| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| |
| #include "ia32/lithium-codegen-ia32.h" |
| #include "code-stubs.h" |
| #include "deoptimizer.h" |
| #include "stub-cache.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| // When invoking builtins, we need to record the safepoint in the middle of |
| // the invoke instruction sequence generated by the macro assembler. |
| class SafepointGenerator : public CallWrapper { |
| public: |
| SafepointGenerator(LCodeGen* codegen, |
| LPointerMap* pointers, |
| Safepoint::DeoptMode mode) |
| : codegen_(codegen), |
| pointers_(pointers), |
| deopt_mode_(mode) {} |
| virtual ~SafepointGenerator() { } |
| |
| virtual void BeforeCall(int call_size) const {} |
| |
| virtual void AfterCall() const { |
| codegen_->RecordSafepoint(pointers_, deopt_mode_); |
| } |
| |
| private: |
| LCodeGen* codegen_; |
| LPointerMap* pointers_; |
| Safepoint::DeoptMode deopt_mode_; |
| }; |
| |
| |
| #define __ masm()-> |
| |
| bool LCodeGen::GenerateCode() { |
| HPhase phase("Code generation", chunk()); |
| ASSERT(is_unused()); |
| status_ = GENERATING; |
| CpuFeatures::Scope scope(SSE2); |
| return GeneratePrologue() && |
| GenerateBody() && |
| GenerateDeferredCode() && |
| GenerateSafepointTable(); |
| } |
| |
| |
| void LCodeGen::FinishCode(Handle<Code> code) { |
| ASSERT(is_done()); |
| code->set_stack_slots(GetStackSlotCount()); |
| code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); |
| PopulateDeoptimizationData(code); |
| Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code); |
| } |
| |
| |
| void LCodeGen::Abort(const char* format, ...) { |
| if (FLAG_trace_bailout) { |
| SmartArrayPointer<char> name( |
| info()->shared_info()->DebugName()->ToCString()); |
| PrintF("Aborting LCodeGen in @\"%s\": ", *name); |
| va_list arguments; |
| va_start(arguments, format); |
| OS::VPrint(format, arguments); |
| va_end(arguments); |
| PrintF("\n"); |
| } |
| status_ = ABORTED; |
| } |
| |
| |
| void LCodeGen::Comment(const char* format, ...) { |
| if (!FLAG_code_comments) return; |
| char buffer[4 * KB]; |
| StringBuilder builder(buffer, ARRAY_SIZE(buffer)); |
| va_list arguments; |
| va_start(arguments, format); |
| builder.AddFormattedList(format, arguments); |
| va_end(arguments); |
| |
| // Copy the string before recording it in the assembler to avoid |
| // issues when the stack allocated buffer goes out of scope. |
| size_t length = builder.position(); |
| Vector<char> copy = Vector<char>::New(length + 1); |
| memcpy(copy.start(), builder.Finalize(), copy.length()); |
| masm()->RecordComment(copy.start()); |
| } |
| |
| |
| bool LCodeGen::GeneratePrologue() { |
| ASSERT(is_generating()); |
| |
| #ifdef DEBUG |
| if (strlen(FLAG_stop_at) > 0 && |
| info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
| __ int3(); |
| } |
| #endif |
| |
| // Strict mode functions and builtins need to replace the receiver |
| // with undefined when called as functions (without an explicit |
| // receiver object). ecx is zero for method calls and non-zero for |
| // function calls. |
| if (info_->is_strict_mode() || info_->is_native()) { |
| Label ok; |
| __ test(ecx, Operand(ecx)); |
| __ j(zero, &ok, Label::kNear); |
| // +1 for return address. |
| int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize; |
| __ mov(Operand(esp, receiver_offset), |
| Immediate(isolate()->factory()->undefined_value())); |
| __ bind(&ok); |
| } |
| |
| __ push(ebp); // Caller's frame pointer. |
| __ mov(ebp, esp); |
| __ push(esi); // Callee's context. |
| __ push(edi); // Callee's JS function. |
| |
| // Reserve space for the stack slots needed by the code. |
| int slots = GetStackSlotCount(); |
| if (slots > 0) { |
| if (FLAG_debug_code) { |
| __ mov(Operand(eax), Immediate(slots)); |
| Label loop; |
| __ bind(&loop); |
| __ push(Immediate(kSlotsZapValue)); |
| __ dec(eax); |
| __ j(not_zero, &loop); |
| } else { |
| __ sub(Operand(esp), Immediate(slots * kPointerSize)); |
| #ifdef _MSC_VER |
| // On windows, you may not access the stack more than one page below |
| // the most recently mapped page. To make the allocated area randomly |
| // accessible, we write to each page in turn (the value is irrelevant). |
| const int kPageSize = 4 * KB; |
| for (int offset = slots * kPointerSize - kPageSize; |
| offset > 0; |
| offset -= kPageSize) { |
| __ mov(Operand(esp, offset), eax); |
| } |
| #endif |
| } |
| } |
| |
| // Possibly allocate a local context. |
| int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| if (heap_slots > 0) { |
| Comment(";;; Allocate local context"); |
| // Argument to NewContext is the function, which is still in edi. |
| __ push(edi); |
| if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
| FastNewContextStub stub(heap_slots); |
| __ CallStub(&stub); |
| } else { |
| __ CallRuntime(Runtime::kNewFunctionContext, 1); |
| } |
| RecordSafepoint(Safepoint::kNoLazyDeopt); |
| // Context is returned in both eax and esi. It replaces the context |
| // passed to us. It's saved in the stack and kept live in esi. |
| __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); |
| |
| // Copy parameters into context if necessary. |
| int num_parameters = scope()->num_parameters(); |
| for (int i = 0; i < num_parameters; i++) { |
| Variable* var = scope()->parameter(i); |
| if (var->IsContextSlot()) { |
| int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
| (num_parameters - 1 - i) * kPointerSize; |
| // Load parameter from stack. |
| __ mov(eax, Operand(ebp, parameter_offset)); |
| // Store it in the context. |
| int context_offset = Context::SlotOffset(var->index()); |
| __ mov(Operand(esi, context_offset), eax); |
| // Update the write barrier. This clobbers all involved |
| // registers, so we have to use a third register to avoid |
| // clobbering esi. |
| __ mov(ecx, esi); |
| __ RecordWrite(ecx, context_offset, eax, ebx); |
| } |
| } |
| Comment(";;; End allocate local context"); |
| } |
| |
| // Trace the call. |
| if (FLAG_trace) { |
| // We have not executed any compiled code yet, so esi still holds the |
| // incoming context. |
| __ CallRuntime(Runtime::kTraceEnter, 0); |
| } |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateBody() { |
| ASSERT(is_generating()); |
| bool emit_instructions = true; |
| for (current_instruction_ = 0; |
| !is_aborted() && current_instruction_ < instructions_->length(); |
| current_instruction_++) { |
| LInstruction* instr = instructions_->at(current_instruction_); |
| if (instr->IsLabel()) { |
| LLabel* label = LLabel::cast(instr); |
| emit_instructions = !label->HasReplacement(); |
| } |
| |
| if (emit_instructions) { |
| Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); |
| instr->CompileToNative(this); |
| } |
| } |
| EnsureSpaceForLazyDeopt(); |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateDeferredCode() { |
| ASSERT(is_generating()); |
| if (deferred_.length() > 0) { |
| for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { |
| LDeferredCode* code = deferred_[i]; |
| __ bind(code->entry()); |
| code->Generate(); |
| __ jmp(code->exit()); |
| } |
| } |
| |
| // Deferred code is the last part of the instruction sequence. Mark |
| // the generated code as done unless we bailed out. |
| if (!is_aborted()) status_ = DONE; |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateSafepointTable() { |
| ASSERT(is_done()); |
| safepoints_.Emit(masm(), GetStackSlotCount()); |
| return !is_aborted(); |
| } |
| |
| |
| Register LCodeGen::ToRegister(int index) const { |
| return Register::FromAllocationIndex(index); |
| } |
| |
| |
| XMMRegister LCodeGen::ToDoubleRegister(int index) const { |
| return XMMRegister::FromAllocationIndex(index); |
| } |
| |
| |
| Register LCodeGen::ToRegister(LOperand* op) const { |
| ASSERT(op->IsRegister()); |
| return ToRegister(op->index()); |
| } |
| |
| |
| XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { |
| ASSERT(op->IsDoubleRegister()); |
| return ToDoubleRegister(op->index()); |
| } |
| |
| |
| int LCodeGen::ToInteger32(LConstantOperand* op) const { |
| Handle<Object> value = chunk_->LookupLiteral(op); |
| ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); |
| ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) == |
| value->Number()); |
| return static_cast<int32_t>(value->Number()); |
| } |
| |
| |
| Immediate LCodeGen::ToImmediate(LOperand* op) { |
| LConstantOperand* const_op = LConstantOperand::cast(op); |
| Handle<Object> literal = chunk_->LookupLiteral(const_op); |
| Representation r = chunk_->LookupLiteralRepresentation(const_op); |
| if (r.IsInteger32()) { |
| ASSERT(literal->IsNumber()); |
| return Immediate(static_cast<int32_t>(literal->Number())); |
| } else if (r.IsDouble()) { |
| Abort("unsupported double immediate"); |
| } |
| ASSERT(r.IsTagged()); |
| return Immediate(literal); |
| } |
| |
| |
| Operand LCodeGen::ToOperand(LOperand* op) const { |
| if (op->IsRegister()) return Operand(ToRegister(op)); |
| if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op)); |
| ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); |
| int index = op->index(); |
| if (index >= 0) { |
| // Local or spill slot. Skip the frame pointer, function, and |
| // context in the fixed part of the frame. |
| return Operand(ebp, -(index + 3) * kPointerSize); |
| } else { |
| // Incoming parameter. Skip the return address. |
| return Operand(ebp, -(index - 1) * kPointerSize); |
| } |
| } |
| |
| |
| Operand LCodeGen::HighOperand(LOperand* op) { |
| ASSERT(op->IsDoubleStackSlot()); |
| int index = op->index(); |
| int offset = (index >= 0) ? index + 3 : index - 1; |
| return Operand(ebp, -offset * kPointerSize); |
| } |
| |
| |
| void LCodeGen::WriteTranslation(LEnvironment* environment, |
| Translation* translation) { |
| if (environment == NULL) return; |
| |
| // The translation includes one command per value in the environment. |
| int translation_size = environment->values()->length(); |
| // The output frame height does not include the parameters. |
| int height = translation_size - environment->parameter_count(); |
| |
| WriteTranslation(environment->outer(), translation); |
| int closure_id = DefineDeoptimizationLiteral(environment->closure()); |
| translation->BeginFrame(environment->ast_id(), closure_id, height); |
| for (int i = 0; i < translation_size; ++i) { |
| LOperand* value = environment->values()->at(i); |
| // spilled_registers_ and spilled_double_registers_ are either |
| // both NULL or both set. |
| if (environment->spilled_registers() != NULL && value != NULL) { |
| if (value->IsRegister() && |
| environment->spilled_registers()[value->index()] != NULL) { |
| translation->MarkDuplicate(); |
| AddToTranslation(translation, |
| environment->spilled_registers()[value->index()], |
| environment->HasTaggedValueAt(i)); |
| } else if ( |
| value->IsDoubleRegister() && |
| environment->spilled_double_registers()[value->index()] != NULL) { |
| translation->MarkDuplicate(); |
| AddToTranslation( |
| translation, |
| environment->spilled_double_registers()[value->index()], |
| false); |
| } |
| } |
| |
| AddToTranslation(translation, value, environment->HasTaggedValueAt(i)); |
| } |
| } |
| |
| |
| void LCodeGen::AddToTranslation(Translation* translation, |
| LOperand* op, |
| bool is_tagged) { |
| if (op == NULL) { |
| // TODO(twuerthinger): Introduce marker operands to indicate that this value |
| // is not present and must be reconstructed from the deoptimizer. Currently |
| // this is only used for the arguments object. |
| translation->StoreArgumentsObject(); |
| } else if (op->IsStackSlot()) { |
| if (is_tagged) { |
| translation->StoreStackSlot(op->index()); |
| } else { |
| translation->StoreInt32StackSlot(op->index()); |
| } |
| } else if (op->IsDoubleStackSlot()) { |
| translation->StoreDoubleStackSlot(op->index()); |
| } else if (op->IsArgument()) { |
| ASSERT(is_tagged); |
| int src_index = GetStackSlotCount() + op->index(); |
| translation->StoreStackSlot(src_index); |
| } else if (op->IsRegister()) { |
| Register reg = ToRegister(op); |
| if (is_tagged) { |
| translation->StoreRegister(reg); |
| } else { |
| translation->StoreInt32Register(reg); |
| } |
| } else if (op->IsDoubleRegister()) { |
| XMMRegister reg = ToDoubleRegister(op); |
| translation->StoreDoubleRegister(reg); |
| } else if (op->IsConstantOperand()) { |
| Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op)); |
| int src_index = DefineDeoptimizationLiteral(literal); |
| translation->StoreLiteral(src_index); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::CallCodeGeneric(Handle<Code> code, |
| RelocInfo::Mode mode, |
| LInstruction* instr, |
| SafepointMode safepoint_mode) { |
| ASSERT(instr != NULL); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| __ call(code, mode); |
| RecordSafepointWithLazyDeopt(instr, safepoint_mode); |
| |
| // Signal that we don't inline smi code before these stubs in the |
| // optimizing code generator. |
| if (code->kind() == Code::BINARY_OP_IC || |
| code->kind() == Code::COMPARE_IC) { |
| __ nop(); |
| } |
| } |
| |
| |
| void LCodeGen::CallCode(Handle<Code> code, |
| RelocInfo::Mode mode, |
| LInstruction* instr) { |
| CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| |
| void LCodeGen::CallRuntime(const Runtime::Function* fun, |
| int argc, |
| LInstruction* instr) { |
| ASSERT(instr != NULL); |
| ASSERT(instr->HasPointerMap()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| |
| __ CallRuntime(fun, argc); |
| |
| RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| |
| void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, |
| int argc, |
| LInstruction* instr, |
| LOperand* context) { |
| ASSERT(context->IsRegister() || context->IsStackSlot()); |
| if (context->IsRegister()) { |
| if (!ToRegister(context).is(esi)) { |
| __ mov(esi, ToRegister(context)); |
| } |
| } else { |
| // Context is stack slot. |
| __ mov(esi, ToOperand(context)); |
| } |
| |
| __ CallRuntimeSaveDoubles(id); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); |
| } |
| |
| |
| void LCodeGen::RegisterEnvironmentForDeoptimization( |
| LEnvironment* environment, Safepoint::DeoptMode mode) { |
| if (!environment->HasBeenRegistered()) { |
| // Physical stack frame layout: |
| // -x ............. -4 0 ..................................... y |
| // [incoming arguments] [spill slots] [pushed outgoing arguments] |
| |
| // Layout of the environment: |
| // 0 ..................................................... size-1 |
| // [parameters] [locals] [expression stack including arguments] |
| |
| // Layout of the translation: |
| // 0 ........................................................ size - 1 + 4 |
| // [expression stack including arguments] [locals] [4 words] [parameters] |
| // |>------------ translation_size ------------<| |
| |
| int frame_count = 0; |
| for (LEnvironment* e = environment; e != NULL; e = e->outer()) { |
| ++frame_count; |
| } |
| Translation translation(&translations_, frame_count); |
| WriteTranslation(environment, &translation); |
| int deoptimization_index = deoptimizations_.length(); |
| int pc_offset = masm()->pc_offset(); |
| environment->Register(deoptimization_index, |
| translation.index(), |
| (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); |
| deoptimizations_.Add(environment); |
| } |
| } |
| |
| |
| void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) { |
| RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
| ASSERT(environment->HasBeenRegistered()); |
| int id = environment->deoptimization_index(); |
| Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); |
| ASSERT(entry != NULL); |
| if (entry == NULL) { |
| Abort("bailout was not prepared"); |
| return; |
| } |
| |
| if (FLAG_deopt_every_n_times != 0) { |
| Handle<SharedFunctionInfo> shared(info_->shared_info()); |
| Label no_deopt; |
| __ pushfd(); |
| __ push(eax); |
| __ push(ebx); |
| __ mov(ebx, shared); |
| __ mov(eax, FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset)); |
| __ sub(Operand(eax), Immediate(Smi::FromInt(1))); |
| __ j(not_zero, &no_deopt, Label::kNear); |
| if (FLAG_trap_on_deopt) __ int3(); |
| __ mov(eax, Immediate(Smi::FromInt(FLAG_deopt_every_n_times))); |
| __ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax); |
| __ pop(ebx); |
| __ pop(eax); |
| __ popfd(); |
| __ jmp(entry, RelocInfo::RUNTIME_ENTRY); |
| |
| __ bind(&no_deopt); |
| __ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax); |
| __ pop(ebx); |
| __ pop(eax); |
| __ popfd(); |
| } |
| |
| if (cc == no_condition) { |
| if (FLAG_trap_on_deopt) __ int3(); |
| __ jmp(entry, RelocInfo::RUNTIME_ENTRY); |
| } else { |
| if (FLAG_trap_on_deopt) { |
| Label done; |
| __ j(NegateCondition(cc), &done, Label::kNear); |
| __ int3(); |
| __ jmp(entry, RelocInfo::RUNTIME_ENTRY); |
| __ bind(&done); |
| } else { |
| __ j(cc, entry, RelocInfo::RUNTIME_ENTRY); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { |
| int length = deoptimizations_.length(); |
| if (length == 0) return; |
| ASSERT(FLAG_deopt); |
| Handle<DeoptimizationInputData> data = |
| factory()->NewDeoptimizationInputData(length, TENURED); |
| |
| Handle<ByteArray> translations = translations_.CreateByteArray(); |
| data->SetTranslationByteArray(*translations); |
| data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); |
| |
| Handle<FixedArray> literals = |
| factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); |
| for (int i = 0; i < deoptimization_literals_.length(); i++) { |
| literals->set(i, *deoptimization_literals_[i]); |
| } |
| data->SetLiteralArray(*literals); |
| |
| data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id())); |
| data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); |
| |
| // Populate the deoptimization entries. |
| for (int i = 0; i < length; i++) { |
| LEnvironment* env = deoptimizations_[i]; |
| data->SetAstId(i, Smi::FromInt(env->ast_id())); |
| data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); |
| data->SetArgumentsStackHeight(i, |
| Smi::FromInt(env->arguments_stack_height())); |
| data->SetPc(i, Smi::FromInt(env->pc_offset())); |
| } |
| code->set_deoptimization_data(*data); |
| } |
| |
| |
| int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { |
| int result = deoptimization_literals_.length(); |
| for (int i = 0; i < deoptimization_literals_.length(); ++i) { |
| if (deoptimization_literals_[i].is_identical_to(literal)) return i; |
| } |
| deoptimization_literals_.Add(literal); |
| return result; |
| } |
| |
| |
| void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { |
| ASSERT(deoptimization_literals_.length() == 0); |
| |
| const ZoneList<Handle<JSFunction> >* inlined_closures = |
| chunk()->inlined_closures(); |
| |
| for (int i = 0, length = inlined_closures->length(); |
| i < length; |
| i++) { |
| DefineDeoptimizationLiteral(inlined_closures->at(i)); |
| } |
| |
| inlined_function_count_ = deoptimization_literals_.length(); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithLazyDeopt( |
| LInstruction* instr, SafepointMode safepoint_mode) { |
| if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { |
| RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); |
| } else { |
| ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), 0, Safepoint::kLazyDeopt); |
| } |
| } |
| |
| |
| void LCodeGen::RecordSafepoint( |
| LPointerMap* pointers, |
| Safepoint::Kind kind, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| ASSERT(kind == expected_safepoint_kind_); |
| const ZoneList<LOperand*>* operands = pointers->operands(); |
| Safepoint safepoint = |
| safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); |
| for (int i = 0; i < operands->length(); i++) { |
| LOperand* pointer = operands->at(i); |
| if (pointer->IsStackSlot()) { |
| safepoint.DefinePointerSlot(pointer->index()); |
| } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { |
| safepoint.DefinePointerRegister(ToRegister(pointer)); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
| Safepoint::DeoptMode mode) { |
| RecordSafepoint(pointers, Safepoint::kSimple, 0, mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) { |
| LPointerMap empty_pointers(RelocInfo::kNoPosition); |
| RecordSafepoint(&empty_pointers, mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, |
| int arguments, |
| Safepoint::DeoptMode mode) { |
| RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode); |
| } |
| |
| |
| void LCodeGen::RecordPosition(int position) { |
| if (position == RelocInfo::kNoPosition) return; |
| masm()->positions_recorder()->RecordPosition(position); |
| } |
| |
| |
| void LCodeGen::DoLabel(LLabel* label) { |
| if (label->is_loop_header()) { |
| Comment(";;; B%d - LOOP entry", label->block_id()); |
| } else { |
| Comment(";;; B%d", label->block_id()); |
| } |
| __ bind(label->label()); |
| current_block_ = label->block_id(); |
| DoGap(label); |
| } |
| |
| |
| void LCodeGen::DoParallelMove(LParallelMove* move) { |
| resolver_.Resolve(move); |
| } |
| |
| |
| void LCodeGen::DoGap(LGap* gap) { |
| for (int i = LGap::FIRST_INNER_POSITION; |
| i <= LGap::LAST_INNER_POSITION; |
| i++) { |
| LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); |
| LParallelMove* move = gap->GetParallelMove(inner_pos); |
| if (move != NULL) DoParallelMove(move); |
| } |
| } |
| |
| |
| void LCodeGen::DoInstructionGap(LInstructionGap* instr) { |
| DoGap(instr); |
| } |
| |
| |
| void LCodeGen::DoParameter(LParameter* instr) { |
| // Nothing to do. |
| } |
| |
| |
| void LCodeGen::DoCallStub(LCallStub* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| switch (instr->hydrogen()->major_key()) { |
| case CodeStub::RegExpConstructResult: { |
| RegExpConstructResultStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::RegExpExec: { |
| RegExpExecStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::SubString: { |
| SubStringStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::NumberToString: { |
| NumberToStringStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::StringAdd: { |
| StringAddStub stub(NO_STRING_ADD_FLAGS); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::StringCompare: { |
| StringCompareStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::TranscendentalCache: { |
| TranscendentalCacheStub stub(instr->transcendental_type(), |
| TranscendentalCacheStub::TAGGED); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { |
| // Nothing to do. |
| } |
| |
| |
| void LCodeGen::DoModI(LModI* instr) { |
| if (instr->hydrogen()->HasPowerOf2Divisor()) { |
| Register dividend = ToRegister(instr->InputAt(0)); |
| |
| int32_t divisor = |
| HConstant::cast(instr->hydrogen()->right())->Integer32Value(); |
| |
| if (divisor < 0) divisor = -divisor; |
| |
| Label positive_dividend, done; |
| __ test(dividend, Operand(dividend)); |
| __ j(not_sign, &positive_dividend, Label::kNear); |
| __ neg(dividend); |
| __ and_(dividend, divisor - 1); |
| __ neg(dividend); |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| __ j(not_zero, &done, Label::kNear); |
| DeoptimizeIf(no_condition, instr->environment()); |
| } else { |
| __ jmp(&done, Label::kNear); |
| } |
| __ bind(&positive_dividend); |
| __ and_(dividend, divisor - 1); |
| __ bind(&done); |
| } else { |
| Label done, remainder_eq_dividend, slow, do_subtraction, both_positive; |
| Register left_reg = ToRegister(instr->InputAt(0)); |
| Register right_reg = ToRegister(instr->InputAt(1)); |
| Register result_reg = ToRegister(instr->result()); |
| |
| ASSERT(left_reg.is(eax)); |
| ASSERT(result_reg.is(edx)); |
| ASSERT(!right_reg.is(eax)); |
| ASSERT(!right_reg.is(edx)); |
| |
| // Check for x % 0. |
| if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { |
| __ test(right_reg, Operand(right_reg)); |
| DeoptimizeIf(zero, instr->environment()); |
| } |
| |
| __ test(left_reg, Operand(left_reg)); |
| __ j(zero, &remainder_eq_dividend, Label::kNear); |
| __ j(sign, &slow, Label::kNear); |
| |
| __ test(right_reg, Operand(right_reg)); |
| __ j(not_sign, &both_positive, Label::kNear); |
| // The sign of the divisor doesn't matter. |
| __ neg(right_reg); |
| |
| __ bind(&both_positive); |
| // If the dividend is smaller than the nonnegative |
| // divisor, the dividend is the result. |
| __ cmp(left_reg, Operand(right_reg)); |
| __ j(less, &remainder_eq_dividend, Label::kNear); |
| |
| // Check if the divisor is a PowerOfTwo integer. |
| Register scratch = ToRegister(instr->TempAt(0)); |
| __ mov(scratch, right_reg); |
| __ sub(Operand(scratch), Immediate(1)); |
| __ test(scratch, Operand(right_reg)); |
| __ j(not_zero, &do_subtraction, Label::kNear); |
| __ and_(left_reg, Operand(scratch)); |
| __ jmp(&remainder_eq_dividend, Label::kNear); |
| |
| __ bind(&do_subtraction); |
| const int kUnfolds = 3; |
| // Try a few subtractions of the dividend. |
| __ mov(scratch, left_reg); |
| for (int i = 0; i < kUnfolds; i++) { |
| // Reduce the dividend by the divisor. |
| __ sub(left_reg, Operand(right_reg)); |
| // Check if the dividend is less than the divisor. |
| __ cmp(left_reg, Operand(right_reg)); |
| __ j(less, &remainder_eq_dividend, Label::kNear); |
| } |
| __ mov(left_reg, scratch); |
| |
| // Slow case, using idiv instruction. |
| __ bind(&slow); |
| // Sign extend to edx. |
| __ cdq(); |
| |
| // Check for (0 % -x) that will produce negative zero. |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label positive_left; |
| Label done; |
| __ test(left_reg, Operand(left_reg)); |
| __ j(not_sign, &positive_left, Label::kNear); |
| __ idiv(right_reg); |
| |
| // Test the remainder for 0, because then the result would be -0. |
| __ test(result_reg, Operand(result_reg)); |
| __ j(not_zero, &done, Label::kNear); |
| |
| DeoptimizeIf(no_condition, instr->environment()); |
| __ bind(&positive_left); |
| __ idiv(right_reg); |
| __ bind(&done); |
| } else { |
| __ idiv(right_reg); |
| } |
| __ jmp(&done, Label::kNear); |
| |
| __ bind(&remainder_eq_dividend); |
| __ mov(result_reg, left_reg); |
| |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoDivI(LDivI* instr) { |
| LOperand* right = instr->InputAt(1); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| ASSERT(ToRegister(instr->InputAt(0)).is(eax)); |
| ASSERT(!ToRegister(instr->InputAt(1)).is(eax)); |
| ASSERT(!ToRegister(instr->InputAt(1)).is(edx)); |
| |
| Register left_reg = eax; |
| |
| // Check for x / 0. |
| Register right_reg = ToRegister(right); |
| if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { |
| __ test(right_reg, ToOperand(right)); |
| DeoptimizeIf(zero, instr->environment()); |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label left_not_zero; |
| __ test(left_reg, Operand(left_reg)); |
| __ j(not_zero, &left_not_zero, Label::kNear); |
| __ test(right_reg, ToOperand(right)); |
| DeoptimizeIf(sign, instr->environment()); |
| __ bind(&left_not_zero); |
| } |
| |
| // Check for (-kMinInt / -1). |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| Label left_not_min_int; |
| __ cmp(left_reg, kMinInt); |
| __ j(not_zero, &left_not_min_int, Label::kNear); |
| __ cmp(right_reg, -1); |
| DeoptimizeIf(zero, instr->environment()); |
| __ bind(&left_not_min_int); |
| } |
| |
| // Sign extend to edx. |
| __ cdq(); |
| __ idiv(right_reg); |
| |
| // Deoptimize if remainder is not 0. |
| __ test(edx, Operand(edx)); |
| DeoptimizeIf(not_zero, instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoMulI(LMulI* instr) { |
| Register left = ToRegister(instr->InputAt(0)); |
| LOperand* right = instr->InputAt(1); |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| __ mov(ToRegister(instr->TempAt(0)), left); |
| } |
| |
| if (right->IsConstantOperand()) { |
| // Try strength reductions on the multiplication. |
| // All replacement instructions are at most as long as the imul |
| // and have better latency. |
| int constant = ToInteger32(LConstantOperand::cast(right)); |
| if (constant == -1) { |
| __ neg(left); |
| } else if (constant == 0) { |
| __ xor_(left, Operand(left)); |
| } else if (constant == 2) { |
| __ add(left, Operand(left)); |
| } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| // If we know that the multiplication can't overflow, it's safe to |
| // use instructions that don't set the overflow flag for the |
| // multiplication. |
| switch (constant) { |
| case 1: |
| // Do nothing. |
| break; |
| case 3: |
| __ lea(left, Operand(left, left, times_2, 0)); |
| break; |
| case 4: |
| __ shl(left, 2); |
| break; |
| case 5: |
| __ lea(left, Operand(left, left, times_4, 0)); |
| break; |
| case 8: |
| __ shl(left, 3); |
| break; |
| case 9: |
| __ lea(left, Operand(left, left, times_8, 0)); |
| break; |
| case 16: |
| __ shl(left, 4); |
| break; |
| default: |
| __ imul(left, left, constant); |
| break; |
| } |
| } else { |
| __ imul(left, left, constant); |
| } |
| } else { |
| __ imul(left, ToOperand(right)); |
| } |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| DeoptimizeIf(overflow, instr->environment()); |
| } |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // Bail out if the result is supposed to be negative zero. |
| Label done; |
| __ test(left, Operand(left)); |
| __ j(not_zero, &done, Label::kNear); |
| if (right->IsConstantOperand()) { |
| if (ToInteger32(LConstantOperand::cast(right)) <= 0) { |
| DeoptimizeIf(no_condition, instr->environment()); |
| } |
| } else { |
| // Test the non-zero operand for negative sign. |
| __ or_(ToRegister(instr->TempAt(0)), ToOperand(right)); |
| DeoptimizeIf(sign, instr->environment()); |
| } |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoBitI(LBitI* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| ASSERT(left->Equals(instr->result())); |
| ASSERT(left->IsRegister()); |
| |
| if (right->IsConstantOperand()) { |
| int right_operand = ToInteger32(LConstantOperand::cast(right)); |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| __ and_(ToRegister(left), right_operand); |
| break; |
| case Token::BIT_OR: |
| __ or_(ToRegister(left), right_operand); |
| break; |
| case Token::BIT_XOR: |
| __ xor_(ToRegister(left), right_operand); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| __ and_(ToRegister(left), ToOperand(right)); |
| break; |
| case Token::BIT_OR: |
| __ or_(ToRegister(left), ToOperand(right)); |
| break; |
| case Token::BIT_XOR: |
| __ xor_(ToRegister(left), ToOperand(right)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoShiftI(LShiftI* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| ASSERT(left->Equals(instr->result())); |
| ASSERT(left->IsRegister()); |
| if (right->IsRegister()) { |
| ASSERT(ToRegister(right).is(ecx)); |
| |
| switch (instr->op()) { |
| case Token::SAR: |
| __ sar_cl(ToRegister(left)); |
| break; |
| case Token::SHR: |
| __ shr_cl(ToRegister(left)); |
| if (instr->can_deopt()) { |
| __ test(ToRegister(left), Immediate(0x80000000)); |
| DeoptimizeIf(not_zero, instr->environment()); |
| } |
| break; |
| case Token::SHL: |
| __ shl_cl(ToRegister(left)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| int value = ToInteger32(LConstantOperand::cast(right)); |
| uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); |
| switch (instr->op()) { |
| case Token::SAR: |
| if (shift_count != 0) { |
| __ sar(ToRegister(left), shift_count); |
| } |
| break; |
| case Token::SHR: |
| if (shift_count == 0 && instr->can_deopt()) { |
| __ test(ToRegister(left), Immediate(0x80000000)); |
| DeoptimizeIf(not_zero, instr->environment()); |
| } else { |
| __ shr(ToRegister(left), shift_count); |
| } |
| break; |
| case Token::SHL: |
| if (shift_count != 0) { |
| __ shl(ToRegister(left), shift_count); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoSubI(LSubI* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| ASSERT(left->Equals(instr->result())); |
| |
| if (right->IsConstantOperand()) { |
| __ sub(ToOperand(left), ToImmediate(right)); |
| } else { |
| __ sub(ToRegister(left), ToOperand(right)); |
| } |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| DeoptimizeIf(overflow, instr->environment()); |
| } |
| } |
| |
| |
| void LCodeGen::DoConstantI(LConstantI* instr) { |
| ASSERT(instr->result()->IsRegister()); |
| __ Set(ToRegister(instr->result()), Immediate(instr->value())); |
| } |
| |
| |
| void LCodeGen::DoConstantD(LConstantD* instr) { |
| ASSERT(instr->result()->IsDoubleRegister()); |
| XMMRegister res = ToDoubleRegister(instr->result()); |
| double v = instr->value(); |
| // Use xor to produce +0.0 in a fast and compact way, but avoid to |
| // do so if the constant is -0.0. |
| if (BitCast<uint64_t, double>(v) == 0) { |
| __ xorps(res, res); |
| } else { |
| Register temp = ToRegister(instr->TempAt(0)); |
| uint64_t int_val = BitCast<uint64_t, double>(v); |
| int32_t lower = static_cast<int32_t>(int_val); |
| int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt)); |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatures::Scope scope(SSE4_1); |
| if (lower != 0) { |
| __ Set(temp, Immediate(lower)); |
| __ movd(res, Operand(temp)); |
| __ Set(temp, Immediate(upper)); |
| __ pinsrd(res, Operand(temp), 1); |
| } else { |
| __ xorps(res, res); |
| __ Set(temp, Immediate(upper)); |
| __ pinsrd(res, Operand(temp), 1); |
| } |
| } else { |
| __ Set(temp, Immediate(upper)); |
| __ movd(res, Operand(temp)); |
| __ psllq(res, 32); |
| if (lower != 0) { |
| __ Set(temp, Immediate(lower)); |
| __ movd(xmm0, Operand(temp)); |
| __ por(res, xmm0); |
| } |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoConstantT(LConstantT* instr) { |
| ASSERT(instr->result()->IsRegister()); |
| __ Set(ToRegister(instr->result()), Immediate(instr->value())); |
| } |
| |
| |
| void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { |
| Register result = ToRegister(instr->result()); |
| Register array = ToRegister(instr->InputAt(0)); |
| __ mov(result, FieldOperand(array, JSArray::kLengthOffset)); |
| } |
| |
| |
| void LCodeGen::DoFixedArrayBaseLength( |
