| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_JSREGEXP_H_ |
| #define V8_JSREGEXP_H_ |
| |
| #include "macro-assembler.h" |
| #include "zone-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| class RegExpMacroAssembler; |
| |
| |
| class RegExpImpl { |
| public: |
| // Whether V8 is compiled with native regexp support or not. |
| static bool UsesNativeRegExp() { |
| #ifdef V8_INTERPRETED_REGEXP |
| return false; |
| #else |
| return true; |
| #endif |
| } |
| |
| // Creates a regular expression literal in the old space. |
| // This function calls the garbage collector if necessary. |
| static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor, |
| Handle<String> pattern, |
| Handle<String> flags, |
| bool* has_pending_exception); |
| |
| // Returns a string representation of a regular expression. |
| // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. |
| // This function calls the garbage collector if necessary. |
| static Handle<String> ToString(Handle<Object> value); |
| |
| // Parses the RegExp pattern and prepares the JSRegExp object with |
| // generic data and choice of implementation - as well as what |
| // the implementation wants to store in the data field. |
| // Returns false if compilation fails. |
| static Handle<Object> Compile(Handle<JSRegExp> re, |
| Handle<String> pattern, |
| Handle<String> flags); |
| |
| // See ECMA-262 section 15.10.6.2. |
| // This function calls the garbage collector if necessary. |
| static Handle<Object> Exec(Handle<JSRegExp> regexp, |
| Handle<String> subject, |
| int index, |
| Handle<JSArray> lastMatchInfo); |
| |
| // Prepares a JSRegExp object with Irregexp-specific data. |
| static void IrregexpInitialize(Handle<JSRegExp> re, |
| Handle<String> pattern, |
| JSRegExp::Flags flags, |
| int capture_register_count); |
| |
| |
| static void AtomCompile(Handle<JSRegExp> re, |
| Handle<String> pattern, |
| JSRegExp::Flags flags, |
| Handle<String> match_pattern); |
| |
| static Handle<Object> AtomExec(Handle<JSRegExp> regexp, |
| Handle<String> subject, |
| int index, |
| Handle<JSArray> lastMatchInfo); |
| |
| enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; |
| |
| // Prepare a RegExp for being executed one or more times (using |
| // IrregexpExecOnce) on the subject. |
| // This ensures that the regexp is compiled for the subject, and that |
| // the subject is flat. |
| // Returns the number of integer spaces required by IrregexpExecOnce |
| // as its "registers" argument. If the regexp cannot be compiled, |
| // an exception is set as pending, and this function returns negative. |
| static int IrregexpPrepare(Handle<JSRegExp> regexp, |
| Handle<String> subject); |
| |
| // Execute a regular expression once on the subject, starting from |
| // character "index". |
| // If successful, returns RE_SUCCESS and set the capture positions |
| // in the first registers. |
| // If matching fails, returns RE_FAILURE. |
| // If execution fails, sets a pending exception and returns RE_EXCEPTION. |
| static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp, |
| Handle<String> subject, |
| int index, |
| Vector<int> registers); |
| |
| // Execute an Irregexp bytecode pattern. |
| // On a successful match, the result is a JSArray containing |
| // captured positions. On a failure, the result is the null value. |
| // Returns an empty handle in case of an exception. |
| static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp, |
| Handle<String> subject, |
| int index, |
| Handle<JSArray> lastMatchInfo); |
| |
| // Array index in the lastMatchInfo array. |
| static const int kLastCaptureCount = 0; |
| static const int kLastSubject = 1; |
| static const int kLastInput = 2; |
| static const int kFirstCapture = 3; |
| static const int kLastMatchOverhead = 3; |
| |
| // Direct offset into the lastMatchInfo array. |
| static const int kLastCaptureCountOffset = |
| FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize; |
| static const int kLastSubjectOffset = |
| FixedArray::kHeaderSize + kLastSubject * kPointerSize; |
| static const int kLastInputOffset = |
| FixedArray::kHeaderSize + kLastInput * kPointerSize; |
| static const int kFirstCaptureOffset = |
| FixedArray::kHeaderSize + kFirstCapture * kPointerSize; |
| |
| // Used to access the lastMatchInfo array. |
| static int GetCapture(FixedArray* array, int index) { |
| return Smi::cast(array->get(index + kFirstCapture))->value(); |
| } |
| |
| static void SetLastCaptureCount(FixedArray* array, int to) { |
| array->set(kLastCaptureCount, Smi::FromInt(to)); |
| } |
| |
| static void SetLastSubject(FixedArray* array, String* to) { |
| array->set(kLastSubject, to); |
| } |
| |
| static void SetLastInput(FixedArray* array, String* to) { |
| array->set(kLastInput, to); |
| } |
| |
| static void SetCapture(FixedArray* array, int index, int to) { |
| array->set(index + kFirstCapture, Smi::FromInt(to)); |
| } |
| |
| static int GetLastCaptureCount(FixedArray* array) { |
| return Smi::cast(array->get(kLastCaptureCount))->value(); |
| } |
| |
| // For acting on the JSRegExp data FixedArray. |
| static int IrregexpMaxRegisterCount(FixedArray* re); |
| static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); |
| static int IrregexpNumberOfCaptures(FixedArray* re); |
| static int IrregexpNumberOfRegisters(FixedArray* re); |
| static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii); |
| static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii); |
| |
| private: |
| static String* last_ascii_string_; |
| static String* two_byte_cached_string_; |
| |
| static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii); |
| static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii); |
| |
| |
| // Set the subject cache. The previous string buffer is not deleted, so the |
| // caller should ensure that it doesn't leak. |
| static void SetSubjectCache(String* subject, |
| char* utf8_subject, |
| int uft8_length, |
| int character_position, |
| int utf8_position); |
| |
| // A one element cache of the last utf8_subject string and its length. The |
