blob: 640f13cd62ceb33c227ca2e5d7101ca68ca7c2eb [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef ENABLE_LOGGING_AND_PROFILING
#include "v8.h"
#include "global-handles.h"
#include "scopeinfo.h"
#include "top.h"
#include "unicode.h"
#include "zone-inl.h"
#include "profile-generator-inl.h"
namespace v8 {
namespace internal {
TokenEnumerator::TokenEnumerator()
: token_locations_(4),
token_removed_(4) {
}
TokenEnumerator::~TokenEnumerator() {
for (int i = 0; i < token_locations_.length(); ++i) {
if (!token_removed_[i]) {
GlobalHandles::ClearWeakness(token_locations_[i]);
GlobalHandles::Destroy(token_locations_[i]);
}
}
}
int TokenEnumerator::GetTokenId(Object* token) {
if (token == NULL) return TokenEnumerator::kNoSecurityToken;
for (int i = 0; i < token_locations_.length(); ++i) {
if (*token_locations_[i] == token && !token_removed_[i]) return i;
}
Handle<Object> handle = GlobalHandles::Create(token);
// handle.location() points to a memory cell holding a pointer
// to a token object in the V8's heap.
GlobalHandles::MakeWeak(handle.location(), this, TokenRemovedCallback);
token_locations_.Add(handle.location());
token_removed_.Add(false);
return token_locations_.length() - 1;
}
void TokenEnumerator::TokenRemovedCallback(v8::Persistent<v8::Value> handle,
void* parameter) {
reinterpret_cast<TokenEnumerator*>(parameter)->TokenRemoved(
Utils::OpenHandle(*handle).location());
handle.Dispose();
}
void TokenEnumerator::TokenRemoved(Object** token_location) {
for (int i = 0; i < token_locations_.length(); ++i) {
if (token_locations_[i] == token_location && !token_removed_[i]) {
token_removed_[i] = true;
return;
}
}
}
StringsStorage::StringsStorage()
: names_(StringsMatch) {
}
static void DeleteIndexName(char** name_ptr) {
DeleteArray(*name_ptr);
}
StringsStorage::~StringsStorage() {
for (HashMap::Entry* p = names_.Start();
p != NULL;
p = names_.Next(p)) {
DeleteArray(reinterpret_cast<const char*>(p->value));
}
index_names_.Iterate(DeleteIndexName);
}
const char* StringsStorage::GetName(String* name) {
if (name->IsString()) {
char* c_name =
name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL).Detach();
HashMap::Entry* cache_entry = names_.Lookup(c_name, name->Hash(), true);
if (cache_entry->value == NULL) {
// New entry added.
cache_entry->value = c_name;
} else {
DeleteArray(c_name);
}
return reinterpret_cast<const char*>(cache_entry->value);
}
return "";
}
const char* StringsStorage::GetName(int index) {
ASSERT(index >= 0);
if (index_names_.length() <= index) {
index_names_.AddBlock(
NULL, index - index_names_.length() + 1);
}
if (index_names_[index] == NULL) {
const int kMaximumNameLength = 32;
char* name = NewArray<char>(kMaximumNameLength);
OS::SNPrintF(Vector<char>(name, kMaximumNameLength), "%d", index);
index_names_[index] = name;
}
return index_names_[index];
}
const char* CodeEntry::kEmptyNamePrefix = "";
void CodeEntry::CopyData(const CodeEntry& source) {
tag_ = source.tag_;
name_prefix_ = source.name_prefix_;
name_ = source.name_;
resource_name_ = source.resource_name_;
line_number_ = source.line_number_;
}
uint32_t CodeEntry::GetCallUid() const {
uint32_t hash = ComputeIntegerHash(tag_);
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_prefix_)));
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)));
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)));
hash ^= ComputeIntegerHash(line_number_);
return hash;
}
bool CodeEntry::IsSameAs(CodeEntry* entry) const {
return this == entry
|| (tag_ == entry->tag_
&& name_prefix_ == entry->name_prefix_
&& name_ == entry->name_
&& resource_name_ == entry->resource_name_
&& line_number_ == entry->line_number_);
}
ProfileNode* ProfileNode::FindChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.Lookup(entry, CodeEntryHash(entry), false);
return map_entry != NULL ?
reinterpret_cast<ProfileNode*>(map_entry->value) : NULL;
}
ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.Lookup(entry, CodeEntryHash(entry), true);
if (map_entry->value == NULL) {
// New node added.
ProfileNode* new_node = new ProfileNode(tree_, entry);
map_entry->value = new_node;
children_list_.Add(new_node);
}
return reinterpret_cast<ProfileNode*>(map_entry->value);
}
double ProfileNode::GetSelfMillis() const {
return tree_->TicksToMillis(self_ticks_);
}
double ProfileNode::GetTotalMillis() const {
return tree_->TicksToMillis(total_ticks_);
}
void ProfileNode::Print(int indent) {
OS::Print("%5u %5u %*c %s%s [%d]",
total_ticks_, self_ticks_,
indent, ' ',
entry_->name_prefix(),
entry_->name(),
entry_->security_token_id());
if (entry_->resource_name()[0] != '\0')
OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number());
OS::Print("\n");
for (HashMap::Entry* p = children_.Start();
p != NULL;
p = children_.Next(p)) {
reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2);
}
}
class DeleteNodesCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
delete node;
}
void AfterChildTraversed(ProfileNode*, ProfileNode*) { }
};
ProfileTree::ProfileTree()
: root_entry_(Logger::FUNCTION_TAG,
"",
"(root)",
"",
0,
TokenEnumerator::kNoSecurityToken),
root_(new ProfileNode(this, &root_entry_)) {
}
ProfileTree::~ProfileTree() {
DeleteNodesCallback cb;
TraverseDepthFirst(&cb);
}
void ProfileTree::AddPathFromEnd(const Vector<CodeEntry*>& path) {
ProfileNode* node = root_;
for (CodeEntry** entry = path.start() + path.length() - 1;
entry != path.start() - 1;
--entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
}
}
node->IncrementSelfTicks();
}
void ProfileTree::AddPathFromStart(const Vector<CodeEntry*>& path) {
ProfileNode* node = root_;
for (CodeEntry** entry = path.start();
entry != path.start() + path.length();
++entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
}
}
node->IncrementSelfTicks();
}
struct NodesPair {
NodesPair(ProfileNode* src, ProfileNode* dst)
: src(src), dst(dst) { }
ProfileNode* src;
ProfileNode* dst;
};
class FilteredCloneCallback {
public:
explicit FilteredCloneCallback(ProfileNode* dst_root, int security_token_id)
: stack_(10),
security_token_id_(security_token_id) {
stack_.Add(NodesPair(NULL, dst_root));
}
void BeforeTraversingChild(ProfileNode* parent, ProfileNode* child) {
if (IsTokenAcceptable(child->entry()->security_token_id(),
parent->entry()->security_token_id())) {
ProfileNode* clone = stack_.last().dst->FindOrAddChild(child->entry());
clone->IncreaseSelfTicks(child->self_ticks());
stack_.Add(NodesPair(child, clone));
} else {
// Attribute ticks to parent node.
stack_.last().dst->IncreaseSelfTicks(child->self_ticks());
}
}
void AfterAllChildrenTraversed(ProfileNode* parent) { }
void AfterChildTraversed(ProfileNode*, ProfileNode* child) {
if (stack_.last().src == child) {
stack_.RemoveLast();
}
}
private:
bool IsTokenAcceptable(int token, int parent_token) {
if (token == TokenEnumerator::kNoSecurityToken
|| token == security_token_id_) return true;
if (token == TokenEnumerator::kInheritsSecurityToken) {
ASSERT(parent_token != TokenEnumerator::kInheritsSecurityToken);
return parent_token == TokenEnumerator::kNoSecurityToken
|| parent_token == security_token_id_;
}
return false;
}
List<NodesPair> stack_;
int security_token_id_;
};
void ProfileTree::FilteredClone(ProfileTree* src, int security_token_id) {
ms_to_ticks_scale_ = src->ms_to_ticks_scale_;
FilteredCloneCallback cb(root_, security_token_id);
src->TraverseDepthFirst(&cb);
CalculateTotalTicks();
}
void ProfileTree::SetTickRatePerMs(double ticks_per_ms) {
ms_to_ticks_scale_ = ticks_per_ms > 0 ? 1.0 / ticks_per_ms : 1.0;
}
class Position {
public:
explicit Position(ProfileNode* node)
: node(node), child_idx_(0) { }
INLINE(ProfileNode* current_child()) {
return node->children()->at(child_idx_);
}
INLINE(bool has_current_child()) {
return child_idx_ < node->children()->length();
}
INLINE(void next_child()) { ++child_idx_; }
ProfileNode* node;
private:
int child_idx_;
};
// Non-recursive implementation of a depth-first post-order tree traversal.
template <typename Callback>
void ProfileTree::TraverseDepthFirst(Callback* callback) {
List<Position> stack(10);
stack.Add(Position(root_));
while (stack.length() > 0) {
Position& current = stack.last();
if (current.has_current_child()) {
callback->BeforeTraversingChild(current.node, current.current_child());
stack.Add(Position(current.current_child()));
} else {
callback->AfterAllChildrenTraversed(current.node);
if (stack.length() > 1) {
Position& parent = stack[stack.length() - 2];
callback->AfterChildTraversed(parent.node, current.node);
parent.next_child();
}
// Remove child from the stack.
