blob: 0a2cd458da6caa7b2899ae4549e01d7a5f82c17f [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_MIPS_CODEGEN_MIPS_H_
#define V8_MIPS_CODEGEN_MIPS_H_
#include "ast.h"
#include "code-stubs-mips.h"
#include "ic-inl.h"
namespace v8 {
namespace internal {
#if(defined(__mips_hard_float) && __mips_hard_float != 0)
// Use floating-point coprocessor instructions. This flag is raised when
// -mhard-float is passed to the compiler.
static const bool IsMipsSoftFloatABI = false;
#elif(defined(__mips_soft_float) && __mips_soft_float != 0)
// Not using floating-point coprocessor instructions. This flag is raised when
// -msoft-float is passed to the compiler.
static const bool IsMipsSoftFloatABI = true;
#else
static const bool IsMipsSoftFloatABI = true;
#endif
// Forward declarations
class CompilationInfo;
class DeferredCode;
class JumpTarget;
class RegisterAllocator;
class RegisterFile;
enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
enum GenerateInlineSmi { DONT_GENERATE_INLINE_SMI, GENERATE_INLINE_SMI };
enum WriteBarrierCharacter { UNLIKELY_SMI, LIKELY_SMI, NEVER_NEWSPACE };
// -----------------------------------------------------------------------------
// Reference support
// A reference is a C++ stack-allocated object that keeps an ECMA
// reference on the execution stack while in scope. For variables
// the reference is empty, indicating that it isn't necessary to
// store state on the stack for keeping track of references to those.
// For properties, we keep either one (named) or two (indexed) values
// on the execution stack to represent the reference.
class Reference BASE_EMBEDDED {
public:
// The values of the types is important, see size().
enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get = false);
~Reference();
Expression* expression() const { return expression_; }
Type type() const { return type_; }
void set_type(Type value) {
ASSERT_EQ(ILLEGAL, type_);
type_ = value;
}
void set_unloaded() {
ASSERT_NE(ILLEGAL, type_);
ASSERT_NE(UNLOADED, type_);
type_ = UNLOADED;
}
// The size the reference takes up on the stack.
int size() const {
return (type_ < SLOT) ? 0 : type_;
}
bool is_illegal() const { return type_ == ILLEGAL; }
bool is_slot() const { return type_ == SLOT; }
bool is_property() const { return type_ == NAMED || type_ == KEYED; }
bool is_unloaded() const { return type_ == UNLOADED; }
// Return the name. Only valid for named property references.
Handle<String> GetName();
// Generate code to push the value of the reference on top of the
// expression stack. The reference is expected to be already on top of
// the expression stack, and it is consumed by the call unless the
// reference is for a compound assignment.
// If the reference is not consumed, it is left in place under its value.
void GetValue();
// Generate code to pop a reference, push the value of the reference,
// and then spill the stack frame.
inline void GetValueAndSpill();
// Generate code to store the value on top of the expression stack in the
// reference. The reference is expected to be immediately below the value
// on the expression stack. The value is stored in the location specified
// by the reference, and is left on top of the stack, after the reference
// is popped from beneath it (unloaded).
void SetValue(InitState init_state, WriteBarrierCharacter wb);
// This is in preparation for something that uses the reference on the stack.
// If we need this reference afterwards get then dup it now. Otherwise mark
// it as used.
inline void DupIfPersist();
private:
CodeGenerator* cgen_;
Expression* expression_;
Type type_;
// Keep the reference on the stack after get, so it can be used by set later.
bool persist_after_get_;
};
// -----------------------------------------------------------------------------
// Code generation state
// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the label pair). It is threaded through the
// call stack. Constructing a state implicitly pushes it on the owning code
// generator's stack of states, and destroying one implicitly pops it.
class CodeGenState BASE_EMBEDDED {
public:
// Create an initial code generator state. Destroying the initial state
// leaves the code generator with a NULL state.
explicit CodeGenState(CodeGenerator* owner);
// Destroy a code generator state and restore the owning code generator's
// previous state.
virtual ~CodeGenState();
virtual JumpTarget* true_target() const { return NULL; }
virtual JumpTarget* false_target() const { return NULL; }
protected:
inline CodeGenerator* owner() { return owner_; }
inline CodeGenState* previous() const { return previous_; }
private:
// The owning code generator.
CodeGenerator* owner_;
// The previous state of the owning code generator, restored when
// this state is destroyed.
CodeGenState* previous_;
};
class ConditionCodeGenState : public CodeGenState {
public:
// Create a code generator state based on a code generator's current
// state. The new state has its own pair of branch labels.