| // subject JS String object is cached in the heap. We also cache a |
| // translation between position and utf8 position. |
| static char* utf8_subject_cache_; |
| static int utf8_length_cache_; |
| static int utf8_position_; |
| static int character_position_; |
| }; |
| |
| |
| // Represents the location of one element relative to the intersection of |
| // two sets. Corresponds to the four areas of a Venn diagram. |
| enum ElementInSetsRelation { |
| kInsideNone = 0, |
| kInsideFirst = 1, |
| kInsideSecond = 2, |
| kInsideBoth = 3 |
| }; |
| |
| |
| // Represents the relation of two sets. |
| // Sets can be either disjoint, partially or fully overlapping, or equal. |
| class SetRelation BASE_EMBEDDED { |
| public: |
| // Relation is represented by a bit saying whether there are elements in |
| // one set that is not in the other, and a bit saying that there are elements |
| // that are in both sets. |
| |
| // Location of an element. Corresponds to the internal areas of |
| // a Venn diagram. |
| enum { |
| kInFirst = 1 << kInsideFirst, |
| kInSecond = 1 << kInsideSecond, |
| kInBoth = 1 << kInsideBoth |
| }; |
| SetRelation() : bits_(0) {} |
| ~SetRelation() {} |
| // Add the existence of objects in a particular |
| void SetElementsInFirstSet() { bits_ |= kInFirst; } |
| void SetElementsInSecondSet() { bits_ |= kInSecond; } |
| void SetElementsInBothSets() { bits_ |= kInBoth; } |
| // Check the currently known relation of the sets (common functions only, |
| // for other combinations, use value() to get the bits and check them |
| // manually). |
| // Sets are completely disjoint. |
| bool Disjoint() { return (bits_ & kInBoth) == 0; } |
| // Sets are equal. |
| bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; } |
| // First set contains second. |
| bool Contains() { return (bits_ & kInSecond) == 0; } |
| // Second set contains first. |
| bool ContainedIn() { return (bits_ & kInFirst) == 0; } |
| bool NonTrivialIntersection() { |
| return (bits_ == (kInFirst | kInSecond | kInBoth)); |
| } |
| int value() { return bits_; } |
| private: |
| int bits_; |
| }; |
| |
| |
| class CharacterRange { |
| public: |
| CharacterRange() : from_(0), to_(0) { } |
| // For compatibility with the CHECK_OK macro |
| CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT |
| CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { } |
| static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges); |
| static Vector<const uc16> GetWordBounds(); |
| static inline CharacterRange Singleton(uc16 value) { |
| return CharacterRange(value, value); |
| } |
| static inline CharacterRange Range(uc16 from, uc16 to) { |
| ASSERT(from <= to); |
| return CharacterRange(from, to); |
| } |
| static inline CharacterRange Everything() { |
| return CharacterRange(0, 0xFFFF); |
| } |
| bool Contains(uc16 i) { return from_ <= i && i <= to_; } |
| uc16 from() const { return from_; } |
| void set_from(uc16 value) { from_ = value; } |
| uc16 to() const { return to_; } |
| void set_to(uc16 value) { to_ = value; } |
| bool is_valid() { return from_ <= to_; } |
| bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; } |
| bool IsSingleton() { return (from_ == to_); } |
| void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii); |
| static void Split(ZoneList<CharacterRange>* base, |
| Vector<const uc16> overlay, |
| ZoneList<CharacterRange>** included, |
| ZoneList<CharacterRange>** excluded); |
| // Whether a range list is in canonical form: Ranges ordered by from value, |
| // and ranges non-overlapping and non-adjacent. |
| static bool IsCanonical(ZoneList<CharacterRange>* ranges); |
| // Convert range list to canonical form. The characters covered by the ranges |
| // will still be the same, but no character is in more than one range, and |
| // adjacent ranges are merged. The resulting list may be shorter than the |
| // original, but cannot be longer. |
| static void Canonicalize(ZoneList<CharacterRange>* ranges); |
| // Check how the set of characters defined by a CharacterRange list relates |
| // to the set of word characters. List must be in canonical form. |
| static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges); |
| // Takes two character range lists (representing character sets) in canonical |
| // form and merges them. |
| // The characters that are only covered by the first set are added to |
| // first_set_only_out. the characters that are only in the second set are |
| // added to second_set_only_out, and the characters that are in both are |
| // added to both_sets_out. |
| // The pointers to first_set_only_out, second_set_only_out and both_sets_out |
| // should be to empty lists, but they need not be distinct, and may be NULL. |
| // If NULL, the characters are dropped, and if two arguments are the same |
| // pointer, the result is the union of the two sets that would be created |
| // if the pointers had been distinct. |
| // This way, the Merge function can compute all the usual set operations: |
| // union (all three out-sets are equal), intersection (only both_sets_out is |
| // non-NULL), and set difference (only first_set is non-NULL). |
| static void Merge(ZoneList<CharacterRange>* first_set, |
| ZoneList<CharacterRange>* second_set, |
| ZoneList<CharacterRange>* first_set_only_out, |
| ZoneList<CharacterRange>* second_set_only_out, |
| ZoneList<CharacterRange>* both_sets_out); |
| // Negate the contents of a character range in canonical form. |
| static void Negate(ZoneList<CharacterRange>* src, |
| ZoneList<CharacterRange>* dst); |
| static const int kStartMarker = (1 << 24); |
| static const int kPayloadMask = (1 << 24) - 1; |
| |
| private: |
| uc16 from_; |
| uc16 to_; |
| }; |
| |
| |
| // A set of unsigned integers that behaves especially well on small |
| // integers (< 32). May do zone-allocation. |
| class OutSet: public ZoneObject { |
| public: |
| OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } |
| OutSet* Extend(unsigned value); |
| bool Get(unsigned value); |
| static const unsigned kFirstLimit = 32; |
| |