stack.RemoveLast();
}
}
}
class CalculateTotalTicksCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
node->IncreaseTotalTicks(node->self_ticks());
}
void AfterChildTraversed(ProfileNode* parent, ProfileNode* child) {
parent->IncreaseTotalTicks(child->total_ticks());
}
};
void ProfileTree::CalculateTotalTicks() {
CalculateTotalTicksCallback cb;
TraverseDepthFirst(&cb);
}
void ProfileTree::ShortPrint() {
OS::Print("root: %u %u %.2fms %.2fms\n",
root_->total_ticks(), root_->self_ticks(),
root_->GetTotalMillis(), root_->GetSelfMillis());
}
void CpuProfile::AddPath(const Vector<CodeEntry*>& path) {
top_down_.AddPathFromEnd(path);
bottom_up_.AddPathFromStart(path);
}
void CpuProfile::CalculateTotalTicks() {
top_down_.CalculateTotalTicks();
bottom_up_.CalculateTotalTicks();
}
void CpuProfile::SetActualSamplingRate(double actual_sampling_rate) {
top_down_.SetTickRatePerMs(actual_sampling_rate);
bottom_up_.SetTickRatePerMs(actual_sampling_rate);
}
CpuProfile* CpuProfile::FilteredClone(int security_token_id) {
ASSERT(security_token_id != TokenEnumerator::kNoSecurityToken);
CpuProfile* clone = new CpuProfile(title_, uid_);
clone->top_down_.FilteredClone(&top_down_, security_token_id);
clone->bottom_up_.FilteredClone(&bottom_up_, security_token_id);
return clone;
}
void CpuProfile::ShortPrint() {
OS::Print("top down ");
top_down_.ShortPrint();
OS::Print("bottom up ");
bottom_up_.ShortPrint();
}
void CpuProfile::Print() {
OS::Print("[Top down]:\n");
top_down_.Print();
OS::Print("[Bottom up]:\n");
bottom_up_.Print();
}
const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL;
const CodeMap::CodeTreeConfig::Value CodeMap::CodeTreeConfig::kNoValue =
CodeMap::CodeEntryInfo(NULL, 0);
void CodeMap::AddAlias(Address start, CodeEntry* entry, Address code_start) {
CodeTree::Locator locator;
if (tree_.Find(code_start, &locator)) {
const CodeEntryInfo& code_info = locator.value();
if (tree_.Insert(start, &locator)) {
entry->CopyData(*code_info.entry);
locator.set_value(CodeEntryInfo(entry, code_info.size));
}
}
}
CodeEntry* CodeMap::FindEntry(Address addr) {
CodeTree::Locator locator;
if (tree_.FindGreatestLessThan(addr, &locator)) {
// locator.key() <= addr. Need to check that addr is within entry.
const CodeEntryInfo& entry = locator.value();
if (addr < (locator.key() + entry.size))
return entry.entry;
}
return NULL;
}
void CodeMap::CodeTreePrinter::Call(
const Address& key, const CodeMap::CodeEntryInfo& value) {
OS::Print("%p %5d %s\n", key, value.size, value.entry->name());
}
void CodeMap::Print() {
CodeTreePrinter printer;
tree_.ForEach(&printer);
}
CpuProfilesCollection::CpuProfilesCollection()
: profiles_uids_(UidsMatch),
current_profiles_semaphore_(OS::CreateSemaphore(1)) {
// Create list of unabridged profiles.
profiles_by_token_.Add(new List<CpuProfile*>());
}
static void DeleteCodeEntry(CodeEntry** entry_ptr) {
delete *entry_ptr;
}
static void DeleteCpuProfile(CpuProfile** profile_ptr) {
delete *profile_ptr;
}
static void DeleteProfilesList(List<CpuProfile*>** list_ptr) {
(*list_ptr)->Iterate(DeleteCpuProfile);
delete *list_ptr;
}
CpuProfilesCollection::~CpuProfilesCollection() {
delete current_profiles_semaphore_;
current_profiles_.Iterate(DeleteCpuProfile);
profiles_by_token_.Iterate(DeleteProfilesList);
code_entries_.Iterate(DeleteCodeEntry);
}
bool CpuProfilesCollection::StartProfiling(const char* title, unsigned uid) {
ASSERT(uid > 0);
current_profiles_semaphore_->Wait();
if (current_profiles_.length() >= kMaxSimultaneousProfiles) {
current_profiles_semaphore_->Signal();
return false;
}
for (int i = 0; i < current_profiles_.length(); ++i) {
if (strcmp(current_profiles_[i]->title(), title) == 0) {
// Ignore attempts to start profile with the same title.
current_profiles_semaphore_->Signal();
return false;
}
}
current_profiles_.Add(new CpuProfile(title, uid));
current_profiles_semaphore_->Signal();
return true;
}
bool CpuProfilesCollection::StartProfiling(String* title, unsigned uid) {
return StartProfiling(GetName(title), uid);
}
CpuProfile* CpuProfilesCollection::StopProfiling(int security_token_id,
const char* title,
double actual_sampling_rate) {
const int title_len = StrLength(title);
CpuProfile* profile = NULL;
current_profiles_semaphore_->Wait();
for (int i = current_profiles_.length() - 1; i >= 0; --i) {
if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) {
profile = current_profiles_.Remove(i);
break;
}
}
current_profiles_semaphore_->Signal();
if (profile != NULL) {
profile->CalculateTotalTicks();
profile->SetActualSamplingRate(actual_sampling_rate);
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
unabridged_list->Add(profile);
HashMap::Entry* entry =
profiles_uids_.Lookup(reinterpret_cast<void*>(profile->uid()),
static_cast<uint32_t>(profile->uid()),
true);
ASSERT(entry->value == NULL);
entry->value = reinterpret_cast<void*>(unabridged_list->length() - 1);
return GetProfile(security_token_id, profile->uid());
}
return NULL;
}
CpuProfile* CpuProfilesCollection::GetProfile(int security_token_id,
unsigned uid) {
HashMap::Entry* entry = profiles_uids_.Lookup(reinterpret_cast<void*>(uid),
static_cast<uint32_t>(uid),
false);
int index;
if (entry != NULL) {
index = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
} else {
return NULL;
}
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
if (security_token_id == TokenEnumerator::kNoSecurityToken) {
return unabridged_list->at(index);
}
List<CpuProfile*>* list = GetProfilesList(security_token_id);
if (list->at(index) == NULL) {
list->at(index) =
unabridged_list->at(index)->FilteredClone(security_token_id);
}
return list->at(index);
}
bool CpuProfilesCollection::IsLastProfile(const char* title) {
// Called from VM thread, and only it can mutate the list,
// so no locking is needed here.
if (current_profiles_.length() != 1) return false;
return StrLength(title) == 0
|| strcmp(current_profiles_[0]->title(), title) == 0;
}
int CpuProfilesCollection::TokenToIndex(int security_token_id) {
ASSERT(TokenEnumerator::kNoSecurityToken == -1);
return security_token_id + 1; // kNoSecurityToken -> 0, 0 -> 1, ...
}
List<CpuProfile*>* CpuProfilesCollection::GetProfilesList(
int security_token_id) {
const int index = TokenToIndex(security_token_id);
const int lists_to_add = index - profiles_by_token_.length() + 1;
if (lists_to_add > 0) profiles_by_token_.AddBlock(NULL, lists_to_add);
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
const int current_count = unabridged_list->length();
if (profiles_by_token_[index] == NULL) {
profiles_by_token_[index] = new List<CpuProfile*>(current_count);
}
List<CpuProfile*>* list = profiles_by_token_[index];
const int profiles_to_add = current_count - list->length();
if (profiles_to_add > 0) list->AddBlock(NULL, profiles_to_add);
return list;
}
List<CpuProfile*>* CpuProfilesCollection::Profiles(int security_token_id) {
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
if (security_token_id == TokenEnumerator::kNoSecurityToken) {
return unabridged_list;
}
List<CpuProfile*>* list = GetProfilesList(security_token_id);
const int current_count = unabridged_list->length();
for (int i = 0; i < current_count; ++i) {
if (list->at(i) == NULL) {
list->at(i) = unabridged_list->at(i)->FilteredClone(security_token_id);
}
}
return list;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag,
String* name,
String* resource_name,
int line_number) {
CodeEntry* entry = new CodeEntry(tag,
CodeEntry::kEmptyNamePrefix,
GetFunctionName(name),
GetName(resource_name),
line_number,
TokenEnumerator::kNoSecurityToken);
code_entries_.Add(entry);
return entry;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag,
const char* name) {
CodeEntry* entry = new CodeEntry(tag,
CodeEntry::kEmptyNamePrefix,
GetFunctionName(name),
"",
v8::CpuProfileNode::kNoLineNumberInfo,
TokenEnumerator::kNoSecurityToken);
code_entries_.Add(entry);
return entry;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag,
const char* name_prefix,
String* name) {
CodeEntry* entry = new CodeEntry(tag,
name_prefix,
GetName(name),
"",
v8::CpuProfileNode::kNoLineNumberInfo,
TokenEnumerator::kInheritsSecurityToken);
code_entries_.Add(entry);
return entry;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag,
int args_count) {
CodeEntry* entry = new CodeEntry(tag,
"args_count: ",
GetName(args_count),
"",
v8::CpuProfileNode::kNoLineNumberInfo,
TokenEnumerator::kInheritsSecurityToken);
code_entries_.Add(entry);
return entry;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(int security_token_id) {
CodeEntry* entry = new CodeEntry(security_token_id);
code_entries_.Add(entry);
return entry;
}
void CpuProfilesCollection::AddPathToCurrentProfiles(
const Vector<CodeEntry*>& path) {
// As starting / stopping profiles is rare relatively to this
// method, we don't bother minimizing the duration of lock holding,
// e.g. copying contents of the list to a local vector.
current_profiles_semaphore_->Wait();
for (int i = 0; i < current_profiles_.length(); ++i) {
current_profiles_[i]->AddPath(path);
}
current_profiles_semaphore_->Signal();
}
void SampleRateCalculator::Tick() {
if (--wall_time_query_countdown_ == 0)
UpdateMeasurements(OS::TimeCurrentMillis());
}
void SampleRateCalculator::UpdateMeasurements(double current_time) {
if (measurements_count_++ != 0) {
const double measured_ticks_per_ms =
(kWallTimeQueryIntervalMs * ticks_per_ms_) /
(current_time - last_wall_time_);
// Update the average value.
ticks_per_ms_ +=
(measured_ticks_per_ms - ticks_per_ms_) / measurements_count_;
// Update the externally accessible result.
result_ = static_cast<AtomicWord>(ticks_per_ms_ * kResultScale);
}
last_wall_time_ = current_time;
wall_time_query_countdown_ =
static_cast<unsigned>(kWallTimeQueryIntervalMs * ticks_per_ms_);
}
const char* ProfileGenerator::kAnonymousFunctionName = "(anonymous function)";
const char* ProfileGenerator::kProgramEntryName = "(program)";
const char* ProfileGenerator::kGarbageCollectorEntryName =
"(garbage collector)";
ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles)
: profiles_(profiles),
program_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)),
gc_entry_(
profiles->NewCodeEntry(Logger::BUILTIN_TAG,
kGarbageCollectorEntryName)) {
}
void ProfileGenerator::RecordTickSample(const TickSample& sample) {
// Allocate space for stack frames + pc + function + vm-state.
ScopedVector<CodeEntry*> entries(sample.frames_count + 3);
// As actual number of decoded code entries may vary, initialize
// entries vector with NULL values.