ConditionCodeGenState(CodeGenerator* owner,
JumpTarget* true_target,
JumpTarget* false_target);
virtual JumpTarget* true_target() const { return true_target_; }
virtual JumpTarget* false_target() const { return false_target_; }
private:
JumpTarget* true_target_;
JumpTarget* false_target_;
};
class TypeInfoCodeGenState : public CodeGenState {
public:
TypeInfoCodeGenState(CodeGenerator* owner,
Slot* slot_number,
TypeInfo info);
virtual ~TypeInfoCodeGenState();
virtual JumpTarget* true_target() const { return previous()->true_target(); }
virtual JumpTarget* false_target() const {
return previous()->false_target();
}
private:
Slot* slot_;
TypeInfo old_type_info_;
};
// -------------------------------------------------------------------------
// Arguments allocation mode
enum ArgumentsAllocationMode {
NO_ARGUMENTS_ALLOCATION,
EAGER_ARGUMENTS_ALLOCATION,
LAZY_ARGUMENTS_ALLOCATION
};
// -----------------------------------------------------------------------------
// CodeGenerator
class CodeGenerator: public AstVisitor {
public:
// Compilation mode. Either the compiler is used as the primary
// compiler and needs to setup everything or the compiler is used as
// the secondary compiler for split compilation and has to handle
// bailouts.
enum Mode {
PRIMARY,
SECONDARY
};
static bool MakeCode(CompilationInfo* info);
// Printing of AST, etc. as requested by flags.
static void MakeCodePrologue(CompilationInfo* info);
// Allocate and install the code.
static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
Code::Flags flags,
CompilationInfo* info);
// Print the code after compiling it.
static void PrintCode(Handle<Code> code, CompilationInfo* info);
#ifdef ENABLE_LOGGING_AND_PROFILING
static bool ShouldGenerateLog(Expression* type);
#endif
static void SetFunctionInfo(Handle<JSFunction> fun,
FunctionLiteral* lit,
bool is_toplevel,
Handle<Script> script);
static bool RecordPositions(MacroAssembler* masm,
int pos,
bool right_here = false);
// Accessors
MacroAssembler* masm() { return masm_; }
VirtualFrame* frame() const { return frame_; }
inline Handle<Script> script();
bool has_valid_frame() const { return frame_ != NULL; }
// Set the virtual frame to be new_frame, with non-frame register
// reference counts given by non_frame_registers. The non-frame
// register reference counts of the old frame are returned in
// non_frame_registers.
void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
void DeleteFrame();
RegisterAllocator* allocator() const { return allocator_; }
CodeGenState* state() { return state_; }
void set_state(CodeGenState* state) { state_ = state; }
TypeInfo type_info(Slot* slot) {
int index = NumberOfSlot(slot);
if (index == kInvalidSlotNumber) return TypeInfo::Unknown();
return (*type_info_)[index];
}
TypeInfo set_type_info(Slot* slot, TypeInfo info) {
int index = NumberOfSlot(slot);
ASSERT(index >= kInvalidSlotNumber);
if (index != kInvalidSlotNumber) {
TypeInfo previous_value = (*type_info_)[index];
(*type_info_)[index] = info;
return previous_value;
}
return TypeInfo::Unknown();
}
void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
// Constants related to patching of inlined load/store.
static int GetInlinedKeyedLoadInstructionsAfterPatch() {
// This is in correlation with the padding in MacroAssembler::Abort.
return FLAG_debug_code ? 45 : 20;
}
static const int kInlinedKeyedStoreInstructionsAfterPatch = 9;
static int GetInlinedNamedStoreInstructionsAfterPatch() {
ASSERT(Isolate::Current()->inlined_write_barrier_size() != -1);
// Magic number 5: instruction count after patched map load:
// li: 2 (liu & ori), Branch : 2 (bne & nop), sw : 1
return Isolate::Current()->inlined_write_barrier_size() + 5;
}
private:
// Type of a member function that generates inline code for a native function.
typedef void (CodeGenerator::*InlineFunctionGenerator)
(ZoneList<Expression*>*);
static const InlineFunctionGenerator kInlineFunctionGenerators[];
// Construction/Destruction.
explicit CodeGenerator(MacroAssembler* masm);
// Accessors.
inline bool is_eval();
inline Scope* scope();
inline bool is_strict_mode();
inline StrictModeFlag strict_mode_flag();
// Generating deferred code.
void ProcessDeferred();
static const int kInvalidSlotNumber = -1;
int NumberOfSlot(Slot* slot);
// State
bool has_cc() const { return cc_reg_ != cc_always; }
JumpTarget* true_target() const { return state_->true_target(); }
JumpTarget* false_target() const { return state_->false_target(); }
// Track loop nesting level.
int loop_nesting() const { return loop_nesting_; }
void IncrementLoopNesting() { loop_nesting_++; }
void DecrementLoopNesting() { loop_nesting_--; }
// Node visitors.
void VisitStatements(ZoneList<Statement*>* statements);
virtual void VisitSlot(Slot* node);
#define DEF_VISIT(type) \
virtual void Visit##type(type* node);
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
// Main code generation function
void Generate(CompilationInfo* info);
// Generate the return sequence code. Should be called no more than
// once per compiled function, immediately after binding the return
// target (which can not be done more than once). The return value should
// be in v0.
void GenerateReturnSequence();
// Returns the arguments allocation mode.