| private: |
| // Destructively set a value in this set. In most cases you want |
| // to use Extend instead to ensure that only one instance exists |
| // that contains the same values. |
| void Set(unsigned value); |
| |
| // The successors are a list of sets that contain the same values |
| // as this set and the one more value that is not present in this |
| // set. |
| ZoneList<OutSet*>* successors() { return successors_; } |
| |
| OutSet(uint32_t first, ZoneList<unsigned>* remaining) |
| : first_(first), remaining_(remaining), successors_(NULL) { } |
| uint32_t first_; |
| ZoneList<unsigned>* remaining_; |
| ZoneList<OutSet*>* successors_; |
| friend class Trace; |
| }; |
| |
| |
| // A mapping from integers, specified as ranges, to a set of integers. |
| // Used for mapping character ranges to choices. |
| class DispatchTable : public ZoneObject { |
| public: |
| class Entry { |
| public: |
| Entry() : from_(0), to_(0), out_set_(NULL) { } |
| Entry(uc16 from, uc16 to, OutSet* out_set) |
| : from_(from), to_(to), out_set_(out_set) { } |
| uc16 from() { return from_; } |
| uc16 to() { return to_; } |
| void set_to(uc16 value) { to_ = value; } |
| void AddValue(int value) { out_set_ = out_set_->Extend(value); } |
| OutSet* out_set() { return out_set_; } |
| private: |
| uc16 from_; |
| uc16 to_; |
| OutSet* out_set_; |
| }; |
| |
| class Config { |
| public: |
| typedef uc16 Key; |
| typedef Entry Value; |
| static const uc16 kNoKey; |
| static const Entry kNoValue; |
| static inline int Compare(uc16 a, uc16 b) { |
| if (a == b) |
| return 0; |
| else if (a < b) |
| return -1; |
| else |
| return 1; |
| } |
| }; |
| |
| void AddRange(CharacterRange range, int value); |
| OutSet* Get(uc16 value); |
| void Dump(); |
| |
| template <typename Callback> |
| void ForEach(Callback* callback) { return tree()->ForEach(callback); } |
| private: |
| // There can't be a static empty set since it allocates its |
| // successors in a zone and caches them. |
| OutSet* empty() { return &empty_; } |
| OutSet empty_; |
| ZoneSplayTree<Config>* tree() { return &tree_; } |
| ZoneSplayTree<Config> tree_; |
| }; |
| |
| |
| #define FOR_EACH_NODE_TYPE(VISIT) \ |
| VISIT(End) \ |
| VISIT(Action) \ |
| VISIT(Choice) \ |
| VISIT(BackReference) \ |
| VISIT(Assertion) \ |
| VISIT(Text) |
| |
| |
| #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ |
| VISIT(Disjunction) \ |
| VISIT(Alternative) \ |
| VISIT(Assertion) \ |
| VISIT(CharacterClass) \ |
| VISIT(Atom) \ |
| VISIT(Quantifier) \ |
| VISIT(Capture) \ |
| VISIT(Lookahead) \ |
| VISIT(BackReference) \ |
| VISIT(Empty) \ |
| VISIT(Text) |
| |
| |
| #define FORWARD_DECLARE(Name) class RegExp##Name; |
| FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) |
| #undef FORWARD_DECLARE |
| |
| |
| class TextElement { |
| public: |
| enum Type {UNINITIALIZED, ATOM, CHAR_CLASS}; |
| TextElement() : type(UNINITIALIZED) { } |
| explicit TextElement(Type t) : type(t), cp_offset(-1) { } |
| static TextElement Atom(RegExpAtom* atom); |
| static TextElement CharClass(RegExpCharacterClass* char_class); |
| int length(); |
| Type type; |
| union { |
| RegExpAtom* u_atom; |
| RegExpCharacterClass* u_char_class; |
| } data; |
| int cp_offset; |
| }; |
| |
| |
| class Trace; |
| |
| |
| struct NodeInfo { |
| NodeInfo() |
| : being_analyzed(false), |
| been_analyzed(false), |
| follows_word_interest(false), |
| follows_newline_interest(false), |
| follows_start_interest(false), |
| at_end(false), |
| visited(false) { } |
| |
| // Returns true if the interests and assumptions of this node |
| // matches the given one. |
| bool Matches(NodeInfo* that) { |
| return (at_end == that->at_end) && |
| (follows_word_interest == that->follows_word_interest) && |
| (follows_newline_interest == that->follows_newline_interest) && |
| (follows_start_interest == that->follows_start_interest); |
| } |
| |
| // Updates the interests of this node given the interests of the |
| // node preceding it. |
| void AddFromPreceding(NodeInfo* that) { |
| at_end |= that->at_end; |
| follows_word_interest |= that->follows_word_interest; |
| follows_newline_interest |= that->follows_newline_interest; |
| follows_start_interest |= that->follows_start_interest; |
| } |
| |
| bool HasLookbehind() { |
| return follows_word_interest || |
| follows_newline_interest || |
| follows_start_interest; |
| } |
| |
| // Sets the interests of this node to include the interests of the |
| // following node. |
| void AddFromFollowing(NodeInfo* that) { |
| follows_word_interest |= that->follows_word_interest; |
| follows_newline_interest |= that->follows_newline_interest; |
| follows_start_interest |= that->follows_start_interest; |
| } |
| |
| void ResetCompilationState() { |
| being_analyzed = false; |
| been_analyzed = false; |
| } |
| |
| bool being_analyzed: 1; |
| bool been_analyzed: 1; |
| |
| // These bits are set of this node has to know what the preceding |
| // character was. |
| bool follows_word_interest: 1; |
| bool follows_newline_interest: 1; |
| bool follows_start_interest: 1; |
| |
| bool at_end: 1; |
| bool visited: 1; |
| }; |
| |
| |
| class SiblingList { |
| public: |
| SiblingList() : list_(NULL) { } |
| int length() { |
| return list_ == NULL ? 0 : list_->length(); |
| } |
| void Ensure(RegExpNode* parent) { |
| if (list_ == NULL) { |
| list_ = new ZoneList<RegExpNode*>(2); |
| list_->Add(parent); |
| } |
| } |
| void Add(RegExpNode* node) { list_->Add(node); } |
| RegExpNode* Get(int index) { return list_->at(index); } |
| private: |
| ZoneList<RegExpNode*>* list_; |
| }; |
| |
| |
| // Details of a quick mask-compare check that can look ahead in the |
| // input stream. |
| class QuickCheckDetails { |
| public: |
| QuickCheckDetails() |
| : characters_(0), |
| mask_(0), |
| value_(0), |
| cannot_match_(false) { } |
| explicit QuickCheckDetails(int characters) |
| : characters_(characters), |
| mask_(0), |
| value_(0), |
| cannot_match_(false) { } |
| bool Rationalize(bool ascii); |
| // Merge in the information from another branch of an alternation. |
