blob: 2d415cbaf12ee8c96dcb72288c1c60525af004b1 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "arm/lithium-codegen-arm.h"
#include "arm/lithium-gap-resolver-arm.h"
#include "code-stubs.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
class SafepointGenerator : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
int deoptimization_index)
: codegen_(codegen),
pointers_(pointers),
deoptimization_index_(deoptimization_index) { }
virtual ~SafepointGenerator() { }
virtual void BeforeCall(int call_size) {
ASSERT(call_size >= 0);
// Ensure that we have enough space after the previous safepoint position
// for the generated code there.
int call_end = codegen_->masm()->pc_offset() + call_size;
int prev_jump_end =
codegen_->LastSafepointEnd() + Deoptimizer::patch_size();
if (call_end < prev_jump_end) {
int padding_size = prev_jump_end - call_end;
ASSERT_EQ(0, padding_size % Assembler::kInstrSize);
while (padding_size > 0) {
codegen_->masm()->nop();
padding_size -= Assembler::kInstrSize;
}
}
}
virtual void AfterCall() {
codegen_->RecordSafepoint(pointers_, deoptimization_index_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
int deoptimization_index_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
HPhase phase("Code generation", chunk());
ASSERT(is_unused());
status_ = GENERATING;
CpuFeatures::Scope scope1(VFP3);
CpuFeatures::Scope scope2(ARMv7);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
ASSERT(is_done());
code->set_stack_slots(GetStackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
}
void LCodeGen::Abort(const char* format, ...) {
if (FLAG_trace_bailout) {
SmartPointer<char> name(info()->shared_info()->DebugName()->ToCString());
PrintF("Aborting LCodeGen in @\"%s\": ", *name);
va_list arguments;
va_start(arguments, format);
OS::VPrint(format, arguments);
va_end(arguments);
PrintF("\n");
}
status_ = ABORTED;
}
void LCodeGen::Comment(const char* format, ...) {
if (!FLAG_code_comments) return;
char buffer[4 * KB];
StringBuilder builder(buffer, ARRAY_SIZE(buffer));
va_list arguments;
va_start(arguments, format);
builder.AddFormattedList(format, arguments);
va_end(arguments);
// Copy the string before recording it in the assembler to avoid
// issues when the stack allocated buffer goes out of scope.
size_t length = builder.position();
Vector<char> copy = Vector<char>::New(length + 1);
memcpy(copy.start(), builder.Finalize(), copy.length());
masm()->RecordComment(copy.start());
}
bool LCodeGen::GeneratePrologue() {
ASSERT(is_generating());
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop_at");
}
#endif
// r1: Callee's JS function.
// cp: Callee's context.
// fp: Caller's frame pointer.
// lr: Caller's pc.
__ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit());
__ add(fp, sp, Operand(2 * kPointerSize)); // Adjust FP to point to saved FP.
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ mov(r0, Operand(slots));
__ mov(r2, Operand(kSlotsZapValue));
Label loop;
__ bind(&loop);
__ push(r2);
__ sub(r0, r0, Operand(1), SetCC);
__ b(ne, &loop);
} else {
__ sub(sp, sp, Operand(slots * kPointerSize));
}
}
// Possibly allocate a local context.
int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment(";;; Allocate local context");
// Argument to NewContext is the function, which is in r1.
__ push(r1);
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
__ CallStub(&stub);
} else {
__ CallRuntime(Runtime::kNewContext, 1);
}
RecordSafepoint(Safepoint::kNoDeoptimizationIndex);
// Context is returned in both r0 and cp. It replaces the context
// passed to us. It's saved in the stack and kept live in cp.
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Slot* slot = scope()->parameter(i)->AsSlot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ ldr(r0, MemOperand(fp, parameter_offset));
// Store it in the context.
__ mov(r1, Operand(Context::SlotOffset(slot->index())));
__ str(r0, MemOperand(cp, r1));
// Update the write barrier. This clobbers all involved
// registers, so we have to use two more registers to avoid
// clobbering cp.
__ mov(r2, Operand(cp));
__ RecordWrite(r2, Operand(r1), r3, r0);
}
}
Comment(";;; End allocate local context");
}
// Trace the call.
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
bool LCodeGen::GenerateBody() {
ASSERT(is_generating());
bool emit_instructions = true;
for (current_instruction_ = 0;
!is_aborted() && current_instruction_ < instructions_->length();
current_instruction_++) {
LInstruction* instr = instructions_->at(current_instruction_);
if (instr->IsLabel()) {
LLabel* label = LLabel::cast(instr);
emit_instructions = !label->HasReplacement();
}
if (emit_instructions) {
Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
instr->CompileToNative(this);
}
}
return !is_aborted();
}
LInstruction* LCodeGen::GetNextInstruction() {
if (current_instruction_ < instructions_->length() - 1) {
return instructions_->at(current_instruction_ + 1);
} else {
return NULL;
}
}
bool LCodeGen::GenerateDeferredCode() {
ASSERT(is_generating());
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
__ bind(code->entry());
code->Generate();
__ jmp(code->exit());
}
// Force constant pool emission at the end of deferred code to make
// sure that no constant pools are emitted after the official end of
// the instruction sequence.
masm()->CheckConstPool(true, false);
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
ASSERT(is_done());
safepoints_.Emit(masm(), GetStackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
return DoubleRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
ASSERT(op->IsRegister());
return ToRegister(op->index());
}
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
if (op->IsRegister()) {
return ToRegister(op->index());
} else if (op->IsConstantOperand()) {
__ mov(scratch, ToOperand(op));
return scratch;
} else if (op->IsStackSlot() || op->IsArgument()) {
__ ldr(scratch, ToMemOperand(op));
return scratch;
}
UNREACHABLE();
return scratch;
}
DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
ASSERT(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
SwVfpRegister flt_scratch,
DoubleRegister dbl_scratch) {
if (op->IsDoubleRegister()) {
return ToDoubleRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
Handle<Object> literal = chunk_->LookupLiteral(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
__ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
__ vmov(flt_scratch, ip);
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
return dbl_scratch;
} else if (r.IsDouble()) {
Abort("unsupported double immediate");
} else if (r.IsTagged()) {
Abort("unsupported tagged immediate");
}
} else if (op->IsStackSlot() || op->IsArgument()) {
// TODO(regis): Why is vldr not taking a MemOperand?
// __ vldr(dbl_scratch, ToMemOperand(op));
MemOperand mem_op = ToMemOperand(op);
__ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
return dbl_scratch;
}
UNREACHABLE();
return dbl_scratch;
}
int LCodeGen::ToInteger32(LConstantOperand* op) const {
Handle<Object> value = chunk_->LookupLiteral(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
value->Number());
return static_cast<int32_t>(value->Number());
}
Operand LCodeGen::ToOperand(LOperand* op) {
if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
Handle<Object> literal = chunk_->LookupLiteral(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
return Operand(static_cast<int32_t>(literal->Number()));
} else if (r.IsDouble()) {
Abort("ToOperand Unsupported double immediate.");
}
ASSERT(r.IsTagged());
return Operand(literal);
} else if (op->IsRegister()) {
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
Abort("ToOperand IsDoubleRegister unimplemented");
return Operand(0);
}
// Stack slots not implemented, use ToMemOperand instead.
UNREACHABLE();
return Operand(0);
}
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
ASSERT(!op->IsRegister());
ASSERT(!op->IsDoubleRegister());
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
int index = op->index();
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, and
// context in the fixed part of the frame.
return MemOperand(fp, -(index + 3) * kPointerSize);
} else {
// Incoming parameter. Skip the return address.
return MemOperand(fp, -(index - 1) * kPointerSize);
}
}
MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
ASSERT(op->IsDoubleStackSlot());
int index = op->index();
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, context,
// and the first word of the double in the fixed part of the frame.
return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize);
} else {
// Incoming parameter. Skip the return address and the first word of
// the double.
return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->values()->length();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
int closure_id = DefineDeoptimizationLiteral(environment->closure());
translation->BeginFrame(environment->ast_id(), closure_id, height);
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
// spilled_registers_ and spilled_double_registers_ are either
// both NULL or both set.
if (environment->spilled_registers() != NULL && value != NULL) {
if (value->IsRegister() &&
environment->spilled_registers()[value->index()] != NULL) {
translation->MarkDuplicate();
AddToTranslation(translation,
environment->spilled_registers()[value->index()],
environment->HasTaggedValueAt(i));
} else if (
value->IsDoubleRegister() &&
environment->spilled_double_registers()[value->index()] != NULL) {
translation->MarkDuplicate();
AddToTranslation(
translation,
environment->spilled_double_registers()[value->index()],
false);
}
}
AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
}
}
void LCodeGen::AddToTranslation(Translation* translation,
LOperand* op,
bool is_tagged) {
if (op == NULL) {
// TODO(twuerthinger): Introduce marker operands to indicate that this value
// is not present and must be reconstructed from the deoptimizer. Currently
// this is only used for the arguments object.
translation->StoreArgumentsObject();
} else if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsArgument()) {
ASSERT(is_tagged);
int src_index = GetStackSlotCount() + op->index();
translation->StoreStackSlot(src_index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
DoubleRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(literal);
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode) {
ASSERT(instr != NULL);
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
__ Call(code, mode);
RegisterLazyDeoptimization(instr, safepoint_mode);
}
void LCodeGen::CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr) {
ASSERT(instr != NULL);
LPointerMap* pointers = instr->pointer_map();
ASSERT(pointers != NULL);
RecordPosition(pointers->position());
__ CallRuntime(function, num_arguments);
RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr) {
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex);
}
void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr,
SafepointMode safepoint_mode) {
// Create the environment to bailout to. If the call has side effects
// execution has to continue after the call otherwise execution can continue
// from a previous bailout point repeating the call.
