if function returned non-zero for success or zero for failure. |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| BranchOrBacktrack(eq, on_no_match); |
| // On success, increment position by length of capture. |
| __ add(current_input_offset(), current_input_offset(), Operand(r4)); |
| } |
| |
| __ bind(&fallthrough); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotBackReference( |
| int start_reg, |
| Label* on_no_match) { |
| Label fallthrough; |
| Label success; |
| |
| // Find length of back-referenced capture. |
| __ ldr(r0, register_location(start_reg)); |
| __ ldr(r1, register_location(start_reg + 1)); |
| __ sub(r1, r1, r0, SetCC); // Length to check. |
| // Succeed on empty capture (including no capture). |
| __ b(eq, &fallthrough); |
| |
| // Check that there are enough characters left in the input. |
| __ cmn(r1, Operand(current_input_offset())); |
| BranchOrBacktrack(gt, on_no_match); |
| |
| // Compute pointers to match string and capture string |
| __ add(r0, r0, Operand(end_of_input_address())); |
| __ add(r2, end_of_input_address(), Operand(current_input_offset())); |
| __ add(r1, r1, Operand(r0)); |
| |
| Label loop; |
| __ bind(&loop); |
| if (mode_ == ASCII) { |
| __ ldrb(r3, MemOperand(r0, char_size(), PostIndex)); |
| __ ldrb(r4, MemOperand(r2, char_size(), PostIndex)); |
| } else { |
| ASSERT(mode_ == UC16); |
| __ ldrh(r3, MemOperand(r0, char_size(), PostIndex)); |
| __ ldrh(r4, MemOperand(r2, char_size(), PostIndex)); |
| } |
| __ cmp(r3, r4); |
| BranchOrBacktrack(ne, on_no_match); |
| __ cmp(r0, r1); |
| __ b(lt, &loop); |
| |
| // Move current character position to position after match. |
| __ sub(current_input_offset(), r2, end_of_input_address()); |
| __ bind(&fallthrough); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotRegistersEqual(int reg1, |
| int reg2, |
| Label* on_not_equal) { |
| __ ldr(r0, register_location(reg1)); |
| __ ldr(r1, register_location(reg2)); |
| __ cmp(r0, r1); |
| BranchOrBacktrack(ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c, |
| Label* on_not_equal) { |
| __ cmp(current_character(), Operand(c)); |
| BranchOrBacktrack(ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c, |
| uint32_t mask, |
| Label* on_equal) { |
| __ and_(r0, current_character(), Operand(mask)); |
| __ cmp(r0, Operand(c)); |
| BranchOrBacktrack(eq, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c, |
| unsigned mask, |
| Label* on_not_equal) { |
| __ and_(r0, current_character(), Operand(mask)); |
| __ cmp(r0, Operand(c)); |
| BranchOrBacktrack(ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd( |
| uc16 c, |
| uc16 minus, |
| uc16 mask, |
| Label* on_not_equal) { |
| ASSERT(minus < String::kMaxUC16CharCode); |
| __ sub(r0, current_character(), Operand(minus)); |
| __ and_(r0, r0, Operand(mask)); |
| __ cmp(r0, Operand(c)); |
| BranchOrBacktrack(ne, on_not_equal); |
| } |
| |
| |
| bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type, |
| Label* on_no_match) { |
| // Range checks (c in min..max) are generally implemented by an unsigned |
| // (c - min) <= (max - min) check |
| switch (type) { |
| case 's': |
| // Match space-characters |
| if (mode_ == ASCII) { |
| // ASCII space characters are '\t'..'\r' and ' '. |
| Label success; |
| __ cmp(current_character(), Operand(' ')); |
| __ b(eq, &success); |
| // Check range 0x09..0x0d |
| __ sub(r0, current_character(), Operand('\t')); |
| __ cmp(r0, Operand('\r' - '\t')); |
| BranchOrBacktrack(hi, on_no_match); |
| __ bind(&success); |
| return true; |
| } |
| return false; |
| case 'S': |
| // Match non-space characters. |
| if (mode_ == ASCII) { |
| // ASCII space characters are '\t'..'\r' and ' '. |
| __ cmp(current_character(), Operand(' ')); |
| BranchOrBacktrack(eq, on_no_match); |