ArgumentsAllocationMode ArgumentsMode();
// Store the arguments object and allocate it if necessary.
void StoreArgumentsObject(bool initial);
// The following are used by class Reference.
void LoadReference(Reference* ref);
void UnloadReference(Reference* ref);
MemOperand SlotOperand(Slot* slot, Register tmp);
MemOperand ContextSlotOperandCheckExtensions(Slot* slot,
Register tmp,
Register tmp2,
JumpTarget* slow);
void LoadCondition(Expression* x,
JumpTarget* true_target,
JumpTarget* false_target,
bool force_cc);
void Load(Expression* x);
void LoadGlobal();
void LoadGlobalReceiver(Register scratch);
// Special code for typeof expressions: Unfortunately, we must
// be careful when loading the expression in 'typeof'
// expressions. We are not allowed to throw reference errors for
// non-existing properties of the global object, so we must make it
// look like an explicit property access, instead of an access
// through the context chain.
void LoadTypeofExpression(Expression* x);
// Store a keyed property. Key and receiver are on the stack and the value is
// in a0. Result is returned in r0.
void EmitKeyedStore(StaticType* key_type, WriteBarrierCharacter wb_info);
// Read a value from a slot and leave it on top of the expression stack.
void LoadFromSlot(Slot* slot, TypeofState typeof_state);
void LoadFromGlobalSlotCheckExtensions(Slot* slot,
TypeofState typeof_state,
JumpTarget* slow);
void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state);
// Support for loading from local/global variables and arguments
// whose location is known unless they are shadowed by
// eval-introduced bindings. Generates no code for unsupported slot
// types and therefore expects to fall through to the slow jump target.
void EmitDynamicLoadFromSlotFastCase(Slot* slot,
TypeofState typeof_state,
JumpTarget* slow,
JumpTarget* done);
// Store the value on top of the stack to a slot.
void StoreToSlot(Slot* slot, InitState init_state);
// Support for compiling assignment expressions.
void EmitSlotAssignment(Assignment* node);
void EmitNamedPropertyAssignment(Assignment* node);
void EmitKeyedPropertyAssignment(Assignment* node);
// Load a named property, returning it in v0. The receiver is passed on the
// stack, and remains there.
void EmitNamedLoad(Handle<String> name, bool is_contextual);
// Store to a named property. If the store is contextual, value is passed on
// the frame and consumed. Otherwise, receiver and value are passed on the
// frame and consumed. The result is returned in v0.
void EmitNamedStore(Handle<String> name, bool is_contextual);
// Load a keyed property, leaving it in v0. The receiver and key are
// passed on the stack, and remain there.
void EmitKeyedLoad();
void ToBoolean(JumpTarget* true_target, JumpTarget* false_target);
// Generate code that computes a shortcutting logical operation.
void GenerateLogicalBooleanOperation(BinaryOperation* node);
void GenericBinaryOperation(Token::Value op,
OverwriteMode overwrite_mode,
GenerateInlineSmi inline_smi,
int known_rhs =
GenericBinaryOpStub::kUnknownIntValue);
void VirtualFrameBinaryOperation(Token::Value op,
OverwriteMode overwrite_mode,
int known_rhs =
GenericBinaryOpStub::kUnknownIntValue);
void SmiOperation(Token::Value op,
Handle<Object> value,
bool reversed,
OverwriteMode mode);
void Comparison(Condition cc,
Expression* left,
Expression* right,
bool strict = false);
void CallWithArguments(ZoneList<Expression*>* arguments,
CallFunctionFlags flags,
int position);
// An optimized implementation of expressions of the form
// x.apply(y, arguments). We call x the applicand and y the receiver.