LEnvironment* deoptimization_environment;
if (instr->HasDeoptimizationEnvironment()) {
deoptimization_environment = instr->deoptimization_environment();
} else {
deoptimization_environment = instr->environment();
}
RegisterEnvironmentForDeoptimization(deoptimization_environment);
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(),
deoptimization_environment->deoptimization_index());
} else {
ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(
instr->pointer_map(),
0,
deoptimization_environment->deoptimization_index());
}
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
}
Translation translation(&translations_, frame_count);
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
environment->Register(deoptimization_index, translation.index());
deoptimizations_.Add(environment);
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
RegisterEnvironmentForDeoptimization(environment);
ASSERT(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
ASSERT(entry != NULL);
if (entry == NULL) {
Abort("bailout was not prepared");
return;
}
ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on ARM.
if (FLAG_deopt_every_n_times == 1 &&
info_->shared_info()->opt_count() == id) {
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
return;
}
if (cc == al) {
if (FLAG_trap_on_deopt) __ stop("trap_on_deopt");
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
} else {
if (FLAG_trap_on_deopt) {
Label done;
__ b(&done, NegateCondition(cc));
__ stop("trap_on_deopt");
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&done);
} else {
__ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc);
}
}
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
ASSERT(FLAG_deopt);
Handle<DeoptimizationInputData> data =
factory()->NewDeoptimizationInputData(length, TENURED);
Handle<ByteArray> translations = translations_.CreateByteArray();
data->SetTranslationByteArray(*translations);
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
Handle<FixedArray> literals =
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, Smi::FromInt(env->ast_id()));
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal);
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
ASSERT(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
int deoptimization_index) {
ASSERT(expected_safepoint_kind_ == kind);
const ZoneList<LOperand*>* operands = pointers->operands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deoptimization_index);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer));
}
}
if (kind & Safepoint::kWithRegisters) {
// Register cp always contains a pointer to the context.
safepoint.DefinePointerRegister(cp);
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
int deoptimization_index) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index);
}
void LCodeGen::RecordSafepoint(int deoptimization_index) {
LPointerMap empty_pointers(RelocInfo::kNoPosition);
RecordSafepoint(&empty_pointers, deoptimization_index);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
int deoptimization_index) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments,
deoptimization_index);
}
void LCodeGen::RecordSafepointWithRegistersAndDoubles(
LPointerMap* pointers,
int arguments,
int deoptimization_index) {
RecordSafepoint(pointers, Safepoint::kWithRegistersAndDoubles, arguments,
deoptimization_index);
}
void LCodeGen::RecordPosition(int position) {
if (!FLAG_debug_info || position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
}
void LCodeGen::DoLabel(LLabel* label) {
if (label->is_loop_header()) {
Comment(";;; B%d - LOOP entry", label->block_id());
} else {
Comment(";;; B%d", label->block_id());
}
__ bind(label->label());
current_block_ = label->block_id();
LCodeGen::DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
LInstruction* next = GetNextInstruction();
if (next != NULL && next->IsLazyBailout()) {
int pc = masm()->pc_offset();
safepoints_.SetPcAfterGap(pc);
}
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpConstructResult: {
RegExpConstructResultStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::RegExpExec: {
RegExpExecStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::NumberToString: {
NumberToStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringAdd: {
StringAddStub stub(NO_STRING_ADD_FLAGS);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::TranscendentalCache: {
__ ldr(r0, MemOperand(sp, 0));
TranscendentalCacheStub stub(instr->transcendental_type(),
TranscendentalCacheStub::TAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
// Nothing to do.
}
void LCodeGen::DoModI(LModI* instr) {
if (instr->hydrogen()->HasPowerOf2Divisor()) {
Register dividend = ToRegister(instr->InputAt(0));
int32_t divisor =
HConstant::cast(instr->hydrogen()->right())->Integer32Value();
if (divisor < 0) divisor = -divisor;
Label positive_dividend, done;
__ cmp(dividend, Operand(0));
__ b(pl, &positive_dividend);
__ rsb(dividend, dividend, Operand(0));
__ and_(dividend, dividend, Operand(divisor - 1));
__ rsb(dividend, dividend, Operand(0), SetCC);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ b(ne, &done);
DeoptimizeIf(al, instr->environment());
}
__ bind(&positive_dividend);
__ and_(dividend, dividend, Operand(divisor - 1));
__ bind(&done);
return;
}
// These registers hold untagged 32 bit values.
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
Register result = ToRegister(instr->result());
Register scratch = scratch0();
Register scratch2 = ToRegister(instr->TempAt(0));
DwVfpRegister dividend = ToDoubleRegister(instr->TempAt(1));
DwVfpRegister divisor = ToDoubleRegister(instr->TempAt(2));
DwVfpRegister quotient = double_scratch0();
ASSERT(result.is(left));
ASSERT(!dividend.is(divisor));
ASSERT(!dividend.is(quotient));
ASSERT(!divisor.is(quotient));
ASSERT(!scratch.is(left));
ASSERT(!scratch.is(right));
ASSERT(!scratch.is(result));
Label done, vfp_modulo, both_positive, right_negative;
// Check for x % 0.
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(right, Operand(0));
DeoptimizeIf(eq, instr->environment());
}
// (0 % x) must yield 0 (if x is finite, which is the case here).
__ cmp(left, Operand(0));
__ b(eq, &done);
// Preload right in a vfp register.
__ vmov(divisor.low(), right);
__ b(lt, &vfp_modulo);
__ cmp(left, Operand(right));
__ b(lt, &done);
// Check for (positive) power of two on the right hand side.
__ JumpIfNotPowerOfTwoOrZeroAndNeg(right,
scratch,
&right_negative,
&both_positive);
// Perform modulo operation (scratch contains right - 1).
__ and_(result, scratch, Operand(left));
__ b(&done);
__ bind(&right_negative);
// Negate right. The sign of the divisor does not matter.
__ rsb(right, right, Operand(0));
__ bind(&both_positive);
const int kUnfolds = 3;
// If the right hand side is smaller than the (nonnegative)
// left hand side, the left hand side is the result.
// Else try a few subtractions of the left hand side.
__ mov(scratch, left);
for (int i = 0; i < kUnfolds; i++) {
// Check if the left hand side is less or equal than the
// the right hand side.
__ cmp(scratch, Operand(right));
__ mov(result, scratch, LeaveCC, lt);
__ b(lt, &done);
// If not, reduce the left hand side by the right hand
// side and check again.
if (i < kUnfolds - 1) __ sub(scratch, scratch, right);
}
__ bind(&vfp_modulo);
// Load the arguments in VFP registers.
// The divisor value is preloaded before. Be careful that 'right' is only live
// on entry.
__ vmov(dividend.low(), left);
// From here on don't use right as it may have been reallocated (for example
// to scratch2).
right = no_reg;
__ vcvt_f64_s32(dividend, dividend.low());
__ vcvt_f64_s32(divisor, divisor.low());
// We do not care about the sign of the divisor.
__ vabs(divisor, divisor);
// Compute the quotient and round it to a 32bit integer.
__ vdiv(quotient, dividend, divisor);
__ vcvt_s32_f64(quotient.low(), quotient);
__ vcvt_f64_s32(quotient, quotient.low());
// Compute the remainder in result.
DwVfpRegister double_scratch = dividend;
__ vmul(double_scratch, divisor, quotient);
__ vcvt_s32_f64(double_scratch.low(), double_scratch);
__ vmov(scratch, double_scratch.low());
if (!instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ sub(result, left, scratch);
} else {
Label ok;
// Check for -0.
__ sub(scratch2, left, scratch, SetCC);
__ b(ne, &ok);
__ cmp(left, Operand(0));
DeoptimizeIf(mi, instr->environment());
__ bind(&ok);
// Load the result and we are done.
__ mov(result, scratch2);
}
__ bind(&done);
}
void LCodeGen::DoDivI(LDivI* instr) {
class DeferredDivI: public LDeferredCode {
public:
DeferredDivI(LCodeGen* codegen, LDivI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredBinaryOpStub(instr_, Token::DIV);
}
private:
LDivI* instr_;
};
const Register left = ToRegister(instr->InputAt(0));
const Register right = ToRegister(instr->InputAt(1));
const Register scratch = scratch0();
const Register result = ToRegister(instr->result());
// Check for x / 0.
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(right, Operand(0));
DeoptimizeIf(eq, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label left_not_zero;
__ cmp(left, Operand(0));
__ b(ne, &left_not_zero);
__ cmp(right, Operand(0));
DeoptimizeIf(mi, instr->environment());
__ bind(&left_not_zero);
}
// Check for (-kMinInt / -1).
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
Label left_not_min_int;
__ cmp(left, Operand(kMinInt));
__ b(ne, &left_not_min_int);
__ cmp(right, Operand(-1));
DeoptimizeIf(eq, instr->environment());
__ bind(&left_not_min_int);
}
Label done, deoptimize;
// Test for a few common cases first.
__ cmp(right, Operand(1));
__ mov(result, left, LeaveCC, eq);
__ b(eq, &done);
__ cmp(right, Operand(2));
__ tst(left, Operand(1), eq);
__ mov(result, Operand(left, ASR, 1), LeaveCC, eq);
__ b(eq, &done);
__ cmp(right, Operand(4));
__ tst(left, Operand(3), eq);
__ mov(result, Operand(left, ASR, 2), LeaveCC, eq);
__ b(eq, &done);
// Call the stub. The numbers in r0 and r1 have
// to be tagged to Smis. If that is not possible, deoptimize.
DeferredDivI* deferred = new DeferredDivI(this, instr);
__ TrySmiTag(left, &deoptimize, scratch);
__ TrySmiTag(right, &deoptimize, scratch);
__ b(al, deferred->entry());
__ bind(deferred->exit());
// If the result in r0 is a Smi, untag it, else deoptimize.
__ JumpIfNotSmi(result, &deoptimize);
__ SmiUntag(result);
__ b(&done);
__ bind(&deoptimize);
DeoptimizeIf(al, instr->environment());
__ bind(&done);
}
template<int T>
void LCodeGen::DoDeferredBinaryOpStub(LTemplateInstruction<1, 2, T>* instr,
Token::Value op) {
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegistersAndDoubles);
// Move left to r1 and right to r0 for the stub call.
if (left.is(r1)) {
__ Move(r0, right);
} else if (left.is(r0) && right.is(r1)) {
__ Swap(r0, r1, r2);
} else if (left.is(r0)) {
ASSERT(!right.is(r1));
__ mov(r1, r0);
__ mov(r0, right);
} else {
ASSERT(!left.is(r0) && !right.is(r0));
__ mov(r0, right);
__ mov(r1, left);
}
TypeRecordingBinaryOpStub stub(op, OVERWRITE_LEFT);
__ CallStub(&stub);
RecordSafepointWithRegistersAndDoubles(instr->pointer_map(),
0,
Safepoint::kNoDeoptimizationIndex);
// Overwrite the stored value of r0 with the result of the stub.
__ StoreToSafepointRegistersAndDoublesSlot(r0, r0);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register scratch = scratch0();
Register left = ToRegister(instr->InputAt(0));
Register right = EmitLoadRegister(instr->InputAt(1), scratch);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero) &&
!instr->InputAt(1)->IsConstantOperand()) {
__ orr(ToRegister(instr->TempAt(0)), left, right);
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
// scratch:left = left * right.
__ smull(left, scratch, left, right);
__ mov(ip, Operand(left, ASR, 31));
__ cmp(ip, Operand(scratch));
DeoptimizeIf(ne, instr->environment());
} else {
__ mul(left, left, right);
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
Label done;
__ cmp(left, Operand(0));
__ b(ne, &done);
if (instr->InputAt(1)->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(instr->InputAt(1))) <= 0) {
DeoptimizeIf(al, instr->environment());
}
} else {
// Test the non-zero operand for negative sign.
__ cmp(ToRegister(instr->TempAt(0)), Operand(0));
DeoptimizeIf(mi, instr->environment());
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
Register result = ToRegister(left);
Operand right_operand(no_reg);
if (right->IsStackSlot() || right->IsArgument()) {
Register right_reg = EmitLoadRegister(right, ip);
right_operand = Operand(right_reg);
} else {
ASSERT(right->IsRegister() || right->IsConstantOperand());
right_operand = ToOperand(right);
}
switch (instr->op()) {
case Token::BIT_AND:
__ and_(result, ToRegister(left), right_operand);
break;
case Token::BIT_OR:
__ orr(result, ToRegister(left), right_operand);
break;
case Token::BIT_XOR:
__ eor(result, ToRegister(left), right_operand);
break;
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
Register scratch = scratch0();
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
Register result = ToRegister(left);
if (right->IsRegister()) {
// Mask the right operand.