| __ sub(r0, current_character(), Operand('\t')); |
| __ cmp(r0, Operand('\r' - '\t')); |
| BranchOrBacktrack(ls, on_no_match); |
| return true; |
| } |
| return false; |
| case 'd': |
| // Match ASCII digits ('0'..'9') |
| __ sub(r0, current_character(), Operand('0')); |
| __ cmp(current_character(), Operand('9' - '0')); |
| BranchOrBacktrack(hi, on_no_match); |
| return true; |
| case 'D': |
| // Match non ASCII-digits |
| __ sub(r0, current_character(), Operand('0')); |
| __ cmp(r0, Operand('9' - '0')); |
| BranchOrBacktrack(ls, on_no_match); |
| return true; |
| case '.': { |
| // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) |
| __ eor(r0, current_character(), Operand(0x01)); |
| // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c |
| __ sub(r0, r0, Operand(0x0b)); |
| __ cmp(r0, Operand(0x0c - 0x0b)); |
| BranchOrBacktrack(ls, on_no_match); |
| if (mode_ == UC16) { |
| // Compare original value to 0x2028 and 0x2029, using the already |
| // computed (current_char ^ 0x01 - 0x0b). I.e., check for |
| // 0x201d (0x2028 - 0x0b) or 0x201e. |
| __ sub(r0, r0, Operand(0x2028 - 0x0b)); |
| __ cmp(r0, Operand(1)); |
| BranchOrBacktrack(ls, on_no_match); |
| } |
| return true; |
| } |
| case 'n': { |
| // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) |
| __ eor(r0, current_character(), Operand(0x01)); |
| // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c |
| __ sub(r0, r0, Operand(0x0b)); |
| __ cmp(r0, Operand(0x0c - 0x0b)); |
| if (mode_ == ASCII) { |
| BranchOrBacktrack(hi, on_no_match); |
| } else { |
| Label done; |
| __ b(ls, &done); |
| // Compare original value to 0x2028 and 0x2029, using the already |
| // computed (current_char ^ 0x01 - 0x0b). I.e., check for |
| // 0x201d (0x2028 - 0x0b) or 0x201e. |
| __ sub(r0, r0, Operand(0x2028 - 0x0b)); |
| __ cmp(r0, Operand(1)); |
| BranchOrBacktrack(hi, on_no_match); |
| __ bind(&done); |
| } |
| return true; |
| } |
| case 'w': { |
| if (mode_ != ASCII) { |
| // Table is 128 entries, so all ASCII characters can be tested. |
| __ cmp(current_character(), Operand('z')); |
| BranchOrBacktrack(hi, on_no_match); |
| } |
| ExternalReference map = ExternalReference::re_word_character_map(); |
| __ mov(r0, Operand(map)); |
| __ ldrb(r0, MemOperand(r0, current_character())); |
| __ tst(r0, Operand(r0)); |
| BranchOrBacktrack(eq, on_no_match); |
| return true; |
| } |
| case 'W': { |
| Label done; |
| if (mode_ != ASCII) { |
| // Table is 128 entries, so all ASCII characters can be tested. |
| __ cmp(current_character(), Operand('z')); |
| __ b(hi, &done); |
| } |
| ExternalReference map = ExternalReference::re_word_character_map(); |
| __ mov(r0, Operand(map)); |
| __ ldrb(r0, MemOperand(r0, current_character())); |
| __ tst(r0, Operand(r0)); |
| BranchOrBacktrack(ne, on_no_match); |
| if (mode_ != ASCII) { |
| __ bind(&done); |
| } |
| return true; |
| } |
| case '*': |
| // Match any character. |
| return true; |
| // No custom implementation (yet): s(UC16), S(UC16). |
| default: |
| return false; |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Fail() { |
| __ mov(r0, Operand(FAILURE)); |
| __ jmp(&exit_label_); |
| } |
| |
| |
| Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) { |
| // Finalize code - write the entry point code now we know how many |
| // registers we need. |
| |
| // Entry code: |
| __ bind(&entry_label_); |
| // Push arguments |
| // Save callee-save registers. |
| // Start new stack frame. |
| // Store link register in existing stack-cell. |
| // Order here should correspond to order of offset constants in header file. |
| RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() | |
| r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit(); |
| RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit(); |
| __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit()); |
| // Set frame pointer in space for it if this is not a direct call |
| // from generated code. |
| __ add(frame_pointer(), sp, Operand(4 * kPointerSize)); |
| __ push(r0); // Make room for "position - 1" constant (value is irrelevant). |
| __ push(r0); // Make room for "at start" constant (value is irrelevant). |
| // Check if we have space on the stack for registers. |
| Label stack_limit_hit; |
| Label stack_ok; |
| |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(masm_->isolate()); |
| __ mov(r0, Operand(stack_limit)); |
| __ ldr(r0, MemOperand(r0)); |
| __ sub(r0, sp, r0, SetCC); |
| // Handle it if the stack pointer is already below the stack limit. |
| __ b(ls, &stack_limit_hit); |
| // Check if there is room for the variable number of registers above |
| // the stack limit. |
| __ cmp(r0, Operand(num_registers_ * kPointerSize)); |
| __ b(hs, &stack_ok); |
| // Exit with OutOfMemory exception. There is not enough space on the stack |
| // for our working registers. |
| __ mov(r0, Operand(EXCEPTION)); |
| __ jmp(&exit_label_); |
| |
| __ bind(&stack_limit_hit); |
| CallCheckStackGuardState(r0); |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| // If returned value is non-zero, we exit with the returned value as result. |
| __ b(ne, &exit_label_); |
| |
| __ bind(&stack_ok); |
| |
| // Allocate space on stack for registers. |
| __ sub(sp, sp, Operand(num_registers_ * kPointerSize)); |
| // Load string end. |
| __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); |
| // Load input start. |
| __ ldr(r0, MemOperand(frame_pointer(), kInputStart)); |
| // Find negative length (offset of start relative to end). |
| __ sub(current_input_offset(), r0, end_of_input_address()); |
| // Set r0 to address of char before start of the input string |
| // (effectively string position -1). |
| __ ldr(r1, MemOperand(frame_pointer(), kStartIndex)); |
| __ sub(r0, current_input_offset(), Operand(char_size())); |
| __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0)); |
| // Store this value in a local variable, for use when clearing |
| // position registers. |
| __ str(r0, MemOperand(frame_pointer(), kInputStartMinusOne)); |
| |
| // Determine whether the start index is zero, that is at the start of the |
| // string, and store that value in a local variable. |
| __ tst(r1, Operand(r1)); |
| __ mov(r1, Operand(1), LeaveCC, eq); |
| __ mov(r1, Operand(0, RelocInfo::NONE), LeaveCC, ne); |
| __ str(r1, MemOperand(frame_pointer(), kAtStart)); |
| |
| if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. |
| // Fill saved registers with initial value = start offset - 1 |
| |
| // Address of register 0. |
| __ add(r1, frame_pointer(), Operand(kRegisterZero)); |
| __ mov(r2, Operand(num_saved_registers_)); |
| Label init_loop; |
| __ bind(&init_loop); |
| __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex)); |
| __ sub(r2, r2, Operand(1), SetCC); |
| __ b(ne, &init_loop); |
| } |
| |
| // Initialize backtrack stack pointer. |
| __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); |
| // Initialize code pointer register |
| __ mov(code_pointer(), Operand(masm_->CodeObject())); |
| // Load previous char as initial value of current character register. |
| Label at_start; |
| __ ldr(r0, MemOperand(frame_pointer(), kAtStart)); |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| __ b(ne, &at_start); |
| LoadCurrentCharacterUnchecked(-1, 1); // Load previous char. |
| __ jmp(&start_label_); |
| __ bind(&at_start); |
| __ mov(current_character(), Operand('\n')); |
| __ jmp(&start_label_); |
| |
| |
| // Exit code: |
| if (success_label_.is_linked()) { |
| // Save captures when successful. |
