| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_DATAFLOW_H_ |
| #define V8_DATAFLOW_H_ |
| |
| #include "v8.h" |
| |
| #include "ast.h" |
| #include "compiler.h" |
| #include "zone-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declarations. |
| class Node; |
| |
| class BitVector: public ZoneObject { |
| public: |
| // Iterator for the elements of this BitVector. |
| class Iterator BASE_EMBEDDED { |
| public: |
| explicit Iterator(BitVector* target) |
| : target_(target), |
| current_index_(0), |
| current_value_(target->data_[0]), |
| current_(-1) { |
| ASSERT(target->data_length_ > 0); |
| Advance(); |
| } |
| ~Iterator() { } |
| |
| bool Done() const { return current_index_ >= target_->data_length_; } |
| void Advance(); |
| |
| int Current() const { |
| ASSERT(!Done()); |
| return current_; |
| } |
| |
| private: |
| uint32_t SkipZeroBytes(uint32_t val) { |
| while ((val & 0xFF) == 0) { |
| val >>= 8; |
| current_ += 8; |
| } |
| return val; |
| } |
| uint32_t SkipZeroBits(uint32_t val) { |
| while ((val & 0x1) == 0) { |
| val >>= 1; |
| current_++; |
| } |
| return val; |
| } |
| |
| BitVector* target_; |
| int current_index_; |
| uint32_t current_value_; |
| int current_; |
| |
| friend class BitVector; |
| }; |
| |
| explicit BitVector(int length) |
| : length_(length), |
| data_length_(SizeFor(length)), |
| data_(ZONE->NewArray<uint32_t>(data_length_)) { |
| ASSERT(length > 0); |
| Clear(); |
| } |
| |
| BitVector(const BitVector& other) |
| : length_(other.length()), |
| data_length_(SizeFor(length_)), |
| data_(ZONE->NewArray<uint32_t>(data_length_)) { |
| CopyFrom(other); |
| } |
| |
| static int SizeFor(int length) { |
| return 1 + ((length - 1) / 32); |
| } |
| |
| BitVector& operator=(const BitVector& rhs) { |
| if (this != &rhs) CopyFrom(rhs); |
| return *this; |
| } |
| |
| void CopyFrom(const BitVector& other) { |
| ASSERT(other.length() <= length()); |
| for (int i = 0; i < other.data_length_; i++) { |
| data_[i] = other.data_[i]; |
| } |
| for (int i = other.data_length_; i < data_length_; i++) { |
| data_[i] = 0; |
| } |
| } |
| |
| bool Contains(int i) const { |
| ASSERT(i >= 0 && i < length()); |
| uint32_t block = data_[i / 32]; |
| return (block & (1U << (i % 32))) != 0; |
| } |
| |
| void Add(int i) { |
| ASSERT(i >= 0 && i < length()); |
| data_[i / 32] |= (1U << (i % 32)); |
| } |
| |
| void Remove(int i) { |
| ASSERT(i >= 0 && i < length()); |
| data_[i / 32] &= ~(1U << (i % 32)); |
| } |
| |
| void Union(const BitVector& other) { |
| ASSERT(other.length() == length()); |
| for (int i = 0; i < data_length_; i++) { |
| data_[i] |= other.data_[i]; |
| } |
| } |
| |
| bool UnionIsChanged(const BitVector& other) { |
| ASSERT(other.length() == length()); |
| bool changed = false; |
| for (int i = 0; i < data_length_; i++) { |
| uint32_t old_data = data_[i]; |
| data_[i] |= other.data_[i]; |
| if (data_[i] != old_data) changed = true; |
| } |
| return changed; |
| } |
| |
| void Intersect(const BitVector& other) { |
| ASSERT(other.length() == length()); |
| for (int i = 0; i < data_length_; i++) { |
| data_[i] &= other.data_[i]; |
| } |
| } |
| |
| void Subtract(const BitVector& other) { |
| ASSERT(other.length() == length()); |
| for (int i = 0; i < data_length_; i++) { |
| data_[i] &= ~other.data_[i]; |
| } |
| } |
| |
| void Clear() { |
| for (int i = 0; i < data_length_; i++) { |
| data_[i] = 0; |
| } |
| } |
| |
| bool IsEmpty() const { |
| for (int i = 0; i < data_length_; i++) { |
| if (data_[i] != 0) return false; |
| } |
| return true; |
| } |
| |
| bool Equals(const BitVector& other) { |
| for (int i = 0; i < data_length_; i++) { |
| if (data_[i] != other.data_[i]) return false; |
| } |
| return true; |
| } |
| |
| int length() const { return length_; } |
| |
| #ifdef DEBUG |