| void Merge(QuickCheckDetails* other, int from_index); |
| // Advance the current position by some amount. |
| void Advance(int by, bool ascii); |
| void Clear(); |
| bool cannot_match() { return cannot_match_; } |
| void set_cannot_match() { cannot_match_ = true; } |
| struct Position { |
| Position() : mask(0), value(0), determines_perfectly(false) { } |
| uc16 mask; |
| uc16 value; |
| bool determines_perfectly; |
| }; |
| int characters() { return characters_; } |
| void set_characters(int characters) { characters_ = characters; } |
| Position* positions(int index) { |
| ASSERT(index >= 0); |
| ASSERT(index < characters_); |
| return positions_ + index; |
| } |
| uint32_t mask() { return mask_; } |
| uint32_t value() { return value_; } |
| |
| private: |
| // How many characters do we have quick check information from. This is |
| // the same for all branches of a choice node. |
| int characters_; |
| Position positions_[4]; |
| // These values are the condensate of the above array after Rationalize(). |
| uint32_t mask_; |
| uint32_t value_; |
| // If set to true, there is no way this quick check can match at all. |
| // E.g., if it requires to be at the start of the input, and isn't. |
| bool cannot_match_; |
| }; |
| |
| |
| class RegExpNode: public ZoneObject { |
| public: |
| RegExpNode() : first_character_set_(NULL), trace_count_(0) { } |
| virtual ~RegExpNode(); |
| virtual void Accept(NodeVisitor* visitor) = 0; |
| // Generates a goto to this node or actually generates the code at this point. |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; |
| // How many characters must this node consume at a minimum in order to |
| // succeed. If we have found at least 'still_to_find' characters that |
| // must be consumed there is no need to ask any following nodes whether |
| // they are sure to eat any more characters. The not_at_start argument is |
| // used to indicate that we know we are not at the start of the input. In |
| // this case anchored branches will always fail and can be ignored when |
| // determining how many characters are consumed on success. |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start) = 0; |
| // Emits some quick code that checks whether the preloaded characters match. |
| // Falls through on certain failure, jumps to the label on possible success. |
| // If the node cannot make a quick check it does nothing and returns false. |
| bool EmitQuickCheck(RegExpCompiler* compiler, |
| Trace* trace, |
| bool preload_has_checked_bounds, |
| Label* on_possible_success, |
| QuickCheckDetails* details_return, |
| bool fall_through_on_failure); |
| // For a given number of characters this returns a mask and a value. The |
| // next n characters are anded with the mask and compared with the value. |
| // A comparison failure indicates the node cannot match the next n characters. |
| // A comparison success indicates the node may match. |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start) = 0; |
| static const int kNodeIsTooComplexForGreedyLoops = -1; |
| virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } |
| Label* label() { return &label_; } |
| // If non-generic code is generated for a node (ie the node is not at the |
| // start of the trace) then it cannot be reused. This variable sets a limit |
| // on how often we allow that to happen before we insist on starting a new |
| // trace and generating generic code for a node that can be reused by flushing |
| // the deferred actions in the current trace and generating a goto. |
| static const int kMaxCopiesCodeGenerated = 10; |
| |
| NodeInfo* info() { return &info_; } |
| |
| void AddSibling(RegExpNode* node) { siblings_.Add(node); } |
| |
| // Static version of EnsureSibling that expresses the fact that the |
| // result has the same type as the input. |
| template <class C> |
| static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) { |
| return static_cast<C*>(node->EnsureSibling(info, cloned)); |
| } |
| |
| SiblingList* siblings() { return &siblings_; } |
| void set_siblings(SiblingList* other) { siblings_ = *other; } |
| |
| // Return the set of possible next characters recognized by the regexp |
| // (or a safe subset, potentially the set of all characters). |
| ZoneList<CharacterRange>* FirstCharacterSet(); |
| |
| // Compute (if possible within the budget of traversed nodes) the |
| // possible first characters of the input matched by this node and |
| // its continuation. Returns the remaining budget after the computation. |
| // If the budget is spent, the result is negative, and the cached |
| // first_character_set_ value isn't set. |
| virtual int ComputeFirstCharacterSet(int budget); |
| |
| // Get and set the cached first character set value. |
| ZoneList<CharacterRange>* first_character_set() { |
| return first_character_set_; |
| } |
| void set_first_character_set(ZoneList<CharacterRange>* character_set) { |
| first_character_set_ = character_set; |
| } |
| |
| protected: |
| enum LimitResult { DONE, CONTINUE }; |
| static const int kComputeFirstCharacterSetFail = -1; |
| |
| LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); |
| |
| // Returns a sibling of this node whose interests and assumptions |
| // match the ones in the given node info. If no sibling exists NULL |
| // is returned. |
| RegExpNode* TryGetSibling(NodeInfo* info); |
| |
| // Returns a sibling of this node whose interests match the ones in |
| // the given node info. The info must not contain any assertions. |
| // If no node exists a new one will be created by cloning the current |
| // node. The result will always be an instance of the same concrete |
| // class as this node. |
| RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned); |
| |
| // Returns a clone of this node initialized using the copy constructor |
| // of its concrete class. Note that the node may have to be pre- |
| // processed before it is on a usable state. |
| virtual RegExpNode* Clone() = 0; |
| |
| private: |
| static const int kFirstCharBudget = 10; |
| Label label_; |
| NodeInfo info_; |