CodeEntry** entry = entries.start();
memset(entry, 0, entries.length() * sizeof(*entry));
if (sample.pc != NULL) {
*entry++ = code_map_.FindEntry(sample.pc);
if (sample.function != NULL) {
*entry = code_map_.FindEntry(sample.function);
if (*entry != NULL && !(*entry)->is_js_function()) {
*entry = NULL;
} else {
CodeEntry* pc_entry = *entries.start();
if (pc_entry == NULL) {
*entry = NULL;
} else if (pc_entry->is_js_function()) {
// Use function entry in favor of pc entry, as function
// entry has security token.
*entries.start() = NULL;
}
}
entry++;
}
for (const Address *stack_pos = sample.stack,
*stack_end = stack_pos + sample.frames_count;
stack_pos != stack_end;
++stack_pos) {
*entry++ = code_map_.FindEntry(*stack_pos);
}
}
if (FLAG_prof_browser_mode) {
bool no_symbolized_entries = true;
for (CodeEntry** e = entries.start(); e != entry; ++e) {
if (*e != NULL) {
no_symbolized_entries = false;
break;
}
}
// If no frames were symbolized, put the VM state entry in.
if (no_symbolized_entries) {
*entry++ = EntryForVMState(sample.state);
}
}
profiles_->AddPathToCurrentProfiles(entries);
}
void HeapGraphEdge::Init(
int child_index, Type type, const char* name, HeapEntry* to) {
ASSERT(type == kContextVariable
|| type == kProperty
|| type == kInternal
|| type == kShortcut);
child_index_ = child_index;
type_ = type;
name_ = name;
to_ = to;
}
void HeapGraphEdge::Init(int child_index, Type type, int index, HeapEntry* to) {
ASSERT(type == kElement || type == kHidden);
child_index_ = child_index;
type_ = type;
index_ = index;
to_ = to;
}
void HeapGraphEdge::Init(int child_index, int index, HeapEntry* to) {
Init(child_index, kElement, index, to);
}
HeapEntry* HeapGraphEdge::From() {
return reinterpret_cast<HeapEntry*>(this - child_index_) - 1;
}
void HeapEntry::Init(HeapSnapshot* snapshot,
Type type,
const char* name,
uint64_t id,
int self_size,
int children_count,
int retainers_count) {
snapshot_ = snapshot;
type_ = type;
painted_ = kUnpainted;
name_ = name;
self_size_ = self_size;
retained_size_ = 0;
children_count_ = children_count;
retainers_count_ = retainers_count;
dominator_ = NULL;
union {
uint64_t set_id;
Id stored_id;
} id_adaptor = {id};
id_ = id_adaptor.stored_id;
}
void HeapEntry::SetNamedReference(HeapGraphEdge::Type type,
int child_index,
const char* name,
HeapEntry* entry,
int retainer_index) {
children_arr()[child_index].Init(child_index, type, name, entry);
entry->retainers_arr()[retainer_index] = children_arr() + child_index;
}
void HeapEntry::SetIndexedReference(HeapGraphEdge::Type type,
int child_index,
int index,
HeapEntry* entry,
int retainer_index) {
children_arr()[child_index].Init(child_index, type, index, entry);
entry->retainers_arr()[retainer_index] = children_arr() + child_index;
}
void HeapEntry::SetUnidirElementReference(
int child_index, int index, HeapEntry* entry) {
children_arr()[child_index].Init(child_index, index, entry);
}
int HeapEntry::RetainedSize(bool exact) {
if (exact && (retained_size_ & kExactRetainedSizeTag) == 0) {
CalculateExactRetainedSize();
}
return retained_size_ & (~kExactRetainedSizeTag);
}
List<HeapGraphPath*>* HeapEntry::GetRetainingPaths() {
return snapshot_->GetRetainingPaths(this);
}
template<class Visitor>
void HeapEntry::ApplyAndPaintAllReachable(Visitor* visitor) {
List<HeapEntry*> list(10);
list.Add(this);
this->paint_reachable();
visitor->Apply(this);
while (!list.is_empty()) {
HeapEntry* entry = list.RemoveLast();
Vector<HeapGraphEdge> children = entry->children();
for (int i = 0; i < children.length(); ++i) {
if (children[i].type() == HeapGraphEdge::kShortcut) continue;
HeapEntry* child = children[i].to();
if (!child->painted_reachable()) {
list.Add(child);
child->paint_reachable();
visitor->Apply(child);
}
}
}
}
class NullClass {
public:
void Apply(HeapEntry* entry) { }
};
void HeapEntry::PaintAllReachable() {
NullClass null;
ApplyAndPaintAllReachable(&null);
}
void HeapEntry::Print(int max_depth, int indent) {
OS::Print("%6d %6d [%llu] ", self_size(), RetainedSize(false), id());
if (type() != kString) {
OS::Print("%s %.40s\n", TypeAsString(), name_);
} else {
OS::Print("\"");
const char* c = name_;
while (*c && (c - name_) <= 40) {
if (*c != '\n')
OS::Print("%c", *c);
else
OS::Print("\\n");
++c;
}
OS::Print("\"\n");
}
if (--max_depth == 0) return;
Vector<HeapGraphEdge> ch = children();
for (int i = 0; i < ch.length(); ++i) {
HeapGraphEdge& edge = ch[i];
switch (edge.type()) {
case HeapGraphEdge::kContextVariable:
OS::Print(" %*c #%s: ", indent, ' ', edge.name());
break;
case HeapGraphEdge::kElement:
OS::Print(" %*c %d: ", indent, ' ', edge.index());
break;
case HeapGraphEdge::kInternal:
OS::Print(" %*c $%s: ", indent, ' ', edge.name());
break;
case HeapGraphEdge::kProperty:
OS::Print(" %*c %s: ", indent, ' ', edge.name());
break;
case HeapGraphEdge::kHidden:
OS::Print(" %*c $%d: ", indent, ' ', edge.index());
break;
case HeapGraphEdge::kShortcut:
OS::Print(" %*c ^%s: ", indent, ' ', edge.name());
break;
default:
OS::Print("!!! unknown edge type: %d ", edge.type());
}
edge.to()->Print(max_depth, indent + 2);
}
}
const char* HeapEntry::TypeAsString() {
switch (type()) {
case kHidden: return "/hidden/";
case kObject: return "/object/";
case kClosure: return "/closure/";
case kString: return "/string/";
case kCode: return "/code/";
case kArray: return "/array/";
case kRegExp: return "/regexp/";
case kHeapNumber: return "/number/";
default: return "???";
}
}
int HeapEntry::EntriesSize(int entries_count,
int children_count,
int retainers_count) {
return sizeof(HeapEntry) * entries_count // NOLINT
+ sizeof(HeapGraphEdge) * children_count // NOLINT
+ sizeof(HeapGraphEdge*) * retainers_count; // NOLINT
}
class RetainedSizeCalculator {
public:
RetainedSizeCalculator()
: retained_size_(0) {
}
int reained_size() const { return retained_size_; }
void Apply(HeapEntry** entry_ptr) {
if ((*entry_ptr)->painted_reachable()) {
retained_size_ += (*entry_ptr)->self_size();
}
}
private:
int retained_size_;
};
void HeapEntry::CalculateExactRetainedSize() {
// To calculate retained size, first we paint all reachable nodes in
// one color, then we paint (or re-paint) all nodes reachable from
// other nodes with a different color. Then we sum up self sizes of
// nodes painted with the first color.
snapshot()->ClearPaint();
PaintAllReachable();
List<HeapEntry*> list(10);
HeapEntry* root = snapshot()->root();
if (this != root) {
list.Add(root);
root->paint_reachable_from_others();
}
while (!list.is_empty()) {
HeapEntry* curr = list.RemoveLast();
Vector<HeapGraphEdge> children = curr->children();
for (int i = 0; i < children.length(); ++i) {
if (children[i].type() == HeapGraphEdge::kShortcut) continue;
HeapEntry* child = children[i].to();
if (child != this && child->not_painted_reachable_from_others()) {
list.Add(child);
child->paint_reachable_from_others();
}
}
}
RetainedSizeCalculator ret_size_calc;
snapshot()->IterateEntries(&ret_size_calc);
retained_size_ = ret_size_calc.reained_size();
ASSERT((retained_size_ & kExactRetainedSizeTag) == 0);
retained_size_ |= kExactRetainedSizeTag;
}
class CachedHeapGraphPath {
public:
CachedHeapGraphPath()
: nodes_(NodesMatch) { }
CachedHeapGraphPath(const CachedHeapGraphPath& src)
: nodes_(NodesMatch, &HashMap::DefaultAllocator, src.nodes_.capacity()),
path_(src.path_.length() + 1) {
for (HashMap::Entry* p = src.nodes_.Start();
p != NULL;
p = src.nodes_.Next(p)) {
nodes_.Lookup(p->key, p->hash, true);
}
path_.AddAll(src.path_);
}
void Add(HeapGraphEdge* edge) {
nodes_.Lookup(edge->to(), Hash(edge->to()), true);
path_.Add(edge);
}
bool ContainsNode(HeapEntry* node) {
return nodes_.Lookup(node, Hash(node), false) != NULL;
}
const List<HeapGraphEdge*>* path() const { return &path_; }
private:
static uint32_t Hash(HeapEntry* entry) {
return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry));
}
static bool NodesMatch(void* key1, void* key2) { return key1 == key2; }
HashMap nodes_;
List<HeapGraphEdge*> path_;
};
List<HeapGraphPath*>* HeapEntry::CalculateRetainingPaths() {
List<HeapGraphPath*>* retaining_paths = new List<HeapGraphPath*>(4);
CachedHeapGraphPath path;
FindRetainingPaths(&path, retaining_paths);
return retaining_paths;
}
void HeapEntry::FindRetainingPaths(CachedHeapGraphPath* prev_path,
List<HeapGraphPath*>* retaining_paths) {
Vector<HeapGraphEdge*> rets = retainers();
for (int i = 0; i < rets.length(); ++i) {
HeapGraphEdge* ret_edge = rets[i];
if (prev_path->ContainsNode(ret_edge->From())) continue;
if (ret_edge->From() != snapshot()->root()) {
CachedHeapGraphPath path(*prev_path);
path.Add(ret_edge);
ret_edge->From()->FindRetainingPaths(&path, retaining_paths);
} else {
HeapGraphPath* ret_path = new HeapGraphPath(*prev_path->path());
ret_path->Set(0, ret_edge);
retaining_paths->Add(ret_path);
}
}
}
HeapGraphPath::HeapGraphPath(const List<HeapGraphEdge*>& path)
: path_(path.length() + 1) {
Add(NULL);
for (int i = path.length() - 1; i >= 0; --i) {
Add(path[i]);
}
}
void HeapGraphPath::Print() {
path_[0]->From()->Print(1, 0);
for (int i = 0; i < path_.length(); ++i) {
OS::Print(" -> ");
HeapGraphEdge* edge = path_[i];
switch (edge->type()) {
case HeapGraphEdge::kContextVariable:
OS::Print("[#%s] ", edge->name());
break;
case HeapGraphEdge::kElement:
case HeapGraphEdge::kHidden:
OS::Print("[%d] ", edge->index());
break;
case HeapGraphEdge::kInternal:
OS::Print("[$%s] ", edge->name());
break;
case HeapGraphEdge::kProperty:
OS::Print("[%s] ", edge->name());
break;
case HeapGraphEdge::kShortcut:
OS::Print("[^%s] ", edge->name());
break;
default:
OS::Print("!!! unknown edge type: %d ", edge->type());
}
edge->to()->Print(1, 0);
}
OS::Print("\n");
}
HeapObject *const HeapSnapshot::kInternalRootObject =
reinterpret_cast<HeapObject*>(1);
HeapObject *const HeapSnapshot::kGcRootsObject =
reinterpret_cast<HeapObject*>(2);
// It is very important to keep objects that form a heap snapshot
// as small as possible.