__ and_(scratch, ToRegister(right), Operand(0x1F));
switch (instr->op()) {
case Token::SAR:
__ mov(result, Operand(result, ASR, scratch));
break;
case Token::SHR:
if (instr->can_deopt()) {
__ mov(result, Operand(result, LSR, scratch), SetCC);
DeoptimizeIf(mi, instr->environment());
} else {
__ mov(result, Operand(result, LSR, scratch));
}
break;
case Token::SHL:
__ mov(result, Operand(result, LSL, scratch));
break;
default:
UNREACHABLE();
break;
}
} else {
int value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::SAR:
if (shift_count != 0) {
__ mov(result, Operand(result, ASR, shift_count));
}
break;
case Token::SHR:
if (shift_count == 0 && instr->can_deopt()) {
__ tst(result, Operand(0x80000000));
DeoptimizeIf(ne, instr->environment());
} else {
__ mov(result, Operand(result, LSR, shift_count));
}
break;
case Token::SHL:
if (shift_count != 0) {
__ mov(result, Operand(result, LSL, shift_count));
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot() || right->IsArgument()) {
Register right_reg = EmitLoadRegister(right, ip);
__ sub(ToRegister(left), ToRegister(left), Operand(right_reg), set_cond);
} else {
ASSERT(right->IsRegister() || right->IsConstantOperand());
__ sub(ToRegister(left), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
ASSERT(instr->result()->IsRegister());
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
ASSERT(instr->result()->IsDoubleRegister());
DwVfpRegister result = ToDoubleRegister(instr->result());
double v = instr->value();
__ vmov(result, v);
}
void LCodeGen::DoConstantT(LConstantT* instr) {
ASSERT(instr->result()->IsRegister());
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ ldr(result, FieldMemOperand(array, JSArray::kLengthOffset));
}
void LCodeGen::DoExternalArrayLength(LExternalArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ ldr(result, FieldMemOperand(array, ExternalArray::kLengthOffset));
}
void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ ldr(result, FieldMemOperand(array, FixedArray::kLengthOffset));
}
void LCodeGen::DoValueOf(LValueOf* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->TempAt(0));
ASSERT(input.is(result));
Label done;
// If the object is a smi return the object.
__ tst(input, Operand(kSmiTagMask));
__ b(eq, &done);
// If the object is not a value type, return the object.
__ CompareObjectType(input, map, map, JS_VALUE_TYPE);
__ b(ne, &done);
__ ldr(result, FieldMemOperand(input, JSValue::kValueOffset));
__ bind(&done);
}
void LCodeGen::DoBitNotI(LBitNotI* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->Equals(instr->result()));
__ mvn(ToRegister(input), Operand(ToRegister(input)));
}
void LCodeGen::DoThrow(LThrow* instr) {
Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
__ push(input_reg);
CallRuntime(Runtime::kThrow, 1, instr);
if (FLAG_debug_code) {
__ stop("Unreachable code.");
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot() || right->IsArgument()) {
Register right_reg = EmitLoadRegister(right, ip);
__ add(ToRegister(left), ToRegister(left), Operand(right_reg), set_cond);
} else {
ASSERT(right->IsRegister() || right->IsConstantOperand());
__ add(ToRegister(left), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
switch (instr->op()) {
case Token::ADD:
__ vadd(left, left, right);
break;
case Token::SUB:
__ vsub(left, left, right);
break;
case Token::MUL:
__ vmul(left, left, right);
break;
case Token::DIV:
__ vdiv(left, left, right);
break;
case Token::MOD: {
// Save r0-r3 on the stack.
__ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit());
__ PrepareCallCFunction(4, scratch0());
__ vmov(r0, r1, left);
__ vmov(r2, r3, right);
__ CallCFunction(
ExternalReference::double_fp_operation(Token::MOD, isolate()), 4);
// Move the result in the double result register.
__ GetCFunctionDoubleResult(ToDoubleRegister(instr->result()));
// Restore r0-r3.
__ ldm(ia_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit());
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r1));
ASSERT(ToRegister(instr->InputAt(1)).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
TypeRecordingBinaryOpStub stub(instr->op(), NO_OVERWRITE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
int LCodeGen::GetNextEmittedBlock(int block) {
for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
LLabel* label = chunk_->GetLabel(i);
if (!label->HasReplacement()) return i;
}
return -1;
}
void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
int next_block = GetNextEmittedBlock(current_block_);
right_block = chunk_->LookupDestination(right_block);
left_block = chunk_->LookupDestination(left_block);
if (right_block == left_block) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ b(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ b(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ b(cc, chunk_->GetAssemblyLabel(left_block));
__ b(chunk_->GetAssemblyLabel(right_block));
}
}
void LCodeGen::DoBranch(LBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Representation r = instr->hydrogen()->representation();
if (r.IsInteger32()) {
Register reg = ToRegister(instr->InputAt(0));
__ cmp(reg, Operand(0));
EmitBranch(true_block, false_block, ne);
} else if (r.IsDouble()) {
DoubleRegister reg = ToDoubleRegister(instr->InputAt(0));
Register scratch = scratch0();
// Test the double value. Zero and NaN are false.
__ VFPCompareAndLoadFlags(reg, 0.0, scratch);
__ tst(scratch, Operand(kVFPZConditionFlagBit | kVFPVConditionFlagBit));
EmitBranch(true_block, false_block, ne);
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->InputAt(0));
if (instr->hydrogen()->type().IsBoolean()) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(reg, ip);
EmitBranch(true_block, false_block, eq);
} else {
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(reg, ip);
__ b(eq, false_label);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(reg, ip);
__ b(eq, true_label);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(reg, ip);
__ b(eq, false_label);
__ cmp(reg, Operand(0));
__ b(eq, false_label);
__ tst(reg, Operand(kSmiTagMask));
__ b(eq, true_label);
// Test double values. Zero and NaN are false.
Label call_stub;
DoubleRegister dbl_scratch = d0;
Register scratch = scratch0();
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
__ b(ne, &call_stub);
__ sub(ip, reg, Operand(kHeapObjectTag));
__ vldr(dbl_scratch, ip, HeapNumber::kValueOffset);
__ VFPCompareAndLoadFlags(dbl_scratch, 0.0, scratch);
__ tst(scratch, Operand(kVFPZConditionFlagBit | kVFPVConditionFlagBit));
__ b(ne, false_label);
__ b(true_label);
// The conversion stub doesn't cause garbage collections so it's
// safe to not record a safepoint after the call.
__ bind(&call_stub);
ToBooleanStub stub(reg);
RegList saved_regs = kJSCallerSaved | kCalleeSaved;
__ stm(db_w, sp, saved_regs);
__ CallStub(&stub);
__ cmp(reg, Operand(0));
__ ldm(ia_w, sp, saved_regs);
EmitBranch(true_block, false_block, ne);
}
}
}
void LCodeGen::EmitGoto(int block, LDeferredCode* deferred_stack_check) {
block = chunk_->LookupDestination(block);
int next_block = GetNextEmittedBlock(current_block_);
if (block != next_block) {
// Perform stack overflow check if this goto needs it before jumping.
if (deferred_stack_check != NULL) {
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(hs, chunk_->GetAssemblyLabel(block));
__ jmp(deferred_stack_check->entry());
deferred_stack_check->SetExit(chunk_->GetAssemblyLabel(block));
} else {
__ jmp(chunk_->GetAssemblyLabel(block));
}
}
}
void LCodeGen::DoDeferredStackCheck(LGoto* instr) {
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
CallRuntimeFromDeferred(Runtime::kStackGuard, 0, instr);
}
void LCodeGen::DoGoto(LGoto* instr) {
class DeferredStackCheck: public LDeferredCode {
public:
DeferredStackCheck(LCodeGen* codegen, LGoto* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
private:
LGoto* instr_;
};
DeferredStackCheck* deferred = NULL;
if (instr->include_stack_check()) {
deferred = new DeferredStackCheck(this, instr);
}
EmitGoto(instr->block_id(), deferred);
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = kNoCondition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = eq;
break;
case Token::LT:
cond = is_unsigned ? lo : lt;
break;
case Token::GT:
cond = is_unsigned ? hi : gt;
break;
case Token::LTE:
cond = is_unsigned ? ls : le;
break;
case Token::GTE:
cond = is_unsigned ? hs : ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) {
__ cmp(ToRegister(left), ToRegister(right));
}
void LCodeGen::DoCmpID(LCmpID* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
LOperand* result = instr->result();
Register scratch = scratch0();
Label unordered, done;
if (instr->is_double()) {
// Compare left and right as doubles and load the
// resulting flags into the normal status register.
__ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
// If a NaN is involved, i.e. the result is unordered (V set),
// jump to unordered to return false.
__ b(vs, &unordered);
} else {
EmitCmpI(left, right);
}
Condition cc = TokenToCondition(instr->op(), instr->is_double());
__ LoadRoot(ToRegister(result), Heap::kTrueValueRootIndex);
__ b(cc, &done);
__ bind(&unordered);
__ LoadRoot(ToRegister(result), Heap::kFalseValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
if (instr->is_double()) {
// Compare left and right as doubles and load the
// resulting flags into the normal status register.
__ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
// If a NaN is involved, i.e. the result is unordered (V set),
// jump to false block label.
__ b(vs, chunk_->GetAssemblyLabel(false_block));
} else {
EmitCmpI(left, right);
}
Condition cc = TokenToCondition(instr->op(), instr->is_double());
EmitBranch(true_block, false_block, cc);
}
void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) {
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
Register result = ToRegister(instr->result());
__ cmp(left, Operand(right));
__ LoadRoot(result, Heap::kTrueValueRootIndex, eq);
__ LoadRoot(result, Heap::kFalseValueRootIndex, ne);
}
void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) {
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
__ cmp(left, Operand(right));
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoIsNull(LIsNull* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(reg, ip);
if (instr->is_strict()) {
__ LoadRoot(result, Heap::kTrueValueRootIndex, eq);
__ LoadRoot(result, Heap::kFalseValueRootIndex, ne);
} else {
Label true_value, false_value, done;
__ b(eq, &true_value);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(ip, reg);
__ b(eq, &true_value);
__ tst(reg, Operand(kSmiTagMask));
__ b(eq, &false_value);
// Check for undetectable objects by looking in the bit field in
// the map. The object has already been smi checked.
Register scratch = result;
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kIsUndetectable));
__ b(ne, &true_value);
__ bind(&false_value);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
__ jmp(&done);
__ bind(&true_value);
__ LoadRoot(result, Heap::kTrueValueRootIndex);
__ bind(&done);
}
}
void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) {
Register scratch = scratch0();
Register reg = ToRegister(instr->InputAt(0));
// TODO(fsc): If the expression is known to be a smi, then it's
// definitely not null. Jump to the false block.
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(reg, ip);
if (instr->is_strict()) {
EmitBranch(true_block, false_block, eq);
} else {
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ b(eq, true_label);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(reg, ip);
__ b(eq, true_label);
__ tst(reg, Operand(kSmiTagMask));
__ b(eq, false_label);
// Check for undetectable objects by looking in the bit field in
// the map. The object has already been smi checked.
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kIsUndetectable));
EmitBranch(true_block, false_block, ne);
}
}
Condition LCodeGen::EmitIsObject(Register input,
Register temp1,
Register temp2,
Label* is_not_object,
Label* is_object) {
__ JumpIfSmi(input, is_not_object);
__ LoadRoot(temp1, Heap::kNullValueRootIndex);
__ cmp(input, temp1);
__ b(eq, is_object);
// Load map.
__ ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
// Undetectable objects behave like undefined.
