blob: 69c062fb9bba00722db0d22afe295ae0eda1b070 [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_UTILS_H_
#define V8_UTILS_H_
#include <stdlib.h>
#include <string.h>
#include "globals.h"
#include "checks.h"
#include "allocation.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// General helper functions
#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
// Returns true iff x is a power of 2 (or zero). Cannot be used with the
// maximally negative value of the type T (the -1 overflows).
template <typename T>
static inline bool IsPowerOf2(T x) {
return IS_POWER_OF_TWO(x);
}
// X must be a power of 2. Returns the number of trailing zeros.
template <typename T>
static inline int WhichPowerOf2(T x) {
ASSERT(IsPowerOf2(x));
ASSERT(x != 0);
if (x < 0) return 31;
int bits = 0;
#ifdef DEBUG
int original_x = x;
#endif
if (x >= 0x10000) {
bits += 16;
x >>= 16;
}
if (x >= 0x100) {
bits += 8;
x >>= 8;
}
if (x >= 0x10) {
bits += 4;
x >>= 4;
}
switch (x) {
default: UNREACHABLE();
case 8: bits++; // Fall through.
case 4: bits++; // Fall through.
case 2: bits++; // Fall through.
case 1: break;
}
ASSERT_EQ(1 << bits, original_x);
return bits;
return 0;
}
// The C++ standard leaves the semantics of '>>' undefined for
// negative signed operands. Most implementations do the right thing,
// though.
static inline int ArithmeticShiftRight(int x, int s) {
return x >> s;
}
// Compute the 0-relative offset of some absolute value x of type T.
// This allows conversion of Addresses and integral types into
// 0-relative int offsets.
template <typename T>
static inline intptr_t OffsetFrom(T x) {
return x - static_cast<T>(0);
}
// Compute the absolute value of type T for some 0-relative offset x.
// This allows conversion of 0-relative int offsets into Addresses and
// integral types.
template <typename T>
static inline T AddressFrom(intptr_t x) {
return static_cast<T>(static_cast<T>(0) + x);
}
// Return the largest multiple of m which is <= x.
template <typename T>
static inline T RoundDown(T x, int m) {
ASSERT(IsPowerOf2(m));
return AddressFrom<T>(OffsetFrom(x) & -m);
}
// Return the smallest multiple of m which is >= x.
template <typename T>
static inline T RoundUp(T x, int m) {
return RoundDown(x + m - 1, m);
}
template <typename T>
static int Compare(const T& a, const T& b) {
if (a == b)
return 0;
else if (a < b)
return -1;
else
return 1;
}
template <typename T>
static int PointerValueCompare(const T* a, const T* b) {
return Compare<T>(*a, *b);
}
// Returns the smallest power of two which is >= x. If you pass in a
// number that is already a power of two, it is returned as is.
// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
// figure 3-3, page 48, where the function is called clp2.
static inline uint32_t RoundUpToPowerOf2(uint32_t x) {
ASSERT(x <= 0x80000000u);
x = x - 1;
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return x + 1;
}
template <typename T>
static inline bool IsAligned(T value, T alignment) {
ASSERT(IsPowerOf2(alignment));
return (value & (alignment - 1)) == 0;
}
// Returns true if (addr + offset) is aligned.
static inline bool IsAddressAligned(Address addr,
intptr_t alignment,
int offset) {
intptr_t offs = OffsetFrom(addr + offset);
return IsAligned(offs, alignment);
}
// Returns the maximum of the two parameters.
template <typename T>
static T Max(T a, T b) {
return a < b ? b : a;
}
// Returns the minimum of the two parameters.
template <typename T>
static T Min(T a, T b) {
return a < b ? a : b;
}
inline int StrLength(const char* string) {
size_t length = strlen(string);
ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
return static_cast<int>(length);
}
// ----------------------------------------------------------------------------
// BitField is a help template for encoding and decode bitfield with
// unsigned content.
template<class T, int shift, int size>
class BitField {
public:
// Tells whether the provided value fits into the bit field.
static bool is_valid(T value) {
return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
}
// Returns a uint32_t mask of bit field.
static uint32_t mask() {
// To use all bits of a uint32 in a bitfield without compiler warnings we
// have to compute 2^32 without using a shift count of 32.
return ((1U << shift) << size) - (1U << shift);
}
// Returns a uint32_t with the bit field value encoded.
static uint32_t encode(T value) {
ASSERT(is_valid(value));
return static_cast<uint32_t>(value) << shift;
}
// Extracts the bit field from the value.
static T decode(uint32_t value) {
return static_cast<T>((value & mask()) >> shift);
}
};
// ----------------------------------------------------------------------------
// Hash function.
// Thomas Wang, Integer Hash Functions.
// http://www.concentric.net/~Ttwang/tech/inthash.htm
static inline uint32_t ComputeIntegerHash(uint32_t key) {
uint32_t hash = key;
hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
hash = hash ^ (hash >> 12);
hash = hash + (hash << 2);
hash = hash ^ (hash >> 4);
hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
hash = hash ^ (hash >> 16);
return hash;
}
// ----------------------------------------------------------------------------
// Miscellaneous
// A static resource holds a static instance that can be reserved in
// a local scope using an instance of Access. Attempts to re-reserve
// the instance will cause an error.
template <typename T>
class StaticResource {
public:
StaticResource() : is_reserved_(false) {}
private:
template <typename S> friend class Access;
T instance_;
bool is_reserved_;
};
// Locally scoped access to a static resource.
template <typename T>
class Access {
public:
explicit Access(StaticResource<T>* resource)
: resource_(resource)
, instance_(&resource->instance_) {
ASSERT(!resource->is_reserved_);
resource->is_reserved_ = true;
}
~Access() {
resource_->is_reserved_ = false;
resource_ = NULL;
instance_ = NULL;
}
T* value() { return instance_; }
T* operator -> () { return instance_; }
private:
StaticResource<T>* resource_;
T* instance_;
};
template <typename T>
class Vector {
public:
Vector() : start_(NULL), length_(0) {}
Vector(T* data, int length) : start_(data), length_(length) {
ASSERT(length == 0 || (length > 0 && data != NULL));
}
static Vector<T> New(int length) {
return Vector<T>(NewArray<T>(length), length);
}
// Returns a vector using the same backing storage as this one,
// spanning from and including 'from', to but not including 'to'.
Vector<T> SubVector(int from, int to) {
ASSERT(to <= length_);
ASSERT(from < to);
ASSERT(0 <= from);
return Vector<T>(start() + from, to - from);
}
// Returns the length of the vector.
int length() const { return length_; }
// Returns whether or not the vector is empty.
bool is_empty() const { return length_ == 0; }
// Returns the pointer to the start of the data in the vector.
T* start() const { return start_; }
// Access individual vector elements - checks bounds in debug mode.
T& operator[](int index) const {
ASSERT(0 <= index && index < length_);
return start_[index];
}
T& at(int i) const { return operator[](i); }
T& first() { return start_[0]; }
T& last() { return start_[length_ - 1]; }
// Returns a clone of this vector with a new backing store.
Vector<T> Clone() const {
T* result = NewArray<T>(length_);
for (int i = 0; i < length_; i++) result[i] = start_[i];
return Vector<T>(result, length_);
}
void Sort(int (*cmp)(const T*, const T*)) {
typedef int (*RawComparer)(const void*, const void*);
qsort(start(),
length(),
sizeof(T),
reinterpret_cast<RawComparer>(cmp));
}
void Sort() {
Sort(PointerValueCompare<T>);
}
void Truncate(int length) {
ASSERT(length <= length_);
length_ = length;
}
// Releases the array underlying this vector. Once disposed the
// vector is empty.
void Dispose() {
DeleteArray(start_);
start_ = NULL;
length_ = 0;
}
inline Vector<T> operator+(int offset) {
ASSERT(offset < length_);
return Vector<T>(start_ + offset, length_ - offset);
}
// Factory method for creating empty vectors.
static Vector<T> empty() { return Vector<T>(NULL, 0); }
template<typename S>
static Vector<T> cast(Vector<S> input) {
return Vector<T>(reinterpret_cast<T*>(input.start()),
input.length() * sizeof(S) / sizeof(T));
}
protected:
void set_start(T* start) { start_ = start; }
private:
T* start_;
int length_;
};
template <typename T, int kSize>
class EmbeddedVector : public Vector<T> {
public:
EmbeddedVector() : Vector<T>(buffer_, kSize) { }
// When copying, make underlying Vector to reference our buffer.
EmbeddedVector(const EmbeddedVector& rhs)
: Vector<T>(rhs) {
memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
set_start(buffer_);
}
EmbeddedVector& operator=(const EmbeddedVector& rhs) {
if (this == &rhs) return *this;
Vector<T>::operator=(rhs);
memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
this->set_start(buffer_);
return *this;
}
private:
T buffer_[kSize];
};
template <typename T>
class ScopedVector : public Vector<T> {
public:
explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
~ScopedVector() {
DeleteArray(this->start());
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
};
inline Vector<const char> CStrVector(const char* data) {
return Vector<const char>(data, StrLength(data));
}
inline Vector<char> MutableCStrVector(char* data) {
return Vector<char>(data, StrLength(data));
}
inline Vector<char> MutableCStrVector(char* data, int max) {
int length = StrLength(data);
return Vector<char>(data, (length < max) ? length : max);
}
/*
* A class that collects values into a backing store.
* Specialized versions of the class can allow access to the backing store
* in different ways.
* There is no guarantee that the backing store is contiguous (and, as a
* consequence, no guarantees that consecutively added elements are adjacent
* in memory). The collector may move elements unless it has guaranteed not
* to.
*/
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class Collector {
public:
explicit Collector(int initial_capacity = kMinCapacity)
: index_(0), size_(0) {
if (initial_capacity < kMinCapacity) {
initial_capacity = kMinCapacity;
}
current_chunk_ = Vector<T>::New(initial_capacity);
}
virtual ~Collector() {
// Free backing store (in reverse allocation order).
current_chunk_.Dispose();
for (int i = chunks_.length() - 1; i >= 0; i--) {
chunks_.at(i).Dispose();
}
}
// Add a single element.
inline void Add(T value) {
if (index_ >= current_chunk_.length()) {
Grow(1);
}
current_chunk_[index_] = value;
index_++;
size_++;
}
// Add a block of contiguous elements and return a Vector backed by the
// memory area.
// A basic Collector will keep this vector valid as long as the Collector
// is alive.
inline Vector<T> AddBlock(int size, T initial_value) {
ASSERT(size > 0);
if (size > current_chunk_.length() - index_) {
Grow(size);
}
T* position = current_chunk_.start() + index_;
index_ += size;
size_ += size;
for (int i = 0; i < size; i++) {
position[i] = initial_value;
}
return Vector<T>(position, size);
}
// Write the contents of the collector into the provided vector.
void WriteTo(Vector<T> destination) {
ASSERT(size_ <= destination.length());
int position = 0;
for (int i = 0; i < chunks_.length(); i++) {
Vector<T> chunk = chunks_.at(i);
for (int j = 0; j < chunk.length(); j++) {
destination[position] = chunk[j];
position++;
}
}
for (int i = 0; i < index_; i++) {
destination[position] = current_chunk_[i];
position++;
}
}
// Allocate a single contiguous vector, copy all the collected
// elements to the vector, and return it.
// The caller is responsible for freeing the memory of the returned
// vector (e.g., using Vector::Dispose).
Vector<T> ToVector() {
Vector<T> new_store = Vector<T>::New(size_);
WriteTo(new_store);
return new_store;
}
// Resets the collector to be empty.
virtual void Reset() {
for (int i = chunks_.length() - 1; i >= 0; i--) {
chunks_.at(i).Dispose();
}
chunks_.Rewind(0);
index_ = 0;
size_ = 0;
}
// Total number of elements added to collector so far.
inline int size() { return size_; }
protected:
static const int kMinCapacity = 16;
List<Vector<T> > chunks_;
Vector<T> current_chunk_; // Block of memory currently being written into.
int index_; // Current index in current chunk.
int size_; // Total number of elements in collector.
// Creates a new current chunk, and stores the old chunk in the chunks_ list.
void Grow(int min_capacity) {
ASSERT(growth_factor > 1);
int growth = current_chunk_.length() * (growth_factor - 1);
if (growth > max_growth) {
growth = max_growth;
}
int new_capacity = current_chunk_.length() + growth;
if (new_capacity < min_capacity) {
new_capacity = min_capacity + growth;
}
Vector<T> new_chunk = Vector<T>::New(new_capacity);
int new_index = PrepareGrow(new_chunk);
if (index_ > 0) {
chunks_.Add(current_chunk_.SubVector(0, index_));
} else {
// Can happen if the call to PrepareGrow moves everything into
// the new chunk.
current_chunk_.Dispose();
}
current_chunk_ = new_chunk;
index_ = new_index;
ASSERT(index_ + min_capacity <= current_chunk_.length());
}
// Before replacing the current chunk, give a subclass the option to move
// some of the current data into the new chunk. The function may update
// the current index_ value to represent data no longer in the current chunk.
// Returns the initial index of the new chunk (after copied data).
virtual int PrepareGrow(Vector<T> new_chunk) {
return 0;
}
};
/*
* A collector that allows sequences of values to be guaranteed to
* stay consecutive.
* If the backing store grows while a sequence is active, the current
* sequence might be moved, but after the sequence is ended, it will
* not move again.
* NOTICE: Blocks allocated using Collector::AddBlock(int) can move
* as well, if inside an active sequence where another element is added.
*/
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class SequenceCollector : public Collector<T, growth_factor, max_growth> {
public:
explicit SequenceCollector(int initial_capacity)
: Collector<T, growth_factor, max_growth>(initial_capacity),
sequence_start_(kNoSequence) { }
virtual ~SequenceCollector() {}
void StartSequence() {
ASSERT(sequence_start_ == kNoSequence);
sequence_start_ = this->index_;
}
Vector<T> EndSequence() {
ASSERT(sequence_start_ != kNoSequence);
int sequence_start = sequence_start_;
sequence_start_ = kNoSequence;
if (sequence_start == this->index_) return Vector<T>();
return this->current_chunk_.SubVector(sequence_start, this->index_);
}
// Drops the currently added sequence, and all collected elements in it.
void DropSequence() {
ASSERT(sequence_start_ != kNoSequence);
int sequence_length = this->index_ - sequence_start_;
this->index_ = sequence_start_;
this->size_ -= sequence_length;
sequence_start_ = kNoSequence;
}
virtual void Reset() {
sequence_start_ = kNoSequence;
this->Collector<T, growth_factor, max_growth>::Reset();
}
private:
static const int kNoSequence = -1;
int sequence_start_;
// Move the currently active sequence to the new chunk.
virtual int PrepareGrow(Vector<T> new_chunk) {
if (sequence_start_ != kNoSequence) {
int sequence_length = this->index_ - sequence_start_;
// The new chunk is always larger than the current chunk, so there
// is room for the copy.
ASSERT(sequence_length < new_chunk.length());
for (int i = 0; i < sequence_length; i++) {
new_chunk[i] = this->current_chunk_[sequence_start_ + i];
}
this->index_ = sequence_start_;
sequence_start_ = 0;
return sequence_length;
}
return 0;
}
};
// Compare ASCII/16bit chars to ASCII/16bit chars.
template <typename lchar, typename rchar>
static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
const lchar* limit = lhs + chars;
#ifdef V8_HOST_CAN_READ_UNALIGNED
if (sizeof(*lhs) == sizeof(*rhs)) {
// Number of characters in a uintptr_t.
static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
while (lhs <= limit - kStepSize) {
if (*reinterpret_cast<const uintptr_t*>(lhs) !=
*reinterpret_cast<const uintptr_t*>(rhs)) {
break;
}
lhs += kStepSize;
rhs += kStepSize;
}
}
#endif
while (lhs < limit) {
int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
if (r != 0) return r;
++lhs;
++rhs;
}
return 0;
}
// Calculate 10^exponent.
static inline int TenToThe(int exponent) {
ASSERT(exponent <= 9);
ASSERT(exponent >= 1);
int answer = 10;
for (int i = 1; i < exponent; i++) answer *= 10;
return answer;
}
// The type-based aliasing rule allows the compiler to assume that pointers of
// different types (for some definition of different) never alias each other.
// Thus the following code does not work:
//
// float f = foo();
// int fbits = *(int*)(&f);
//
// The compiler 'knows' that the int pointer can't refer to f since the types
// don't match, so the compiler may cache f in a register, leaving random data
// in fbits. Using C++ style casts makes no difference, however a pointer to
// char data is assumed to alias any other pointer. This is the 'memcpy
// exception'.
//
// Bit_cast uses the memcpy exception to move the bits from a variable of one
// type of a variable of another type. Of course the end result is likely to
// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
// will completely optimize BitCast away.
//
// There is an additional use for BitCast.
// Recent gccs will warn when they see casts that may result in breakage due to
// the type-based aliasing rule. If you have checked that there is no breakage
// you can use BitCast to cast one pointer type to another. This confuses gcc
// enough that it can no longer see that you have cast one pointer type to
// another thus avoiding the warning.
template <class Dest, class Source>
inline Dest BitCast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
Dest dest;
memcpy(&dest, &source, sizeof(dest));
return dest;
}
template <class Dest, class Source>
inline Dest BitCast(Source* source) {
return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
}
} } // namespace v8::internal
#endif // V8_UTILS_H_