namespace { // Avoid littering the global namespace.
template <size_t ptr_size> struct SnapshotSizeConstants;
template <> struct SnapshotSizeConstants<4> {
static const int kExpectedHeapGraphEdgeSize = 12;
static const int kExpectedHeapEntrySize = 36;
};
template <> struct SnapshotSizeConstants<8> {
static const int kExpectedHeapGraphEdgeSize = 24;
static const int kExpectedHeapEntrySize = 48;
};
} // namespace
HeapSnapshot::HeapSnapshot(HeapSnapshotsCollection* collection,
HeapSnapshot::Type type,
const char* title,
unsigned uid)
: collection_(collection),
type_(type),
title_(title),
uid_(uid),
root_entry_(NULL),
gc_roots_entry_(NULL),
raw_entries_(NULL),
entries_sorted_(false),
retaining_paths_(HeapEntry::Match) {
STATIC_ASSERT(
sizeof(HeapGraphEdge) ==
SnapshotSizeConstants<sizeof(void*)>::kExpectedHeapGraphEdgeSize); // NOLINT
STATIC_ASSERT(
sizeof(HeapEntry) ==
SnapshotSizeConstants<sizeof(void*)>::kExpectedHeapEntrySize); // NOLINT
}
static void DeleteHeapGraphPath(HeapGraphPath** path_ptr) {
delete *path_ptr;
}
HeapSnapshot::~HeapSnapshot() {
DeleteArray(raw_entries_);
for (HashMap::Entry* p = retaining_paths_.Start();
p != NULL;
p = retaining_paths_.Next(p)) {
List<HeapGraphPath*>* list =
reinterpret_cast<List<HeapGraphPath*>*>(p->value);
list->Iterate(DeleteHeapGraphPath);
delete list;
}
}
void HeapSnapshot::AllocateEntries(int entries_count,
int children_count,
int retainers_count) {
ASSERT(raw_entries_ == NULL);
raw_entries_ = NewArray<char>(
HeapEntry::EntriesSize(entries_count, children_count, retainers_count));
#ifdef DEBUG
raw_entries_size_ =
HeapEntry::EntriesSize(entries_count, children_count, retainers_count);
#endif
}
HeapEntry* HeapSnapshot::AddEntry(HeapObject* object,
int children_count,
int retainers_count) {
if (object == kInternalRootObject) {
ASSERT(root_entry_ == NULL);
ASSERT(retainers_count == 0);
return (root_entry_ = AddEntry(HeapEntry::kObject,
"",
HeapObjectsMap::kInternalRootObjectId,
0,
children_count,
retainers_count));
} else if (object == kGcRootsObject) {
ASSERT(gc_roots_entry_ == NULL);
return (gc_roots_entry_ = AddEntry(HeapEntry::kObject,
"(GC roots)",
HeapObjectsMap::kGcRootsObjectId,
0,
children_count,
retainers_count));
} else if (object->IsJSFunction()) {
JSFunction* func = JSFunction::cast(object);
SharedFunctionInfo* shared = func->shared();
return AddEntry(object,
HeapEntry::kClosure,
collection_->GetName(String::cast(shared->name())),
children_count,
retainers_count);
} else if (object->IsJSRegExp()) {
JSRegExp* re = JSRegExp::cast(object);
return AddEntry(object,
HeapEntry::kRegExp,
collection_->GetName(re->Pattern()),
children_count,
retainers_count);
} else if (object->IsJSObject()) {
return AddEntry(object,
HeapEntry::kObject,
collection_->GetName(GetConstructorNameForHeapProfile(
JSObject::cast(object))),
children_count,
retainers_count);
} else if (object->IsString()) {
return AddEntry(object,
HeapEntry::kString,
collection_->GetName(String::cast(object)),
children_count,
retainers_count);
} else if (object->IsCode()) {
return AddEntry(object,
HeapEntry::kCode,
"",
children_count,
retainers_count);
} else if (object->IsSharedFunctionInfo()) {
SharedFunctionInfo* shared = SharedFunctionInfo::cast(object);
return AddEntry(object,
HeapEntry::kCode,
collection_->GetName(String::cast(shared->name())),
children_count,
retainers_count);
} else if (object->IsScript()) {
Script* script = Script::cast(object);
return AddEntry(object,
HeapEntry::kCode,
script->name()->IsString() ?
collection_->GetName(String::cast(script->name())) : "",
children_count,
retainers_count);
} else if (object->IsFixedArray()) {
return AddEntry(object,
HeapEntry::kArray,
"",
children_count,
retainers_count);
} else if (object->IsHeapNumber()) {
return AddEntry(object,
HeapEntry::kHeapNumber,
"number",
children_count,
retainers_count);
}
return AddEntry(object,
HeapEntry::kHidden,
"system",
children_count,
retainers_count);
}
static void HeapEntryClearPaint(HeapEntry** entry_ptr) {
(*entry_ptr)->clear_paint();
}
void HeapSnapshot::ClearPaint() {
entries_.Iterate(HeapEntryClearPaint);
}
HeapEntry* HeapSnapshot::AddEntry(HeapObject* object,
HeapEntry::Type type,
const char* name,
int children_count,
int retainers_count) {
return AddEntry(type,
name,
collection_->GetObjectId(object->address()),
object->Size(),
children_count,
retainers_count);
}
HeapEntry* HeapSnapshot::AddEntry(HeapEntry::Type type,
const char* name,
uint64_t id,
int size,
int children_count,
int retainers_count) {
HeapEntry* entry = GetNextEntryToInit();
entry->Init(this, type, name, id, size, children_count, retainers_count);
return entry;
}
void HeapSnapshot::FillReversePostorderIndexes(Vector<HeapEntry*>* entries) {
ClearPaint();
int current_entry = 0;
List<HeapEntry*> nodes_to_visit;
nodes_to_visit.Add(root());
root()->paint_reachable();
while (!nodes_to_visit.is_empty()) {
HeapEntry* entry = nodes_to_visit.last();
Vector<HeapGraphEdge> children = entry->children();
bool has_new_edges = false;
for (int i = 0; i < children.length(); ++i) {
if (children[i].type() == HeapGraphEdge::kShortcut) continue;
HeapEntry* child = children[i].to();
if (!child->painted_reachable()) {
nodes_to_visit.Add(child);
child->paint_reachable();
has_new_edges = true;
}
}
if (!has_new_edges) {
entry->set_ordered_index(current_entry);
entries->at(current_entry++) = entry;
nodes_to_visit.RemoveLast();
}
}
entries->Truncate(current_entry);
}
static int Intersect(int i1, int i2, const Vector<HeapEntry*>& dominators) {
int finger1 = i1, finger2 = i2;
while (finger1 != finger2) {
while (finger1 < finger2) finger1 = dominators[finger1]->ordered_index();
while (finger2 < finger1) finger2 = dominators[finger2]->ordered_index();
}
return finger1;
}
// The algorithm is based on the article:
// K. Cooper, T. Harvey and K. Kennedy "A Simple, Fast Dominance Algorithm"
// Softw. Pract. Exper. 4 (2001), pp. 1–10.
void HeapSnapshot::BuildDominatorTree(const Vector<HeapEntry*>& entries,
Vector<HeapEntry*>* dominators) {
if (entries.length() == 0) return;
const int root_index = entries.length() - 1;
for (int i = 0; i < root_index; ++i) dominators->at(i) = NULL;
dominators->at(root_index) = entries[root_index];
bool changed = true;
while (changed) {
changed = false;
for (int i = root_index - 1; i >= 0; --i) {
HeapEntry* new_idom = NULL;
Vector<HeapGraphEdge*> rets = entries[i]->retainers();
int j = 0;
for (; j < rets.length(); ++j) {
if (rets[j]->type() == HeapGraphEdge::kShortcut) continue;
HeapEntry* ret = rets[j]->From();
if (dominators->at(ret->ordered_index()) != NULL) {
new_idom = ret;
break;
}
}
for (++j; j < rets.length(); ++j) {
if (rets[j]->type() == HeapGraphEdge::kShortcut) continue;
HeapEntry* ret = rets[j]->From();
if (dominators->at(ret->ordered_index()) != NULL) {
new_idom = entries[Intersect(ret->ordered_index(),
new_idom->ordered_index(),
*dominators)];
}
}
if (new_idom != NULL && dominators->at(i) != new_idom) {
dominators->at(i) = new_idom;
changed = true;
}
}
}
}
void HeapSnapshot::SetDominatorsToSelf() {
for (int i = 0; i < entries_.length(); ++i) {
HeapEntry* entry = entries_[i];
if (entry->dominator() == NULL) entry->set_dominator(entry);
}
}
void HeapSnapshot::SetEntriesDominators() {
// This array is used for maintaining reverse postorder of nodes.
ScopedVector<HeapEntry*> ordered_entries(entries_.length());
FillReversePostorderIndexes(&ordered_entries);
ScopedVector<HeapEntry*> dominators(ordered_entries.length());
BuildDominatorTree(ordered_entries, &dominators);
for (int i = 0; i < ordered_entries.length(); ++i) {
ASSERT(dominators[i] != NULL);
ordered_entries[i]->set_dominator(dominators[i]);
}
// For nodes unreachable from root, set dominator to itself.