__ ldrb(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
__ tst(temp2, Operand(1 << Map::kIsUndetectable));
__ b(ne, is_not_object);
// Load instance type and check that it is in object type range.
__ ldrb(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
__ cmp(temp2, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, is_not_object);
__ cmp(temp2, Operand(LAST_JS_OBJECT_TYPE));
return le;
}
void LCodeGen::DoIsObject(LIsObject* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register temp = scratch0();
Label is_false, is_true, done;
Condition true_cond = EmitIsObject(reg, result, temp, &is_false, &is_true);
__ b(true_cond, &is_true);
__ bind(&is_false);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
__ b(&done);
__ bind(&is_true);
__ LoadRoot(result, Heap::kTrueValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register temp1 = ToRegister(instr->TempAt(0));
Register temp2 = scratch0();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition true_cond =
EmitIsObject(reg, temp1, temp2, false_label, true_label);
EmitBranch(true_block, false_block, true_cond);
}
void LCodeGen::DoIsSmi(LIsSmi* instr) {
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
Register result = ToRegister(instr->result());
Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
__ tst(input_reg, Operand(kSmiTagMask));
__ LoadRoot(result, Heap::kTrueValueRootIndex);
Label done;
__ b(eq, &done);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
__ tst(input_reg, Operand(kSmiTagMask));
EmitBranch(true_block, false_block, eq);
}
static InstanceType TestType(HHasInstanceType* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
ASSERT(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceType* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return eq;
if (to == LAST_TYPE) return hs;
if (from == FIRST_TYPE) return ls;
UNREACHABLE();
return eq;
}
void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
Label done;
__ tst(input, Operand(kSmiTagMask));
__ LoadRoot(result, Heap::kFalseValueRootIndex, eq);
__ b(eq, &done);
__ CompareObjectType(input, result, result, TestType(instr->hydrogen()));
Condition cond = BranchCondition(instr->hydrogen());
__ LoadRoot(result, Heap::kTrueValueRootIndex, cond);
__ LoadRoot(result, Heap::kFalseValueRootIndex, NegateCondition(cond));
__ bind(&done);
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register scratch = scratch0();
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ tst(input, Operand(kSmiTagMask));
__ b(eq, false_label);
__ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
}
void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (FLAG_debug_code) {
__ AbortIfNotString(input);
}
__ ldr(result, FieldMemOperand(input, String::kHashFieldOffset));
__ IndexFromHash(result, result);
}
void LCodeGen::DoHasCachedArrayIndex(LHasCachedArrayIndex* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register scratch = scratch0();
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
__ ldr(scratch,
FieldMemOperand(input, String::kHashFieldOffset));
__ tst(scratch, Operand(String::kContainsCachedArrayIndexMask));
__ LoadRoot(result, Heap::kTrueValueRootIndex, eq);
__ LoadRoot(result, Heap::kFalseValueRootIndex, ne);
}
void LCodeGen::DoHasCachedArrayIndexAndBranch(
LHasCachedArrayIndexAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ ldr(scratch,
FieldMemOperand(input, String::kHashFieldOffset));
__ tst(scratch, Operand(String::kContainsCachedArrayIndexMask));
EmitBranch(true_block, false_block, eq);
}
// Branches to a label or falls through with the answer in flags. Trashes
// the temp registers, but not the input. Only input and temp2 may alias.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String>class_name,
Register input,
Register temp,
Register temp2) {
ASSERT(!input.is(temp));
ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register.
__ tst(input, Operand(kSmiTagMask));
__ b(eq, is_false);
__ CompareObjectType(input, temp, temp2, FIRST_JS_OBJECT_TYPE);
__ b(lt, is_false);
// Map is now in temp.
// Functions have class 'Function'.
__ CompareInstanceType(temp, temp2, JS_FUNCTION_TYPE);
if (class_name->IsEqualTo(CStrVector("Function"))) {
__ b(eq, is_true);
} else {
__ b(eq, is_false);
}
// Check if the constructor in the map is a function.
__ ldr(temp, FieldMemOperand(temp, Map::kConstructorOffset));
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
// Objects with a non-function constructor have class 'Object'.
__ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE);
if (class_name->IsEqualTo(CStrVector("Object"))) {
__ b(ne, is_true);
} else {
__ b(ne, is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ ldr(temp, FieldMemOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is a symbol because it's a literal.
// The name in the constructor is a symbol because of the way the context is
// booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are symbols it is sufficient to use an identity
// comparison.
__ cmp(temp, Operand(class_name));
// End with the answer in flags.
}
void LCodeGen::DoClassOfTest(LClassOfTest* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(input.is(result));
Handle<String> class_name = instr->hydrogen()->class_name();
Label done, is_true, is_false;
EmitClassOfTest(&is_true, &is_false, class_name, input, scratch0(), input);
__ b(ne, &is_false);
__ bind(&is_true);
__ LoadRoot(result, Heap::kTrueValueRootIndex);
__ jmp(&done);
__ bind(&is_false);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register temp = scratch0();
Register temp2 = ToRegister(instr->TempAt(0));
Handle<String> class_name = instr->hydrogen()->class_name();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
int true_block = instr->true_block_id();
int false_block = instr->false_block_id();
__ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(temp, Operand(instr->map()));
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r0)); // Object is in r0.
ASSERT(ToRegister(instr->InputAt(1)).is(r1)); // Function is in r1.
InstanceofStub stub(InstanceofStub::kArgsInRegisters);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ cmp(r0, Operand(0));
__ mov(r0, Operand(factory()->false_value()), LeaveCC, ne);
__ mov(r0, Operand(factory()->true_value()), LeaveCC, eq);
}
void LCodeGen::DoInstanceOfAndBranch(LInstanceOfAndBranch* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r0)); // Object is in r0.
ASSERT(ToRegister(instr->InputAt(1)).is(r1)); // Function is in r1.
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
InstanceofStub stub(InstanceofStub::kArgsInRegisters);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ cmp(r0, Operand(0));
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
class DeferredInstanceOfKnownGlobal: public LDeferredCode {
public:
DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
LInstanceOfKnownGlobal* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_);
}
Label* map_check() { return &map_check_; }
private:
LInstanceOfKnownGlobal* instr_;
Label map_check_;
};
DeferredInstanceOfKnownGlobal* deferred;
deferred = new DeferredInstanceOfKnownGlobal(this, instr);
Label done, false_result;
Register object = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
Register result = ToRegister(instr->result());
ASSERT(object.is(r0));
ASSERT(result.is(r0));
// A Smi is not instance of anything.
__ JumpIfSmi(object, &false_result);
// This is the inlined call site instanceof cache. The two occurences of the
// hole value will be patched to the last map/result pair generated by the
// instanceof stub.
Label cache_miss;
Register map = temp;
__ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
__ bind(deferred->map_check()); // Label for calculating code patching.
// We use Factory::the_hole_value() on purpose instead of loading from the
// root array to force relocation to be able to later patch with
// the cached map.
__ mov(ip, Operand(factory()->the_hole_value()));
__ cmp(map, Operand(ip));
__ b(ne, &cache_miss);
// We use Factory::the_hole_value() on purpose instead of loading from the
// root array to force relocation to be able to later patch
// with true or false.
__ mov(result, Operand(factory()->the_hole_value()));
__ b(&done);
// The inlined call site cache did not match. Check null and string before
// calling the deferred code.
__ bind(&cache_miss);
// Null is not instance of anything.
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(object, Operand(ip));
__ b(eq, &false_result);
// String values is not instance of anything.
Condition is_string = masm_->IsObjectStringType(object, temp);
__ b(is_string, &false_result);
// Go to the deferred code.
__ b(deferred->entry());
__ bind(&false_result);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
// Here result has either true or false. Deferred code also produces true or
// false object.
__ bind(deferred->exit());
__ bind(&done);
}
void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
Label* map_check) {
Register result = ToRegister(instr->result());
ASSERT(result.is(r0));
InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kArgsInRegisters);
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kCallSiteInlineCheck);
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kReturnTrueFalseObject);
InstanceofStub stub(flags);
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
// Get the temp register reserved by the instruction. This needs to be r4 as
// its slot of the pushing of safepoint registers is used to communicate the
// offset to the location of the map check.
Register temp = ToRegister(instr->TempAt(0));
ASSERT(temp.is(r4));
__ mov(InstanceofStub::right(), Operand(instr->function()));
static const int kAdditionalDelta = 4;
int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
Label before_push_delta;
__ bind(&before_push_delta);
__ BlockConstPoolFor(kAdditionalDelta);
__ mov(temp, Operand(delta * kPointerSize));
__ StoreToSafepointRegisterSlot(temp, temp);
CallCodeGeneric(stub.GetCode(),
RelocInfo::CODE_TARGET,
instr,
RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
// Put the result value into the result register slot and
// restore all registers.
__ StoreToSafepointRegisterSlot(result, result);
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
void LCodeGen::DoCmpT(LCmpT* instr) {
Token::Value op = instr->op();
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
__ cmp(r0, Operand(0)); // This instruction also signals no smi code inlined.
Condition condition = ComputeCompareCondition(op);
if (op == Token::GT || op == Token::LTE) {
condition = ReverseCondition(condition);
}
__ LoadRoot(ToRegister(instr->result()),
Heap::kTrueValueRootIndex,
condition);
__ LoadRoot(ToRegister(instr->result()),
Heap::kFalseValueRootIndex,
NegateCondition(condition));
}
void LCodeGen::DoCmpTAndBranch(LCmpTAndBranch* instr) {
Token::Value op = instr->op();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
// The compare stub expects compare condition and the input operands
// reversed for GT and LTE.
Condition condition = ComputeCompareCondition(op);
if (op == Token::GT || op == Token::LTE) {
condition = ReverseCondition(condition);
}
__ cmp(r0, Operand(0));
EmitBranch(true_block, false_block, condition);
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in r0.
__ push(r0);
__ CallRuntime(Runtime::kTraceExit, 1);
}
int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize;
__ mov(sp, fp);
__ ldm(ia_w, sp, fp.bit() | lr.bit());
__ add(sp, sp, Operand(sp_delta));
__ Jump(lr);
}
void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
Register result = ToRegister(instr->result());
__ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell())));
__ ldr(result, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
if (instr->hydrogen()->check_hole_value()) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(result, ip);
DeoptimizeIf(eq, instr->environment());
}
}
void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
ASSERT(ToRegister(instr->global_object()).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
__ mov(r2, Operand(instr->name()));
RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT;
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, mode, instr);
}
void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
Register value = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
// Load the cell.
__ mov(scratch, Operand(Handle<Object>(instr->hydrogen()->cell())));
// If the cell we are storing to contains the hole it could have
// been deleted from the property dictionary. In that case, we need
// to update the property details in the property dictionary to mark
// it as no longer deleted.
if (instr->hydrogen()->check_hole_value()) {
Register scratch2 = ToRegister(instr->TempAt(0));
__ ldr(scratch2,
FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(scratch2, ip);
DeoptimizeIf(eq, instr->environment());
}
// Store the value.