| LFixedArrayBaseLength* instr) { |
| Register result = ToRegister(instr->result()); |
| Register array = ToRegister(instr->InputAt(0)); |
| __ mov(result, FieldOperand(array, FixedArrayBase::kLengthOffset)); |
| } |
| |
| |
| void LCodeGen::DoElementsKind(LElementsKind* instr) { |
| Register result = ToRegister(instr->result()); |
| Register input = ToRegister(instr->InputAt(0)); |
| |
| // Load map into |result|. |
| __ mov(result, FieldOperand(input, HeapObject::kMapOffset)); |
| // Load the map's "bit field 2" into |result|. We only need the first byte, |
| // but the following masking takes care of that anyway. |
| __ mov(result, FieldOperand(result, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ and_(result, Map::kElementsKindMask); |
| __ shr(result, Map::kElementsKindShift); |
| } |
| |
| |
| void LCodeGen::DoValueOf(LValueOf* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| Register map = ToRegister(instr->TempAt(0)); |
| ASSERT(input.is(result)); |
| Label done; |
| // If the object is a smi return the object. |
| __ JumpIfSmi(input, &done, Label::kNear); |
| |
| // If the object is not a value type, return the object. |
| __ CmpObjectType(input, JS_VALUE_TYPE, map); |
| __ j(not_equal, &done, Label::kNear); |
| __ mov(result, FieldOperand(input, JSValue::kValueOffset)); |
| |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoBitNotI(LBitNotI* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->Equals(instr->result())); |
| __ not_(ToRegister(input)); |
| } |
| |
| |
| void LCodeGen::DoThrow(LThrow* instr) { |
| __ push(ToOperand(instr->value())); |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| CallRuntime(Runtime::kThrow, 1, instr); |
| |
| if (FLAG_debug_code) { |
| Comment("Unreachable code."); |
| __ int3(); |
| } |
| } |
| |
| |
| void LCodeGen::DoAddI(LAddI* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| ASSERT(left->Equals(instr->result())); |
| |
| if (right->IsConstantOperand()) { |
| __ add(ToOperand(left), ToImmediate(right)); |
| } else { |
| __ add(ToRegister(left), ToOperand(right)); |
| } |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| DeoptimizeIf(overflow, instr->environment()); |
| } |
| } |
| |
| |
| void LCodeGen::DoArithmeticD(LArithmeticD* instr) { |
| XMMRegister left = ToDoubleRegister(instr->InputAt(0)); |
| XMMRegister right = ToDoubleRegister(instr->InputAt(1)); |
| XMMRegister result = ToDoubleRegister(instr->result()); |
| // Modulo uses a fixed result register. |
| ASSERT(instr->op() == Token::MOD || left.is(result)); |
| switch (instr->op()) { |
| case Token::ADD: |
| __ addsd(left, right); |
| break; |
| case Token::SUB: |
| __ subsd(left, right); |
| break; |
| case Token::MUL: |
| __ mulsd(left, right); |
| break; |
| case Token::DIV: |
| __ divsd(left, right); |
| break; |
| case Token::MOD: { |
| // Pass two doubles as arguments on the stack. |
| __ PrepareCallCFunction(4, eax); |
| __ movdbl(Operand(esp, 0 * kDoubleSize), left); |
| __ movdbl(Operand(esp, 1 * kDoubleSize), right); |
| __ CallCFunction( |
| ExternalReference::double_fp_operation(Token::MOD, isolate()), |
| 4); |
| |
| // Return value is in st(0) on ia32. |
| // Store it into the (fixed) result register. |
| __ sub(Operand(esp), Immediate(kDoubleSize)); |
| __ fstp_d(Operand(esp, 0)); |
| __ movdbl(result, Operand(esp, 0)); |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void LCodeGen::DoArithmeticT(LArithmeticT* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->left()).is(edx)); |
| ASSERT(ToRegister(instr->right()).is(eax)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| BinaryOpStub stub(instr->op(), NO_OVERWRITE); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| __ nop(); // Signals no inlined code. |
| } |
| |
| |
| int LCodeGen::GetNextEmittedBlock(int block) { |
| for (int i = block + 1; i < graph()->blocks()->length(); ++i) { |
| LLabel* label = chunk_->GetLabel(i); |
| if (!label->HasReplacement()) return i; |
| } |
| return -1; |
| } |
| |
| |
| void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) { |
| int next_block = GetNextEmittedBlock(current_block_); |
| right_block = chunk_->LookupDestination(right_block); |
| left_block = chunk_->LookupDestination(left_block); |
| |
| if (right_block == left_block) { |
| EmitGoto(left_block); |
| } else if (left_block == next_block) { |
| __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); |
| } else if (right_block == next_block) { |
| __ j(cc, chunk_->GetAssemblyLabel(left_block)); |
| } else { |
| __ j(cc, chunk_->GetAssemblyLabel(left_block)); |
| __ jmp(chunk_->GetAssemblyLabel(right_block)); |
| } |
| } |
| |
| |
| void LCodeGen::DoBranch(LBranch* instr) { |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| Representation r = instr->hydrogen()->value()->representation(); |
| if (r.IsInteger32()) { |
| Register reg = ToRegister(instr->InputAt(0)); |
| __ test(reg, Operand(reg)); |
| EmitBranch(true_block, false_block, not_zero); |
| } else if (r.IsDouble()) { |
| XMMRegister reg = ToDoubleRegister(instr->InputAt(0)); |
| __ xorps(xmm0, xmm0); |
| __ ucomisd(reg, xmm0); |
| EmitBranch(true_block, false_block, not_equal); |
| } else { |
| ASSERT(r.IsTagged()); |
| Register reg = ToRegister(instr->InputAt(0)); |
| HType type = instr->hydrogen()->value()->type(); |
| if (type.IsBoolean()) { |
| __ cmp(reg, factory()->true_value()); |
| EmitBranch(true_block, false_block, equal); |
| } else if (type.IsSmi()) { |
| __ test(reg, Operand(reg)); |
| EmitBranch(true_block, false_block, not_equal); |
| } else { |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); |
| // Avoid deopts in the case where we've never executed this path before. |
| if (expected.IsEmpty()) expected = ToBooleanStub::all_types(); |
| |
| if (expected.Contains(ToBooleanStub::UNDEFINED)) { |
| // undefined -> false. |
| __ cmp(reg, factory()->undefined_value()); |
| __ j(equal, false_label); |
| } |
| if (expected.Contains(ToBooleanStub::BOOLEAN)) { |
| // true -> true. |
| __ cmp(reg, factory()->true_value()); |
| __ j(equal, true_label); |
| // false -> false. |
| __ cmp(reg, factory()->false_value()); |
| __ j(equal, false_label); |
| } |
| if (expected.Contains(ToBooleanStub::NULL_TYPE)) { |
| // 'null' -> false. |
| __ cmp(reg, factory()->null_value()); |
| __ j(equal, false_label); |
| } |
| |
| if (expected.Contains(ToBooleanStub::SMI)) { |
| // Smis: 0 -> false, all other -> true. |
| __ test(reg, Operand(reg)); |
| __ j(equal, false_label); |
| __ JumpIfSmi(reg, true_label); |
| } else if (expected.NeedsMap()) { |
| // If we need a map later and have a Smi -> deopt. |
| __ test(reg, Immediate(kSmiTagMask)); |
| DeoptimizeIf(zero, instr->environment()); |
| } |
| |
| Register map = no_reg; // Keep the compiler happy. |
| if (expected.NeedsMap()) { |
| map = ToRegister(instr->TempAt(0)); |
| ASSERT(!map.is(reg)); |
| __ mov(map, FieldOperand(reg, HeapObject::kMapOffset)); |
| |
| if (expected.CanBeUndetectable()) { |
| // Undetectable -> false. |
| __ test_b(FieldOperand(map, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| __ j(not_zero, false_label); |
| } |
| } |
| |
| if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { |
| // spec object -> true. |
| __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); |
| __ j(above_equal, true_label); |
| } |
| |
| if (expected.Contains(ToBooleanStub::STRING)) { |
| // String value -> false iff empty. |
| Label not_string; |
| __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); |
| __ j(above_equal, ¬_string, Label::kNear); |
| __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); |
| __ j(not_zero, true_label); |
| __ jmp(false_label); |
| __ bind(¬_string); |
| } |
| |
| if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { |
| // heap number -> false iff +0, -0, or NaN. |
| Label not_heap_number; |
| __ cmp(FieldOperand(reg, HeapObject::kMapOffset), |
| factory()->heap_number_map()); |
| __ j(not_equal, ¬_heap_number, Label::kNear); |
| __ fldz(); |
| __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset)); |
| __ FCmp(); |
| __ j(zero, false_label); |
| __ jmp(true_label); |
| __ bind(¬_heap_number); |
| } |
| |
| // We've seen something for the first time -> deopt. |
| DeoptimizeIf(no_condition, instr->environment()); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::EmitGoto(int block) { |
| block = chunk_->LookupDestination(block); |
| int next_block = GetNextEmittedBlock(current_block_); |
| if (block != next_block) { |
| __ jmp(chunk_->GetAssemblyLabel(block)); |
| } |
| } |
| |
| |
| void LCodeGen::DoGoto(LGoto* instr) { |
| EmitGoto(instr->block_id()); |
| } |
| |
| |
| Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { |
| Condition cond = no_condition; |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: |
| cond = equal; |
| break; |
| case Token::LT: |
| cond = is_unsigned ? below : less; |
| break; |
| case Token::GT: |
| cond = is_unsigned ? above : greater; |
| break; |
| case Token::LTE: |
| cond = is_unsigned ? below_equal : less_equal; |
| break; |
| case Token::GTE: |
| cond = is_unsigned ? above_equal : greater_equal; |
| break; |
| case Token::IN: |
| case Token::INSTANCEOF: |
| default: |
| UNREACHABLE(); |
| } |
| return cond; |
| } |
| |
| |
| void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) { |
| if (right->IsConstantOperand()) { |
| __ cmp(ToOperand(left), ToImmediate(right)); |
| } else { |
| __ cmp(ToRegister(left), ToOperand(right)); |
| } |
| } |
| |
| |
| void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| |
| if (instr->is_double()) { |
| // Don't base result on EFLAGS when a NaN is involved. Instead |
| // jump to the false block. |
| __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); |
| __ j(parity_even, chunk_->GetAssemblyLabel(false_block)); |
| } else { |
| EmitCmpI(left, right); |
| } |
| |
| Condition cc = TokenToCondition(instr->op(), instr->is_double()); |
| EmitBranch(true_block, false_block, cc); |
| } |
| |
| |
| void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { |
| Register left = ToRegister(instr->InputAt(0)); |
| Operand right = ToOperand(instr->InputAt(1)); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| |
| __ cmp(left, Operand(right)); |
| EmitBranch(true_block, false_block, equal); |
| } |
| |
| |
| void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) { |
| Register left = ToRegister(instr->InputAt(0)); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| __ cmp(left, instr->hydrogen()->right()); |
| EmitBranch(true_block, false_block, equal); |
| } |
| |
| |
| void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) { |
| Register reg = ToRegister(instr->InputAt(0)); |
| |
| // TODO(fsc): If the expression is known to be a smi, then it's |
| // definitely not null. Jump to the false block. |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| __ cmp(reg, factory()->null_value()); |
| if (instr->is_strict()) { |
| EmitBranch(true_block, false_block, equal); |
| } else { |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| __ j(equal, true_label); |
| __ cmp(reg, factory()->undefined_value()); |
| __ j(equal, true_label); |
| __ JumpIfSmi(reg, false_label); |
| // Check for undetectable objects by looking in the bit field in |
| // the map. The object has already been smi checked. |
| Register scratch = ToRegister(instr->TempAt(0)); |
| __ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset)); |
| __ movzx_b(scratch, FieldOperand(scratch, Map::kBitFieldOffset)); |
| __ test(scratch, Immediate(1 << Map::kIsUndetectable)); |
| EmitBranch(true_block, false_block, not_zero); |
| } |
| } |
| |
| |
| Condition LCodeGen::EmitIsObject(Register input, |
| Register temp1, |
| Label* is_not_object, |
| Label* is_object) { |
| __ JumpIfSmi(input, is_not_object); |
| |
| __ cmp(input, isolate()->factory()->null_value()); |
| __ j(equal, is_object); |
| |
| __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset)); |
| // Undetectable objects behave like undefined. |
| __ test_b(FieldOperand(temp1, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| __ j(not_zero, is_not_object); |
| |
| __ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset)); |
| __ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); |
| __ j(below, is_not_object); |
| __ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); |
| return below_equal; |
| } |
| |
| |
| void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { |
| Register reg = ToRegister(instr->InputAt(0)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| Condition true_cond = EmitIsObject(reg, temp, false_label, true_label); |
| |
| EmitBranch(true_block, false_block, true_cond); |
| } |
| |
| |
| void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { |
| Operand input = ToOperand(instr->InputAt(0)); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| __ test(input, Immediate(kSmiTagMask)); |
| EmitBranch(true_block, false_block, zero); |
| } |
| |
| |
| void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| STATIC_ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block)); |
| __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(temp, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| EmitBranch(true_block, false_block, not_zero); |
| } |
| |
| |
| static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == FIRST_TYPE) return to; |
| ASSERT(from == to || to == LAST_TYPE); |
| return from; |
| } |
| |
| |
| static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == to) return equal; |
| if (to == LAST_TYPE) return above_equal; |
| if (from == FIRST_TYPE) return below_equal; |
| UNREACHABLE(); |
| return equal; |
| } |
| |
| |
| void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| __ JumpIfSmi(input, false_label); |
| |
| __ CmpObjectType(input, TestType(instr->hydrogen()), temp); |
| EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen())); |
| } |
| |
| |
| void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| |
| if (FLAG_debug_code) { |
| __ AbortIfNotString(input); |
| } |
| |
| __ mov(result, FieldOperand(input, String::kHashFieldOffset)); |
| __ IndexFromHash(result, result); |
| } |
| |
| |
| void LCodeGen::DoHasCachedArrayIndexAndBranch( |
| LHasCachedArrayIndexAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| __ test(FieldOperand(input, String::kHashFieldOffset), |
| Immediate(String::kContainsCachedArrayIndexMask)); |
| EmitBranch(true_block, false_block, equal); |
| } |
| |
| |
| // Branches to a label or falls through with the answer in the z flag. Trashes |
| // the temp registers, but not the input. Only input and temp2 may alias. |
| void LCodeGen::EmitClassOfTest(Label* is_true, |
| Label* is_false, |
| Handle<String>class_name, |
| Register input, |
| Register temp, |
| Register temp2) { |
| ASSERT(!input.is(temp)); |
| ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register. |
| __ JumpIfSmi(input, is_false); |
| __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp); |
| __ j(below, is_false); |
| |
| // Map is now in temp. |
| // Functions have class 'Function'. |
| __ CmpInstanceType(temp, FIRST_CALLABLE_SPEC_OBJECT_TYPE); |
| if (class_name->IsEqualTo(CStrVector("Function"))) { |
| __ j(above_equal, is_true); |
| } else { |
| __ j(above_equal, is_false); |
| } |
| |
| // Check if the constructor in the map is a function. |
| __ mov(temp, FieldOperand(temp, Map::kConstructorOffset)); |
| |
| // As long as LAST_CALLABLE_SPEC_OBJECT_TYPE is the last instance type, and |
| // FIRST_CALLABLE_SPEC_OBJECT_TYPE comes right after |
| // LAST_NONCALLABLE_SPEC_OBJECT_TYPE, we can avoid checking for the latter. |
| STATIC_ASSERT(LAST_TYPE == LAST_CALLABLE_SPEC_OBJECT_TYPE); |
| STATIC_ASSERT(FIRST_CALLABLE_SPEC_OBJECT_TYPE == |
| LAST_NONCALLABLE_SPEC_OBJECT_TYPE + 1); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2); |
| if (class_name->IsEqualTo(CStrVector("Object"))) { |
| __ j(not_equal, is_true); |
| } else { |
| __ j(not_equal, is_false); |
| } |
| |
| // temp now contains the constructor function. Grab the |
| // instance class name from there. |
| __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(temp, FieldOperand(temp, |
| SharedFunctionInfo::kInstanceClassNameOffset)); |
| // The class name we are testing against is a symbol because it's a literal. |
| // The name in the constructor is a symbol because of the way the context is |
| // booted. This routine isn't expected to work for random API-created |
| // classes and it doesn't have to because you can't access it with natives |
| // syntax. Since both sides are symbols it is sufficient to use an identity |
| // comparison. |
| __ cmp(temp, class_name); |
| // End with the answer in the z flag. |
| } |
| |
| |
| void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| Register temp2 = ToRegister(instr->TempAt(1)); |
| if (input.is(temp)) { |
| // Swap. |
| Register swapper = temp; |
| temp = temp2; |
| temp2 = swapper; |
| } |