SetDominatorsToSelf();
}
void HeapSnapshot::ApproximateRetainedSizes() {
SetEntriesDominators();
// As for the dominators tree we only know parent nodes, not
// children, to sum up total sizes we traverse the tree level by
// level upwards, starting from leaves.
for (int i = 0; i < entries_.length(); ++i) {
HeapEntry* entry = entries_[i];
entry->set_retained_size(entry->self_size());
entry->set_leaf();
}
while (true) {
bool onlyLeaves = true;
for (int i = 0; i < entries_.length(); ++i) {
HeapEntry *entry = entries_[i], *dominator = entry->dominator();
if (!entry->is_processed() && dominator != entry) {
dominator->set_non_leaf();
onlyLeaves = false;
}
}
if (onlyLeaves) break;
for (int i = 0; i < entries_.length(); ++i) {
HeapEntry *entry = entries_[i], *dominator = entry->dominator();
if (entry->is_leaf() && dominator != entry) {
dominator->add_retained_size(entry->retained_size());
}
}
// Mark all current leaves as processed, reset non-leaves back to leaves.
for (int i = 0; i < entries_.length(); ++i) {
HeapEntry* entry = entries_[i];
if (entry->is_leaf())
entry->set_processed();
else if (entry->is_non_leaf())
entry->set_leaf();
}
}
}
HeapEntry* HeapSnapshot::GetNextEntryToInit() {
if (entries_.length() > 0) {
HeapEntry* last_entry = entries_.last();
entries_.Add(reinterpret_cast<HeapEntry*>(
reinterpret_cast<char*>(last_entry) + last_entry->EntrySize()));
} else {
entries_.Add(reinterpret_cast<HeapEntry*>(raw_entries_));
}
ASSERT(reinterpret_cast<char*>(entries_.last()) <
(raw_entries_ + raw_entries_size_));
return entries_.last();
}
HeapSnapshotsDiff* HeapSnapshot::CompareWith(HeapSnapshot* snapshot) {
return collection_->CompareSnapshots(this, snapshot);
}
List<HeapGraphPath*>* HeapSnapshot::GetRetainingPaths(HeapEntry* entry) {
HashMap::Entry* p =
retaining_paths_.Lookup(entry, HeapEntry::Hash(entry), true);
if (p->value == NULL) {
p->value = entry->CalculateRetainingPaths();
}
return reinterpret_cast<List<HeapGraphPath*>*>(p->value);
}
template<class T>
static int SortByIds(const T* entry1_ptr,
const T* entry2_ptr) {
if ((*entry1_ptr)->id() == (*entry2_ptr)->id()) return 0;
return (*entry1_ptr)->id() < (*entry2_ptr)->id() ? -1 : 1;
}
List<HeapEntry*>* HeapSnapshot::GetSortedEntriesList() {
if (!entries_sorted_) {
entries_.Sort(SortByIds);
entries_sorted_ = true;
}
return &entries_;
}
void HeapSnapshot::Print(int max_depth) {
root()->Print(max_depth, 0);
}
const uint64_t HeapObjectsMap::kInternalRootObjectId = 0;
const uint64_t HeapObjectsMap::kGcRootsObjectId = 1;
// Increase kFirstAvailableObjectId if new 'special' objects appear.
const uint64_t HeapObjectsMap::kFirstAvailableObjectId = 2;
HeapObjectsMap::HeapObjectsMap()
: initial_fill_mode_(true),
next_id_(kFirstAvailableObjectId),
entries_map_(AddressesMatch),
entries_(new List<EntryInfo>()) { }
HeapObjectsMap::~HeapObjectsMap() {
delete entries_;
}
void HeapObjectsMap::SnapshotGenerationFinished() {
initial_fill_mode_ = false;
RemoveDeadEntries();
}
uint64_t HeapObjectsMap::FindObject(Address addr) {
if (!initial_fill_mode_) {
uint64_t existing = FindEntry(addr);
if (existing != 0) return existing;
}
uint64_t id = next_id_++;
AddEntry(addr, id);
return id;
}
void HeapObjectsMap::MoveObject(Address from, Address to) {
if (from == to) return;
HashMap::Entry* entry = entries_map_.Lookup(from, AddressHash(from), false);
if (entry != NULL) {
void* value = entry->value;
entries_map_.Remove(from, AddressHash(from));
entry = entries_map_.Lookup(to, AddressHash(to), true);
// We can have an entry at the new location, it is OK, as GC can overwrite
// dead objects with alive objects being moved.
entry->value = value;
}
}
void HeapObjectsMap::AddEntry(Address addr, uint64_t id) {
HashMap::Entry* entry = entries_map_.Lookup(addr, AddressHash(addr), true);
ASSERT(entry->value == NULL);
entry->value = reinterpret_cast<void*>(entries_->length());
entries_->Add(EntryInfo(id));
}
uint64_t HeapObjectsMap::FindEntry(Address addr) {
HashMap::Entry* entry = entries_map_.Lookup(addr, AddressHash(addr), false);
if (entry != NULL) {
int entry_index =
static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
EntryInfo& entry_info = entries_->at(entry_index);
entry_info.accessed = true;
return entry_info.id;
} else {
return 0;
}
}
void HeapObjectsMap::RemoveDeadEntries() {
List<EntryInfo>* new_entries = new List<EntryInfo>();
List<void*> dead_entries;
for (HashMap::Entry* entry = entries_map_.Start();
entry != NULL;
entry = entries_map_.Next(entry)) {
int entry_index =
static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
EntryInfo& entry_info = entries_->at(entry_index);
if (entry_info.accessed) {
entry->value = reinterpret_cast<void*>(new_entries->length());
new_entries->Add(EntryInfo(entry_info.id, false));
} else {
dead_entries.Add(entry->key);
}
}
for (int i = 0; i < dead_entries.length(); ++i) {
void* raw_entry = dead_entries[i];
entries_map_.Remove(
raw_entry, AddressHash(reinterpret_cast<Address>(raw_entry)));
}
delete entries_;
entries_ = new_entries;
}
HeapSnapshotsCollection::HeapSnapshotsCollection()
: is_tracking_objects_(false),
snapshots_uids_(HeapSnapshotsMatch),
token_enumerator_(new TokenEnumerator()) {
}
static void DeleteHeapSnapshot(HeapSnapshot** snapshot_ptr) {
delete *snapshot_ptr;
}
HeapSnapshotsCollection::~HeapSnapshotsCollection() {
delete token_enumerator_;
snapshots_.Iterate(DeleteHeapSnapshot);
}
HeapSnapshot* HeapSnapshotsCollection::NewSnapshot(HeapSnapshot::Type type,
const char* name,
unsigned uid) {
is_tracking_objects_ = true; // Start watching for heap objects moves.
HeapSnapshot* snapshot = new HeapSnapshot(this, type, name, uid);
snapshots_.Add(snapshot);
HashMap::Entry* entry =
snapshots_uids_.Lookup(reinterpret_cast<void*>(snapshot->uid()),
static_cast<uint32_t>(snapshot->uid()),
true);
ASSERT(entry->value == NULL);
entry->value = snapshot;
return snapshot;
}
HeapSnapshot* HeapSnapshotsCollection::GetSnapshot(unsigned uid) {
HashMap::Entry* entry = snapshots_uids_.Lookup(reinterpret_cast<void*>(uid),
static_cast<uint32_t>(uid),
false);
return entry != NULL ? reinterpret_cast<HeapSnapshot*>(entry->value) : NULL;
}
HeapSnapshotsDiff* HeapSnapshotsCollection::CompareSnapshots(
HeapSnapshot* snapshot1,
HeapSnapshot* snapshot2) {
return comparator_.Compare(snapshot1, snapshot2);
}
HeapEntry *const HeapEntriesMap::kHeapEntryPlaceholder =
reinterpret_cast<HeapEntry*>(1);
HeapEntriesMap::HeapEntriesMap()
: entries_(HeapObjectsMatch),
entries_count_(0),
total_children_count_(0),
total_retainers_count_(0) {
}
HeapEntriesMap::~HeapEntriesMap() {
for (HashMap::Entry* p = entries_.Start(); p != NULL; p = entries_.Next(p)) {
delete reinterpret_cast<EntryInfo*>(p->value);
}
}
HeapEntry* HeapEntriesMap::Map(HeapObject* object) {
HashMap::Entry* cache_entry = entries_.Lookup(object, Hash(object), false);
if (cache_entry != NULL) {
EntryInfo* entry_info = reinterpret_cast<EntryInfo*>(cache_entry->value);
return entry_info->entry;
} else {
return NULL;
}
}
void HeapEntriesMap::Pair(HeapObject* object, HeapEntry* entry) {
HashMap::Entry* cache_entry = entries_.Lookup(object, Hash(object), true);
ASSERT(cache_entry->value == NULL);
cache_entry->value = new EntryInfo(entry);
++entries_count_;
}
void HeapEntriesMap::CountReference(HeapObject* from, HeapObject* to,
int* prev_children_count,
int* prev_retainers_count) {
HashMap::Entry* from_cache_entry = entries_.Lookup(from, Hash(from), false);
HashMap::Entry* to_cache_entry = entries_.Lookup(to, Hash(to), false);
ASSERT(from_cache_entry != NULL);
ASSERT(to_cache_entry != NULL);
EntryInfo* from_entry_info =
reinterpret_cast<EntryInfo*>(from_cache_entry->value);
EntryInfo* to_entry_info =
reinterpret_cast<EntryInfo*>(to_cache_entry->value);
if (prev_children_count)
*prev_children_count = from_entry_info->children_count;
if (prev_retainers_count)
*prev_retainers_count = to_entry_info->retainers_count;
++from_entry_info->children_count;
++to_entry_info->retainers_count;
++total_children_count_;
++total_retainers_count_;
}
HeapObjectsSet::HeapObjectsSet()
: entries_(HeapEntriesMap::HeapObjectsMatch) {
}
void HeapObjectsSet::Clear() {
entries_.Clear();
}
bool HeapObjectsSet::Contains(Object* obj) {
if (!obj->IsHeapObject()) return false;
HeapObject* object = HeapObject::cast(obj);
HashMap::Entry* cache_entry =
entries_.Lookup(object, HeapEntriesMap::Hash(object), false);
return cache_entry != NULL;
}
void HeapObjectsSet::Insert(Object* obj) {
if (!obj->IsHeapObject()) return;
HeapObject* object = HeapObject::cast(obj);
HashMap::Entry* cache_entry =
entries_.Lookup(object, HeapEntriesMap::Hash(object), true);
if (cache_entry->value == NULL) {
cache_entry->value = HeapEntriesMap::kHeapEntryPlaceholder;
}
}
HeapSnapshotGenerator::HeapSnapshotGenerator(HeapSnapshot* snapshot)
: snapshot_(snapshot),
collection_(snapshot->collection()),
filler_(NULL) {
}
class SnapshotCounter : public HeapSnapshotGenerator::SnapshotFillerInterface {
public:
explicit SnapshotCounter(HeapEntriesMap* entries)
: entries_(entries) { }
HeapEntry* AddEntry(HeapObject* obj) {
entries_->Pair(obj, HeapEntriesMap::kHeapEntryPlaceholder);
return HeapEntriesMap::kHeapEntryPlaceholder;
}
void SetIndexedReference(HeapGraphEdge::Type,
HeapObject* parent_obj,
HeapEntry*,
int,
Object* child_obj,
HeapEntry*) {
entries_->CountReference(parent_obj, HeapObject::cast(child_obj));
}
void SetNamedReference(HeapGraphEdge::Type,
HeapObject* parent_obj,
HeapEntry*,
const char*,
Object* child_obj,
HeapEntry*) {
entries_->CountReference(parent_obj, HeapObject::cast(child_obj));
}
void SetRootShortcutReference(Object* child_obj, HeapEntry*) {
entries_->CountReference(
HeapSnapshot::kInternalRootObject, HeapObject::cast(child_obj));
}
void SetRootGcRootsReference() {
entries_->CountReference(
HeapSnapshot::kInternalRootObject, HeapSnapshot::kGcRootsObject);
}
void SetStrongRootReference(Object* child_obj, HeapEntry*) {
entries_->CountReference(
HeapSnapshot::kGcRootsObject, HeapObject::cast(child_obj));
}
private:
HeapEntriesMap* entries_;
};
class SnapshotFiller : public HeapSnapshotGenerator::SnapshotFillerInterface {
public:
explicit SnapshotFiller(HeapSnapshot* snapshot, HeapEntriesMap* entries)
: snapshot_(snapshot),
collection_(snapshot->collection()),
entries_(entries) { }
HeapEntry* AddEntry(HeapObject* obj) {
UNREACHABLE();
return NULL;
}
void SetIndexedReference(HeapGraphEdge::Type type,
HeapObject* parent_obj,
HeapEntry* parent_entry,
int index,
Object* child_obj,
HeapEntry* child_entry) {
int child_index, retainer_index;
entries_->CountReference(parent_obj,
HeapObject::cast(child_obj),
&child_index,
&retainer_index);
parent_entry->SetIndexedReference(
type, child_index, index, child_entry, retainer_index);
}
void SetNamedReference(HeapGraphEdge::Type type,
HeapObject* parent_obj,
HeapEntry* parent_entry,
const char* reference_name,
Object* child_obj,
HeapEntry* child_entry) {
int child_index, retainer_index;
entries_->CountReference(parent_obj, HeapObject::cast(child_obj),
&child_index, &retainer_index);
parent_entry->SetNamedReference(type,
child_index,
reference_name,
child_entry,
retainer_index);
}
void SetRootGcRootsReference() {
int child_index, retainer_index;
entries_->CountReference(HeapSnapshot::kInternalRootObject,
HeapSnapshot::kGcRootsObject,
&child_index,
&retainer_index);
snapshot_->root()->SetIndexedReference(HeapGraphEdge::kElement,
child_index,
child_index + 1,
snapshot_->gc_roots(),
retainer_index);
}
void SetRootShortcutReference(Object* child_obj,
HeapEntry* child_entry) {
int child_index, retainer_index;
entries_->CountReference(HeapSnapshot::kInternalRootObject,
HeapObject::cast(child_obj),
&child_index,
&retainer_index);
snapshot_->root()->SetNamedReference(HeapGraphEdge::kShortcut,
child_index,
collection_->GetName(child_index + 1),
child_entry,
retainer_index);
}
void SetStrongRootReference(Object* child_obj,
HeapEntry* child_entry) {
int child_index, retainer_index;
entries_->CountReference(HeapSnapshot::kGcRootsObject,
HeapObject::cast(child_obj),
&child_index,
&retainer_index);
snapshot_->gc_roots()->SetIndexedReference(HeapGraphEdge::kElement,
child_index,
child_index + 1,
child_entry,
retainer_index);
}
private:
HeapSnapshot* snapshot_;
HeapSnapshotsCollection* collection_;
HeapEntriesMap* entries_;
};
class SnapshotAllocator {
public:
explicit SnapshotAllocator(HeapSnapshot* snapshot)
: snapshot_(snapshot) { }
HeapEntry* GetEntry(
HeapObject* obj, int children_count, int retainers_count) {
HeapEntry* entry =
snapshot_->AddEntry(obj, children_count, retainers_count);
ASSERT(entry != NULL);
return entry;
}
private:
HeapSnapshot* snapshot_;
};
class RootsReferencesExtractor : public ObjectVisitor {
public:
explicit RootsReferencesExtractor(HeapSnapshotGenerator* generator)
: generator_(generator) {
}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) generator_->SetGcRootsReference(*p);
}
private:
HeapSnapshotGenerator* generator_;
};
void HeapSnapshotGenerator::GenerateSnapshot() {
AssertNoAllocation no_alloc;
// Pass 1. Iterate heap contents to count entries and references.
SnapshotCounter counter(&entries_);
filler_ = &counter;
filler_->AddEntry(HeapSnapshot::kInternalRootObject);
filler_->AddEntry(HeapSnapshot::kGcRootsObject);
HeapIterator iterator(HeapIterator::kPreciseFiltering);
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
ExtractReferences(obj);
}
SetRootGcRootsReference();
RootsReferencesExtractor extractor(this);
Heap::IterateRoots(&extractor, VISIT_ONLY_STRONG);
// Allocate and fill entries in the snapshot, allocate references.
snapshot_->AllocateEntries(entries_.entries_count(),
entries_.total_children_count(),
entries_.total_retainers_count());
SnapshotAllocator allocator(snapshot_);
entries_.UpdateEntries(&allocator);
// Pass 2. Fill references.
SnapshotFiller filler(snapshot_, &entries_);
filler_ = &filler;
iterator.reset();
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
ExtractReferences(obj);
}
SetRootGcRootsReference();
Heap::IterateRoots(&extractor, VISIT_ONLY_STRONG);
snapshot_->ApproximateRetainedSizes();
}
HeapEntry* HeapSnapshotGenerator::GetEntry(Object* obj) {
if (!obj->IsHeapObject()) return NULL;
HeapObject* object = HeapObject::cast(obj);
HeapEntry* entry = entries_.Map(object);
// A new entry.
if (entry == NULL) entry = filler_->AddEntry(object);
return entry;
}
class IndexedReferencesExtractor : public ObjectVisitor {
public:
IndexedReferencesExtractor(HeapSnapshotGenerator* generator,
HeapObject* parent_obj,
HeapEntry* parent_entry,
HeapObjectsSet* known_references = NULL)
: generator_(generator),
parent_obj_(parent_obj),
parent_(parent_entry),
known_references_(known_references),
next_index_(1) {
}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) {
if (!known_references_ || !known_references_->Contains(*p)) {
generator_->SetHiddenReference(parent_obj_, parent_, next_index_++, *p);
}
}
}
private:
HeapSnapshotGenerator* generator_;
HeapObject* parent_obj_;
HeapEntry* parent_;
HeapObjectsSet* known_references_;
int next_index_;
};
void HeapSnapshotGenerator::ExtractReferences(HeapObject* obj) {
HeapEntry* entry = GetEntry(obj);
if (entry == NULL) return; // No interest in this object.
known_references_.Clear();
if (obj->IsJSGlobalProxy()) {
// We need to reference JS global objects from snapshot's root.
// We use JSGlobalProxy because this is what embedder (e.g. browser)
// uses for the global object.
JSGlobalProxy* proxy = JSGlobalProxy::cast(obj);
SetRootShortcutReference(proxy->map()->prototype());
IndexedReferencesExtractor refs_extractor(this, obj, entry);
obj->Iterate(&refs_extractor);
} else if (obj->IsJSObject()) {
JSObject* js_obj = JSObject::cast(obj);
ExtractClosureReferences(js_obj, entry);
ExtractPropertyReferences(js_obj, entry);
ExtractElementReferences(js_obj, entry);
ExtractInternalReferences(js_obj, entry);
SetPropertyReference(
obj, entry, Heap::Proto_symbol(), js_obj->GetPrototype());
if (obj->IsJSFunction()) {
JSFunction* js_fun = JSFunction::cast(obj);
if (js_fun->has_prototype()) {
SetPropertyReference(
obj, entry, Heap::prototype_symbol(), js_fun->prototype());
}
}
IndexedReferencesExtractor refs_extractor(
this, obj, entry, &known_references_);
obj->Iterate(&refs_extractor);
} else if (obj->IsString()) {
if (obj->IsConsString()) {
ConsString* cs = ConsString::cast(obj);
SetInternalReference(obj, entry, 1, cs->first());
SetInternalReference(obj, entry, 2, cs->second());
}
} else {
IndexedReferencesExtractor refs_extractor(this, obj, entry);
obj->Iterate(&refs_extractor);
}
}
void HeapSnapshotGenerator::ExtractClosureReferences(JSObject* js_obj,
HeapEntry* entry) {
if (js_obj->IsJSFunction()) {
HandleScope hs;
JSFunction* func = JSFunction::cast(js_obj);
Context* context = func->context();
ZoneScope zscope(DELETE_ON_EXIT);
SerializedScopeInfo* serialized_scope_info =
context->closure()->shared()->scope_info();
ScopeInfo<ZoneListAllocationPolicy> zone_scope_info(serialized_scope_info);
int locals_number = zone_scope_info.NumberOfLocals();
for (int i = 0; i < locals_number; ++i) {
String* local_name = *zone_scope_info.LocalName(i);
int idx = serialized_scope_info->ContextSlotIndex(local_name, NULL);
if (idx >= 0 && idx < context->length()) {
SetClosureReference(js_obj, entry, local_name, context->get(idx));
}
}
SetInternalReference(js_obj, entry, "code", func->shared());
}
}
void HeapSnapshotGenerator::ExtractPropertyReferences(JSObject* js_obj,
HeapEntry* entry) {
if (js_obj->HasFastProperties()) {
DescriptorArray* descs = js_obj->map()->instance_descriptors();
for (int i = 0; i < descs->number_of_descriptors(); i++) {
switch (descs->GetType(i)) {
case FIELD: {
int index = descs->GetFieldIndex(i);
SetPropertyReference(
js_obj, entry, descs->GetKey(i), js_obj->FastPropertyAt(index));
break;
}
case CONSTANT_FUNCTION:
SetPropertyReference(
js_obj, entry, descs->GetKey(i), descs->GetConstantFunction(i));
break;
default: ;
}
}
} else {
StringDictionary* dictionary = js_obj->property_dictionary();
int length = dictionary->Capacity();
for (int i = 0; i < length; ++i) {
Object* k = dictionary->KeyAt(i);
if (dictionary->IsKey(k)) {
Object* target = dictionary->ValueAt(i);
SetPropertyReference(
js_obj, entry, String::cast(k), target);
// We assume that global objects can only have slow properties.
if (target->IsJSGlobalPropertyCell()) {
SetPropertyShortcutReference(js_obj,
entry,
String::cast(k),
JSGlobalPropertyCell::cast(
target)->value());
}
}
}
}
}
void HeapSnapshotGenerator::ExtractElementReferences(JSObject* js_obj,
HeapEntry* entry) {
if (js_obj->HasFastElements()) {
FixedArray* elements = FixedArray::cast(js_obj->elements());
int length = js_obj->IsJSArray() ?
Smi::cast(JSArray::cast(js_obj)->length())->value() :
elements->length();
for (int i = 0; i < length; ++i) {
if (!elements->get(i)->IsTheHole()) {
SetElementReference(js_obj, entry, i, elements->get(i));
}
}
} else if (js_obj->HasDictionaryElements()) {
NumberDictionary* dictionary = js_obj->element_dictionary();
int length = dictionary->Capacity();
for (int i = 0; i < length; ++i) {
Object* k = dictionary->KeyAt(i);
if (dictionary->IsKey(k)) {
ASSERT(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number());
SetElementReference(js_obj, entry, index, dictionary->ValueAt(i));
}
}
}
}
void HeapSnapshotGenerator::ExtractInternalReferences(JSObject* js_obj,
HeapEntry* entry) {
int length = js_obj->GetInternalFieldCount();
for (int i = 0; i < length; ++i) {
Object* o = js_obj->GetInternalField(i);
SetInternalReference(js_obj, entry, i, o);
}
}
void HeapSnapshotGenerator::SetClosureReference(HeapObject* parent_obj,
HeapEntry* parent_entry,
String* reference_name,
Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
if (child_entry != NULL) {
filler_->SetNamedReference(HeapGraphEdge::kContextVariable,
parent_obj,
parent_entry,
collection_->GetName(reference_name),
child_obj,
child_entry);
known_references_.Insert(child_obj);
}
}
void HeapSnapshotGenerator::SetElementReference(HeapObject* parent_obj,
HeapEntry* parent_entry,
int index,
Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
if (child_entry != NULL) {
filler_->SetIndexedReference(HeapGraphEdge::kElement,
parent_obj,
parent_entry,
index,
child_obj,
child_entry);
known_references_.Insert(child_obj);
}
}
void HeapSnapshotGenerator::SetInternalReference(HeapObject* parent_obj,
HeapEntry* parent_entry,
const char* reference_name,
Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
if (child_entry != NULL) {
filler_->SetNamedReference(HeapGraphEdge::kInternal,
parent_obj,
parent_entry,
reference_name,
child_obj,
child_entry);
known_references_.Insert(child_obj);
}
}
void HeapSnapshotGenerator::SetInternalReference(HeapObject* parent_obj,
HeapEntry* parent_entry,
int index,
Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
if (child_entry != NULL) {
filler_->SetNamedReference(HeapGraphEdge::kInternal,
parent_obj,
parent_entry,
collection_->GetName(index),
child_obj,
child_entry);
known_references_.Insert(child_obj);
}
}
void HeapSnapshotGenerator::SetHiddenReference(HeapObject* parent_obj,
HeapEntry* parent_entry,
int index,
Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
if (child_entry != NULL) {
filler_->SetIndexedReference(HeapGraphEdge::kHidden,
parent_obj,
parent_entry,
index,
child_obj,
child_entry);
}
}
void HeapSnapshotGenerator::SetPropertyReference(HeapObject* parent_obj,
HeapEntry* parent_entry,
String* reference_name,
Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
if (child_entry != NULL) {
HeapGraphEdge::Type type = reference_name->length() > 0 ?
HeapGraphEdge::kProperty : HeapGraphEdge::kInternal;
filler_->SetNamedReference(type,
parent_obj,
parent_entry,
collection_->GetName(reference_name),
child_obj,
child_entry);
known_references_.Insert(child_obj);
}
}
void HeapSnapshotGenerator::SetPropertyShortcutReference(
HeapObject* parent_obj,
HeapEntry* parent_entry,
String* reference_name,
Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
if (child_entry != NULL) {
filler_->SetNamedReference(HeapGraphEdge::kShortcut,
parent_obj,
parent_entry,
collection_->GetName(reference_name),
child_obj,
child_entry);
}
}
void HeapSnapshotGenerator::SetRootGcRootsReference() {
filler_->SetRootGcRootsReference();
}
void HeapSnapshotGenerator::SetRootShortcutReference(Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
ASSERT(child_entry != NULL);
filler_->SetRootShortcutReference(child_obj, child_entry);
}
void HeapSnapshotGenerator::SetGcRootsReference(Object* child_obj) {
HeapEntry* child_entry = GetEntry(child_obj);
if (child_entry != NULL) {
filler_->SetStrongRootReference(child_obj, child_entry);
}
}
void HeapSnapshotsDiff::CreateRoots(int additions_count, int deletions_count) {
raw_additions_root_ =
NewArray<char>(HeapEntry::EntriesSize(1, additions_count, 0));
additions_root()->Init(
snapshot2_, HeapEntry::kHidden, "", 0, 0, additions_count, 0);
raw_deletions_root_ =
NewArray<char>(HeapEntry::EntriesSize(1, deletions_count, 0));
deletions_root()->Init(
snapshot1_, HeapEntry::kHidden, "", 0, 0, deletions_count, 0);
}
static void DeleteHeapSnapshotsDiff(HeapSnapshotsDiff** diff_ptr) {
delete *diff_ptr;
}
HeapSnapshotsComparator::~HeapSnapshotsComparator() {
diffs_.Iterate(DeleteHeapSnapshotsDiff);
}
HeapSnapshotsDiff* HeapSnapshotsComparator::Compare(HeapSnapshot* snapshot1,
HeapSnapshot* snapshot2) {
snapshot1->ClearPaint();
snapshot1->root()->PaintAllReachable();
snapshot2->ClearPaint();
snapshot2->root()->PaintAllReachable();
List<HeapEntry*>* entries1 = snapshot1->GetSortedEntriesList();
List<HeapEntry*>* entries2 = snapshot2->GetSortedEntriesList();
int i = 0, j = 0;
List<HeapEntry*> added_entries, deleted_entries;
while (i < entries1->length() && j < entries2->length()) {
uint64_t id1 = entries1->at(i)->id();
uint64_t id2 = entries2->at(j)->id();
if (id1 == id2) {
HeapEntry* entry1 = entries1->at(i++);
HeapEntry* entry2 = entries2->at(j++);
if (entry1->painted_reachable() != entry2->painted_reachable()) {
if (entry1->painted_reachable())
deleted_entries.Add(entry1);
else
added_entries.Add(entry2);
}
} else if (id1 < id2) {
HeapEntry* entry = entries1->at(i++);
deleted_entries.Add(entry);
} else {
HeapEntry* entry = entries2->at(j++);
added_entries.Add(entry);
}
}
while (i < entries1->length()) {
HeapEntry* entry = entries1->at(i++);
deleted_entries.Add(entry);
}
while (j < entries2->length()) {
HeapEntry* entry = entries2->at(j++);
added_entries.Add(entry);
}
HeapSnapshotsDiff* diff = new HeapSnapshotsDiff(snapshot1, snapshot2);
diffs_.Add(diff);
diff->CreateRoots(added_entries.length(), deleted_entries.length());
for (int i = 0; i < deleted_entries.length(); ++i) {
HeapEntry* entry = deleted_entries[i];
diff->AddDeletedEntry(i, i + 1, entry);
}
for (int i = 0; i < added_entries.length(); ++i) {
HeapEntry* entry = added_entries[i];
diff->AddAddedEntry(i, i + 1, entry);
}
return diff;
}
class OutputStreamWriter {
public:
explicit OutputStreamWriter(v8::OutputStream* stream)
: stream_(stream),
chunk_size_(stream->GetChunkSize()),
chunk_(chunk_size_),
chunk_pos_(0),
aborted_(false) {
ASSERT(chunk_size_ > 0);
}
bool aborted() { return aborted_; }
void AddCharacter(char c) {
ASSERT(c != '\0');
ASSERT(chunk_pos_ < chunk_size_);
chunk_[chunk_pos_++] = c;
MaybeWriteChunk();
}
void AddString(const char* s) {
AddSubstring(s, StrLength(s));
}
void AddSubstring(const char* s, int n) {
if (n <= 0) return;
ASSERT(static_cast<size_t>(n) <= strlen(s));
const char* s_end = s + n;
while (s < s_end) {
int s_chunk_size = Min(
chunk_size_ - chunk_pos_, static_cast<int>(s_end - s));
ASSERT(s_chunk_size > 0);
memcpy(chunk_.start() + chunk_pos_, s, s_chunk_size);
s += s_chunk_size;
chunk_pos_ += s_chunk_size;
MaybeWriteChunk();
}
}
void AddNumber(int n) { AddNumberImpl<int>(n, "%d"); }
void AddNumber(unsigned n) { AddNumberImpl<unsigned>(n, "%u"); }
void AddNumber(uint64_t n) { AddNumberImpl<uint64_t>(n, "%llu"); }
void Finalize() {
if (aborted_) return;
ASSERT(chunk_pos_ < chunk_size_);
if (chunk_pos_ != 0) {
WriteChunk();
}
stream_->EndOfStream();
}
private:
template<typename T>
void AddNumberImpl(T n, const char* format) {
ScopedVector<char> buffer(32);
int result = OS::SNPrintF(buffer, format, n);
USE(result);
ASSERT(result != -1);
AddString(buffer.start());
}
void MaybeWriteChunk() {
ASSERT(chunk_pos_ <= chunk_size_);
if (chunk_pos_ == chunk_size_) {
WriteChunk();
chunk_pos_ = 0;
}
}
void WriteChunk() {
if (aborted_) return;
if (stream_->WriteAsciiChunk(chunk_.start(), chunk_pos_) ==
v8::OutputStream::kAbort) aborted_ = true;
}
v8::OutputStream* stream_;
int chunk_size_;
ScopedVector<char> chunk_;
int chunk_pos_;
bool aborted_;
};
void HeapSnapshotJSONSerializer::Serialize(v8::OutputStream* stream) {
ASSERT(writer_ == NULL);
writer_ = new OutputStreamWriter(stream);
// Since nodes graph is cyclic, we need the first pass to enumerate
// them. Strings can be serialized in one pass.
EnumerateNodes();
SerializeImpl();
delete writer_;
writer_ = NULL;
}
void HeapSnapshotJSONSerializer::SerializeImpl() {
writer_->AddCharacter('{');
writer_->AddString("\"snapshot\":{");
SerializeSnapshot();
if (writer_->aborted()) return;
writer_->AddString("},\n");
writer_->AddString("\"nodes\":[");
SerializeNodes();
if (writer_->aborted()) return;
writer_->AddString("],\n");
writer_->AddString("\"strings\":[");
SerializeStrings();
if (writer_->aborted()) return;
writer_->AddCharacter(']');
writer_->AddCharacter('}');
writer_->Finalize();
}
class HeapSnapshotJSONSerializerEnumerator {
public:
explicit HeapSnapshotJSONSerializerEnumerator(HeapSnapshotJSONSerializer* s)
: s_(s) {
}
void Apply(HeapEntry** entry) {
s_->GetNodeId(*entry);
}
private:
HeapSnapshotJSONSerializer* s_;
};
void HeapSnapshotJSONSerializer::EnumerateNodes() {
GetNodeId(snapshot_->root()); // Make sure root gets the first id.
HeapSnapshotJSONSerializerEnumerator iter(this);
snapshot_->IterateEntries(&iter);
}
int HeapSnapshotJSONSerializer::GetNodeId(HeapEntry* entry) {
HashMap::Entry* cache_entry = nodes_.Lookup(entry, ObjectHash(entry), true);
if (cache_entry->value == NULL) {
cache_entry->value = reinterpret_cast<void*>(next_node_id_++);
}
return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value));
}
int HeapSnapshotJSONSerializer::GetStringId(const char* s) {
HashMap::Entry* cache_entry = strings_.Lookup(
const_cast<char*>(s), ObjectHash(s), true);
if (cache_entry->value == NULL) {
cache_entry->value = reinterpret_cast<void*>(next_string_id_++);
}
return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value));
}
void HeapSnapshotJSONSerializer::SerializeEdge(HeapGraphEdge* edge) {
writer_->AddCharacter(',');
writer_->AddNumber(edge->type());
writer_->AddCharacter(',');
if (edge->type() == HeapGraphEdge::kElement
|| edge->type() == HeapGraphEdge::kHidden) {
writer_->AddNumber(edge->index());
} else {
writer_->AddNumber(GetStringId(edge->name()));
}
writer_->AddCharacter(',');
writer_->AddNumber(GetNodeId(edge->to()));
}
void HeapSnapshotJSONSerializer::SerializeNode(HeapEntry* entry) {
writer_->AddCharacter('\n');
writer_->AddCharacter(',');
writer_->AddNumber(entry->type());
writer_->AddCharacter(',');
writer_->AddNumber(GetStringId(entry->name()));
writer_->AddCharacter(',');
writer_->AddNumber(entry->id());
writer_->AddCharacter(',');
writer_->AddNumber(entry->self_size());
writer_->AddCharacter(',');
writer_->AddNumber(entry->RetainedSize(false));
writer_->AddCharacter(',');
writer_->AddNumber(GetNodeId(entry->dominator()));
Vector<HeapGraphEdge> children = entry->children();
writer_->AddCharacter(',');
writer_->AddNumber(children.length());
for (int i = 0; i < children.length(); ++i) {
SerializeEdge(&children[i]);
if (writer_->aborted()) return;
}
}
void HeapSnapshotJSONSerializer::SerializeNodes() {
// The first (zero) item of nodes array is an object describing node
// serialization layout. We use a set of macros to improve
// readability.
#define JSON_A(s) "["s"]"
#define JSON_O(s) "{"s"}"
#define JSON_S(s) "\""s"\""
writer_->AddString(JSON_O(
JSON_S("fields") ":" JSON_A(
JSON_S("type")
"," JSON_S("name")
"," JSON_S("id")
"," JSON_S("self_size")
"," JSON_S("retained_size")
"," JSON_S("dominator")
"," JSON_S("children_count")
"," JSON_S("children"))
"," JSON_S("types") ":" JSON_A(
JSON_A(
JSON_S("hidden")
"," JSON_S("array")
"," JSON_S("string")
"," JSON_S("object")
"," JSON_S("code")
"," JSON_S("closure")
"," JSON_S("regexp")
"," JSON_S("number"))
"," JSON_S("string")
"," JSON_S("number")
"," JSON_S("number")
"," JSON_S("number")
"," JSON_S("number")
"," JSON_S("number")
"," JSON_O(
JSON_S("fields") ":" JSON_A(
JSON_S("type")
"," JSON_S("name_or_index")
"," JSON_S("to_node"))
"," JSON_S("types") ":" JSON_A(
JSON_A(
JSON_S("context")
"," JSON_S("element")
"," JSON_S("property")
"," JSON_S("internal")
"," JSON_S("hidden")
"," JSON_S("shortcut"))
"," JSON_S("string_or_number")
"," JSON_S("node"))))));
#undef JSON_S
#undef JSON_O
#undef JSON_A
const int node_fields_count = 7;
// type,name,id,self_size,retained_size,dominator,children_count.
const int edge_fields_count = 3; // type,name|index,to_node.
List<HashMap::Entry*> sorted_nodes;
SortHashMap(&nodes_, &sorted_nodes);
// Rewrite node ids, so they refer to actual array positions.
if (sorted_nodes.length() > 1) {
// Nodes start from array index 1.
int prev_value = 1;
sorted_nodes[0]->value = reinterpret_cast<void*>(prev_value);
for (int i = 1; i < sorted_nodes.length(); ++i) {
HeapEntry* prev_heap_entry =
reinterpret_cast<HeapEntry*>(sorted_nodes[i-1]->key);
prev_value += node_fields_count +
prev_heap_entry->children().length() * edge_fields_count;
sorted_nodes[i]->value = reinterpret_cast<void*>(prev_value);
}
}
for (int i = 0; i < sorted_nodes.length(); ++i) {
SerializeNode(reinterpret_cast<HeapEntry*>(sorted_nodes[i]->key));
if (writer_->aborted()) return;
}
}
void HeapSnapshotJSONSerializer::SerializeSnapshot() {
writer_->AddString("\"title\":\"");
writer_->AddString(snapshot_->title());
writer_->AddString("\"");
writer_->AddString(",\"uid\":");
writer_->AddNumber(snapshot_->uid());
}
static void WriteUChar(OutputStreamWriter* w, unibrow::uchar u) {
static const char hex_chars[] = "0123456789ABCDEF";
w->AddString("\\u");
w->AddCharacter(hex_chars[(u >> 12) & 0xf]);
w->AddCharacter(hex_chars[(u >> 8) & 0xf]);
w->AddCharacter(hex_chars[(u >> 4) & 0xf]);
w->AddCharacter(hex_chars[u & 0xf]);
}
void HeapSnapshotJSONSerializer::SerializeString(const unsigned char* s) {
writer_->AddCharacter('\n');
writer_->AddCharacter('\"');
for ( ; *s != '\0'; ++s) {
switch (*s) {
case '\b':
writer_->AddString("\\b");
continue;
case '\f':
writer_->AddString("\\f");
continue;
case '\n':
writer_->AddString("\\n");
continue;
case '\r':
writer_->AddString("\\r");
continue;
case '\t':
writer_->AddString("\\t");
continue;
case '\"':
case '\\':
writer_->AddCharacter('\\');
writer_->AddCharacter(*s);
continue;
default:
if (*s > 31 && *s < 128) {
writer_->AddCharacter(*s);
} else if (*s <= 31) {
// Special character with no dedicated literal.
WriteUChar(writer_, *s);
} else {
// Convert UTF-8 into \u UTF-16 literal.
unsigned length = 1, cursor = 0;
for ( ; length <= 4 && *(s + length) != '\0'; ++length) { }
unibrow::uchar c = unibrow::Utf8::CalculateValue(s, length, &cursor);
if (c != unibrow::Utf8::kBadChar) {
WriteUChar(writer_, c);
ASSERT(cursor != 0);
s += cursor - 1;
} else {
writer_->AddCharacter('?');
}
}
}
}
writer_->AddCharacter('\"');
}
void HeapSnapshotJSONSerializer::SerializeStrings() {
List<HashMap::Entry*> sorted_strings;
SortHashMap(&strings_, &sorted_strings);
writer_->AddString("\"<dummy>\"");
for (int i = 0; i < sorted_strings.length(); ++i) {
writer_->AddCharacter(',');
SerializeString(
reinterpret_cast<const unsigned char*>(sorted_strings[i]->key));
if (writer_->aborted()) return;
}
}
template<typename T>
inline static int SortUsingEntryValue(const T* x, const T* y) {
uintptr_t x_uint = reinterpret_cast<uintptr_t>((*x)->value);
uintptr_t y_uint = reinterpret_cast<uintptr_t>((*y)->value);
if (x_uint > y_uint) {
return 1;
} else if (x_uint == y_uint) {
return 0;
} else {
return -1;
}
}
void HeapSnapshotJSONSerializer::SortHashMap(
HashMap* map, List<HashMap::Entry*>* sorted_entries) {
for (HashMap::Entry* p = map->Start(); p != NULL; p = map->Next(p))
sorted_entries->Add(p);
sorted_entries->Sort(SortUsingEntryValue);
}
String* GetConstructorNameForHeapProfile(JSObject* object) {
if (object->IsJSFunction()) return Heap::closure_symbol();
return object->constructor_name();
}
} } // namespace v8::internal
#endif // ENABLE_LOGGING_AND_PROFILING