__ str(value, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
}
void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
ASSERT(ToRegister(instr->global_object()).is(r1));
ASSERT(ToRegister(instr->value()).is(r0));
__ mov(r2, Operand(instr->name()));
Handle<Code> ic = instr->strict_mode()
? isolate()->builtins()->StoreIC_Initialize_Strict()
: isolate()->builtins()->StoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ ldr(result, ContextOperand(context, instr->slot_index()));
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
__ str(value, ContextOperand(context, instr->slot_index()));
if (instr->needs_write_barrier()) {
int offset = Context::SlotOffset(instr->slot_index());
__ RecordWrite(context, Operand(offset), value, scratch0());
}
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
Register object = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (instr->hydrogen()->is_in_object()) {
__ ldr(result, FieldMemOperand(object, instr->hydrogen()->offset()));
} else {
__ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
__ ldr(result, FieldMemOperand(result, instr->hydrogen()->offset()));
}
}
void LCodeGen::EmitLoadField(Register result,
Register object,
Handle<Map> type,
Handle<String> name) {
LookupResult lookup;
type->LookupInDescriptors(NULL, *name, &lookup);
ASSERT(lookup.IsProperty() && lookup.type() == FIELD);
int index = lookup.GetLocalFieldIndexFromMap(*type);
int offset = index * kPointerSize;
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
__ ldr(result, FieldMemOperand(object, offset + type->instance_size()));
} else {
// Non-negative property indices are in the properties array.
__ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
__ ldr(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize));
}
}
void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
Register object = ToRegister(instr->object());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
int map_count = instr->hydrogen()->types()->length();
Handle<String> name = instr->hydrogen()->name();
if (map_count == 0) {
ASSERT(instr->hydrogen()->need_generic());
__ mov(r2, Operand(name));
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
} else {
Label done;
__ ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
for (int i = 0; i < map_count - 1; ++i) {
Handle<Map> map = instr->hydrogen()->types()->at(i);
Label next;
__ cmp(scratch, Operand(map));
__ b(ne, &next);
EmitLoadField(result, object, map, name);
__ b(&done);
__ bind(&next);
}
Handle<Map> map = instr->hydrogen()->types()->last();
__ cmp(scratch, Operand(map));
if (instr->hydrogen()->need_generic()) {
Label generic;
__ b(ne, &generic);
EmitLoadField(result, object, map, name);
__ b(&done);
__ bind(&generic);
__ mov(r2, Operand(name));
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
} else {
DeoptimizeIf(ne, instr->environment());
EmitLoadField(result, object, map, name);
}
__ bind(&done);
}
}
void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
// Name is always in r2.
__ mov(r2, Operand(instr->name()));
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register scratch = scratch0();
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
// Check that the function really is a function. Load map into the
// result register.
__ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
DeoptimizeIf(ne, instr->environment());
// Make sure that the function has an instance prototype.
Label non_instance;
__ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
__ b(ne, &non_instance);
// Get the prototype or initial map from the function.
__ ldr(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(result, ip);
DeoptimizeIf(eq, instr->environment());
// If the function does not have an initial map, we're done.
Label done;
__ CompareObjectType(result, scratch, scratch, MAP_TYPE);
__ b(ne, &done);
// Get the prototype from the initial map.
__ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
__ jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
__ bind(&non_instance);
__ ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadElements(LLoadElements* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
__ ldr(result, FieldMemOperand(input, JSObject::kElementsOffset));
if (FLAG_debug_code) {
Label done;
__ ldr(scratch, FieldMemOperand(result, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(scratch, ip);
__ b(eq, &done);
__ LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
__ cmp(scratch, ip);
__ b(eq, &done);
__ ldr(scratch, FieldMemOperand(result, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ sub(scratch, scratch, Operand(FIRST_EXTERNAL_ARRAY_TYPE));
__ cmp(scratch, Operand(kExternalArrayTypeCount));
__ Check(cc, "Check for fast elements failed.");
__ bind(&done);
}
}
void LCodeGen::DoLoadExternalArrayPointer(
LLoadExternalArrayPointer* instr) {
Register to_reg = ToRegister(instr->result());
Register from_reg = ToRegister(instr->InputAt(0));
__ ldr(to_reg, FieldMemOperand(from_reg,
ExternalArray::kExternalPointerOffset));
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register length = ToRegister(instr->length());
Register index = ToRegister(instr->index());
Register result = ToRegister(instr->result());
// Bailout index is not a valid argument index. Use unsigned check to get
// negative check for free.
__ sub(length, length, index, SetCC);
DeoptimizeIf(ls, instr->environment());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
__ add(length, length, Operand(1));
__ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
}
void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
Register elements = ToRegister(instr->elements());
Register key = EmitLoadRegister(instr->key(), scratch0());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
ASSERT(result.is(elements));
// Load the result.
__ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
__ ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize));
// Check for the hole value.
__ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
__ cmp(result, scratch);
DeoptimizeIf(eq, instr->environment());
}
void LCodeGen::DoLoadKeyedSpecializedArrayElement(
LLoadKeyedSpecializedArrayElement* instr) {
Register external_pointer = ToRegister(instr->external_pointer());
Register key = ToRegister(instr->key());
ExternalArrayType array_type = instr->array_type();
if (array_type == kExternalFloatArray) {
CpuFeatures::Scope scope(VFP3);
DwVfpRegister result(ToDoubleRegister(instr->result()));
__ add(scratch0(), external_pointer, Operand(key, LSL, 2));
__ vldr(result.low(), scratch0(), 0);
__ vcvt_f64_f32(result, result.low());
} else {
Register result(ToRegister(instr->result()));
switch (array_type) {
case kExternalByteArray:
__ ldrsb(result, MemOperand(external_pointer, key));
break;
case kExternalUnsignedByteArray:
case kExternalPixelArray:
__ ldrb(result, MemOperand(external_pointer, key));
break;
case kExternalShortArray:
__ ldrsh(result, MemOperand(external_pointer, key, LSL, 1));
break;
case kExternalUnsignedShortArray:
__ ldrh(result, MemOperand(external_pointer, key, LSL, 1));
break;
case kExternalIntArray:
__ ldr(result, MemOperand(external_pointer, key, LSL, 2));
break;
case kExternalUnsignedIntArray:
__ ldr(result, MemOperand(external_pointer, key, LSL, 2));
__ cmp(result, Operand(0x80000000));
// TODO(danno): we could be more clever here, perhaps having a special
// version of the stub that detects if the overflow case actually
// happens, and generate code that returns a double rather than int.
DeoptimizeIf(cs, instr->environment());
break;
case kExternalFloatArray:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r1));
ASSERT(ToRegister(instr->key()).is(r0));
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Register scratch = scratch0();
Register result = ToRegister(instr->result());
// Check if the calling frame is an arguments adaptor frame.
Label done, adapted;
__ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
__ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Result is the frame pointer for the frame if not adapted and for the real
// frame below the adaptor frame if adapted.
__ mov(result, fp, LeaveCC, ne);
__ mov(result, scratch, LeaveCC, eq);
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Register elem = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Label done;
// If no arguments adaptor frame the number of arguments is fixed.
__ cmp(fp, elem);
__ mov(result, Operand(scope()->num_parameters()));
__ b(eq, &done);
// Arguments adaptor frame present. Get argument length from there.
__ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(result,
MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(result);
// Argument length is in result register.
__ bind(&done);
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register length = ToRegister(instr->length());
Register elements = ToRegister(instr->elements());
Register scratch = scratch0();
ASSERT(receiver.is(r0)); // Used for parameter count.
ASSERT(function.is(r1)); // Required by InvokeFunction.
ASSERT(ToRegister(instr->result()).is(r0));
// If the receiver is null or undefined, we have to pass the global object
// as a receiver.
Label global_object, receiver_ok;
__ LoadRoot(scratch, Heap::kNullValueRootIndex);
__ cmp(receiver, scratch);
__ b(eq, &global_object);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ cmp(receiver, scratch);
__ b(eq, &global_object);
// Deoptimize if the receiver is not a JS object.
__ tst(receiver, Operand(kSmiTagMask));
DeoptimizeIf(eq, instr->environment());
__ CompareObjectType(receiver, scratch, scratch, FIRST_JS_OBJECT_TYPE);
DeoptimizeIf(lo, instr->environment());
__ jmp(&receiver_ok);
__ bind(&global_object);
__ ldr(receiver, GlobalObjectOperand());
__ bind(&receiver_ok);
// Copy the arguments to this function possibly from the
// adaptor frame below it.
const uint32_t kArgumentsLimit = 1 * KB;
__ cmp(length, Operand(kArgumentsLimit));
DeoptimizeIf(hi, instr->environment());
// Push the receiver and use the register to keep the original
// number of arguments.
__ push(receiver);
__ mov(receiver, length);
// The arguments are at a one pointer size offset from elements.
__ add(elements, elements, Operand(1 * kPointerSize));
// Loop through the arguments pushing them onto the execution
// stack.
Label invoke, loop;
// length is a small non-negative integer, due to the test above.
__ cmp(length, Operand(0));
__ b(eq, &invoke);
__ bind(&loop);
__ ldr(scratch, MemOperand(elements, length, LSL, 2));
__ push(scratch);
__ sub(length, length, Operand(1), SetCC);
__ b(ne, &loop);
__ bind(&invoke);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
LEnvironment* env = instr->deoptimization_environment();
RecordPosition(pointers->position());
RegisterEnvironmentForDeoptimization(env);
SafepointGenerator safepoint_generator(this,
pointers,
env->deoptimization_index());
// The number of arguments is stored in receiver which is r0, as expected
// by InvokeFunction.
v8::internal::ParameterCount actual(receiver);
__ InvokeFunction(function, actual, CALL_FUNCTION, &safepoint_generator);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->InputAt(0);
if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
Abort("DoPushArgument not implemented for double type.");
} else {
Register argument_reg = EmitLoadRegister(argument, ip);
__ push(argument_reg);
}
}
void LCodeGen::DoContext(LContext* instr) {
Register result = ToRegister(instr->result());
__ mov(result, cp);
}
void LCodeGen::DoOuterContext(LOuterContext* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ ldr(result,
MemOperand(context, Context::SlotOffset(Context::CLOSURE_INDEX)));
__ ldr(result, FieldMemOperand(result, JSFunction::kContextOffset));
}
void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ ldr(result, ContextOperand(cp, Context::GLOBAL_INDEX));
}
void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
Register global = ToRegister(instr->global());
Register result = ToRegister(instr->result());
__ ldr(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset));
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int arity,
LInstruction* instr) {
// Change context if needed.
bool change_context =
(info()->closure()->context() != function->context()) ||
scope()->contains_with() ||
(scope()->num_heap_slots() > 0);
if (change_context) {
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
}
// Set r0 to arguments count if adaption is not needed. Assumes that r0
// is available to write to at this point.
if (!function->NeedsArgumentsAdaption()) {
__ mov(r0, Operand(arity));
}
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
// Invoke function.
__ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ Call(ip);
// Setup deoptimization.
RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT);
// Restore context.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
__ mov(r1, Operand(instr->function()));
CallKnownFunction(instr->function(), instr->arity(), instr);
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
ASSERT(instr->InputAt(0)->Equals(instr->result()));
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
// Deoptimize if not a heap number.
__ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
DeoptimizeIf(ne, instr->environment());
Label done;
Register exponent = scratch0();
scratch = no_reg;
__ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive, just
// return it. We do not need to patch the stack since |input| and
// |result| are the same register and |input| would be restored
// unchanged by popping safepoint registers.
__ tst(exponent, Operand(HeapNumber::kSignMask));
__ b(eq, &done);
// Input is negative. Reverse its sign.
// Preserve the value of all registers.
{
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
// Registers were saved at the safepoint, so we can use
// many scratch registers.