| __ bind(&success_label_); |
| if (num_saved_registers_ > 0) { |
| // copy captures to output |
| __ ldr(r1, MemOperand(frame_pointer(), kInputStart)); |
| __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput)); |
| __ ldr(r2, MemOperand(frame_pointer(), kStartIndex)); |
| __ sub(r1, end_of_input_address(), r1); |
| // r1 is length of input in bytes. |
| if (mode_ == UC16) { |
| __ mov(r1, Operand(r1, LSR, 1)); |
| } |
| // r1 is length of input in characters. |
| __ add(r1, r1, Operand(r2)); |
| // r1 is length of string in characters. |
| |
| ASSERT_EQ(0, num_saved_registers_ % 2); |
| // Always an even number of capture registers. This allows us to |
| // unroll the loop once to add an operation between a load of a register |
| // and the following use of that register. |
| for (int i = 0; i < num_saved_registers_; i += 2) { |
| __ ldr(r2, register_location(i)); |
| __ ldr(r3, register_location(i + 1)); |
| if (mode_ == UC16) { |
| __ add(r2, r1, Operand(r2, ASR, 1)); |
| __ add(r3, r1, Operand(r3, ASR, 1)); |
| } else { |
| __ add(r2, r1, Operand(r2)); |
| __ add(r3, r1, Operand(r3)); |
| } |
| __ str(r2, MemOperand(r0, kPointerSize, PostIndex)); |
| __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); |
| } |
| } |
| __ mov(r0, Operand(SUCCESS)); |
| } |
| // Exit and return r0 |
| __ bind(&exit_label_); |
| // Skip sp past regexp registers and local variables.. |
| __ mov(sp, frame_pointer()); |
| // Restore registers r4..r11 and return (restoring lr to pc). |
| __ ldm(ia_w, sp, registers_to_retain | pc.bit()); |
| |
| // Backtrack code (branch target for conditional backtracks). |
| if (backtrack_label_.is_linked()) { |
| __ bind(&backtrack_label_); |
| Backtrack(); |
| } |
| |
| Label exit_with_exception; |
| |
| // Preempt-code |
| if (check_preempt_label_.is_linked()) { |
| SafeCallTarget(&check_preempt_label_); |
| |
| CallCheckStackGuardState(r0); |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| // If returning non-zero, we should end execution with the given |
| // result as return value. |
| __ b(ne, &exit_label_); |
| |
| // String might have moved: Reload end of string from frame. |
| __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); |
| SafeReturn(); |
| } |
| |
| // Backtrack stack overflow code. |
| if (stack_overflow_label_.is_linked()) { |
| SafeCallTarget(&stack_overflow_label_); |
| // Reached if the backtrack-stack limit has been hit. |
| Label grow_failed; |
| |
| // Call GrowStack(backtrack_stackpointer(), &stack_base) |
| static const int num_arguments = 3; |
| __ PrepareCallCFunction(num_arguments, r0); |
| __ mov(r0, backtrack_stackpointer()); |
| __ add(r1, frame_pointer(), Operand(kStackHighEnd)); |
| __ mov(r2, Operand(ExternalReference::isolate_address())); |
| ExternalReference grow_stack = |
| ExternalReference::re_grow_stack(masm_->isolate()); |
| __ CallCFunction(grow_stack, num_arguments); |
| // If return NULL, we have failed to grow the stack, and |
| // must exit with a stack-overflow exception. |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &exit_with_exception); |
| // Otherwise use return value as new stack pointer. |
| __ mov(backtrack_stackpointer(), r0); |
| // Restore saved registers and continue. |
| SafeReturn(); |
| } |
| |
| if (exit_with_exception.is_linked()) { |
| // If any of the code above needed to exit with an exception. |
| __ bind(&exit_with_exception); |
| // Exit with Result EXCEPTION(-1) to signal thrown exception. |
| __ mov(r0, Operand(EXCEPTION)); |
| __ jmp(&exit_label_); |
| } |
| |
| CodeDesc code_desc; |
| masm_->GetCode(&code_desc); |
| Handle<Code> code = FACTORY->NewCode(code_desc, |
| Code::ComputeFlags(Code::REGEXP), |
| masm_->CodeObject()); |