// The optimization avoids allocating an arguments object if possible.
void CallApplyLazy(Expression* applicand,
Expression* receiver,
VariableProxy* arguments,
int position);
// Control flow
void Branch(bool if_true, JumpTarget* target);
void CheckStack();
bool CheckForInlineRuntimeCall(CallRuntime* node);
static Handle<Code> ComputeLazyCompile(int argc);
void ProcessDeclarations(ZoneList<Declaration*>* declarations);
// Declare global variables and functions in the given array of
// name/value pairs.
void DeclareGlobals(Handle<FixedArray> pairs);
// Instantiate the function based on the shared function info.
void InstantiateFunction(Handle<SharedFunctionInfo> function_info,
bool pretenure);
// Support for type checks.
void GenerateIsSmi(ZoneList<Expression*>* args);
void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
void GenerateIsArray(ZoneList<Expression*>* args);
void GenerateIsRegExp(ZoneList<Expression*>* args);
// Support for construct call checks.
void GenerateIsConstructCall(ZoneList<Expression*>* args);
// Support for arguments.length and arguments[?].
void GenerateArgumentsLength(ZoneList<Expression*>* args);
void GenerateArguments(ZoneList<Expression*>* args);
// Support for accessing the class and value fields of an object.
void GenerateClassOf(ZoneList<Expression*>* args);
void GenerateValueOf(ZoneList<Expression*>* args);
void GenerateSetValueOf(ZoneList<Expression*>* args);
// Fast support for charCodeAt(n).
void GenerateStringCharCodeAt(ZoneList<Expression*>* args);
// Fast support for string.charAt(n) and string[n].
void GenerateStringCharFromCode(ZoneList<Expression*>* args);
// Fast support for string.charAt(n) and string[n].
void GenerateStringCharAt(ZoneList<Expression*>* args);
// Fast support for object equality testing.
void GenerateObjectEquals(ZoneList<Expression*>* args);
void GenerateLog(ZoneList<Expression*>* args);
// Fast support for Math.random().
void GenerateRandomHeapNumber(ZoneList<Expression*>* args);
void GenerateIsObject(ZoneList<Expression*>* args);
void GenerateIsSpecObject(ZoneList<Expression*>* args);
void GenerateIsFunction(ZoneList<Expression*>* args);
void GenerateIsUndetectableObject(ZoneList<Expression*>* args);
void GenerateStringAdd(ZoneList<Expression*>* args);
void GenerateSubString(ZoneList<Expression*>* args);
void GenerateStringCompare(ZoneList<Expression*>* args);
void GenerateIsStringWrapperSafeForDefaultValueOf(
ZoneList<Expression*>* args);
// Support for direct calls from JavaScript to native RegExp code.
void GenerateRegExpExec(ZoneList<Expression*>* args);
void GenerateRegExpConstructResult(ZoneList<Expression*>* args);
// Support for fast native caches.
void GenerateGetFromCache(ZoneList<Expression*>* args);
// Fast support for number to string.
void GenerateNumberToString(ZoneList<Expression*>* args);
// Fast swapping of elements.
void GenerateSwapElements(ZoneList<Expression*>* args);
// Fast call for custom callbacks.
void GenerateCallFunction(ZoneList<Expression*>* args);
// Fast call to math functions.
void GenerateMathPow(ZoneList<Expression*>* args);
void GenerateMathSin(ZoneList<Expression*>* args);
void GenerateMathCos(ZoneList<Expression*>* args);
void GenerateMathSqrt(ZoneList<Expression*>* args);
void GenerateMathLog(ZoneList<Expression*>* args);
void GenerateIsRegExpEquivalent(ZoneList<Expression*>* args);
void GenerateHasCachedArrayIndex(ZoneList<Expression*>* args);
void GenerateGetCachedArrayIndex(ZoneList<Expression*>* args);
void GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args);
// Simple condition analysis.
enum ConditionAnalysis {
ALWAYS_TRUE,
ALWAYS_FALSE,
DONT_KNOW
};
ConditionAnalysis AnalyzeCondition(Expression* cond);
// Methods used to indicate which source code is generated for. Source
// positions are collected by the assembler and emitted with the relocation
// information.
void CodeForFunctionPosition(FunctionLiteral* fun);
void CodeForReturnPosition(FunctionLiteral* fun);
void CodeForStatementPosition(Statement* node);
void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
void CodeForSourcePosition(int pos);
#ifdef DEBUG
// True if the registers are valid for entry to a block.
bool HasValidEntryRegisters();
#endif
List<DeferredCode*> deferred_;
// Assembler
MacroAssembler* masm_; // to generate code
CompilationInfo* info_;
// Code generation state
VirtualFrame* frame_;
RegisterAllocator* allocator_;
Condition cc_reg_;
CodeGenState* state_;
int loop_nesting_;
Vector<TypeInfo>* type_info_;
// Jump targets
BreakTarget function_return_;
// True if the function return is shadowed (ie, jumping to the target
// function_return_ does not jump to the true function return, but rather
// to some unlinking code).
bool function_return_is_shadowed_;
friend class VirtualFrame;
friend class Isolate;
friend class JumpTarget;
friend class Reference;
friend class FastCodeGenerator;
friend class FullCodeGenerator;
friend class FullCodeGenSyntaxChecker;
friend class InlineRuntimeFunctionsTable;
friend class LCodeGen;
DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};
} } // namespace v8::internal
#endif // V8_MIPS_CODEGEN_MIPS_H_