Register tmp1 = input.is(r1) ? r0 : r1;
Register tmp2 = input.is(r2) ? r0 : r2;
Register tmp3 = input.is(r3) ? r0 : r3;
Register tmp4 = input.is(r4) ? r0 : r4;
// exponent: floating point exponent value.
Label allocated, slow;
__ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
__ b(&allocated);
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
// Set the pointer to the new heap number in tmp.
if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0));
// Restore input_reg after call to runtime.
__ LoadFromSafepointRegisterSlot(input, input);
__ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
__ bind(&allocated);
// exponent: floating point exponent value.
// tmp1: allocated heap number.
__ bic(exponent, exponent, Operand(HeapNumber::kSignMask));
__ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
__ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
__ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
__ StoreToSafepointRegisterSlot(tmp1, input);
}
__ bind(&done);
}
void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
Register input = ToRegister(instr->InputAt(0));
__ cmp(input, Operand(0));
// We can make rsb conditional because the previous cmp instruction
// will clear the V (overflow) flag and rsb won't set this flag
// if input is positive.
__ rsb(input, input, Operand(0), SetCC, mi);
// Deoptimize on overflow.
DeoptimizeIf(vs, instr->environment());
}
void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
// Class for deferred case.
class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
public:
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
LUnaryMathOperation* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
}
private:
LUnaryMathOperation* instr_;
};
ASSERT(instr->InputAt(0)->Equals(instr->result()));
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
DwVfpRegister input = ToDoubleRegister(instr->InputAt(0));
__ vabs(input, input);
} else if (r.IsInteger32()) {
EmitIntegerMathAbs(instr);
} else {
// Representation is tagged.
DeferredMathAbsTaggedHeapNumber* deferred =
new DeferredMathAbsTaggedHeapNumber(this, instr);
Register input = ToRegister(instr->InputAt(0));
// Smi check.
__ JumpIfNotSmi(input, deferred->entry());
// If smi, handle it directly.
EmitIntegerMathAbs(instr);
__ bind(deferred->exit());
}
}
void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
SwVfpRegister single_scratch = double_scratch0().low();
Register scratch1 = scratch0();
Register scratch2 = ToRegister(instr->TempAt(0));
__ EmitVFPTruncate(kRoundToMinusInf,
single_scratch,
input,
scratch1,
scratch2);
DeoptimizeIf(ne, instr->environment());
// Move the result back to general purpose register r0.
__ vmov(result, single_scratch);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Test for -0.
Label done;
__ cmp(result, Operand(0));
__ b(ne, &done);
__ vmov(scratch1, input.high());
__ tst(scratch1, Operand(HeapNumber::kSignMask));
DeoptimizeIf(ne, instr->environment());
__ bind(&done);
}
}
void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register scratch1 = result;
Register scratch2 = scratch0();
Label done, check_sign_on_zero;
// Extract exponent bits.
__ vmov(scratch1, input.high());
__ ubfx(scratch2,
scratch1,
HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// If the number is in ]-0.5, +0.5[, the result is +/- 0.
__ cmp(scratch2, Operand(HeapNumber::kExponentBias - 2));
__ mov(result, Operand(0), LeaveCC, le);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ b(le, &check_sign_on_zero);
} else {
__ b(le, &done);
}
// The following conversion will not work with numbers
// outside of ]-2^32, 2^32[.
__ cmp(scratch2, Operand(HeapNumber::kExponentBias + 32));
DeoptimizeIf(ge, instr->environment());
// Save the original sign for later comparison.
__ and_(scratch2, scratch1, Operand(HeapNumber::kSignMask));
__ vmov(double_scratch0(), 0.5);
__ vadd(input, input, double_scratch0());
// Check sign of the result: if the sign changed, the input
// value was in ]0.5, 0[ and the result should be -0.
__ vmov(scratch1, input.high());
__ eor(scratch1, scratch1, Operand(scratch2), SetCC);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(mi, instr->environment());
} else {
__ mov(result, Operand(0), LeaveCC, mi);
__ b(mi, &done);
}
__ EmitVFPTruncate(kRoundToMinusInf,
double_scratch0().low(),
input,
scratch1,
scratch2);
DeoptimizeIf(ne, instr->environment());
__ vmov(result, double_scratch0().low());
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Test for -0.
__ cmp(result, Operand(0));
__ b(ne, &done);
__ bind(&check_sign_on_zero);
__ vmov(scratch1, input.high());
__ tst(scratch1, Operand(HeapNumber::kSignMask));
DeoptimizeIf(ne, instr->environment());
}
__ bind(&done);
}
void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
ASSERT(ToDoubleRegister(instr->result()).is(input));
__ vsqrt(input, input);
}
void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
Register scratch = scratch0();
SwVfpRegister single_scratch = double_scratch0().low();
DoubleRegister double_scratch = double_scratch0();
ASSERT(ToDoubleRegister(instr->result()).is(input));
// Add +0 to convert -0 to +0.
__ mov(scratch, Operand(0));
__ vmov(single_scratch, scratch);
__ vcvt_f64_s32(double_scratch, single_scratch);
__ vadd(input, input, double_scratch);
__ vsqrt(input, input);
}
void LCodeGen::DoPower(LPower* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
Register scratch = scratch0();
DoubleRegister result_reg = ToDoubleRegister(instr->result());
Representation exponent_type = instr->hydrogen()->right()->representation();
if (exponent_type.IsDouble()) {
// Prepare arguments and call C function.
__ PrepareCallCFunction(4, scratch);
__ vmov(r0, r1, ToDoubleRegister(left));
__ vmov(r2, r3, ToDoubleRegister(right));
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 4);
} else if (exponent_type.IsInteger32()) {
ASSERT(ToRegister(right).is(r0));
// Prepare arguments and call C function.
__ PrepareCallCFunction(4, scratch);
__ mov(r2, ToRegister(right));
__ vmov(r0, r1, ToDoubleRegister(left));
__ CallCFunction(
ExternalReference::power_double_int_function(isolate()), 4);
} else {
ASSERT(exponent_type.IsTagged());
ASSERT(instr->hydrogen()->left()->representation().IsDouble());
Register right_reg = ToRegister(right);
// Check for smi on the right hand side.
Label non_smi, call;
__ JumpIfNotSmi(right_reg, &non_smi);
// Untag smi and convert it to a double.
__ SmiUntag(right_reg);
SwVfpRegister single_scratch = double_scratch0().low();
__ vmov(single_scratch, right_reg);
__ vcvt_f64_s32(result_reg, single_scratch);
__ jmp(&call);
// Heap number map check.
__ bind(&non_smi);
__ ldr(scratch, FieldMemOperand(right_reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
DeoptimizeIf(ne, instr->environment());
int32_t value_offset = HeapNumber::kValueOffset - kHeapObjectTag;
__ add(scratch, right_reg, Operand(value_offset));
__ vldr(result_reg, scratch, 0);
// Prepare arguments and call C function.
__ bind(&call);
__ PrepareCallCFunction(4, scratch);
__ vmov(r0, r1, ToDoubleRegister(left));
__ vmov(r2, r3, result_reg);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 4);
}
// Store the result in the result register.
__ GetCFunctionDoubleResult(result_reg);
}
void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(d2));
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(d2));
TranscendentalCacheStub stub(TranscendentalCache::COS,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(d2));
TranscendentalCacheStub stub(TranscendentalCache::SIN,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
switch (instr->op()) {
case kMathAbs:
DoMathAbs(instr);
break;
case kMathFloor:
DoMathFloor(instr);
break;
case kMathRound:
DoMathRound(instr);
break;
case kMathSqrt:
DoMathSqrt(instr);
break;
case kMathPowHalf:
DoMathPowHalf(instr);
break;
case kMathCos:
DoMathCos(instr);
break;
case kMathSin:
DoMathSin(instr);
break;
case kMathLog:
DoMathLog(instr);
break;
default:
Abort("Unimplemented type of LUnaryMathOperation.");
UNREACHABLE();
}
}
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
ASSERT(ToRegister(instr->function()).is(r1));
ASSERT(instr->HasPointerMap());
ASSERT(instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
LEnvironment* env = instr->deoptimization_environment();
RecordPosition(pointers->position());
RegisterEnvironmentForDeoptimization(env);
SafepointGenerator generator(this, pointers, env->deoptimization_index());
ParameterCount count(instr->arity());
__ InvokeFunction(r1, count, CALL_FUNCTION, &generator);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
Handle<Code> ic =
isolate()->stub_cache()->ComputeKeyedCallInitialize(arity, NOT_IN_LOOP);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallNamed(LCallNamed* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(
arity, NOT_IN_LOOP);
__ mov(r2, Operand(instr->name()));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallFunction(LCallFunction* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ Drop(1);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
Handle<Code> ic =
isolate()->stub_cache()->ComputeCallInitialize(arity, NOT_IN_LOOP);
__ mov(r2, Operand(instr->name()));
CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
__ mov(r1, Operand(instr->target()));
CallKnownFunction(instr->target(), instr->arity(), instr);
}
void LCodeGen::DoCallNew(LCallNew* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r1));
ASSERT(ToRegister(instr->result()).is(r0));
Handle<Code> builtin = isolate()->builtins()->JSConstructCall();
__ mov(r0, Operand(instr->arity()));
CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
CallRuntime(instr->function(), instr->arity(), instr);
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
Register object = ToRegister(instr->object());
Register value = ToRegister(instr->value());
Register scratch = scratch0();
int offset = instr->offset();
ASSERT(!object.is(value));
if (!instr->transition().is_null()) {
__ mov(scratch, Operand(instr->transition()));
__ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
}
// Do the store.
if (instr->is_in_object()) {
__ str(value, FieldMemOperand(object, offset));
if (instr->needs_write_barrier()) {
// Update the write barrier for the object for in-object properties.
__ RecordWrite(object, Operand(offset), value, scratch);
}
} else {
__ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
__ str(value, FieldMemOperand(scratch, offset));
if (instr->needs_write_barrier()) {
// Update the write barrier for the properties array.
// object is used as a scratch register.
__ RecordWrite(scratch, Operand(offset), value, object);
}
}
}
void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r1));
ASSERT(ToRegister(instr->value()).is(r0));
// Name is always in r2.
__ mov(r2, Operand(instr->name()));
Handle<Code> ic = instr->strict_mode()
? isolate()->builtins()->StoreIC_Initialize_Strict()
: isolate()->builtins()->StoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
__ cmp(ToRegister(instr->index()), ToRegister(instr->length()));
DeoptimizeIf(hs, instr->environment());
}
void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
Register value = ToRegister(instr->value());
Register elements = ToRegister(instr->object());
Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
Register scratch = scratch0();
// Do the store.
if (instr->key()->IsConstantOperand()) {
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
int offset =
ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
__ str(value, FieldMemOperand(elements, offset));
} else {
__ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
__ str(value, FieldMemOperand(scratch, FixedArray::kHeaderSize));
}
if (instr->hydrogen()->NeedsWriteBarrier()) {
// Compute address of modified element and store it into key register.
__ add(key, scratch, Operand(FixedArray::kHeaderSize));
__ RecordWrite(elements, key, value);
}
}
void LCodeGen::DoStoreKeyedSpecializedArrayElement(
LStoreKeyedSpecializedArrayElement* instr) {
Register external_pointer = ToRegister(instr->external_pointer());
Register key = ToRegister(instr->key());
ExternalArrayType array_type = instr->array_type();
if (array_type == kExternalFloatArray) {
CpuFeatures::Scope scope(VFP3);
DwVfpRegister value(ToDoubleRegister(instr->value()));
__ add(scratch0(), external_pointer, Operand(key, LSL, 2));
__ vcvt_f32_f64(double_scratch0().low(), value);
__ vstr(double_scratch0().low(), scratch0(), 0);
} else {
Register value(ToRegister(instr->value()));
switch (array_type) {
case kExternalPixelArray:
// Clamp the value to [0..255].
__ Usat(value, 8, Operand(value));
__ strb(value, MemOperand(external_pointer, key));
break;
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ strb(value, MemOperand(external_pointer, key));
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ strh(value, MemOperand(external_pointer, key, LSL, 1));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ str(value, MemOperand(external_pointer, key, LSL, 2));
break;
case kExternalFloatArray:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r2));
ASSERT(ToRegister(instr->key()).is(r1));
ASSERT(ToRegister(instr->value()).is(r0));
Handle<Code> ic = instr->strict_mode()
? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
: isolate()->builtins()->KeyedStoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStringAdd(LStringAdd* instr) {
__ push(ToRegister(instr->left()));
__ push(ToRegister(instr->right()));
StringAddStub stub(NO_STRING_CHECK_IN_STUB);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
class DeferredStringCharCodeAt: public LDeferredCode {
public:
DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
private:
LStringCharCodeAt* instr_;
};
Register scratch = scratch0();
Register string = ToRegister(instr->string());
Register index = no_reg;
int const_index = -1;
if (instr->index()->IsConstantOperand()) {
const_index = ToInteger32(LConstantOperand::cast(instr->index()));
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
if (!Smi::IsValid(const_index)) {
// Guaranteed to be out of bounds because of the assert above.
// So the bounds check that must dominate this instruction must
// have deoptimized already.
if (FLAG_debug_code) {
__ Abort("StringCharCodeAt: out of bounds index.");
}
// No code needs to be generated.
return;
}
} else {
index = ToRegister(instr->index());
}
Register result = ToRegister(instr->result());
DeferredStringCharCodeAt* deferred =
new DeferredStringCharCodeAt(this, instr);
Label flat_string, ascii_string, done;
// Fetch the instance type of the receiver into result register.
__ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// We need special handling for non-flat strings.
STATIC_ASSERT(kSeqStringTag == 0);
__ tst(result, Operand(kStringRepresentationMask));
__ b(eq, &flat_string);
// Handle non-flat strings.
__ tst(result, Operand(kIsConsStringMask));
__ b(eq, deferred->entry());
// ConsString.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ ldr(scratch, FieldMemOperand(string, ConsString::kSecondOffset));
__ LoadRoot(ip, Heap::kEmptyStringRootIndex);
__ cmp(scratch, ip);
__ b(ne, deferred->entry());
// Get the first of the two strings and load its instance type.
__ ldr(string, FieldMemOperand(string, ConsString::kFirstOffset));
__ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// If the first cons component is also non-flat, then go to runtime.
STATIC_ASSERT(kSeqStringTag == 0);
__ tst(result, Operand(kStringRepresentationMask));
__ b(ne, deferred->entry());
// Check for 1-byte or 2-byte string.
__ bind(&flat_string);
STATIC_ASSERT(kAsciiStringTag != 0);
__ tst(result, Operand(kStringEncodingMask));
__ b(ne, &ascii_string);
// 2-byte string.
// Load the 2-byte character code into the result register.
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
if (instr->index()->IsConstantOperand()) {
__ ldrh(result,
FieldMemOperand(string,
SeqTwoByteString::kHeaderSize + 2 * const_index));
} else {
__ add(scratch,
string,
Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ ldrh(result, MemOperand(scratch, index, LSL, 1));
}
__ jmp(&done);
// ASCII string.
// Load the byte into the result register.
__ bind(&ascii_string);
if (instr->index()->IsConstantOperand()) {
__ ldrb(result, FieldMemOperand(string,
SeqAsciiString::kHeaderSize + const_index));
} else {
__ add(scratch,
string,
Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ ldrb(result, MemOperand(scratch, index));
}
__ bind(&done);
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ mov(result, Operand(0));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
__ push(string);
// Push the index as a smi. This is safe because of the checks in
// DoStringCharCodeAt above.
if (instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
__ mov(scratch, Operand(Smi::FromInt(const_index)));
__ push(scratch);
} else {
Register index = ToRegister(instr->index());
__ SmiTag(index);
__ push(index);
}
CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
if (FLAG_debug_code) {
__ AbortIfNotSmi(r0);
}
__ SmiUntag(r0);
__ StoreToSafepointRegisterSlot(r0, result);
}
void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
class DeferredStringCharFromCode: public LDeferredCode {
public:
DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
private:
LStringCharFromCode* instr_;
};
DeferredStringCharFromCode* deferred =
new DeferredStringCharFromCode(this, instr);
ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
ASSERT(!char_code.is(result));
__ cmp(char_code, Operand(String::kMaxAsciiCharCode));
__ b(hi, deferred->entry());
__ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
__ add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
__ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(result, ip);
__ b(eq, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ mov(result, Operand(0));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
__ SmiTag(char_code);
__ push(char_code);
CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
__ StoreToSafepointRegisterSlot(r0, result);
}
void LCodeGen::DoStringLength(LStringLength* instr) {
Register string = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
__ ldr(result, FieldMemOperand(string, String::kLengthOffset));
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() || input->IsStackSlot());
LOperand* output = instr->result();
ASSERT(output->IsDoubleRegister());
SwVfpRegister single_scratch = double_scratch0().low();
if (input->IsStackSlot()) {
Register scratch = scratch0();
__ ldr(scratch, ToMemOperand(input));
__ vmov(single_scratch, scratch);
} else {
__ vmov(single_scratch, ToRegister(input));
}
__ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI: public LDeferredCode {
public:
DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
private:
LNumberTagI* instr_;
};
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
__ SmiTag(reg, SetCC);
__ b(vs, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
Label slow;
Register reg = ToRegister(instr->InputAt(0));
DoubleRegister dbl_scratch = d0;
SwVfpRegister flt_scratch = s0;
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
// the value in there. If that fails, call the runtime system.
Label done;
__ SmiUntag(reg);
__ eor(reg, reg, Operand(0x80000000));
__ vmov(flt_scratch, reg);
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
if (FLAG_inline_new) {
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r5, r3, r4, r6, &slow);
if (!reg.is(r5)) __ mov(reg, r5);
__ b(&done);
}
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
// TODO(3095996): Put a valid pointer value in the stack slot where the result
// register is stored, as this register is in the pointer map, but contains an
// integer value.
__ mov(ip, Operand(0));
__ StoreToSafepointRegisterSlot(ip, reg);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
if (!reg.is(r0)) __ mov(reg, r0);
// Done. Put the value in dbl_scratch into the value of the allocated heap
// number.
__ bind(&done);
__ sub(ip, reg, Operand(kHeapObjectTag));
__ vstr(dbl_scratch, ip, HeapNumber::kValueOffset);
__ StoreToSafepointRegisterSlot(reg, reg);
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD: public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
private:
LNumberTagD* instr_;
};
DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0));
Register scratch = scratch0();
Register reg = ToRegister(instr->result());
Register temp1 = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
__ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
} else {
__ jmp(deferred->entry());
}
__ bind(deferred->exit());
__ sub(ip, reg, Operand(kHeapObjectTag));
__ vstr(input_reg, ip, HeapNumber::kValueOffset);
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ mov(reg, Operand(0));
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
__ StoreToSafepointRegisterSlot(r0, reg);
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
__ SmiTag(ToRegister(input));
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
if (instr->needs_check()) {
__ tst(ToRegister(input), Operand(kSmiTagMask));
DeoptimizeIf(ne, instr->environment());
}
__ SmiUntag(ToRegister(input));
}
void LCodeGen::EmitNumberUntagD(Register input_reg,
DoubleRegister result_reg,
LEnvironment* env) {
Register scratch = scratch0();
SwVfpRegister flt_scratch = s0;
ASSERT(!result_reg.is(d0));
Label load_smi, heap_number, done;
// Smi check.
__ tst(input_reg, Operand(kSmiTagMask));
__ b(eq, &load_smi);
// Heap number map check.
__ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
__ b(eq, &heap_number);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(input_reg, Operand(ip));
DeoptimizeIf(ne, env);
// Convert undefined to NaN.
__ LoadRoot(ip, Heap::kNanValueRootIndex);
__ sub(ip, ip, Operand(kHeapObjectTag));
__ vldr(result_reg, ip, HeapNumber::kValueOffset);
__ jmp(&done);
// Heap number to double register conversion.
__ bind(&heap_number);
__ sub(ip, input_reg, Operand(kHeapObjectTag));
__ vldr(result_reg, ip, HeapNumber::kValueOffset);
__ jmp(&done);
// Smi to double register conversion
__ bind(&load_smi);
__ SmiUntag(input_reg); // Untag smi before converting to float.
__ vmov(flt_scratch, input_reg);
__ vcvt_f64_s32(result_reg, flt_scratch);
__ SmiTag(input_reg); // Retag smi.
__ bind(&done);
}
class DeferredTaggedToI: public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
private:
LTaggedToI* instr_;
};
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
Register input_reg = ToRegister(instr->InputAt(0));
Register scratch1 = scratch0();
Register scratch2 = ToRegister(instr->TempAt(0));
DwVfpRegister double_scratch = double_scratch0();
SwVfpRegister single_scratch = double_scratch.low();
ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2));
ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1));
Label done;
// Heap number map check.
__ ldr(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch1, Operand(ip));
if (instr->truncating()) {
Register scratch3 = ToRegister(instr->TempAt(1));
DwVfpRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2));
ASSERT(!scratch3.is(input_reg) &&
!scratch3.is(scratch1) &&
!scratch3.is(scratch2));
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations.
Label heap_number;
__ b(eq, &heap_number);
// Check for undefined. Undefined is converted to zero for truncating
// conversions.
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(input_reg, Operand(ip));
DeoptimizeIf(ne, instr->environment());
__ mov(input_reg, Operand(0));
__ b(&done);
__ bind(&heap_number);
__ sub(scratch1, input_reg, Operand(kHeapObjectTag));
__ vldr(double_scratch2, scratch1, HeapNumber::kValueOffset);
__ EmitECMATruncate(input_reg,
double_scratch2,
single_scratch,
scratch1,
scratch2,
scratch3);
} else {
CpuFeatures::Scope scope(VFP3);
// Deoptimize if we don't have a heap number.
DeoptimizeIf(ne, instr->environment());
__ sub(ip, input_reg, Operand(kHeapObjectTag));
__ vldr(double_scratch, ip, HeapNumber::kValueOffset);
__ EmitVFPTruncate(kRoundToZero,
single_scratch,
double_scratch,
scratch1,
scratch2,
kCheckForInexactConversion);
DeoptimizeIf(ne, instr->environment());
// Load the result.
__ vmov(input_reg, single_scratch);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ cmp(input_reg, Operand(0));
__ b(ne, &done);
__ vmov(scratch1, double_scratch.high());
__ tst(scratch1, Operand(HeapNumber::kSignMask));
DeoptimizeIf(ne, instr->environment());
}
}
__ bind(&done);
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
ASSERT(input->Equals(instr->result()));
Register input_reg = ToRegister(input);
DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
// Smi check.