| PROFILE(Isolate::Current(), RegExpCodeCreateEvent(*code, *source)); |
| return Handle<HeapObject>::cast(code); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::GoTo(Label* to) { |
| BranchOrBacktrack(al, to); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::IfRegisterGE(int reg, |
| int comparand, |
| Label* if_ge) { |
| __ ldr(r0, register_location(reg)); |
| __ cmp(r0, Operand(comparand)); |
| BranchOrBacktrack(ge, if_ge); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::IfRegisterLT(int reg, |
| int comparand, |
| Label* if_lt) { |
| __ ldr(r0, register_location(reg)); |
| __ cmp(r0, Operand(comparand)); |
| BranchOrBacktrack(lt, if_lt); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg, |
| Label* if_eq) { |
| __ ldr(r0, register_location(reg)); |
| __ cmp(r0, Operand(current_input_offset())); |
| BranchOrBacktrack(eq, if_eq); |
| } |
| |
| |
| RegExpMacroAssembler::IrregexpImplementation |
| RegExpMacroAssemblerARM::Implementation() { |
| return kARMImplementation; |
| } |
| |
| |
| void RegExpMacroAssemblerARM::LoadCurrentCharacter(int cp_offset, |
| Label* on_end_of_input, |
| bool check_bounds, |
| int characters) { |
| ASSERT(cp_offset >= -1); // ^ and \b can look behind one character. |
| ASSERT(cp_offset < (1<<30)); // Be sane! (And ensure negation works) |
| if (check_bounds) { |
| CheckPosition(cp_offset + characters - 1, on_end_of_input); |
| } |
| LoadCurrentCharacterUnchecked(cp_offset, characters); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PopCurrentPosition() { |
| Pop(current_input_offset()); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PopRegister(int register_index) { |
| Pop(r0); |
| __ str(r0, register_location(register_index)); |
| } |
| |
| |
| static bool is_valid_memory_offset(int value) { |
| if (value < 0) value = -value; |
| return value < (1<<12); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PushBacktrack(Label* label) { |
| if (label->is_bound()) { |
| int target = label->pos(); |
| __ mov(r0, Operand(target + Code::kHeaderSize - kHeapObjectTag)); |
| } else { |
| int constant_offset = GetBacktrackConstantPoolEntry(); |
| masm_->label_at_put(label, constant_offset); |
| // Reading pc-relative is based on the address 8 bytes ahead of |
| // the current opcode. |
| unsigned int offset_of_pc_register_read = |
| masm_->pc_offset() + Assembler::kPcLoadDelta; |
| int pc_offset_of_constant = |
| constant_offset - offset_of_pc_register_read; |
| ASSERT(pc_offset_of_constant < 0); |
| if (is_valid_memory_offset(pc_offset_of_constant)) { |
| Assembler::BlockConstPoolScope block_const_pool(masm_); |
| __ ldr(r0, MemOperand(pc, pc_offset_of_constant)); |
| } else { |
| // Not a 12-bit offset, so it needs to be loaded from the constant |
| // pool. |
| Assembler::BlockConstPoolScope block_const_pool(masm_); |
| __ mov(r0, Operand(pc_offset_of_constant + Assembler::kInstrSize)); |
| __ ldr(r0, MemOperand(pc, r0)); |
| } |
| } |
| Push(r0); |
| CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PushCurrentPosition() { |
| Push(current_input_offset()); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PushRegister(int register_index, |
| StackCheckFlag check_stack_limit) { |
| __ ldr(r0, register_location(register_index)); |
| Push(r0); |
| if (check_stack_limit) CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) { |
| __ ldr(current_input_offset(), register_location(reg)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) { |
| __ ldr(backtrack_stackpointer(), register_location(reg)); |
| __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd)); |
| __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) { |
| Label after_position; |
| __ cmp(current_input_offset(), Operand(-by * char_size())); |
| __ b(ge, &after_position); |