| SiblingList siblings_; |
| ZoneList<CharacterRange>* first_character_set_; |
| // This variable keeps track of how many times code has been generated for |
| // this node (in different traces). We don't keep track of where the |
| // generated code is located unless the code is generated at the start of |
| // a trace, in which case it is generic and can be reused by flushing the |
| // deferred operations in the current trace and generating a goto. |
| int trace_count_; |
| }; |
| |
| |
| // A simple closed interval. |
| class Interval { |
| public: |
| Interval() : from_(kNone), to_(kNone) { } |
| Interval(int from, int to) : from_(from), to_(to) { } |
| Interval Union(Interval that) { |
| if (that.from_ == kNone) |
| return *this; |
| else if (from_ == kNone) |
| return that; |
| else |
| return Interval(Min(from_, that.from_), Max(to_, that.to_)); |
| } |
| bool Contains(int value) { |
| return (from_ <= value) && (value <= to_); |
| } |
| bool is_empty() { return from_ == kNone; } |
| int from() { return from_; } |
| int to() { return to_; } |
| static Interval Empty() { return Interval(); } |
| static const int kNone = -1; |
| private: |
| int from_; |
| int to_; |
| }; |
| |
| |
| class SeqRegExpNode: public RegExpNode { |
| public: |
| explicit SeqRegExpNode(RegExpNode* on_success) |
| : on_success_(on_success) { } |
| RegExpNode* on_success() { return on_success_; } |
| void set_on_success(RegExpNode* node) { on_success_ = node; } |
| private: |
| RegExpNode* on_success_; |
| }; |
| |
| |
| class ActionNode: public SeqRegExpNode { |
| public: |
| enum Type { |
| SET_REGISTER, |
| INCREMENT_REGISTER, |
| STORE_POSITION, |
| BEGIN_SUBMATCH, |
| POSITIVE_SUBMATCH_SUCCESS, |
| EMPTY_MATCH_CHECK, |
| CLEAR_CAPTURES |
| }; |
| static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); |
| static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); |
| static ActionNode* StorePosition(int reg, |
| bool is_capture, |
| RegExpNode* on_success); |
| static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); |
| static ActionNode* BeginSubmatch(int stack_pointer_reg, |
| int position_reg, |
| RegExpNode* on_success); |
| static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, |
| int restore_reg, |
| int clear_capture_count, |
| int clear_capture_from, |
| RegExpNode* on_success); |
| static ActionNode* EmptyMatchCheck(int start_register, |
| int repetition_register, |
| int repetition_limit, |
| RegExpNode* on_success); |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int filled_in, |
| bool not_at_start) { |
| return on_success()->GetQuickCheckDetails( |
| details, compiler, filled_in, not_at_start); |
| } |
| Type type() { return type_; } |
| // TODO(erikcorry): We should allow some action nodes in greedy loops. |
| virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } |
| virtual ActionNode* Clone() { return new ActionNode(*this); } |
| virtual int ComputeFirstCharacterSet(int budget); |
| private: |
| union { |
| struct { |
| int reg; |
| int value; |
| } u_store_register; |
| struct { |
| int reg; |
| } u_increment_register; |
| struct { |
| int reg; |
| bool is_capture; |
| } u_position_register; |
| struct { |
| int stack_pointer_register; |
| int current_position_register; |
| int clear_register_count; |
| int clear_register_from; |
| } u_submatch; |
| struct { |
| int start_register; |
| int repetition_register; |
| int repetition_limit; |
| } u_empty_match_check; |
| struct { |
| int range_from; |
| int range_to; |
| } u_clear_captures; |
| } data_; |
| ActionNode(Type type, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), |
| type_(type) { } |
| Type type_; |
| friend class DotPrinter; |
| }; |
| |
| |
| class TextNode: public SeqRegExpNode { |
| public: |
| TextNode(ZoneList<TextElement>* elms, |
| RegExpNode* on_success) |
| : SeqRegExpNode(on_success), |
| elms_(elms) { } |
| TextNode(RegExpCharacterClass* that, |
| RegExpNode* on_success) |
| : SeqRegExpNode(on_success), |
| elms_(new ZoneList<TextElement>(1)) { |
| elms_->Add(TextElement::CharClass(that)); |
| } |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start); |
| ZoneList<TextElement>* elements() { return elms_; } |
| void MakeCaseIndependent(bool is_ascii); |
| virtual int GreedyLoopTextLength(); |
| virtual TextNode* Clone() { |
| TextNode* result = new TextNode(*this); |
| result->CalculateOffsets(); |
| return result; |
| } |
| void CalculateOffsets(); |
| virtual int ComputeFirstCharacterSet(int budget); |
| private: |
| enum TextEmitPassType { |
| NON_ASCII_MATCH, // Check for characters that can't match. |
| SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. |
| NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. |
| CASE_CHARACTER_MATCH, // Case-independent single character check. |
| CHARACTER_CLASS_MATCH // Character class. |
| }; |
| static bool SkipPass(int pass, bool ignore_case); |
| static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; |
| static const int kLastPass = CHARACTER_CLASS_MATCH; |
| void TextEmitPass(RegExpCompiler* compiler, |
| TextEmitPassType pass, |
| bool preloaded, |
| Trace* trace, |
| bool first_element_checked, |
| int* checked_up_to); |
| int Length(); |
| ZoneList<TextElement>* elms_; |
| }; |
| |
| |
| class AssertionNode: public SeqRegExpNode { |
| public: |
| enum AssertionNodeType { |
| AT_END, |
| AT_START, |
| AT_BOUNDARY, |
| AT_NON_BOUNDARY, |
| AFTER_NEWLINE, |
| // Types not directly expressible in regexp syntax. |
| // Used for modifying a boundary node if its following character is |
| // known to be word and/or non-word. |
| AFTER_NONWORD_CHARACTER, |
| AFTER_WORD_CHARACTER |
| }; |
| static AssertionNode* AtEnd(RegExpNode* on_success) { |
| return new AssertionNode(AT_END, on_success); |
| } |
| static AssertionNode* AtStart(RegExpNode* on_success) { |
| return new AssertionNode(AT_START, on_success); |
| } |
| static AssertionNode* AtBoundary(RegExpNode* on_success) { |
| return new AssertionNode(AT_BOUNDARY, on_success); |
| } |
| static AssertionNode* AtNonBoundary(RegExpNode* on_success) { |