| Handle<String> class_name = instr->hydrogen()->class_name(); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2); |
| |
| EmitBranch(true_block, false_block, equal); |
| } |
| |
| |
| void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { |
| Register reg = ToRegister(instr->InputAt(0)); |
| int true_block = instr->true_block_id(); |
| int false_block = instr->false_block_id(); |
| |
| __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); |
| EmitBranch(true_block, false_block, equal); |
| } |
| |
| |
| void LCodeGen::DoInstanceOf(LInstanceOf* instr) { |
| // Object and function are in fixed registers defined by the stub. |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| InstanceofStub stub(InstanceofStub::kArgsInRegisters); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| |
| Label true_value, done; |
| __ test(eax, Operand(eax)); |
| __ j(zero, &true_value, Label::kNear); |
| __ mov(ToRegister(instr->result()), factory()->false_value()); |
| __ jmp(&done, Label::kNear); |
| __ bind(&true_value); |
| __ mov(ToRegister(instr->result()), factory()->true_value()); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { |
| class DeferredInstanceOfKnownGlobal: public LDeferredCode { |
| public: |
| DeferredInstanceOfKnownGlobal(LCodeGen* codegen, |
| LInstanceOfKnownGlobal* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { |
| codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); |
| } |
| |
| Label* map_check() { return &map_check_; } |
| |
| private: |
| LInstanceOfKnownGlobal* instr_; |
| Label map_check_; |
| }; |
| |
| DeferredInstanceOfKnownGlobal* deferred; |
| deferred = new DeferredInstanceOfKnownGlobal(this, instr); |
| |
| Label done, false_result; |
| Register object = ToRegister(instr->InputAt(1)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| |
| // A Smi is not an instance of anything. |
| __ JumpIfSmi(object, &false_result); |
| |
| // This is the inlined call site instanceof cache. The two occurences of the |
| // hole value will be patched to the last map/result pair generated by the |
| // instanceof stub. |
| Label cache_miss; |
| Register map = ToRegister(instr->TempAt(0)); |
| __ mov(map, FieldOperand(object, HeapObject::kMapOffset)); |
| __ bind(deferred->map_check()); // Label for calculating code patching. |
| __ cmp(map, factory()->the_hole_value()); // Patched to cached map. |
| __ j(not_equal, &cache_miss, Label::kNear); |
| __ mov(eax, factory()->the_hole_value()); // Patched to either true or false. |
| __ jmp(&done); |
| |
| // The inlined call site cache did not match. Check for null and string |
| // before calling the deferred code. |
| __ bind(&cache_miss); |
| // Null is not an instance of anything. |
| __ cmp(object, factory()->null_value()); |
| __ j(equal, &false_result); |
| |
| // String values are not instances of anything. |
| Condition is_string = masm_->IsObjectStringType(object, temp, temp); |
| __ j(is_string, &false_result); |
| |
| // Go to the deferred code. |
| __ jmp(deferred->entry()); |
| |
| __ bind(&false_result); |
| __ mov(ToRegister(instr->result()), factory()->false_value()); |
| |
| // Here result has either true or false. Deferred code also produces true or |
| // false object. |
| __ bind(deferred->exit()); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, |
| Label* map_check) { |
| PushSafepointRegistersScope scope(this); |
| |
| InstanceofStub::Flags flags = InstanceofStub::kNoFlags; |
| flags = static_cast<InstanceofStub::Flags>( |
| flags | InstanceofStub::kArgsInRegisters); |
| flags = static_cast<InstanceofStub::Flags>( |
| flags | InstanceofStub::kCallSiteInlineCheck); |
| flags = static_cast<InstanceofStub::Flags>( |
| flags | InstanceofStub::kReturnTrueFalseObject); |
| InstanceofStub stub(flags); |
| |
| // Get the temp register reserved by the instruction. This needs to be a |
| // register which is pushed last by PushSafepointRegisters as top of the |
| // stack is used to pass the offset to the location of the map check to |
| // the stub. |
| Register temp = ToRegister(instr->TempAt(0)); |
| ASSERT(MacroAssembler::SafepointRegisterStackIndex(temp) == 0); |
| __ mov(InstanceofStub::right(), Immediate(instr->function())); |
| static const int kAdditionalDelta = 13; |
| int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta; |
| __ mov(temp, Immediate(delta)); |
| __ StoreToSafepointRegisterSlot(temp, temp); |
| CallCodeGeneric(stub.GetCode(), |
| RelocInfo::CODE_TARGET, |
| instr, |
| RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
| ASSERT(instr->HasDeoptimizationEnvironment()); |
| LEnvironment* env = instr->deoptimization_environment(); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| |
| // Put the result value into the eax slot and restore all registers. |
| __ StoreToSafepointRegisterSlot(eax, eax); |
| } |
| |
| |
| static Condition ComputeCompareCondition(Token::Value op) { |
| switch (op) { |
| case Token::EQ_STRICT: |
| case Token::EQ: |
| return equal; |
| case Token::LT: |
| return less; |
| case Token::GT: |
| return greater; |
| case Token::LTE: |
| return less_equal; |
| case Token::GTE: |
| return greater_equal; |
| default: |
| UNREACHABLE(); |
| return no_condition; |
| } |
| } |
| |
| |
| void LCodeGen::DoCmpT(LCmpT* instr) { |
| Token::Value op = instr->op(); |
| |
| Handle<Code> ic = CompareIC::GetUninitialized(op); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| |
| Condition condition = ComputeCompareCondition(op); |
| if (op == Token::GT || op == Token::LTE) { |
| condition = ReverseCondition(condition); |
| } |
| Label true_value, done; |
| __ test(eax, Operand(eax)); |
| __ j(condition, &true_value, Label::kNear); |
| __ mov(ToRegister(instr->result()), factory()->false_value()); |
| __ jmp(&done, Label::kNear); |
| __ bind(&true_value); |
| __ mov(ToRegister(instr->result()), factory()->true_value()); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoReturn(LReturn* instr) { |
| if (FLAG_trace) { |
| // Preserve the return value on the stack and rely on the runtime call |
| // to return the value in the same register. We're leaving the code |
| // managed by the register allocator and tearing down the frame, it's |
| // safe to write to the context register. |
| __ push(eax); |
| __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kTraceExit, 1); |
| } |
| __ mov(esp, ebp); |
| __ pop(ebp); |
| __ Ret((GetParameterCount() + 1) * kPointerSize, ecx); |
| } |
| |
| |
| void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { |
| Register result = ToRegister(instr->result()); |
| __ mov(result, Operand::Cell(instr->hydrogen()->cell())); |
| if (instr->hydrogen()->check_hole_value()) { |
| __ cmp(result, factory()->the_hole_value()); |
| DeoptimizeIf(equal, instr->environment()); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->global_object()).is(eax)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| __ mov(ecx, instr->name()); |
| RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET : |
| RelocInfo::CODE_TARGET_CONTEXT; |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| CallCode(ic, mode, instr); |
| } |
| |
| |
| void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { |
| Register value = ToRegister(instr->InputAt(0)); |
| Operand cell_operand = Operand::Cell(instr->hydrogen()->cell()); |
| |
| // If the cell we are storing to contains the hole it could have |
| // been deleted from the property dictionary. In that case, we need |
| // to update the property details in the property dictionary to mark |
| // it as no longer deleted. We deoptimize in that case. |
| if (instr->hydrogen()->check_hole_value()) { |
| __ cmp(cell_operand, factory()->the_hole_value()); |
| DeoptimizeIf(equal, instr->environment()); |
| } |
| |
| // Store the value. |
| __ mov(cell_operand, value); |
| } |
| |
| |
| void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->global_object()).is(edx)); |
| ASSERT(ToRegister(instr->value()).is(eax)); |
| |
| __ mov(ecx, instr->name()); |
| Handle<Code> ic = instr->strict_mode() |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); |
| } |
| |
| |
| void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { |
| Register context = ToRegister(instr->context()); |
| Register result = ToRegister(instr->result()); |
| __ mov(result, ContextOperand(context, instr->slot_index())); |
| } |
| |
| |
| void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { |
| Register context = ToRegister(instr->context()); |
| Register value = ToRegister(instr->value()); |
| __ mov(ContextOperand(context, instr->slot_index()), value); |
| if (instr->needs_write_barrier()) { |
| Register temp = ToRegister(instr->TempAt(0)); |
| int offset = Context::SlotOffset(instr->slot_index()); |
| __ RecordWrite(context, offset, value, temp); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { |
| Register object = ToRegister(instr->object()); |
| Register result = ToRegister(instr->result()); |
| if (instr->hydrogen()->is_in_object()) { |
| __ mov(result, FieldOperand(object, instr->hydrogen()->offset())); |
| } else { |
| __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset)); |
| __ mov(result, FieldOperand(result, instr->hydrogen()->offset())); |
| } |
| } |
| |
| |
| void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, |
| Register object, |
| Handle<Map> type, |
| Handle<String> name) { |
| LookupResult lookup; |
| type->LookupInDescriptors(NULL, *name, &lookup); |
| ASSERT(lookup.IsProperty() && |
| (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION)); |
| if (lookup.type() == FIELD) { |
| int index = lookup.GetLocalFieldIndexFromMap(*type); |
| int offset = index * kPointerSize; |
| if (index < 0) { |
| // Negative property indices are in-object properties, indexed |
| // from the end of the fixed part of the object. |
| __ mov(result, FieldOperand(object, offset + type->instance_size())); |
| } else { |
| // Non-negative property indices are in the properties array. |
| __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset)); |
| __ mov(result, FieldOperand(result, offset + FixedArray::kHeaderSize)); |
| } |
| } else { |
| Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type)); |
| LoadHeapObject(result, Handle<HeapObject>::cast(function)); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { |
| Register object = ToRegister(instr->object()); |
| Register result = ToRegister(instr->result()); |
| |
| int map_count = instr->hydrogen()->types()->length(); |
| Handle<String> name = instr->hydrogen()->name(); |
| if (map_count == 0) { |
| ASSERT(instr->hydrogen()->need_generic()); |
| __ mov(ecx, name); |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } else { |
| Label done; |
| for (int i = 0; i < map_count - 1; ++i) { |
| Handle<Map> map = instr->hydrogen()->types()->at(i); |
| Label next; |
| __ cmp(FieldOperand(object, HeapObject::kMapOffset), map); |
| __ j(not_equal, &next, Label::kNear); |
| EmitLoadFieldOrConstantFunction(result, object, map, name); |
| __ jmp(&done, Label::kNear); |
| __ bind(&next); |
| } |
| Handle<Map> map = instr->hydrogen()->types()->last(); |
| __ cmp(FieldOperand(object, HeapObject::kMapOffset), map); |
| if (instr->hydrogen()->need_generic()) { |
| Label generic; |
| __ j(not_equal, &generic, Label::kNear); |
| EmitLoadFieldOrConstantFunction(result, object, map, name); |
| __ jmp(&done, Label::kNear); |
| __ bind(&generic); |
| __ mov(ecx, name); |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } else { |
| DeoptimizeIf(not_equal, instr->environment()); |
| EmitLoadFieldOrConstantFunction(result, object, map, name); |
| } |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->object()).is(eax)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| __ mov(ecx, instr->name()); |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { |
| Register function = ToRegister(instr->function()); |
| Register temp = ToRegister(instr->TempAt(0)); |
| Register result = ToRegister(instr->result()); |
| |
| // Check that the function really is a function. |
| __ CmpObjectType(function, JS_FUNCTION_TYPE, result); |
| DeoptimizeIf(not_equal, instr->environment()); |
| |
| // Check whether the function has an instance prototype. |
| Label non_instance; |
| __ test_b(FieldOperand(result, Map::kBitFieldOffset), |
| 1 << Map::kHasNonInstancePrototype); |
| __ j(not_zero, &non_instance, Label::kNear); |
| |
| // Get the prototype or initial map from the function. |
| __ mov(result, |
| FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Check that the function has a prototype or an initial map. |
| __ cmp(Operand(result), Immediate(factory()->the_hole_value())); |
| DeoptimizeIf(equal, instr->environment()); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| __ CmpObjectType(result, MAP_TYPE, temp); |
| __ j(not_equal, &done, Label::kNear); |
| |
| // Get the prototype from the initial map. |
| __ mov(result, FieldOperand(result, Map::kPrototypeOffset)); |
| __ jmp(&done, Label::kNear); |
| |
| // Non-instance prototype: Fetch prototype from constructor field |
| // in the function's map. |
| __ bind(&non_instance); |
| __ mov(result, FieldOperand(result, Map::kConstructorOffset)); |
| |
| // All done. |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoLoadElements(LLoadElements* instr) { |
| Register result = ToRegister(instr->result()); |
| Register input = ToRegister(instr->InputAt(0)); |
| __ mov(result, FieldOperand(input, JSObject::kElementsOffset)); |
| if (FLAG_debug_code) { |
| Label done, ok, fail; |
| __ cmp(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(factory()->fixed_array_map())); |
| __ j(equal, &done, Label::kNear); |
| __ cmp(FieldOperand(result, HeapObject::kMapOffset), |
| Immediate(factory()->fixed_cow_array_map())); |
| __ j(equal, &done, Label::kNear); |
| Register temp((result.is(eax)) ? ebx : eax); |
| __ push(temp); |
| __ mov(temp, FieldOperand(result, HeapObject::kMapOffset)); |
| __ movzx_b(temp, FieldOperand(temp, Map::kBitField2Offset)); |
| __ and_(temp, Map::kElementsKindMask); |
| __ shr(temp, Map::kElementsKindShift); |
| __ cmp(temp, FAST_ELEMENTS); |
| __ j(equal, &ok, Label::kNear); |
| __ cmp(temp, FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); |
| __ j(less, &fail, Label::kNear); |
| __ cmp(temp, LAST_EXTERNAL_ARRAY_ELEMENTS_KIND); |
| __ j(less_equal, &ok, Label::kNear); |
| __ bind(&fail); |
| __ Abort("Check for fast or external elements failed."); |
| __ bind(&ok); |
| __ pop(temp); |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadExternalArrayPointer( |
| LLoadExternalArrayPointer* instr) { |
| Register result = ToRegister(instr->result()); |
| Register input = ToRegister(instr->InputAt(0)); |
| __ mov(result, FieldOperand(input, |
| ExternalArray::kExternalPointerOffset)); |
| } |
| |
| |
| void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { |
| Register arguments = ToRegister(instr->arguments()); |
| Register length = ToRegister(instr->length()); |
| Operand index = ToOperand(instr->index()); |
| Register result = ToRegister(instr->result()); |
| |
| __ sub(length, index); |
| DeoptimizeIf(below_equal, instr->environment()); |
| |
| // There are two words between the frame pointer and the last argument. |
| // Subtracting from length accounts for one of them add one more. |
| __ mov(result, Operand(arguments, length, times_4, kPointerSize)); |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { |
| Register result = ToRegister(instr->result()); |
| |
| // Load the result. |
| __ mov(result, |
| BuildFastArrayOperand(instr->elements(), instr->key(), |
| FAST_ELEMENTS, |
| FixedArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Check for the hole value. |
| if (instr->hydrogen()->RequiresHoleCheck()) { |
| __ cmp(result, factory()->the_hole_value()); |
| DeoptimizeIf(equal, instr->environment()); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedFastDoubleElement( |
| LLoadKeyedFastDoubleElement* instr) { |
| XMMRegister result = ToDoubleRegister(instr->result()); |
| |
| if (instr->hydrogen()->RequiresHoleCheck()) { |
| int offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag + |
| sizeof(kHoleNanLower32); |
| Operand hole_check_operand = BuildFastArrayOperand( |
| instr->elements(), instr->key(), |
| FAST_DOUBLE_ELEMENTS, |
| offset); |
| __ cmp(hole_check_operand, Immediate(kHoleNanUpper32)); |
| DeoptimizeIf(equal, instr->environment()); |
| } |
| |
| Operand double_load_operand = BuildFastArrayOperand( |
| instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS, |
| FixedDoubleArray::kHeaderSize - kHeapObjectTag); |
| __ movdbl(result, double_load_operand); |
| } |
| |
| |
| Operand LCodeGen::BuildFastArrayOperand( |
| LOperand* elements_pointer, |
| LOperand* key, |
| ElementsKind elements_kind, |
| uint32_t offset) { |
| Register elements_pointer_reg = ToRegister(elements_pointer); |
| int shift_size = ElementsKindToShiftSize(elements_kind); |
| if (key->IsConstantOperand()) { |
| int constant_value = ToInteger32(LConstantOperand::cast(key)); |
| if (constant_value & 0xF0000000) { |
| Abort("array index constant value too big"); |
| } |
| return Operand(elements_pointer_reg, |
| constant_value * (1 << shift_size) + offset); |
| } else { |
| ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size); |
| return Operand(elements_pointer_reg, ToRegister(key), scale_factor, offset); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedSpecializedArrayElement( |
| LLoadKeyedSpecializedArrayElement* instr) { |
| ElementsKind elements_kind = instr->elements_kind(); |
| Operand operand(BuildFastArrayOperand(instr->external_pointer(), |
| instr->key(), elements_kind, 0)); |
| if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
| XMMRegister result(ToDoubleRegister(instr->result())); |
| __ movss(result, operand); |
| __ cvtss2sd(result, result); |
| } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
| __ movdbl(ToDoubleRegister(instr->result()), operand); |
| } else { |
| Register result(ToRegister(instr->result())); |
| switch (elements_kind) { |
| case EXTERNAL_BYTE_ELEMENTS: |
| __ movsx_b(result, operand); |
| break; |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| __ movzx_b(result, operand); |
| break; |
| case EXTERNAL_SHORT_ELEMENTS: |
| __ movsx_w(result, operand); |
| break; |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| __ movzx_w(result, operand); |
| break; |
| case EXTERNAL_INT_ELEMENTS: |
| __ mov(result, operand); |
| break; |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| __ mov(result, operand); |
| __ test(result, Operand(result)); |
| // TODO(danno): we could be more clever here, perhaps having a special |
| // version of the stub that detects if the overflow case actually |
| // happens, and generate code that returns a double rather than int. |
| DeoptimizeIf(negative, instr->environment()); |
| break; |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->object()).is(edx)); |
| ASSERT(ToRegister(instr->key()).is(eax)); |
| |
| Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { |
| Register result = ToRegister(instr->result()); |
| |
| // Check for arguments adapter frame. |
| Label done, adapted; |
| __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(result, Operand(result, StandardFrameConstants::kContextOffset)); |
| __ cmp(Operand(result), |
| Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adapted, Label::kNear); |
| |
| // No arguments adaptor frame. |
| __ mov(result, Operand(ebp)); |
| __ jmp(&done, Label::kNear); |
| |
| // Arguments adaptor frame present. |
| __ bind(&adapted); |
| __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Result is the frame pointer for the frame if not adapted and for the real |
| // frame below the adaptor frame if adapted. |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { |
| Operand elem = ToOperand(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| |
| Label done; |
| |
| // If no arguments adaptor frame the number of arguments is fixed. |
| __ cmp(ebp, elem); |
| __ mov(result, Immediate(scope()->num_parameters())); |
| __ j(equal, &done, Label::kNear); |
| |
| // Arguments adaptor frame present. Get argument length from there. |
| __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(result, Operand(result, |
| ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(result); |
| |
| // Argument length is in result register. |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoApplyArguments(LApplyArguments* instr) { |
| Register receiver = ToRegister(instr->receiver()); |
| Register function = ToRegister(instr->function()); |
| Register length = ToRegister(instr->length()); |
| Register elements = ToRegister(instr->elements()); |
| Register scratch = ToRegister(instr->TempAt(0)); |
| ASSERT(receiver.is(eax)); // Used for parameter count. |
| ASSERT(function.is(edi)); // Required by InvokeFunction. |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| // If the receiver is null or undefined, we have to pass the global |
| // object as a receiver to normal functions. Values have to be |
| // passed unchanged to builtins and strict-mode functions. |
| Label global_object, receiver_ok; |
| |
| // Do not transform the receiver to object for strict mode |
| // functions. |
| __ mov(scratch, |
| FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset), |
| 1 << SharedFunctionInfo::kStrictModeBitWithinByte); |
| __ j(not_equal, &receiver_ok, Label::kNear); |
| |
| // Do not transform the receiver to object for builtins. |
| __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset), |
| 1 << SharedFunctionInfo::kNativeBitWithinByte); |
| __ j(not_equal, &receiver_ok, Label::kNear); |
| |
| // Normal function. Replace undefined or null with global receiver. |
| __ cmp(receiver, factory()->null_value()); |
| __ j(equal, &global_object, Label::kNear); |
| __ cmp(receiver, factory()->undefined_value()); |
| __ j(equal, &global_object, Label::kNear); |
| |
| // The receiver should be a JS object. |
| __ test(receiver, Immediate(kSmiTagMask)); |
| DeoptimizeIf(equal, instr->environment()); |
| __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch); |
| DeoptimizeIf(below, instr->environment()); |
| __ jmp(&receiver_ok, Label::kNear); |
| |
| __ bind(&global_object); |
| // TODO(kmillikin): We have a hydrogen value for the global object. See |
| // if it's better to use it than to explicitly fetch it from the context |
| // here. |
| __ mov(receiver, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| __ mov(receiver, ContextOperand(receiver, Context::GLOBAL_INDEX)); |
| __ mov(receiver, |
| FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); |
| __ bind(&receiver_ok); |
| |
| // Copy the arguments to this function possibly from the |
| // adaptor frame below it. |
| const uint32_t kArgumentsLimit = 1 * KB; |
| __ cmp(length, kArgumentsLimit); |
| DeoptimizeIf(above, instr->environment()); |
| |
| __ push(receiver); |
| __ mov(receiver, length); |
| |
| // Loop through the arguments pushing them onto the execution |
| // stack. |
| Label invoke, loop; |
| // length is a small non-negative integer, due to the test above. |
| __ test(length, Operand(length)); |
| __ j(zero, &invoke, Label::kNear); |
| __ bind(&loop); |
| __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize)); |
| __ dec(length); |
| __ j(not_zero, &loop); |
| |
| // Invoke the function. |
| __ bind(&invoke); |
| ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| SafepointGenerator safepoint_generator( |
| this, pointers, Safepoint::kLazyDeopt); |
| ParameterCount actual(eax); |
| __ InvokeFunction(function, actual, CALL_FUNCTION, |
| safepoint_generator, CALL_AS_METHOD); |
| } |
| |
| |
| void LCodeGen::DoPushArgument(LPushArgument* instr) { |
| LOperand* argument = instr->InputAt(0); |
| if (argument->IsConstantOperand()) { |
| __ push(ToImmediate(argument)); |
| } else { |
| __ push(ToOperand(argument)); |
| } |
| } |
| |
| |
| void LCodeGen::DoThisFunction(LThisFunction* instr) { |
| Register result = ToRegister(instr->result()); |
| __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| } |
| |
| |
| void LCodeGen::DoContext(LContext* instr) { |
| Register result = ToRegister(instr->result()); |
| __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| |
| void LCodeGen::DoOuterContext(LOuterContext* instr) { |
| Register context = ToRegister(instr->context()); |
| Register result = ToRegister(instr->result()); |
| __ mov(result, |
| Operand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| } |
| |
| |
| void LCodeGen::DoGlobalObject(LGlobalObject* instr) { |
| Register context = ToRegister(instr->context()); |
| Register result = ToRegister(instr->result()); |
| __ mov(result, Operand(context, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| } |
| |
| |
| void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { |
| Register global = ToRegister(instr->global()); |
| Register result = ToRegister(instr->result()); |
| __ mov(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset)); |
| } |
| |
| |
| void LCodeGen::CallKnownFunction(Handle<JSFunction> function, |
| int arity, |
| LInstruction* instr, |
| CallKind call_kind) { |
| // Change context if needed. |
| bool change_context = |
| (info()->closure()->context() != function->context()) || |
| scope()->contains_with() || |
| (scope()->num_heap_slots() > 0); |
| if (change_context) { |
| __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| } else { |
| __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| // Set eax to arguments count if adaption is not needed. Assumes that eax |
| // is available to write to at this point. |
| if (!function->NeedsArgumentsAdaption()) { |
| __ mov(eax, arity); |
| } |
| |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| |
| // Invoke function. |
| __ SetCallKind(ecx, call_kind); |
| if (*function == *info()->closure()) { |
| __ CallSelf(); |
| } else { |
| __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset)); |
| } |
| |
| RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| |
| void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| __ mov(edi, instr->function()); |
| CallKnownFunction(instr->function(), |
| instr->arity(), |
| instr, |
| CALL_AS_METHOD); |
| } |
| |
| |
| void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { |
| Register input_reg = ToRegister(instr->value()); |
| __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), |
| factory()->heap_number_map()); |
| DeoptimizeIf(not_equal, instr->environment()); |
| |
| Label done; |
| Register tmp = input_reg.is(eax) ? ecx : eax; |
| Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx; |
| |
| // Preserve the value of all registers. |
| PushSafepointRegistersScope scope(this); |
| |
| Label negative; |
| __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset)); |
| // Check the sign of the argument. If the argument is positive, just |
| // return it. We do not need to patch the stack since |input| and |
| // |result| are the same register and |input| will be restored |
| // unchanged by popping safepoint registers. |
| __ test(tmp, Immediate(HeapNumber::kSignMask)); |
| __ j(not_zero, &negative); |
| __ jmp(&done); |
| |
| __ bind(&negative); |
| |
| Label allocated, slow; |
| __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow); |
| __ jmp(&allocated); |
| |
| // Slow case: Call the runtime system to do the number allocation. |
| __ bind(&slow); |
| |
| CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, |
| instr, instr->context()); |
| |
| // Set the pointer to the new heap number in tmp. |
| if (!tmp.is(eax)) __ mov(tmp, eax); |
| |
| // Restore input_reg after call to runtime. |
| __ LoadFromSafepointRegisterSlot(input_reg, input_reg); |
| |
| __ bind(&allocated); |
| __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset)); |
| __ and_(tmp2, ~HeapNumber::kSignMask); |
| __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2); |
| __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset)); |
| __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2); |
| __ StoreToSafepointRegisterSlot(input_reg, tmp); |
| |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { |
| Register input_reg = ToRegister(instr->value()); |
| __ test(input_reg, Operand(input_reg)); |
| Label is_positive; |
| __ j(not_sign, &is_positive); |
| __ neg(input_reg); |
| __ test(input_reg, Operand(input_reg)); |
| DeoptimizeIf(negative, instr->environment()); |
| __ bind(&is_positive); |
| } |
| |
| |
| void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { |
| // Class for deferred case. |
| class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { |
| public: |
| DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, |
| LUnaryMathOperation* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { |
| codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); |
| } |
| private: |
| LUnaryMathOperation* instr_; |
| }; |
| |
| ASSERT(instr->value()->Equals(instr->result())); |
| Representation r = instr->hydrogen()->value()->representation(); |
| |
| if (r.IsDouble()) { |
| XMMRegister scratch = xmm0; |
| XMMRegister input_reg = ToDoubleRegister(instr->value()); |
| __ xorps(scratch, scratch); |
| __ subsd(scratch, input_reg); |
| __ pand(input_reg, scratch); |
| } else if (r.IsInteger32()) { |
| EmitIntegerMathAbs(instr); |
| } else { // Tagged case. |
| DeferredMathAbsTaggedHeapNumber* deferred = |
| new DeferredMathAbsTaggedHeapNumber(this, instr); |
| Register input_reg = ToRegister(instr->value()); |
| // Smi check. |
| __ JumpIfNotSmi(input_reg, deferred->entry()); |
| EmitIntegerMathAbs(instr); |
| __ bind(deferred->exit()); |
| } |
| } |
| |
| |
| void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { |
| XMMRegister xmm_scratch = xmm0; |
| Register output_reg = ToRegister(instr->result()); |
| XMMRegister input_reg = ToDoubleRegister(instr->value()); |
| |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatures::Scope scope(SSE4_1); |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // Deoptimize on negative zero. |
| Label non_zero; |
| __ xorps(xmm_scratch, xmm_scratch); // Zero the register. |
| __ ucomisd(input_reg, xmm_scratch); |
| __ j(not_equal, &non_zero, Label::kNear); |
| __ movmskpd(output_reg, input_reg); |
| __ test(output_reg, Immediate(1)); |
| DeoptimizeIf(not_zero, instr->environment()); |
| __ bind(&non_zero); |
| } |
| __ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown); |
| __ cvttsd2si(output_reg, Operand(xmm_scratch)); |
| // Overflow is signalled with minint. |
| __ cmp(output_reg, 0x80000000u); |
| DeoptimizeIf(equal, instr->environment()); |
| } else { |
| Label done; |
| // Deoptimize on negative numbers. |
| __ xorps(xmm_scratch, xmm_scratch); // Zero the register. |
| __ ucomisd(input_reg, xmm_scratch); |
| DeoptimizeIf(below, instr->environment()); |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // Check for negative zero. |
| Label positive_sign; |
| __ j(above, &positive_sign, Label::kNear); |
| __ movmskpd(output_reg, input_reg); |
| __ test(output_reg, Immediate(1)); |
| DeoptimizeIf(not_zero, instr->environment()); |
| __ Set(output_reg, Immediate(0)); |
| __ jmp(&done, Label::kNear); |
| __ bind(&positive_sign); |
| } |
| |
| // Use truncating instruction (OK because input is positive). |
| __ cvttsd2si(output_reg, Operand(input_reg)); |
| |
| // Overflow is signalled with minint. |
| __ cmp(output_reg, 0x80000000u); |
| DeoptimizeIf(equal, instr->environment()); |
| __ bind(&done); |
| } |
| } |
| |
| void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { |
| XMMRegister xmm_scratch = xmm0; |
| Register output_reg = ToRegister(instr->result()); |
| XMMRegister input_reg = ToDoubleRegister(instr->value()); |
| |
| Label below_half, done; |
| // xmm_scratch = 0.5 |
| ExternalReference one_half = ExternalReference::address_of_one_half(); |
| __ movdbl(xmm_scratch, Operand::StaticVariable(one_half)); |
| __ ucomisd(xmm_scratch, input_reg); |
| __ j(above, &below_half); |
| // xmm_scratch = input + 0.5 |
| __ addsd(xmm_scratch, input_reg); |
| |
| // Compute Math.floor(value + 0.5). |
| // Use truncating instruction (OK because input is positive). |
| __ cvttsd2si(output_reg, Operand(xmm_scratch)); |
| |
| // Overflow is signalled with minint. |
| __ cmp(output_reg, 0x80000000u); |
| DeoptimizeIf(equal, instr->environment()); |
| __ jmp(&done); |
| |
| __ bind(&below_half); |
| |
| // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if |
| // we can ignore the difference between a result of -0 and +0. |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // If the sign is positive, we return +0. |
| __ movmskpd(output_reg, input_reg); |
| __ test(output_reg, Immediate(1)); |
| DeoptimizeIf(not_zero, instr->environment()); |
| } else { |
| // If the input is >= -0.5, we return +0. |
| __ mov(output_reg, Immediate(0xBF000000)); |
| __ movd(xmm_scratch, Operand(output_reg)); |
| __ cvtss2sd(xmm_scratch, xmm_scratch); |
| __ ucomisd(input_reg, xmm_scratch); |
| DeoptimizeIf(below, instr->environment()); |
| } |
| __ Set(output_reg, Immediate(0)); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { |
| XMMRegister input_reg = ToDoubleRegister(instr->value()); |
| ASSERT(ToDoubleRegister(instr->result()).is(input_reg)); |
| __ sqrtsd(input_reg, input_reg); |
| } |
| |
| |
| void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) { |
| XMMRegister xmm_scratch = xmm0; |
| XMMRegister input_reg = ToDoubleRegister(instr->value()); |
| ASSERT(ToDoubleRegister(instr->result()).is(input_reg)); |
| __ xorps(xmm_scratch, xmm_scratch); |
| __ addsd(input_reg, xmm_scratch); // Convert -0 to +0. |
| __ sqrtsd(input_reg, input_reg); |
| } |
| |
| |
| void LCodeGen::DoPower(LPower* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| DoubleRegister result_reg = ToDoubleRegister(instr->result()); |
| Representation exponent_type = instr->hydrogen()->right()->representation(); |
| |
| if (exponent_type.IsDouble()) { |
| // It is safe to use ebx directly since the instruction is marked |
| // as a call. |
| __ PrepareCallCFunction(4, ebx); |
| __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left)); |
| __ movdbl(Operand(esp, 1 * kDoubleSize), ToDoubleRegister(right)); |
| __ CallCFunction(ExternalReference::power_double_double_function(isolate()), |
| 4); |
| } else if (exponent_type.IsInteger32()) { |
| // It is safe to use ebx directly since the instruction is marked |
| // as a call. |
| ASSERT(!ToRegister(right).is(ebx)); |
| __ PrepareCallCFunction(4, ebx); |
| __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left)); |
| __ mov(Operand(esp, 1 * kDoubleSize), ToRegister(right)); |
| __ CallCFunction(ExternalReference::power_double_int_function(isolate()), |
| 4); |
| } else { |
| ASSERT(exponent_type.IsTagged()); |
| CpuFeatures::Scope scope(SSE2); |
| Register right_reg = ToRegister(right); |
| |
| Label non_smi, call; |
| __ JumpIfNotSmi(right_reg, &non_smi); |
| __ SmiUntag(right_reg); |
| __ cvtsi2sd(result_reg, Operand(right_reg)); |
| __ jmp(&call); |
| |
| __ bind(&non_smi); |
| // It is safe to use ebx directly since the instruction is marked |
| // as a call. |
| ASSERT(!right_reg.is(ebx)); |
| __ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , ebx); |
| DeoptimizeIf(not_equal, instr->environment()); |
| __ movdbl(result_reg, FieldOperand(right_reg, HeapNumber::kValueOffset)); |
| |
| __ bind(&call); |
| __ PrepareCallCFunction(4, ebx); |
| __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left)); |
| __ movdbl(Operand(esp, 1 * kDoubleSize), result_reg); |
| __ CallCFunction(ExternalReference::power_double_double_function(isolate()), |
| 4); |
| } |
| |
| // Return value is in st(0) on ia32. |
| // Store it into the (fixed) result register. |
| __ sub(Operand(esp), Immediate(kDoubleSize)); |
| __ fstp_d(Operand(esp, 0)); |
| __ movdbl(result_reg, Operand(esp, 0)); |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| } |
| |
| |
| void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { |
| ASSERT(instr->value()->Equals(instr->result())); |
| XMMRegister input_reg = ToDoubleRegister(instr->value()); |
| Label positive, done, zero; |
| __ xorps(xmm0, xmm0); |
| __ ucomisd(input_reg, xmm0); |
| __ j(above, &positive, Label::kNear); |
| __ j(equal, &zero, Label::kNear); |
| ExternalReference nan = |
| ExternalReference::address_of_canonical_non_hole_nan(); |
| __ movdbl(input_reg, Operand::StaticVariable(nan)); |
| __ jmp(&done, Label::kNear); |
| __ bind(&zero); |
| __ push(Immediate(0xFFF00000)); |
| __ push(Immediate(0)); |
| __ movdbl(input_reg, Operand(esp, 0)); |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| __ jmp(&done, Label::kNear); |
| __ bind(&positive); |
| __ fldln2(); |
| __ sub(Operand(esp), Immediate(kDoubleSize)); |
| __ movdbl(Operand(esp, 0), input_reg); |
| __ fld_d(Operand(esp, 0)); |
| __ fyl2x(); |
| __ fstp_d(Operand(esp, 0)); |
| __ movdbl(input_reg, Operand(esp, 0)); |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { |
| ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); |
| TranscendentalCacheStub stub(TranscendentalCache::COS, |
| TranscendentalCacheStub::UNTAGGED); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { |
| ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); |
| TranscendentalCacheStub stub(TranscendentalCache::SIN, |
| TranscendentalCacheStub::UNTAGGED); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { |
| switch (instr->op()) { |
| case kMathAbs: |
| DoMathAbs(instr); |
| break; |
| case kMathFloor: |
| DoMathFloor(instr); |
| break; |
| case kMathRound: |
| DoMathRound(instr); |
| break; |
| case kMathSqrt: |
| DoMathSqrt(instr); |
| break; |
| case kMathPowHalf: |
| DoMathPowHalf(instr); |
| break; |
| case kMathCos: |
| DoMathCos(instr); |
| break; |
| case kMathSin: |
| DoMathSin(instr); |
| break; |
| case kMathLog: |
| DoMathLog(instr); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->function()).is(edi)); |
| ASSERT(instr->HasPointerMap()); |
| ASSERT(instr->HasDeoptimizationEnvironment()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| SafepointGenerator generator( |
| this, pointers, Safepoint::kLazyDeopt); |
| ParameterCount count(instr->arity()); |
| __ InvokeFunction(edi, count, CALL_FUNCTION, generator, CALL_AS_METHOD); |
| } |
| |
| |
| void LCodeGen::DoCallKeyed(LCallKeyed* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->key()).is(ecx)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| int arity = instr->arity(); |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoCallNamed(LCallNamed* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| int arity = instr->arity(); |
| RelocInfo::Mode mode = RelocInfo::CODE_TARGET; |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeCallInitialize(arity, mode); |
| __ mov(ecx, instr->name()); |
| CallCode(ic, mode, instr); |
| } |
| |
| |
| void LCodeGen::DoCallFunction(LCallFunction* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| int arity = instr->arity(); |
| CallFunctionStub stub(arity, RECEIVER_MIGHT_BE_IMPLICIT); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| __ Drop(1); |
| } |
| |
| |
| void LCodeGen::DoCallGlobal(LCallGlobal* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| int arity = instr->arity(); |
| RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeCallInitialize(arity, mode); |
| __ mov(ecx, instr->name()); |
| CallCode(ic, mode, instr); |
| } |
| |
| |
| void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| __ mov(edi, instr->target()); |
| CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION); |
| } |
| |
| |
| void LCodeGen::DoCallNew(LCallNew* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->constructor()).is(edi)); |
| ASSERT(ToRegister(instr->result()).is(eax)); |
| |
| Handle<Code> builtin = isolate()->builtins()->JSConstructCall(); |
| __ Set(eax, Immediate(instr->arity())); |
| CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr); |
| } |
| |
| |
| void LCodeGen::DoCallRuntime(LCallRuntime* instr) { |
| CallRuntime(instr->function(), instr->arity(), instr); |
| } |
| |
| |
| void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { |
| Register object = ToRegister(instr->object()); |
| Register value = ToRegister(instr->value()); |
| int offset = instr->offset(); |
| |
| if (!instr->transition().is_null()) { |
| __ mov(FieldOperand(object, HeapObject::kMapOffset), instr->transition()); |
| } |
| |
| // Do the store. |
| if (instr->is_in_object()) { |
| __ mov(FieldOperand(object, offset), value); |
| if (instr->needs_write_barrier()) { |
| Register temp = ToRegister(instr->TempAt(0)); |
| // Update the write barrier for the object for in-object properties. |
| __ RecordWrite(object, offset, value, temp); |
| } |
| } else { |
| Register temp = ToRegister(instr->TempAt(0)); |
| __ mov(temp, FieldOperand(object, JSObject::kPropertiesOffset)); |
| __ mov(FieldOperand(temp, offset), value); |
| if (instr->needs_write_barrier()) { |
| // Update the write barrier for the properties array. |
| // object is used as a scratch register. |
| __ RecordWrite(temp, offset, value, object); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->object()).is(edx)); |
| ASSERT(ToRegister(instr->value()).is(eax)); |
| |
| __ mov(ecx, instr->name()); |
| Handle<Code> ic = instr->strict_mode() |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { |
| if (instr->index()->IsConstantOperand()) { |
| __ cmp(ToOperand(instr->length()), |
| ToImmediate(LConstantOperand::cast(instr->index()))); |
| DeoptimizeIf(below_equal, instr->environment()); |
| } else { |
| __ cmp(ToRegister(instr->index()), ToOperand(instr->length())); |
| DeoptimizeIf(above_equal, instr->environment()); |
| } |
| } |
| |
| |
| void LCodeGen::DoStoreKeyedSpecializedArrayElement( |
| LStoreKeyedSpecializedArrayElement* instr) { |
| ElementsKind elements_kind = instr->elements_kind(); |
| Operand operand(BuildFastArrayOperand(instr->external_pointer(), |
| instr->key(), elements_kind, 0)); |
| if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
| __ cvtsd2ss(xmm0, ToDoubleRegister(instr->value())); |
| __ movss(operand, xmm0); |
| } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
| __ movdbl(operand, ToDoubleRegister(instr->value())); |
| } else { |
| Register value = ToRegister(instr->value()); |
| switch (elements_kind) { |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_BYTE_ELEMENTS: |
| __ mov_b(operand, value); |
| break; |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| __ mov_w(operand, value); |
| break; |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| __ mov(operand, value); |
| break; |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { |
| Register value = ToRegister(instr->value()); |
| Register elements = ToRegister(instr->object()); |
| Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; |
| |
| // Do the store. |
| if (instr->key()->IsConstantOperand()) { |
| ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); |
| LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); |
| int offset = |
| ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize; |
| __ mov(FieldOperand(elements, offset), value); |
| } else { |
| __ mov(FieldOperand(elements, |
| key, |
| times_pointer_size, |
| FixedArray::kHeaderSize), |
| value); |
| } |
| |
| if (instr->hydrogen()->NeedsWriteBarrier()) { |
| // Compute address of modified element and store it into key register. |
| __ lea(key, |
| FieldOperand(elements, |
| key, |
| times_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ RecordWrite(elements, key, value); |
| } |
| } |
| |
| |
| void LCodeGen::DoStoreKeyedFastDoubleElement( |
| LStoreKeyedFastDoubleElement* instr) { |
| XMMRegister value = ToDoubleRegister(instr->value()); |
| Label have_value; |
| |
| __ ucomisd(value, value); |
| __ j(parity_odd, &have_value); // NaN. |
| |
| ExternalReference canonical_nan_reference = |
| ExternalReference::address_of_canonical_non_hole_nan(); |
| __ movdbl(value, Operand::StaticVariable(canonical_nan_reference)); |
| __ bind(&have_value); |
| |
| Operand double_store_operand = BuildFastArrayOperand( |
| instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS, |
| FixedDoubleArray::kHeaderSize - kHeapObjectTag); |
| __ movdbl(double_store_operand, value); |
| } |
| |
| |
| void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| ASSERT(ToRegister(instr->object()).is(edx)); |
| ASSERT(ToRegister(instr->key()).is(ecx)); |
| ASSERT(ToRegister(instr->value()).is(eax)); |
| |
| Handle<Code> ic = instr->strict_mode() |
| ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() |
| : isolate()->builtins()->KeyedStoreIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { |
| class DeferredStringCharCodeAt: public LDeferredCode { |
| public: |
| DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } |
| private: |
| LStringCharCodeAt* instr_; |
| }; |
| |
| Register string = ToRegister(instr->string()); |
| Register index = ToRegister(instr->index()); |
| Register result = ToRegister(instr->result()); |
| |
| DeferredStringCharCodeAt* deferred = |
| new DeferredStringCharCodeAt(this, instr); |
| |
| // Fetch the instance type of the receiver into result register. |
| __ mov(result, FieldOperand(string, HeapObject::kMapOffset)); |
| __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset)); |
| |
| // We need special handling for indirect strings. |
| Label check_sequential; |
| __ test(result, Immediate(kIsIndirectStringMask)); |
| __ j(zero, &check_sequential, Label::kNear); |
| |
| // Dispatch on the indirect string shape: slice or cons. |
| Label cons_string; |
| __ test(result, Immediate(kSlicedNotConsMask)); |
| __ j(zero, &cons_string, Label::kNear); |
| |
| // Handle slices. |
| Label indirect_string_loaded; |
| __ mov(result, FieldOperand(string, SlicedString::kOffsetOffset)); |
| __ SmiUntag(result); |
| __ add(index, Operand(result)); |
| __ mov(string, FieldOperand(string, SlicedString::kParentOffset)); |
| __ jmp(&indirect_string_loaded, Label::kNear); |
| |
| // Handle conses. |
| // Check whether the right hand side is the empty string (i.e. if |
| // this is really a flat string in a cons string). If that is not |
| // the case we would rather go to the runtime system now to flatten |
| // the string. |
| __ bind(&cons_string); |
| __ cmp(FieldOperand(string, ConsString::kSecondOffset), |
| Immediate(factory()->empty_string())); |
| __ j(not_equal, deferred->entry()); |
| __ mov(string, FieldOperand(string, ConsString::kFirstOffset)); |
| |
| __ bind(&indirect_string_loaded); |
| __ mov(result, FieldOperand(string, HeapObject::kMapOffset)); |
| __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset)); |
| |
| // Check whether the string is sequential. The only non-sequential |
| // shapes we support have just been unwrapped above. |
| __ bind(&check_sequential); |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ test(result, Immediate(kStringRepresentationMask)); |
| __ j(not_zero, deferred->entry()); |
| |
| // Dispatch on the encoding: ASCII or two-byte. |
| Label ascii_string; |
| STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); |
| STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
| __ test(result, Immediate(kStringEncodingMask)); |
| __ j(not_zero, &ascii_string, Label::kNear); |
| |
| // Two-byte string. |
| // Load the two-byte character code into the result register. |
| Label done; |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ movzx_w(result, FieldOperand(string, |
| index, |
| times_2, |
| SeqTwoByteString::kHeaderSize)); |
| __ jmp(&done, Label::kNear); |
| |
| // ASCII string. |
| // Load the byte into the result register. |
| __ bind(&ascii_string); |
| __ movzx_b(result, FieldOperand(string, |
| index, |
| times_1, |
| SeqAsciiString::kHeaderSize)); |
| __ bind(&done); |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { |
| Register string = ToRegister(instr->string()); |
| Register result = ToRegister(instr->result()); |
| |
| // TODO(3095996): Get rid of this. For now, we need to make the |
| // result register contain a valid pointer because it is already |
| // contained in the register pointer map. |
| __ Set(result, Immediate(0)); |
| |
| PushSafepointRegistersScope scope(this); |
| __ push(string); |
| // Push the index as a smi. This is safe because of the checks in |
| // DoStringCharCodeAt above. |
| STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); |
| if (instr->index()->IsConstantOperand()) { |
| int const_index = ToInteger32(LConstantOperand::cast(instr->index())); |
| __ push(Immediate(Smi::FromInt(const_index))); |
| } else { |
| Register index = ToRegister(instr->index()); |
| __ SmiTag(index); |
| __ push(index); |
| } |
| CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, |
| instr, instr->context()); |
| if (FLAG_debug_code) { |
| __ AbortIfNotSmi(eax); |
| } |
| __ SmiUntag(eax); |
| __ StoreToSafepointRegisterSlot(result, eax); |
| } |
| |
| |
| void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { |
| class DeferredStringCharFromCode: public LDeferredCode { |
| public: |
| DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } |
| private: |
| LStringCharFromCode* instr_; |
| }; |
| |
| DeferredStringCharFromCode* deferred = |
| new DeferredStringCharFromCode(this, instr); |
| |
| ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); |
| Register char_code = ToRegister(instr->char_code()); |
| Register result = ToRegister(instr->result()); |
| ASSERT(!char_code.is(result)); |
| |
| __ cmp(char_code, String::kMaxAsciiCharCode); |
| __ j(above, deferred->entry()); |
| __ Set(result, Immediate(factory()->single_character_string_cache())); |
| __ mov(result, FieldOperand(result, |
| char_code, times_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ cmp(result, factory()->undefined_value()); |
| __ j(equal, deferred->entry()); |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { |
| Register char_code = ToRegister(instr->char_code()); |
| Register result = ToRegister(instr->result()); |
| |
| // TODO(3095996): Get rid of this. For now, we need to make the |
| // result register contain a valid pointer because it is already |
| // contained in the register pointer map. |
| __ Set(result, Immediate(0)); |
| |
| PushSafepointRegistersScope scope(this); |
| __ SmiTag(char_code); |
| __ push(char_code); |
| CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); |
| __ StoreToSafepointRegisterSlot(result, eax); |
| } |
| |
| |
| void LCodeGen::DoStringLength(LStringLength* instr) { |
| Register string = ToRegister(instr->string()); |
| Register result = ToRegister(instr->result()); |
| __ mov(result, FieldOperand(string, String::kLengthOffset)); |
| } |
| |
| |
| void LCodeGen::DoStringAdd(LStringAdd* instr) { |
| if (instr->left()->IsConstantOperand()) { |
| __ push(ToImmediate(instr->left())); |
| } else { |
| __ push(ToOperand(instr->left())); |
| } |
| if (instr->right()->IsConstantOperand()) { |
| __ push(ToImmediate(instr->right())); |
| } else { |
| __ push(ToOperand(instr->right())); |
| } |
| StringAddStub stub(NO_STRING_CHECK_IN_STUB); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister() || input->IsStackSlot()); |
| LOperand* output = instr->result(); |
| ASSERT(output->IsDoubleRegister()); |
| __ cvtsi2sd(ToDoubleRegister(output), ToOperand(input)); |
| } |
| |
| |
| void LCodeGen::DoNumberTagI(LNumberTagI* instr) { |
| class DeferredNumberTagI: public LDeferredCode { |
| public: |
| DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); } |
| private: |
| LNumberTagI* instr_; |
| }; |
| |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister() && input->Equals(instr->result())); |
| Register reg = ToRegister(input); |
| |
| DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr); |
| __ SmiTag(reg); |
| __ j(overflow, deferred->entry()); |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) { |
| Label slow; |
| Register reg = ToRegister(instr->InputAt(0)); |
| Register tmp = reg.is(eax) ? ecx : eax; |
| |
| // Preserve the value of all registers. |
| PushSafepointRegistersScope scope(this); |
| |
| // There was overflow, so bits 30 and 31 of the original integer |
| // disagree. Try to allocate a heap number in new space and store |
| // the value in there. If that fails, call the runtime system. |
| Label done; |
| __ SmiUntag(reg); |
| __ xor_(reg, 0x80000000); |
| __ cvtsi2sd(xmm0, Operand(reg)); |
| if (FLAG_inline_new) { |
| __ AllocateHeapNumber(reg, tmp, no_reg, &slow); |
| __ jmp(&done, Label::kNear); |
| } |
| |
| // Slow case: Call the runtime system to do the number allocation. |
| __ bind(&slow); |
| |
| // TODO(3095996): Put a valid pointer value in the stack slot where the result |
| // register is stored, as this register is in the pointer map, but contains an |
| // integer value. |
| __ StoreToSafepointRegisterSlot(reg, Immediate(0)); |
| // NumberTagI and NumberTagD use the context from the frame, rather than |
| // the environment's HContext or HInlinedContext value. |
| // They only call Runtime::kAllocateHeapNumber. |
| // The corresponding HChange instructions are added in a phase that does |
| // not have easy access to the local context. |
| __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); |
| if (!reg.is(eax)) __ mov(reg, eax); |
| |
| // Done. Put the value in xmm0 into the value of the allocated heap |
| // number. |
| __ bind(&done); |
| __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), xmm0); |
| __ StoreToSafepointRegisterSlot(reg, reg); |
| } |
| |
| |
| void LCodeGen::DoNumberTagD(LNumberTagD* instr) { |
| class DeferredNumberTagD: public LDeferredCode { |
| public: |
| DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } |
| private: |
| LNumberTagD* instr_; |
| }; |
| |
| XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0)); |
| Register reg = ToRegister(instr->result()); |
| Register tmp = ToRegister(instr->TempAt(0)); |
| |
| DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr); |
| if (FLAG_inline_new) { |
| __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry()); |
| } else { |
| __ jmp(deferred->entry()); |
| } |
| __ bind(deferred->exit()); |
| __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), input_reg); |
| } |
| |
| |
| void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { |
| // TODO(3095996): Get rid of this. For now, we need to make the |
| // result register contain a valid pointer because it is already |
| // contained in the register pointer map. |
| Register reg = ToRegister(instr->result()); |
| __ Set(reg, Immediate(0)); |
| |
| PushSafepointRegistersScope scope(this); |
| // NumberTagI and NumberTagD use the context from the frame, rather than |
| // the environment's HContext or HInlinedContext value. |
| // They only call Runtime::kAllocateHeapNumber. |
| // The corresponding HChange instructions are added in a phase that does |
| // not have easy access to the local context. |
| __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); |
| __ StoreToSafepointRegisterSlot(reg, eax); |
| } |
| |
| |
| void LCodeGen::DoSmiTag(LSmiTag* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister() && input->Equals(instr->result())); |
| ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); |
| __ SmiTag(ToRegister(input)); |
| } |
| |
| |
| void LCodeGen::DoSmiUntag(LSmiUntag* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister() && input->Equals(instr->result())); |
| if (instr->needs_check()) { |
| __ test(ToRegister(input), Immediate(kSmiTagMask)); |
| DeoptimizeIf(not_zero, instr->environment()); |
| } |
| __ SmiUntag(ToRegister(input)); |
| } |
| |
| |
| void LCodeGen::EmitNumberUntagD(Register input_reg, |
| XMMRegister result_reg, |
| bool deoptimize_on_undefined, |
| LEnvironment* env) { |
| Label load_smi, done; |
| |
| // Smi check. |
| __ JumpIfSmi(input_reg, &load_smi, Label::kNear); |
| |
| // Heap number map check. |
| __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), |
| factory()->heap_number_map()); |
| if (deoptimize_on_undefined) { |
| DeoptimizeIf(not_equal, env); |
| } else { |
| Label heap_number; |
| __ j(equal, &heap_number, Label::kNear); |
| |
| __ cmp(input_reg, factory()->undefined_value()); |
| DeoptimizeIf(not_equal, env); |
| |
| // Convert undefined to NaN. |
| ExternalReference nan = |
| ExternalReference::address_of_canonical_non_hole_nan(); |
| __ movdbl(result_reg, Operand::StaticVariable(nan)); |
| __ jmp(&done, Label::kNear); |
| |
| __ bind(&heap_number); |
| } |
| // Heap number to XMM conversion. |
| __ movdbl(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset)); |
| __ jmp(&done, Label::kNear); |
| |
| // Smi to XMM conversion |
| __ bind(&load_smi); |
| __ SmiUntag(input_reg); // Untag smi before converting to float. |
| __ cvtsi2sd(result_reg, Operand(input_reg)); |
| __ SmiTag(input_reg); // Retag smi. |
| __ bind(&done); |
| } |
| |
| |
| class DeferredTaggedToI: public LDeferredCode { |
| public: |
| DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } |
| private: |
| LTaggedToI* instr_; |
| }; |
| |
| |
| void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { |
| Label done, heap_number; |
| Register input_reg = ToRegister(instr->InputAt(0)); |
| |
| // Heap number map check. |
| __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), |
| factory()->heap_number_map()); |
| |
| if (instr->truncating()) { |
| __ j(equal, &heap_number, Label::kNear); |
| // Check for undefined. Undefined is converted to zero for truncating |
| // conversions. |
| __ cmp(input_reg, factory()->undefined_value()); |
| DeoptimizeIf(not_equal, instr->environment()); |
| __ mov(input_reg, 0); |
| __ jmp(&done, Label::kNear); |
| |
| __ bind(&heap_number); |
| if (CpuFeatures::IsSupported(SSE3)) { |
| CpuFeatures::Scope scope(SSE3); |
| Label convert; |
| // Use more powerful conversion when sse3 is available. |
| // Load x87 register with heap number. |
| __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset)); |
| // Get exponent alone and check for too-big exponent. |
| __ mov(input_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset)); |
| __ and_(input_reg, HeapNumber::kExponentMask); |
| const uint32_t kTooBigExponent = |
| (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; |
| __ cmp(Operand(input_reg), Immediate(kTooBigExponent)); |
| __ j(less, &convert, Label::kNear); |
| // Pop FPU stack before deoptimizing. |
| __ ffree(0); |
| __ fincstp(); |
| DeoptimizeIf(no_condition, instr->environment()); |
| |
| // Reserve space for 64 bit answer. |
| __ bind(&convert); |
| __ sub(Operand(esp), Immediate(kDoubleSize)); |
| // Do conversion, which cannot fail because we checked the exponent. |
| __ fisttp_d(Operand(esp, 0)); |
| __ mov(input_reg, Operand(esp, 0)); // Low word of answer is the result. |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| } else { |
| XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0)); |
| __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); |
| __ cvttsd2si(input_reg, Operand(xmm0)); |
| __ cmp(input_reg, 0x80000000u); |
| __ j(not_equal, &done); |
| // Check if the input was 0x8000000 (kMinInt). |
| // If no, then we got an overflow and we deoptimize. |
| ExternalReference min_int = ExternalReference::address_of_min_int(); |
| __ movdbl(xmm_temp, Operand::StaticVariable(min_int)); |
| __ ucomisd(xmm_temp, xmm0); |
| DeoptimizeIf(not_equal, instr->environment()); |
| DeoptimizeIf(parity_even, instr->environment()); // NaN. |
| } |
| } else { |
| // Deoptimize if we don't have a heap number. |
| DeoptimizeIf(not_equal, instr->environment()); |
| |
| XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0)); |
| __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); |
| __ cvttsd2si(input_reg, Operand(xmm0)); |
| __ cvtsi2sd(xmm_temp, Operand(input_reg)); |
| __ ucomisd(xmm0, xmm_temp); |
| DeoptimizeIf(not_equal, instr->environment()); |
| DeoptimizeIf(parity_even, instr->environment()); // NaN. |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| __ test(input_reg, Operand(input_reg)); |
| __ j(not_zero, &done); |
| __ movmskpd(input_reg, xmm0); |
| __ and_(input_reg, 1); |
| DeoptimizeIf(not_zero, instr->environment()); |
| } |
| } |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoTaggedToI(LTaggedToI* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister()); |
| ASSERT(input->Equals(instr->result())); |
| |
| Register input_reg = ToRegister(input); |
| |
| DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr); |
| |
| // Smi check. |
| __ JumpIfNotSmi(input_reg, deferred->entry()); |
| |
| // Smi to int32 conversion |
| __ SmiUntag(input_reg); // Untag smi. |
| |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister()); |
| LOperand* result = instr->result(); |
| ASSERT(result->IsDoubleRegister()); |
| |
| Register input_reg = ToRegister(input); |
| XMMRegister result_reg = ToDoubleRegister(result); |
| |
| EmitNumberUntagD(input_reg, result_reg, |
| instr->hydrogen()->deoptimize_on_undefined(), |
| instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoDoubleToI(LDoubleToI* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsDoubleRegister()); |
| LOperand* result = instr->result(); |
| ASSERT(result->IsRegister()); |
| |
| XMMRegister input_reg = ToDoubleRegister(input); |
| Register result_reg = ToRegister(result); |
| |
| if (instr->truncating()) { |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. |
| __ cvttsd2si(result_reg, Operand(input_reg)); |
| __ cmp(result_reg, 0x80000000u); |
| if (CpuFeatures::IsSupported(SSE3)) { |
| // This will deoptimize if the exponent of the input in out of range. |
| CpuFeatures::Scope scope(SSE3); |
| Label convert, done; |
| __ j(not_equal, &done, Label::kNear); |
| __ sub(Operand(esp), Immediate(kDoubleSize)); |
| __ movdbl(Operand(esp, 0), input_reg); |
| // Get exponent alone and check for too-big exponent. |
| __ mov(result_reg, Operand(esp, sizeof(int32_t))); |
| __ and_(result_reg, HeapNumber::kExponentMask); |
| const uint32_t kTooBigExponent = |
| (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; |
| __ cmp(Operand(result_reg), Immediate(kTooBigExponent)); |
| __ j(less, &convert, Label::kNear); |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| DeoptimizeIf(no_condition, instr->environment()); |
| __ bind(&convert); |
| // Do conversion, which cannot fail because we checked the exponent. |
| __ fld_d(Operand(esp, 0)); |
| __ fisttp_d(Operand(esp, 0)); |
| __ mov(result_reg, Operand(esp, 0)); // Low word of answer is the result. |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| __ bind(&done); |
| } else { |
| Label done; |
| Register temp_reg = ToRegister(instr->TempAt(0)); |
| XMMRegister xmm_scratch = xmm0; |
| |
| // If cvttsd2si succeeded, we're done. Otherwise, we attempt |
| // manual conversion. |
| __ j(not_equal, &done, Label::kNear); |
| |
| // Get high 32 bits of the input in result_reg and temp_reg. |
| __ pshufd(xmm_scratch, input_reg, 1); |
| __ movd(Operand(temp_reg), xmm_scratch); |
| __ mov(result_reg, temp_reg); |
| |
| // Prepare negation mask in temp_reg. |
| __ sar(temp_reg, kBitsPerInt - 1); |
| |
| // Extract the exponent from result_reg and subtract adjusted |
| // bias from it. The adjustment is selected in a way such that |
| // when the difference is zero, the answer is in the low 32 bits |
| // of the input, otherwise a shift has to be performed. |
| __ shr(result_reg, HeapNumber::kExponentShift); |
| __ and_(result_reg, |
| HeapNumber::kExponentMask >> HeapNumber::kExponentShift); |
| __ sub(Operand(result_reg), |
| Immediate(HeapNumber::kExponentBias + |
| HeapNumber::kExponentBits + |
| HeapNumber::kMantissaBits)); |
| // Don't handle big (> kMantissaBits + kExponentBits == 63) or |
| // special exponents. |
| DeoptimizeIf(greater, instr->environment()); |
| |
| // Zero out the sign and the exponent in the input (by shifting |
| // it to the left) and restore the implicit mantissa bit, |
| // i.e. convert the input to unsigned int64 shifted left by |
| // kExponentBits. |
| ExternalReference minus_zero = ExternalReference::address_of_minus_zero(); |
| // Minus zero has the most significant bit set and the other |
| // bits cleared. |
| __ movdbl(xmm_scratch, Operand::StaticVariable(minus_zero)); |
| __ psllq(input_reg, HeapNumber::kExponentBits); |
| __ por(input_reg, xmm_scratch); |
| |
| // Get the amount to shift the input right in xmm_scratch. |
| __ neg(result_reg); |
| __ movd(xmm_scratch, Operand(result_reg)); |
| |
| // Shift the input right and extract low 32 bits. |
| __ psrlq(input_reg, xmm_scratch); |
| __ movd(Operand(result_reg), input_reg); |
| |
| // Use the prepared mask in temp_reg to negate the result if necessary. |
| __ xor_(result_reg, Operand(temp_reg)); |
| __ sub(result_reg, Operand(temp_reg)); |
| __ bind(&done); |
| } |
| } else { |
| Label done; |
| __ cvttsd2si(result_reg, Operand(input_reg)); |
| __ cvtsi2sd(xmm0, Operand(result_reg)); |
| __ ucomisd(xmm0, input_reg); |
| DeoptimizeIf(not_equal, instr->environment()); |
| DeoptimizeIf(parity_even, instr->environment()); // NaN. |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // The integer converted back is equal to the original. We |
| // only have to test if we got -0 as an input. |
| __ test(result_reg, Operand(result_reg)); |
| __ j(not_zero, &done, Label::kNear); |
| __ movmskpd(result_reg, input_reg); |
| // Bit 0 contains the sign of the double in input_reg. |
| // If input was positive, we are ok and return 0, otherwise |
| // deoptimize. |
| __ and_(result_reg, 1); |
| DeoptimizeIf(not_zero, instr->environment()); |
| } |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoCheckSmi(LCheckSmi* instr) { |
| LOperand* input = instr->InputAt(0); |
| __ test(ToOperand(input), Immediate(kSmiTagMask)); |
| DeoptimizeIf(not_zero, instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { |
| LOperand* input = instr->InputAt(0); |
| __ test(ToOperand(input), Immediate(kSmiTagMask)); |
| DeoptimizeIf(zero, instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| |
| __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); |
| |
| if (instr->hydrogen()->is_interval_check()) { |
| InstanceType first; |
| InstanceType last; |
| instr->hydrogen()->GetCheckInterval(&first, &last); |
| |
| __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), |
| static_cast<int8_t>(first)); |
| |
| // If there is only one type in the interval check for equality. |
| if (first == last) { |
| DeoptimizeIf(not_equal, instr->environment()); |
| } else { |
| DeoptimizeIf(below, instr->environment()); |
| // Omit check for the last type. |
| if (last != LAST_TYPE) { |
| __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), |
| static_cast<int8_t>(last)); |
| DeoptimizeIf(above, instr->environment()); |
| } |
| } |
| } else { |
| uint8_t mask; |
| uint8_t tag; |
| instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); |
| |
| if (IsPowerOf2(mask)) { |
| ASSERT(tag == 0 || IsPowerOf2(tag)); |
| __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask); |
| DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment()); |
| } else { |
| __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
| __ and_(temp, mask); |
| __ cmpb(Operand(temp), tag); |
| DeoptimizeIf(not_equal, instr->environment()); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoCheckFunction(LCheckFunction* instr) { |
| ASSERT(instr->InputAt(0)->IsRegister()); |
| Operand operand = ToOperand(instr->InputAt(0)); |
| __ cmp(operand, instr->hydrogen()->target()); |
| DeoptimizeIf(not_equal, instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoCheckMap(LCheckMap* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister()); |
| Register reg = ToRegister(input); |
| __ cmp(FieldOperand(reg, HeapObject::kMapOffset), |
| instr->hydrogen()->map()); |
| DeoptimizeIf(not_equal, instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { |
| XMMRegister value_reg = ToDoubleRegister(instr->unclamped()); |
| Register result_reg = ToRegister(instr->result()); |
| __ ClampDoubleToUint8(value_reg, xmm0, result_reg); |
| } |
| |
| |
| void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { |
| ASSERT(instr->unclamped()->Equals(instr->result())); |
| Register value_reg = ToRegister(instr->result()); |
| __ ClampUint8(value_reg); |
| } |
| |
| |
| void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { |
| ASSERT(instr->unclamped()->Equals(instr->result())); |
| Register input_reg = ToRegister(instr->unclamped()); |
| Label is_smi, done, heap_number; |
| |
| __ JumpIfSmi(input_reg, &is_smi); |
| |
| // Check for heap number |
| __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), |
| factory()->heap_number_map()); |
| __ j(equal, &heap_number, Label::kNear); |
| |
| // Check for undefined. Undefined is converted to zero for clamping |
| // conversions. |
| __ cmp(input_reg, factory()->undefined_value()); |
| DeoptimizeIf(not_equal, instr->environment()); |
| __ mov(input_reg, 0); |
| __ jmp(&done, Label::kNear); |
| |
| // Heap number |
| __ bind(&heap_number); |
| __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); |
| __ ClampDoubleToUint8(xmm0, xmm1, input_reg); |
| __ jmp(&done, Label::kNear); |
| |
| // smi |
| __ bind(&is_smi); |
| __ SmiUntag(input_reg); |
| __ ClampUint8(input_reg); |
| |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::LoadHeapObject(Register result, Handle<HeapObject> object) { |
| if (isolate()->heap()->InNewSpace(*object)) { |
| Handle<JSGlobalPropertyCell> cell = |
| isolate()->factory()->NewJSGlobalPropertyCell(object); |
| __ mov(result, Operand::Cell(cell)); |
| } else { |
| __ mov(result, object); |
| } |
| } |
| |
| |
| void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { |
| Register reg = ToRegister(instr->TempAt(0)); |
| |
| Handle<JSObject> holder = instr->holder(); |
| Handle<JSObject> current_prototype = instr->prototype(); |
| |
| // Load prototype object. |
| LoadHeapObject(reg, current_prototype); |
| |
| // Check prototype maps up to the holder. |
| while (!current_prototype.is_identical_to(holder)) { |
| __ cmp(FieldOperand(reg, HeapObject::kMapOffset), |
| Handle<Map>(current_prototype->map())); |
| DeoptimizeIf(not_equal, instr->environment()); |
| current_prototype = |
| Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype())); |
| // Load next prototype object. |
| LoadHeapObject(reg, current_prototype); |
| } |
| |
| // Check the holder map. |
| __ cmp(FieldOperand(reg, HeapObject::kMapOffset), |
| Handle<Map>(current_prototype->map())); |
| DeoptimizeIf(not_equal, instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| // Setup the parameters to the stub/runtime call. |
| __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ push(FieldOperand(eax, JSFunction::kLiteralsOffset)); |
| __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index()))); |
| __ push(Immediate(instr->hydrogen()->constant_elements())); |
| |
| // Pick the right runtime function or stub to call. |
| int length = instr->hydrogen()->length(); |
| if (instr->hydrogen()->IsCopyOnWrite()) { |
| ASSERT(instr->hydrogen()->depth() == 1); |
| FastCloneShallowArrayStub::Mode mode = |
| FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; |
| FastCloneShallowArrayStub stub(mode, length); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } else if (instr->hydrogen()->depth() > 1) { |
| CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); |
| } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { |
| CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); |
| } else { |
| FastCloneShallowArrayStub::Mode mode = |
| FastCloneShallowArrayStub::CLONE_ELEMENTS; |
| FastCloneShallowArrayStub stub(mode, length); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| } |
| |
| |
| void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| // Setup the parameters to the stub/runtime call. |
| __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ push(FieldOperand(eax, JSFunction::kLiteralsOffset)); |
| __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index()))); |
| __ push(Immediate(instr->hydrogen()->constant_properties())); |
| int flags = instr->hydrogen()->fast_elements() |
| ? ObjectLiteral::kFastElements |
| : ObjectLiteral::kNoFlags; |
| flags |= instr->hydrogen()->has_function() |
| ? ObjectLiteral::kHasFunction |
| : ObjectLiteral::kNoFlags; |
| __ push(Immediate(Smi::FromInt(flags))); |
| |
| // Pick the right runtime function to call. |
| if (instr->hydrogen()->depth() > 1) { |
| CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); |
| } else { |
| CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); |
| } |
| } |
| |
| |
| void LCodeGen::DoToFastProperties(LToFastProperties* instr) { |
| ASSERT(ToRegister(instr->InputAt(0)).is(eax)); |
| __ push(eax); |
| CallRuntime(Runtime::kToFastProperties, 1, instr); |
| } |
| |
| |
| void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| Label materialized; |
| // Registers will be used as follows: |
| // edi = JS function. |
| // ecx = literals array. |
| // ebx = regexp literal. |
| // eax = regexp literal clone. |
| // esi = context. |
| __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset)); |
| int literal_offset = FixedArray::kHeaderSize + |
| instr->hydrogen()->literal_index() * kPointerSize; |
| __ mov(ebx, FieldOperand(ecx, literal_offset)); |
| __ cmp(ebx, factory()->undefined_value()); |
| __ j(not_equal, &materialized, Label::kNear); |
| |
| // Create regexp literal using runtime function |
| // Result will be in eax. |
| __ push(ecx); |
| __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index()))); |
| __ push(Immediate(instr->hydrogen()->pattern())); |
| __ push(Immediate(instr->hydrogen()->flags())); |
| CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); |
| __ mov(ebx, eax); |
| |
| __ bind(&materialized); |
| int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
| Label allocated, runtime_allocate; |
| __ AllocateInNewSpace(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT); |
| __ jmp(&allocated); |
| |
| __ bind(&runtime_allocate); |
| __ push(ebx); |
| __ push(Immediate(Smi::FromInt(size))); |
| CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); |
| __ pop(ebx); |
| |
| __ bind(&allocated); |
| // Copy the content into the newly allocated memory. |
| // (Unroll copy loop once for better throughput). |
| for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { |
| __ mov(edx, FieldOperand(ebx, i)); |
| __ mov(ecx, FieldOperand(ebx, i + kPointerSize)); |
| __ mov(FieldOperand(eax, i), edx); |
| __ mov(FieldOperand(eax, i + kPointerSize), ecx); |
| } |
| if ((size % (2 * kPointerSize)) != 0) { |
| __ mov(edx, FieldOperand(ebx, size - kPointerSize)); |
| __ mov(FieldOperand(eax, size - kPointerSize), edx); |
| } |
| } |
| |
| |
| void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| // Use the fast case closure allocation code that allocates in new |
| // space for nested functions that don't need literals cloning. |
| Handle<SharedFunctionInfo> shared_info = instr->shared_info(); |
| bool pretenure = instr->hydrogen()->pretenure(); |
| if (!pretenure && shared_info->num_literals() == 0) { |
| FastNewClosureStub stub( |
| shared_info->strict_mode() ? kStrictMode : kNonStrictMode); |
| __ push(Immediate(shared_info)); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } else { |
| __ push(Operand(ebp, StandardFrameConstants::kContextOffset)); |
| __ push(Immediate(shared_info)); |
| __ push(Immediate(pretenure |
| ? factory()->true_value() |
| : factory()->false_value())); |
| CallRuntime(Runtime::kNewClosure, 3, instr); |
| } |
| } |
| |
| |
| void LCodeGen::DoTypeof(LTypeof* instr) { |
| LOperand* input = instr->InputAt(1); |
| if (input->IsConstantOperand()) { |
| __ push(ToImmediate(input)); |
| } else { |
| __ push(ToOperand(input)); |
| } |
| CallRuntime(Runtime::kTypeof, 1, instr); |
| } |
| |
| |
| void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| Condition final_branch_condition = EmitTypeofIs(true_label, |
| false_label, |
| input, |
| instr->type_literal()); |
| |
| EmitBranch(true_block, false_block, final_branch_condition); |
| } |
| |
| |
| Condition LCodeGen::EmitTypeofIs(Label* true_label, |
| Label* false_label, |
| Register input, |
| Handle<String> type_name) { |
| Condition final_branch_condition = no_condition; |
| if (type_name->Equals(heap()->number_symbol())) { |
| __ JumpIfSmi(input, true_label); |
| __ cmp(FieldOperand(input, HeapObject::kMapOffset), |
| factory()->heap_number_map()); |
| final_branch_condition = equal; |
| |
| } else if (type_name->Equals(heap()->string_symbol())) { |
| __ JumpIfSmi(input, false_label); |
| __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input); |
| __ j(above_equal, false_label); |
| __ test_b(FieldOperand(input, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| final_branch_condition = zero; |
| |
| } else if (type_name->Equals(heap()->boolean_symbol())) { |
| __ cmp(input, factory()->true_value()); |
| __ j(equal, true_label); |
| __ cmp(input, factory()->false_value()); |
| final_branch_condition = equal; |
| |
| } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) { |
| __ cmp(input, factory()->null_value()); |
| final_branch_condition = equal; |
| |
| } else if (type_name->Equals(heap()->undefined_symbol())) { |
| __ cmp(input, factory()->undefined_value()); |
| __ j(equal, true_label); |
| __ JumpIfSmi(input, false_label); |
| // Check for undetectable objects => true. |
| __ mov(input, FieldOperand(input, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(input, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| final_branch_condition = not_zero; |
| |
| } else if (type_name->Equals(heap()->function_symbol())) { |
| STATIC_ASSERT(LAST_TYPE == LAST_CALLABLE_SPEC_OBJECT_TYPE); |
| __ JumpIfSmi(input, false_label); |
| __ CmpObjectType(input, FIRST_CALLABLE_SPEC_OBJECT_TYPE, input); |
| final_branch_condition = above_equal; |
| |
| } else if (type_name->Equals(heap()->object_symbol())) { |
| __ JumpIfSmi(input, false_label); |
| if (!FLAG_harmony_typeof) { |
| __ cmp(input, factory()->null_value()); |
| __ j(equal, true_label); |
| } |
| __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input); |
| __ j(below, false_label); |
| __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); |
| __ j(above, false_label); |
| // Check for undetectable objects => false. |
| __ test_b(FieldOperand(input, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| final_branch_condition = zero; |
| |
| } else { |
| final_branch_condition = not_equal; |
| __ jmp(false_label); |
| // A dead branch instruction will be generated after this point. |
| } |
| |
| return final_branch_condition; |
| } |
| |
| |
| void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { |
| Register temp = ToRegister(instr->TempAt(0)); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| EmitIsConstructCall(temp); |
| EmitBranch(true_block, false_block, equal); |
| } |
| |
| |
| void LCodeGen::EmitIsConstructCall(Register temp) { |
| // Get the frame pointer for the calling frame. |
| __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Skip the arguments adaptor frame if it exists. |
| Label check_frame_marker; |
| __ cmp(Operand(temp, StandardFrameConstants::kContextOffset), |
| Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(not_equal, &check_frame_marker, Label::kNear); |
| __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Check the marker in the calling frame. |
| __ bind(&check_frame_marker); |
| __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset), |
| Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); |
| } |
| |
| |
| void LCodeGen::EnsureSpaceForLazyDeopt() { |
| // Ensure that we have enough space after the previous lazy-bailout |
| // instruction for patching the code here. |
| int current_pc = masm()->pc_offset(); |
| int patch_size = Deoptimizer::patch_size(); |
| if (current_pc < last_lazy_deopt_pc_ + patch_size) { |
| int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc; |
| while (padding_size-- > 0) { |
| __ nop(); |
| } |
| } |
| last_lazy_deopt_pc_ = masm()->pc_offset(); |
| } |
| |
| |
| void LCodeGen::DoLazyBailout(LLazyBailout* instr) { |
| EnsureSpaceForLazyDeopt(); |
| ASSERT(instr->HasEnvironment()); |
| LEnvironment* env = instr->environment(); |
| RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| } |
| |
| |
| void LCodeGen::DoDeoptimize(LDeoptimize* instr) { |
| DeoptimizeIf(no_condition, instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { |
| LOperand* obj = instr->object(); |
| LOperand* key = instr->key(); |
| __ push(ToOperand(obj)); |
| if (key->IsConstantOperand()) { |
| __ push(ToImmediate(key)); |
| } else { |
| __ push(ToOperand(key)); |
| } |
| ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| // Create safepoint generator that will also ensure enough space in the |
| // reloc info for patching in deoptimization (since this is invoking a |
| // builtin) |
| SafepointGenerator safepoint_generator( |
| this, pointers, Safepoint::kLazyDeopt); |
| __ push(Immediate(Smi::FromInt(strict_mode_flag()))); |
| __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator); |
| } |
| |
| |
| void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { |
| PushSafepointRegistersScope scope(this); |
| __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| __ CallRuntimeSaveDoubles(Runtime::kStackGuard); |
| RecordSafepointWithLazyDeopt( |
| instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
| ASSERT(instr->HasEnvironment()); |
| LEnvironment* env = instr->environment(); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| } |
| |
| |
| void LCodeGen::DoStackCheck(LStackCheck* instr) { |
| class DeferredStackCheck: public LDeferredCode { |
| public: |
| DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } |
| private: |
| LStackCheck* instr_; |
| }; |
| |
| ASSERT(instr->HasEnvironment()); |
| LEnvironment* env = instr->environment(); |
| // There is no LLazyBailout instruction for stack-checks. We have to |
| // prepare for lazy deoptimization explicitly here. |
| if (instr->hydrogen()->is_function_entry()) { |
| // Perform stack overflow check. |
| Label done; |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(isolate()); |
| __ cmp(esp, Operand::StaticVariable(stack_limit)); |
| __ j(above_equal, &done, Label::kNear); |
| |
| ASSERT(instr->context()->IsRegister()); |
| ASSERT(ToRegister(instr->context()).is(esi)); |
| StackCheckStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| EnsureSpaceForLazyDeopt(); |
| __ bind(&done); |
| RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| } else { |
| ASSERT(instr->hydrogen()->is_backwards_branch()); |
| // Perform stack overflow check if this goto needs it before jumping. |
| DeferredStackCheck* deferred_stack_check = |
| new DeferredStackCheck(this, instr); |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(isolate()); |
| __ cmp(esp, Operand::StaticVariable(stack_limit)); |
| __ j(below, deferred_stack_check->entry()); |
| EnsureSpaceForLazyDeopt(); |
| __ bind(instr->done_label()); |
| deferred_stack_check->SetExit(instr->done_label()); |
| RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
| // Don't record a deoptimization index for the safepoint here. |
| // This will be done explicitly when emitting call and the safepoint in |
| // the deferred code. |
| } |
| } |
| |
| |
| void LCodeGen::DoOsrEntry(LOsrEntry* instr) { |
| // This is a pseudo-instruction that ensures that the environment here is |
| // properly registered for deoptimization and records the assembler's PC |
| // offset. |
| LEnvironment* environment = instr->environment(); |
| environment->SetSpilledRegisters(instr->SpilledRegisterArray(), |
| instr->SpilledDoubleRegisterArray()); |
| |
| // If the environment were already registered, we would have no way of |
| // backpatching it with the spill slot operands. |
| ASSERT(!environment->HasBeenRegistered()); |
| RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
| ASSERT(osr_pc_offset_ == -1); |
| osr_pc_offset_ = masm()->pc_offset(); |
| } |
| |
| |
| void LCodeGen::DoIn(LIn* instr) { |
| LOperand* obj = instr->object(); |
| LOperand* key = instr->key(); |
| if (key->IsConstantOperand()) { |
| __ push(ToImmediate(key)); |
| } else { |
| __ push(ToOperand(key)); |
| } |
| if (obj->IsConstantOperand()) { |
| __ push(ToImmediate(obj)); |
| } else { |
| __ push(ToOperand(obj)); |
| } |
| ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| SafepointGenerator safepoint_generator( |
| this, pointers, Safepoint::kLazyDeopt); |
| __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_IA32 |