| __ mov(current_input_offset(), Operand(-by * char_size())); |
| // On RegExp code entry (where this operation is used), the character before |
| // the current position is expected to be already loaded. |
| // We have advanced the position, so it's safe to read backwards. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ bind(&after_position); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) { |
| ASSERT(register_index >= num_saved_registers_); // Reserved for positions! |
| __ mov(r0, Operand(to)); |
| __ str(r0, register_location(register_index)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Succeed() { |
| __ jmp(&success_label_); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg, |
| int cp_offset) { |
| if (cp_offset == 0) { |
| __ str(current_input_offset(), register_location(reg)); |
| } else { |
| __ add(r0, current_input_offset(), Operand(cp_offset * char_size())); |
| __ str(r0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) { |
| ASSERT(reg_from <= reg_to); |
| __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne)); |
| for (int reg = reg_from; reg <= reg_to; reg++) { |
| __ str(r0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) { |
| __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd)); |
| __ sub(r0, backtrack_stackpointer(), r1); |
| __ str(r0, register_location(reg)); |
| } |
| |
| |
| // Private methods: |
| |
| void RegExpMacroAssemblerARM::CallCheckStackGuardState(Register scratch) { |
| static const int num_arguments = 3; |
| __ PrepareCallCFunction(num_arguments, scratch); |
| // RegExp code frame pointer. |
| __ mov(r2, frame_pointer()); |
| // Code* of self. |
| __ mov(r1, Operand(masm_->CodeObject())); |
| // r0 becomes return address pointer. |
| ExternalReference stack_guard_check = |
| ExternalReference::re_check_stack_guard_state(masm_->isolate()); |
| CallCFunctionUsingStub(stack_guard_check, num_arguments); |
| } |
| |
| |
| // Helper function for reading a value out of a stack frame. |
| template <typename T> |
| static T& frame_entry(Address re_frame, int frame_offset) { |
| return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset)); |
| } |
| |
| |
| int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address, |
| Code* re_code, |
| Address re_frame) { |
| Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); |
| ASSERT(isolate == Isolate::Current()); |
| if (isolate->stack_guard()->IsStackOverflow()) { |
| isolate->StackOverflow(); |
| return EXCEPTION; |
| } |
| |
| // If not real stack overflow the stack guard was used to interrupt |
| // execution for another purpose. |
| |
| // If this is a direct call from JavaScript retry the RegExp forcing the call |
| // through the runtime system. Currently the direct call cannot handle a GC. |
| if (frame_entry<int>(re_frame, kDirectCall) == 1) { |
| return RETRY; |
| } |
| |
| // Prepare for possible GC. |
| HandleScope handles(isolate); |
| Handle<Code> code_handle(re_code); |
| |
| Handle<String> subject(frame_entry<String*>(re_frame, kInputString)); |
| |
| // Current string. |
| bool is_ascii = subject->IsAsciiRepresentationUnderneath(); |
| |
| ASSERT(re_code->instruction_start() <= *return_address); |
| ASSERT(*return_address <= |
| re_code->instruction_start() + re_code->instruction_size()); |
| |
| MaybeObject* result = Execution::HandleStackGuardInterrupt(); |
| |
| if (*code_handle != re_code) { // Return address no longer valid |
| int delta = code_handle->address() - re_code->address(); |
| // Overwrite the return address on the stack. |
| *return_address += delta; |
| } |
| |
| if (result->IsException()) { |
| return EXCEPTION; |
| } |
| |
| Handle<String> subject_tmp = subject; |
| int slice_offset = 0; |
| |
| // Extract the underlying string and the slice offset. |