| return new AssertionNode(AT_NON_BOUNDARY, on_success); |
| } |
| static AssertionNode* AfterNewline(RegExpNode* on_success) { |
| return new AssertionNode(AFTER_NEWLINE, on_success); |
| } |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int filled_in, |
| bool not_at_start); |
| virtual int ComputeFirstCharacterSet(int budget); |
| virtual AssertionNode* Clone() { return new AssertionNode(*this); } |
| AssertionNodeType type() { return type_; } |
| void set_type(AssertionNodeType type) { type_ = type; } |
| private: |
| AssertionNode(AssertionNodeType t, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), type_(t) { } |
| AssertionNodeType type_; |
| }; |
| |
| |
| class BackReferenceNode: public SeqRegExpNode { |
| public: |
| BackReferenceNode(int start_reg, |
| int end_reg, |
| RegExpNode* on_success) |
| : SeqRegExpNode(on_success), |
| start_reg_(start_reg), |
| end_reg_(end_reg) { } |
| virtual void Accept(NodeVisitor* visitor); |
| int start_register() { return start_reg_; } |
| int end_register() { return end_reg_; } |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start) { |
| return; |
| } |
| virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); } |
| virtual int ComputeFirstCharacterSet(int budget); |
| private: |
| int start_reg_; |
| int end_reg_; |
| }; |
| |
| |
| class EndNode: public RegExpNode { |
| public: |
| enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; |
| explicit EndNode(Action action) : action_(action) { } |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start) { return 0; } |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start) { |
| // Returning 0 from EatsAtLeast should ensure we never get here. |
| UNREACHABLE(); |
| } |
| virtual EndNode* Clone() { return new EndNode(*this); } |
| private: |
| Action action_; |
| }; |
| |
| |
| class NegativeSubmatchSuccess: public EndNode { |
| public: |
| NegativeSubmatchSuccess(int stack_pointer_reg, |
| int position_reg, |
| int clear_capture_count, |
| int clear_capture_start) |
| : EndNode(NEGATIVE_SUBMATCH_SUCCESS), |
| stack_pointer_register_(stack_pointer_reg), |
| current_position_register_(position_reg), |
| clear_capture_count_(clear_capture_count), |
| clear_capture_start_(clear_capture_start) { } |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| |
| private: |
| int stack_pointer_register_; |
| int current_position_register_; |
| int clear_capture_count_; |
| int clear_capture_start_; |
| }; |
| |
| |
| class Guard: public ZoneObject { |
| public: |
| enum Relation { LT, GEQ }; |
| Guard(int reg, Relation op, int value) |
| : reg_(reg), |
| op_(op), |
| value_(value) { } |
| int reg() { return reg_; } |
| Relation op() { return op_; } |
| int value() { return value_; } |
| |
| private: |
| int reg_; |
| Relation op_; |
| int value_; |
| }; |
| |
| |
| class GuardedAlternative { |
| public: |
| explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } |
| void AddGuard(Guard* guard); |
| RegExpNode* node() { return node_; } |
| void set_node(RegExpNode* node) { node_ = node; } |
| ZoneList<Guard*>* guards() { return guards_; } |
| |
| private: |
| RegExpNode* node_; |
| ZoneList<Guard*>* guards_; |
| }; |
| |
| |
| class AlternativeGeneration; |
| |
| |
| class ChoiceNode: public RegExpNode { |
| public: |
| explicit ChoiceNode(int expected_size) |
| : alternatives_(new ZoneList<GuardedAlternative>(expected_size)), |
| table_(NULL), |
| not_at_start_(false), |
| being_calculated_(false) { } |
| virtual void Accept(NodeVisitor* visitor); |
| void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); } |
| ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } |
| DispatchTable* GetTable(bool ignore_case); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start); |
| int EatsAtLeastHelper(int still_to_find, |
| int recursion_depth, |
| RegExpNode* ignore_this_node, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start); |
| virtual ChoiceNode* Clone() { return new ChoiceNode(*this); } |
| |
| bool being_calculated() { return being_calculated_; } |
| bool not_at_start() { return not_at_start_; } |
| void set_not_at_start() { not_at_start_ = true; } |
| void set_being_calculated(bool b) { being_calculated_ = b; } |
| virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; } |
| |
| protected: |
| int GreedyLoopTextLength(GuardedAlternative* alternative); |
| ZoneList<GuardedAlternative>* alternatives_; |
| |
| private: |
| friend class DispatchTableConstructor; |
| friend class Analysis; |
| void GenerateGuard(RegExpMacroAssembler* macro_assembler, |
| Guard* guard, |
| Trace* trace); |
| int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start); |
| void EmitOutOfLineContinuation(RegExpCompiler* compiler, |
| Trace* trace, |
| GuardedAlternative alternative, |
| AlternativeGeneration* alt_gen, |
| int preload_characters, |
| bool next_expects_preload); |
| DispatchTable* table_; |
| // If true, this node is never checked at the start of the input. |
| // Allows a new trace to start with at_start() set to false. |
| bool not_at_start_; |
| bool being_calculated_; |
| }; |
| |
| |
| class NegativeLookaheadChoiceNode: public ChoiceNode { |
| public: |
| explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail, |
| GuardedAlternative then_do_this) |
| : ChoiceNode(2) { |
| AddAlternative(this_must_fail); |
| AddAlternative(then_do_this); |
| } |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start); |
| // For a negative lookahead we don't emit the quick check for the |
| // alternative that is expected to fail. This is because quick check code |
| // starts by loading enough characters for the alternative that takes fewest |
| // characters, but on a negative lookahead the negative branch did not take |
| // part in that calculation (EatsAtLeast) so the assumptions don't hold. |
| virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; } |
| virtual int ComputeFirstCharacterSet(int budget); |
| }; |
| |
| |
| class LoopChoiceNode: public ChoiceNode { |
| public: |
| explicit LoopChoiceNode(bool body_can_be_zero_length) |
| : ChoiceNode(2), |
| loop_node_(NULL), |
| continue_node_(NULL), |
| body_can_be_zero_length_(body_can_be_zero_length) { } |
| void AddLoopAlternative(GuardedAlternative alt); |
| void AddContinueAlternative(GuardedAlternative alt); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start); |
| virtual int ComputeFirstCharacterSet(int budget); |
| virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); } |
| RegExpNode* loop_node() { return loop_node_; } |
| RegExpNode* continue_node() { return continue_node_; } |
| bool body_can_be_zero_length() { return body_can_be_zero_length_; } |
| virtual void Accept(NodeVisitor* visitor); |
| |
| private: |
| // AddAlternative is made private for loop nodes because alternatives |
| // should not be added freely, we need to keep track of which node |
| // goes back to the node itself. |
| void AddAlternative(GuardedAlternative node) { |
| ChoiceNode::AddAlternative(node); |
| } |
| |
| RegExpNode* loop_node_; |
| RegExpNode* continue_node_; |
| bool body_can_be_zero_length_; |
| }; |
| |
| |
| // There are many ways to generate code for a node. This class encapsulates |
| // the current way we should be generating. In other words it encapsulates |
| // the current state of the code generator. The effect of this is that we |
| // generate code for paths that the matcher can take through the regular |
| // expression. A given node in the regexp can be code-generated several times |
| // as it can be part of several traces. For example for the regexp: |
| // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part |
| // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code |
| // to match foo is generated only once (the traces have a common prefix). The |
| // code to store the capture is deferred and generated (twice) after the places |
| // where baz has been matched. |
| class Trace { |
| public: |
| // A value for a property that is either known to be true, know to be false, |
| // or not known. |
| enum TriBool { |
| UNKNOWN = -1, FALSE = 0, TRUE = 1 |
| }; |
| |
| class DeferredAction { |
| public: |
| DeferredAction(ActionNode::Type type, int reg) |
| : type_(type), reg_(reg), next_(NULL) { } |
| DeferredAction* next() { return next_; } |
| bool Mentions(int reg); |
| int reg() { return reg_; } |
| ActionNode::Type type() { return type_; } |
| private: |
| ActionNode::Type type_; |
| int reg_; |
| DeferredAction* next_; |
| friend class Trace; |
| }; |
| |
| class DeferredCapture : public DeferredAction { |
| public: |
| DeferredCapture(int reg, bool is_capture, Trace* trace) |
| : DeferredAction(ActionNode::STORE_POSITION, reg), |
| cp_offset_(trace->cp_offset()), |
| is_capture_(is_capture) { } |
| int cp_offset() { return cp_offset_; } |
| bool is_capture() { return is_capture_; } |
| private: |
| int cp_offset_; |
| bool is_capture_; |
| void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } |
| }; |
| |
| class DeferredSetRegister : public DeferredAction { |
| public: |
| DeferredSetRegister(int reg, int value) |
| : DeferredAction(ActionNode::SET_REGISTER, reg), |
| value_(value) { } |
| int value() { return value_; } |
| private: |
| int value_; |
| }; |
| |
| class DeferredClearCaptures : public DeferredAction { |
| public: |
| explicit DeferredClearCaptures(Interval range) |
| : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), |
| range_(range) { } |
| Interval range() { return range_; } |
| private: |
| Interval range_; |
| }; |
| |
| class DeferredIncrementRegister : public DeferredAction { |
| public: |
| explicit DeferredIncrementRegister(int reg) |
| : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } |
| }; |
| |
| Trace() |
| : cp_offset_(0), |
| actions_(NULL), |
| backtrack_(NULL), |
| stop_node_(NULL), |
| loop_label_(NULL), |
| characters_preloaded_(0), |
| bound_checked_up_to_(0), |
| flush_budget_(100), |
| at_start_(UNKNOWN) { } |
| |
| // End the trace. This involves flushing the deferred actions in the trace |
| // and pushing a backtrack location onto the backtrack stack. Once this is |
| // done we can start a new trace or go to one that has already been |
| // generated. |
| void Flush(RegExpCompiler* compiler, RegExpNode* successor); |
| int cp_offset() { return cp_offset_; } |
| DeferredAction* actions() { return actions_; } |
| // A trivial trace is one that has no deferred actions or other state that |
| // affects the assumptions used when generating code. There is no recorded |
| // backtrack location in a trivial trace, so with a trivial trace we will |
| // generate code that, on a failure to match, gets the backtrack location |
| // from the backtrack stack rather than using a direct jump instruction. We |
| // always start code generation with a trivial trace and non-trivial traces |
| // are created as we emit code for nodes or add to the list of deferred |
| // actions in the trace. The location of the code generated for a node using |
| // a trivial trace is recorded in a label in the node so that gotos can be |
| // generated to that code. |
| bool is_trivial() { |
| return backtrack_ == NULL && |
| actions_ == NULL && |
| cp_offset_ == 0 && |
| characters_preloaded_ == 0 && |
| bound_checked_up_to_ == 0 && |
| quick_check_performed_.characters() == 0 && |
| at_start_ == UNKNOWN; |
| } |
| TriBool at_start() { return at_start_; } |
| void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; } |
| Label* backtrack() { return backtrack_; } |
| Label* loop_label() { return loop_label_; } |
| RegExpNode* stop_node() { return stop_node_; } |
| int characters_preloaded() { return characters_preloaded_; } |
| int bound_checked_up_to() { return bound_checked_up_to_; } |
| int flush_budget() { return flush_budget_; } |
| QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } |
| bool mentions_reg(int reg); |
| // Returns true if a deferred position store exists to the specified |
| // register and stores the offset in the out-parameter. Otherwise |
| // returns false. |
| bool GetStoredPosition(int reg, int* cp_offset); |