__ tst(input_reg, Operand(kSmiTagMask));
__ b(ne, deferred->entry());
// Smi to int32 conversion
__ SmiUntag(input_reg); // Untag smi.
__ bind(deferred->exit());
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
LOperand* result = instr->result();
ASSERT(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
DoubleRegister result_reg = ToDoubleRegister(result);
EmitNumberUntagD(input_reg, result_reg, instr->environment());
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
Register result_reg = ToRegister(instr->result());
Register scratch1 = scratch0();
Register scratch2 = ToRegister(instr->TempAt(0));
DwVfpRegister double_input = ToDoubleRegister(instr->InputAt(0));
DwVfpRegister double_scratch = double_scratch0();
SwVfpRegister single_scratch = double_scratch0().low();
Label done;
if (instr->truncating()) {
Register scratch3 = ToRegister(instr->TempAt(1));
__ EmitECMATruncate(result_reg,
double_input,
single_scratch,
scratch1,
scratch2,
scratch3);
} else {
VFPRoundingMode rounding_mode = kRoundToMinusInf;
__ EmitVFPTruncate(rounding_mode,
single_scratch,
double_input,
scratch1,
scratch2,
kCheckForInexactConversion);
// Deoptimize if we had a vfp invalid exception,
// including inexact operation.
DeoptimizeIf(ne, instr->environment());
// Retrieve the result.
__ vmov(result_reg, single_scratch);
}
__ bind(&done);
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->InputAt(0);
__ tst(ToRegister(input), Operand(kSmiTagMask));
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
LOperand* input = instr->InputAt(0);
__ tst(ToRegister(input), Operand(kSmiTagMask));
DeoptimizeIf(eq, instr->environment());
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->InputAt(0));
Register scratch = scratch0();
InstanceType first = instr->hydrogen()->first();
InstanceType last = instr->hydrogen()->last();
__ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ cmp(scratch, Operand(first));
// If there is only one type in the interval check for equality.
if (first == last) {
DeoptimizeIf(ne, instr->environment());
} else {
DeoptimizeIf(lo, instr->environment());
// Omit check for the last type.
if (last != LAST_TYPE) {
__ cmp(scratch, Operand(last));
DeoptimizeIf(hi, instr->environment());
}
}
}
void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
ASSERT(instr->InputAt(0)->IsRegister());
Register reg = ToRegister(instr->InputAt(0));
__ cmp(reg, Operand(instr->hydrogen()->target()));
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoCheckMap(LCheckMap* instr) {
Register scratch = scratch0();
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
Register reg = ToRegister(input);
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(scratch, Operand(instr->hydrogen()->map()));
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::LoadHeapObject(Register result,
Handle<HeapObject> object) {
if (heap()->InNewSpace(*object)) {
Handle<JSGlobalPropertyCell> cell =
factory()->NewJSGlobalPropertyCell(object);
__ mov(result, Operand(cell));
__ ldr(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset));
} else {
__ mov(result, Operand(object));
}
}
void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
Register temp1 = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
Handle<JSObject> holder = instr->holder();
Handle<JSObject> current_prototype = instr->prototype();
// Load prototype object.
LoadHeapObject(temp1, current_prototype);
// Check prototype maps up to the holder.
while (!current_prototype.is_identical_to(holder)) {
__ ldr(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset));
__ cmp(temp2, Operand(Handle<Map>(current_prototype->map())));
DeoptimizeIf(ne, instr->environment());
current_prototype =
Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
// Load next prototype object.
LoadHeapObject(temp1, current_prototype);
}
// Check the holder map.
__ ldr(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset));
__ cmp(temp2, Operand(Handle<Map>(current_prototype->map())));
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
__ mov(r2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
__ mov(r1, Operand(instr->hydrogen()->constant_elements()));
__ Push(r3, r2, r1);
// Pick the right runtime function or stub to call.
int length = instr->hydrogen()->length();
if (instr->hydrogen()->IsCopyOnWrite()) {
ASSERT(instr->hydrogen()->depth() == 1);
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
} else {
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::CLONE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
__ ldr(r4, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r4, FieldMemOperand(r4, JSFunction::kLiteralsOffset));
__ mov(r3, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
__ mov(r2, Operand(instr->hydrogen()->constant_properties()));
__ mov(r1, Operand(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0)));
__ Push(r4, r3, r2, r1);
// Pick the right runtime function to call.
if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
} else {
CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
}
}
void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(r0));
__ push(r0);
CallRuntime(Runtime::kToFastProperties, 1, instr);
}
void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
Label materialized;
// Registers will be used as follows:
// r3 = JS function.
// r7 = literals array.
// r1 = regexp literal.
// r0 = regexp literal clone.
// r2 and r4-r6 are used as temporaries.
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r7, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
int literal_offset = FixedArray::kHeaderSize +
instr->hydrogen()->literal_index() * kPointerSize;
__ ldr(r1, FieldMemOperand(r7, literal_offset));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r1, ip);
__ b(ne, &materialized);
// Create regexp literal using runtime function
// Result will be in r0.
__ mov(r6, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
__ mov(r5, Operand(instr->hydrogen()->pattern()));
__ mov(r4, Operand(instr->hydrogen()->flags()));
__ Push(r7, r6, r5, r4);
CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
__ mov(r1, r0);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ AllocateInNewSpace(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ mov(r0, Operand(Smi::FromInt(size)));
__ Push(r1, r0);
CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
__ pop(r1);
__ bind(&allocated);
// Copy the content into the newly allocated memory.
// (Unroll copy loop once for better throughput).
for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
__ ldr(r3, FieldMemOperand(r1, i));
__ ldr(r2, FieldMemOperand(r1, i + kPointerSize));
__ str(r3, FieldMemOperand(r0, i));
__ str(r2, FieldMemOperand(r0, i + kPointerSize));
}
if ((size % (2 * kPointerSize)) != 0) {
__ ldr(r3, FieldMemOperand(r1, size - kPointerSize));
__ str(r3, FieldMemOperand(r0, size - kPointerSize));
}
}
void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
Handle<SharedFunctionInfo> shared_info = instr->shared_info();
bool pretenure = instr->hydrogen()->pretenure();
if (!pretenure && shared_info->num_literals() == 0) {
FastNewClosureStub stub(
shared_info->strict_mode() ? kStrictMode : kNonStrictMode);
__ mov(r1, Operand(shared_info));
__ push(r1);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else {
__ mov(r2, Operand(shared_info));
__ mov(r1, Operand(pretenure
? factory()->true_value()
: factory()->false_value()));
__ Push(cp, r2, r1);
CallRuntime(Runtime::kNewClosure, 3, instr);
}
}
void LCodeGen::DoTypeof(LTypeof* instr) {
Register input = ToRegister(instr->InputAt(0));
__ push(input);
CallRuntime(Runtime::kTypeof, 1, instr);
}
void LCodeGen::DoTypeofIs(LTypeofIs* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Label true_label;
Label false_label;
Label done;
Condition final_branch_condition = EmitTypeofIs(&true_label,
&false_label,
input,
instr->type_literal());
__ b(final_branch_condition, &true_label);
__ bind(&false_label);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
__ b(&done);
__ bind(&true_label);
__ LoadRoot(result, Heap::kTrueValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition final_branch_condition = EmitTypeofIs(true_label,
false_label,
input,
instr->type_literal());
EmitBranch(true_block, false_block, final_branch_condition);
}
Condition LCodeGen::EmitTypeofIs(Label* true_label,
Label* false_label,
Register input,
Handle<String> type_name) {
Condition final_branch_condition = kNoCondition;
Register scratch = scratch0();
if (type_name->Equals(heap()->number_symbol())) {
__ JumpIfSmi(input, true_label);
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(input, Operand(ip));
final_branch_condition = eq;
} else if (type_name->Equals(heap()->string_symbol())) {
__ JumpIfSmi(input, false_label);
__ CompareObjectType(input, input, scratch, FIRST_NONSTRING_TYPE);
__ b(ge, false_label);
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
final_branch_condition = eq;
} else if (type_name->Equals(heap()->boolean_symbol())) {
__ CompareRoot(input, Heap::kTrueValueRootIndex);
__ b(eq, true_label);
__ CompareRoot(input, Heap::kFalseValueRootIndex);
final_branch_condition = eq;
} else if (type_name->Equals(heap()->undefined_symbol())) {
__ CompareRoot(input, Heap::kUndefinedValueRootIndex);
__ b(eq, true_label);
__ JumpIfSmi(input, false_label);
// Check for undetectable objects => true.
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
final_branch_condition = ne;
} else if (type_name->Equals(heap()->function_symbol())) {
__ JumpIfSmi(input, false_label);
__ CompareObjectType(input, input, scratch, FIRST_FUNCTION_CLASS_TYPE);
final_branch_condition = ge;
} else if (type_name->Equals(heap()->object_symbol())) {
__ JumpIfSmi(input, false_label);
__ CompareRoot(input, Heap::kNullValueRootIndex);
__ b(eq, true_label);
__ CompareObjectType(input, input, scratch, FIRST_JS_OBJECT_TYPE);
__ b(lo, false_label);
__ CompareInstanceType(input, scratch, FIRST_FUNCTION_CLASS_TYPE);
__ b(hs, false_label);
// Check for undetectable objects => false.
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
final_branch_condition = eq;
} else {
final_branch_condition = ne;
__ b(false_label);
// A dead branch instruction will be generated after this point.
}
return final_branch_condition;
}
void LCodeGen::DoIsConstructCall(LIsConstructCall* instr) {
Register result = ToRegister(instr->result());
Label true_label;
Label false_label;
Label done;
EmitIsConstructCall(result, scratch0());
__ b(eq, &true_label);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
__ b(&done);
__ bind(&true_label);
__ LoadRoot(result, Heap::kTrueValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
Register temp1 = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
EmitIsConstructCall(temp1, scratch0());
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
ASSERT(!temp1.is(temp2));
// Get the frame pointer for the calling frame.
__ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
__ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &check_frame_marker);
__ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
__ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
// No code for lazy bailout instruction. Used to capture environment after a
// call for populating the safepoint data with deoptimization data.
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
DeoptimizeIf(al, instr->environment());
}
void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
Register object = ToRegister(instr->object());
Register key = ToRegister(instr->key());
Register strict = scratch0();
__ mov(strict, Operand(Smi::FromInt(strict_mode_flag())));
__ Push(object, key, strict);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
LEnvironment* env = instr->deoptimization_environment();
RecordPosition(pointers->position());
RegisterEnvironmentForDeoptimization(env);
SafepointGenerator safepoint_generator(this,
pointers,
env->deoptimization_index());
__ InvokeBuiltin(Builtins::DELETE, CALL_JS, &safepoint_generator);
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
// Perform stack overflow check.
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(hs, &ok);
StackCheckStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ bind(&ok);
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
// This is a pseudo-instruction that ensures that the environment here is
// properly registered for deoptimization and records the assembler's PC
// offset.
LEnvironment* environment = instr->environment();
environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
instr->SpilledDoubleRegisterArray());
// If the environment were already registered, we would have no way of
// backpatching it with the spill slot operands.
ASSERT(!environment->HasBeenRegistered());
RegisterEnvironmentForDeoptimization(environment);
ASSERT(osr_pc_offset_ == -1);
osr_pc_offset_ = masm()->pc_offset();
}
#undef __
} } // namespace v8::internal