| if (StringShape(*subject_tmp).IsCons()) { |
| subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first()); |
| } else if (StringShape(*subject_tmp).IsSliced()) { |
| SlicedString* slice = SlicedString::cast(*subject_tmp); |
| subject_tmp = Handle<String>(slice->parent()); |
| slice_offset = slice->offset(); |
| } |
| |
| // String might have changed. |
| if (subject_tmp->IsAsciiRepresentation() != is_ascii) { |
| // If we changed between an ASCII and an UC16 string, the specialized |
| // code cannot be used, and we need to restart regexp matching from |
| // scratch (including, potentially, compiling a new version of the code). |
| return RETRY; |
| } |
| |
| // Otherwise, the content of the string might have moved. It must still |
| // be a sequential or external string with the same content. |
| // Update the start and end pointers in the stack frame to the current |
| // location (whether it has actually moved or not). |
| ASSERT(StringShape(*subject_tmp).IsSequential() || |
| StringShape(*subject_tmp).IsExternal()); |
| |
| // The original start address of the characters to match. |
| const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart); |
| |
| // Find the current start address of the same character at the current string |
| // position. |
| int start_index = frame_entry<int>(re_frame, kStartIndex); |
| const byte* new_address = StringCharacterPosition(*subject_tmp, |
| start_index + slice_offset); |
| |
| if (start_address != new_address) { |
| // If there is a difference, update the object pointer and start and end |
| // addresses in the RegExp stack frame to match the new value. |
| const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd); |
| int byte_length = static_cast<int>(end_address - start_address); |
| frame_entry<const String*>(re_frame, kInputString) = *subject; |
| frame_entry<const byte*>(re_frame, kInputStart) = new_address; |
| frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length; |
| } |
| |
| return 0; |
| } |
| |
| |
| MemOperand RegExpMacroAssemblerARM::register_location(int register_index) { |
| ASSERT(register_index < (1<<30)); |
| if (num_registers_ <= register_index) { |
| num_registers_ = register_index + 1; |
| } |
| return MemOperand(frame_pointer(), |
| kRegisterZero - register_index * kPointerSize); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckPosition(int cp_offset, |
| Label* on_outside_input) { |
| __ cmp(current_input_offset(), Operand(-cp_offset * char_size())); |
| BranchOrBacktrack(ge, on_outside_input); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition, |
| Label* to) { |
| if (condition == al) { // Unconditional. |
| if (to == NULL) { |
| Backtrack(); |
| return; |
| } |
| __ jmp(to); |
| return; |
| } |
| if (to == NULL) { |
| __ b(condition, &backtrack_label_); |
| return; |
| } |
| __ b(condition, to); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) { |
| __ bl(to, cond); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SafeReturn() { |
| __ pop(lr); |
| __ add(pc, lr, Operand(masm_->CodeObject())); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) { |
| __ bind(name); |
| __ sub(lr, lr, Operand(masm_->CodeObject())); |
| __ push(lr); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Push(Register source) { |
| ASSERT(!source.is(backtrack_stackpointer())); |
| __ str(source, |
| MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Pop(Register target) { |
| ASSERT(!target.is(backtrack_stackpointer())); |
| __ ldr(target, |
| MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckPreemption() { |
| // Check for preemption. |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(masm_->isolate()); |
| __ mov(r0, Operand(stack_limit)); |
| __ ldr(r0, MemOperand(r0)); |