| // These set methods and AdvanceCurrentPositionInTrace should be used only on |
| // new traces - the intention is that traces are immutable after creation. |
| void add_action(DeferredAction* new_action) { |
| ASSERT(new_action->next_ == NULL); |
| new_action->next_ = actions_; |
| actions_ = new_action; |
| } |
| void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } |
| void set_stop_node(RegExpNode* node) { stop_node_ = node; } |
| void set_loop_label(Label* label) { loop_label_ = label; } |
| void set_characters_preloaded(int count) { characters_preloaded_ = count; } |
| void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } |
| void set_flush_budget(int to) { flush_budget_ = to; } |
| void set_quick_check_performed(QuickCheckDetails* d) { |
| quick_check_performed_ = *d; |
| } |
| void InvalidateCurrentCharacter(); |
| void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); |
| private: |
| int FindAffectedRegisters(OutSet* affected_registers); |
| void PerformDeferredActions(RegExpMacroAssembler* macro, |
| int max_register, |
| OutSet& affected_registers, |
| OutSet* registers_to_pop, |
| OutSet* registers_to_clear); |
| void RestoreAffectedRegisters(RegExpMacroAssembler* macro, |
| int max_register, |
| OutSet& registers_to_pop, |
| OutSet& registers_to_clear); |
| int cp_offset_; |
| DeferredAction* actions_; |
| Label* backtrack_; |
| RegExpNode* stop_node_; |
| Label* loop_label_; |
| int characters_preloaded_; |
| int bound_checked_up_to_; |
| QuickCheckDetails quick_check_performed_; |
| int flush_budget_; |
| TriBool at_start_; |
| }; |
| |
| |
| class NodeVisitor { |
| public: |
| virtual ~NodeVisitor() { } |
| #define DECLARE_VISIT(Type) \ |
| virtual void Visit##Type(Type##Node* that) = 0; |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } |
| }; |
| |
| |
| // Node visitor used to add the start set of the alternatives to the |
| // dispatch table of a choice node. |
| class DispatchTableConstructor: public NodeVisitor { |
| public: |
| DispatchTableConstructor(DispatchTable* table, bool ignore_case) |
| : table_(table), |
| choice_index_(-1), |
| ignore_case_(ignore_case) { } |
| |
| void BuildTable(ChoiceNode* node); |
| |
| void AddRange(CharacterRange range) { |
| table()->AddRange(range, choice_index_); |
| } |
| |
| void AddInverse(ZoneList<CharacterRange>* ranges); |
| |
| #define DECLARE_VISIT(Type) \ |
| virtual void Visit##Type(Type##Node* that); |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| |
| DispatchTable* table() { return table_; } |
| void set_choice_index(int value) { choice_index_ = value; } |
| |
| protected: |
| DispatchTable* table_; |
| int choice_index_; |
| bool ignore_case_; |
| }; |
| |
| |
| // Assertion propagation moves information about assertions such as |
| // \b to the affected nodes. For instance, in /.\b./ information must |
| // be propagated to the first '.' that whatever follows needs to know |
| // if it matched a word or a non-word, and to the second '.' that it |
| // has to check if it succeeds a word or non-word. In this case the |
| // result will be something like: |
| // |
| // +-------+ +------------+ |
| // | . | | . | |
| // +-------+ ---> +------------+ |
| // | word? | | check word | |
| // +-------+ +------------+ |
| class Analysis: public NodeVisitor { |
| public: |
| Analysis(bool ignore_case, bool is_ascii) |
| : ignore_case_(ignore_case), |
| is_ascii_(is_ascii), |
| error_message_(NULL) { } |
| void EnsureAnalyzed(RegExpNode* node); |
| |
| #define DECLARE_VISIT(Type) \ |
| virtual void Visit##Type(Type##Node* that); |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| virtual void VisitLoopChoice(LoopChoiceNode* that); |
| |
| bool has_failed() { return error_message_ != NULL; } |
| const char* error_message() { |
| ASSERT(error_message_ != NULL); |
| return error_message_; |
| } |
| void fail(const char* error_message) { |
| error_message_ = error_message; |
| } |
| private: |
| bool ignore_case_; |
| bool is_ascii_; |
| const char* error_message_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); |
| }; |
| |
| |
| struct RegExpCompileData { |
| RegExpCompileData() |
| : tree(NULL), |
| node(NULL), |
| simple(true), |
| contains_anchor(false), |
| capture_count(0) { } |
| RegExpTree* tree; |
| RegExpNode* node; |
| bool simple; |
| bool contains_anchor; |
| Handle<String> error; |
| int capture_count; |
| }; |
| |
| |
| class RegExpEngine: public AllStatic { |
| public: |
| struct CompilationResult { |
| explicit CompilationResult(const char* error_message) |
| : error_message(error_message), |
| code(HEAP->the_hole_value()), |
| num_registers(0) {} |
| CompilationResult(Object* code, int registers) |
| : error_message(NULL), |
| code(code), |
| num_registers(registers) {} |
| const char* error_message; |
| Object* code; |
| int num_registers; |
| }; |
| |
| static CompilationResult Compile(RegExpCompileData* input, |
| bool ignore_case, |
| bool multiline, |
| Handle<String> pattern, |
| bool is_ascii); |
| |
| static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); |
| }; |
| |
| |
| class OffsetsVector { |
| public: |
| explicit inline OffsetsVector(int num_registers) |
| : offsets_vector_length_(num_registers) { |
| if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { |
| vector_ = NewArray<int>(offsets_vector_length_); |
| } else { |
| vector_ = Isolate::Current()->jsregexp_static_offsets_vector(); |
| } |
| } |
| inline ~OffsetsVector() { |
| if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { |
| DeleteArray(vector_); |
| vector_ = NULL; |
| } |
| } |
| inline int* vector() { return vector_; } |
| inline int length() { return offsets_vector_length_; } |
| |
| static const int kStaticOffsetsVectorSize = 50; |
| |
| private: |
| static Address static_offsets_vector_address(Isolate* isolate) { |
| return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()); |
| } |
| |
| int* vector_; |
| int offsets_vector_length_; |
| |
| friend class ExternalReference; |
| }; |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_JSREGEXP_H_ |