| void Print(); |
| #endif |
| |
| private: |
| int length_; |
| int data_length_; |
| uint32_t* data_; |
| }; |
| |
| |
| // An implementation of a sparse set whose elements are drawn from integers |
| // in the range [0..universe_size[. It supports constant-time Contains, |
| // destructive Add, and destructuve Remove operations and linear-time (in |
| // the number of elements) destructive Union. |
| class SparseSet: public ZoneObject { |
| public: |
| // Iterator for sparse set elements. Elements should not be added or |
| // removed during iteration. |
| class Iterator BASE_EMBEDDED { |
| public: |
| explicit Iterator(SparseSet* target) : target_(target), current_(0) { |
| ASSERT(++target->iterator_count_ > 0); |
| } |
| ~Iterator() { |
| ASSERT(target_->iterator_count_-- > 0); |
| } |
| bool Done() const { return current_ >= target_->dense_.length(); } |
| void Advance() { |
| ASSERT(!Done()); |
| ++current_; |
| } |
| int Current() { |
| ASSERT(!Done()); |
| return target_->dense_[current_]; |
| } |
| |
| private: |
| SparseSet* target_; |
| int current_; |
| |
| friend class SparseSet; |
| }; |
| |
| explicit SparseSet(int universe_size) |
| : dense_(4), |
| sparse_(ZONE->NewArray<int>(universe_size)) { |
| #ifdef DEBUG |
| size_ = universe_size; |
| iterator_count_ = 0; |
| #endif |
| } |
| |
| bool Contains(int n) const { |
| ASSERT(0 <= n && n < size_); |
| int dense_index = sparse_[n]; |
| return (0 <= dense_index) && |
| (dense_index < dense_.length()) && |
| (dense_[dense_index] == n); |
| } |
| |
| void Add(int n) { |
| ASSERT(0 <= n && n < size_); |
| ASSERT(iterator_count_ == 0); |
| if (!Contains(n)) { |
| sparse_[n] = dense_.length(); |
| dense_.Add(n); |
| } |
| } |
| |
| void Remove(int n) { |
| ASSERT(0 <= n && n < size_); |
| ASSERT(iterator_count_ == 0); |
| if (Contains(n)) { |
| int dense_index = sparse_[n]; |
| int last = dense_.RemoveLast(); |
| if (dense_index < dense_.length()) { |
| dense_[dense_index] = last; |
| sparse_[last] = dense_index; |
| } |
| } |
| } |
| |
| void Union(const SparseSet& other) { |
| for (int i = 0; i < other.dense_.length(); ++i) { |
| Add(other.dense_[i]); |
| } |
| } |
| |
| private: |
| // The set is implemented as a pair of a growable dense list and an |
| // uninitialized sparse array. |
| ZoneList<int> dense_; |
| int* sparse_; |
| #ifdef DEBUG |
| int size_; |
| int iterator_count_; |
| #endif |
| }; |
| |
| |
| // Simple fixed-capacity list-based worklist (managed as a queue) of |
| // pointers to T. |
| template<typename T> |
| class WorkList BASE_EMBEDDED { |
| public: |
| // The worklist cannot grow bigger than size. We keep one item empty to |
| // distinguish between empty and full. |
| explicit WorkList(int size) |
| : capacity_(size + 1), head_(0), tail_(0), queue_(capacity_) { |
| for (int i = 0; i < capacity_; i++) queue_.Add(NULL); |
| } |
| |
| bool is_empty() { return head_ == tail_; } |
| |
| bool is_full() { |
| // The worklist is full if head is at 0 and tail is at capacity - 1: |
| // head == 0 && tail == capacity-1 ==> tail - head == capacity - 1 |
| // or if tail is immediately to the left of head: |
| // tail+1 == head ==> tail - head == -1 |
| int diff = tail_ - head_; |
| return (diff == -1 || diff == capacity_ - 1); |
| } |
| |
| void Insert(T* item) { |
| ASSERT(!is_full()); |
| queue_[tail_++] = item; |
| if (tail_ == capacity_) tail_ = 0; |
| } |
| |
| T* Remove() { |
| ASSERT(!is_empty()); |
| T* item = queue_[head_++]; |
| if (head_ == capacity_) head_ = 0; |
| return item; |
| } |
| |
| private: |
| int capacity_; // Including one empty slot. |
| int head_; // Where the first item is. |
| int tail_; // Where the next inserted item will go. |
| List<T*> queue_; |
| }; |
| |
| } } // namespace v8::internal |
| |
| |
| #endif // V8_DATAFLOW_H_ |