| __ cmp(sp, r0); |
| SafeCall(&check_preempt_label_, ls); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckStackLimit() { |
| ExternalReference stack_limit = |
| ExternalReference::address_of_regexp_stack_limit(masm_->isolate()); |
| __ mov(r0, Operand(stack_limit)); |
| __ ldr(r0, MemOperand(r0)); |
| __ cmp(backtrack_stackpointer(), Operand(r0)); |
| SafeCall(&stack_overflow_label_, ls); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::EmitBacktrackConstantPool() { |
| __ CheckConstPool(false, false); |
| Assembler::BlockConstPoolScope block_const_pool(masm_); |
| backtrack_constant_pool_offset_ = masm_->pc_offset(); |
| for (int i = 0; i < kBacktrackConstantPoolSize; i++) { |
| __ emit(0); |
| } |
| |
| backtrack_constant_pool_capacity_ = kBacktrackConstantPoolSize; |
| } |
| |
| |
| int RegExpMacroAssemblerARM::GetBacktrackConstantPoolEntry() { |
| while (backtrack_constant_pool_capacity_ > 0) { |
| int offset = backtrack_constant_pool_offset_; |
| backtrack_constant_pool_offset_ += kPointerSize; |
| backtrack_constant_pool_capacity_--; |
| if (masm_->pc_offset() - offset < 2 * KB) { |
| return offset; |
| } |
| } |
| Label new_pool_skip; |
| __ jmp(&new_pool_skip); |
| EmitBacktrackConstantPool(); |
| __ bind(&new_pool_skip); |
| int offset = backtrack_constant_pool_offset_; |
| backtrack_constant_pool_offset_ += kPointerSize; |
| backtrack_constant_pool_capacity_--; |
| return offset; |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CallCFunctionUsingStub( |
| ExternalReference function, |
| int num_arguments) { |
| // Must pass all arguments in registers. The stub pushes on the stack. |
| ASSERT(num_arguments <= 4); |
| __ mov(code_pointer(), Operand(function)); |
| RegExpCEntryStub stub; |
| __ CallStub(&stub); |
| if (OS::ActivationFrameAlignment() != 0) { |
| __ ldr(sp, MemOperand(sp, 0)); |
| } |
| __ mov(code_pointer(), Operand(masm_->CodeObject())); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset, |
| int characters) { |
| Register offset = current_input_offset(); |
| if (cp_offset != 0) { |
| __ add(r0, current_input_offset(), Operand(cp_offset * char_size())); |
| offset = r0; |
| } |
| // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU |
| // and the operating system running on the target allow it. |
| // If unaligned load/stores are not supported then this function must only |
| // be used to load a single character at a time. |
| #if !V8_TARGET_CAN_READ_UNALIGNED |
| ASSERT(characters == 1); |
| #endif |
| |
| if (mode_ == ASCII) { |
| if (characters == 4) { |
| __ ldr(current_character(), MemOperand(end_of_input_address(), offset)); |
| } else if (characters == 2) { |
| __ ldrh(current_character(), MemOperand(end_of_input_address(), offset)); |
| } else { |
| ASSERT(characters == 1); |
| __ ldrb(current_character(), MemOperand(end_of_input_address(), offset)); |
| } |
| } else { |
| ASSERT(mode_ == UC16); |
| if (characters == 2) { |
| __ ldr(current_character(), MemOperand(end_of_input_address(), offset)); |
| } else { |
| ASSERT(characters == 1); |
| __ ldrh(current_character(), MemOperand(end_of_input_address(), offset)); |
| } |
| } |
| } |
| |
| |
| void RegExpCEntryStub::Generate(MacroAssembler* masm_) { |
| int stack_alignment = OS::ActivationFrameAlignment(); |
| if (stack_alignment < kPointerSize) stack_alignment = kPointerSize; |
| // Stack is already aligned for call, so decrement by alignment |
| // to make room for storing the link register. |
| __ str(lr, MemOperand(sp, stack_alignment, NegPreIndex)); |
| __ mov(r0, sp); |
| __ Call(r5); |
| __ ldr(pc, MemOperand(sp, stack_alignment, PostIndex)); |
| } |
| |
| #undef __ |
| |
| #endif // V8_INTERPRETED_REGEXP |
| |
| }} // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |