blob: bd4ab480a5938a1b9cf6fe80a18320c73716a868 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <limits.h> // For LONG_MIN, LONG_MAX
#include "v8.h"
#if defined(V8_TARGET_ARCH_MIPS)
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "runtime.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(void* buffer, int size)
: Assembler(buffer, size),
generating_stub_(false),
allow_stub_calls_(true),
code_object_(HEAP->undefined_value()) {
}
// Arguments macros
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
#define COND_ARGS cond, r1, r2
#define REGISTER_TARGET_BODY(Name) \
void MacroAssembler::Name(Register target, \
BranchDelaySlot bd) { \
Name(Operand(target), bd); \
} \
void MacroAssembler::Name(Register target, COND_TYPED_ARGS, \
BranchDelaySlot bd) { \
Name(Operand(target), COND_ARGS, bd); \
}
#define INT_PTR_TARGET_BODY(Name) \
void MacroAssembler::Name(intptr_t target, RelocInfo::Mode rmode, \
BranchDelaySlot bd) { \
Name(Operand(target, rmode), bd); \
} \
void MacroAssembler::Name(intptr_t target, \
RelocInfo::Mode rmode, \
COND_TYPED_ARGS, \
BranchDelaySlot bd) { \
Name(Operand(target, rmode), COND_ARGS, bd); \
}
#define BYTE_PTR_TARGET_BODY(Name) \
void MacroAssembler::Name(byte* target, RelocInfo::Mode rmode, \
BranchDelaySlot bd) { \
Name(reinterpret_cast<intptr_t>(target), rmode, bd); \
} \
void MacroAssembler::Name(byte* target, \
RelocInfo::Mode rmode, \
COND_TYPED_ARGS, \
BranchDelaySlot bd) { \
Name(reinterpret_cast<intptr_t>(target), rmode, COND_ARGS, bd); \
}
#define CODE_TARGET_BODY(Name) \
void MacroAssembler::Name(Handle<Code> target, RelocInfo::Mode rmode, \
BranchDelaySlot bd) { \
Name(reinterpret_cast<intptr_t>(target.location()), rmode, bd); \
} \
void MacroAssembler::Name(Handle<Code> target, \
RelocInfo::Mode rmode, \
COND_TYPED_ARGS, \
BranchDelaySlot bd) { \
Name(reinterpret_cast<intptr_t>(target.location()), rmode, COND_ARGS, bd); \
}
REGISTER_TARGET_BODY(Jump)
REGISTER_TARGET_BODY(Call)
INT_PTR_TARGET_BODY(Jump)
INT_PTR_TARGET_BODY(Call)
BYTE_PTR_TARGET_BODY(Jump)
BYTE_PTR_TARGET_BODY(Call)
CODE_TARGET_BODY(Jump)
CODE_TARGET_BODY(Call)
#undef COND_TYPED_ARGS
#undef COND_ARGS
#undef REGISTER_TARGET_BODY
#undef BYTE_PTR_TARGET_BODY
#undef CODE_TARGET_BODY
void MacroAssembler::Ret(BranchDelaySlot bd) {
Jump(Operand(ra), bd);
}
void MacroAssembler::Ret(Condition cond, Register r1, const Operand& r2,
BranchDelaySlot bd) {
Jump(Operand(ra), cond, r1, r2, bd);
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index) {
lw(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond,
Register src1, const Operand& src2) {
Branch(2, NegateCondition(cond), src1, src2);
lw(destination, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index) {
sw(source, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond,
Register src1, const Operand& src2) {
Branch(2, NegateCondition(cond), src1, src2);
sw(source, MemOperand(s6, index << kPointerSizeLog2));
}
void MacroAssembler::RecordWriteHelper(Register object,
Register address,
Register scratch) {
if (FLAG_debug_code) {
// Check that the object is not in new space.
Label not_in_new_space;
InNewSpace(object, scratch, ne, &not_in_new_space);
Abort("new-space object passed to RecordWriteHelper");
bind(&not_in_new_space);
}
// Calculate page address: Clear bits from 0 to kPageSizeBits.
if (mips32r2) {
Ins(object, zero_reg, 0, kPageSizeBits);
} else {
// The Ins macro is slow on r1, so use shifts instead.
srl(object, object, kPageSizeBits);
sll(object, object, kPageSizeBits);
}
// Calculate region number.
Ext(address, address, Page::kRegionSizeLog2,
kPageSizeBits - Page::kRegionSizeLog2);
// Mark region dirty.
lw(scratch, MemOperand(object, Page::kDirtyFlagOffset));
li(at, Operand(1));
sllv(at, at, address);
or_(scratch, scratch, at);
sw(scratch, MemOperand(object, Page::kDirtyFlagOffset));
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch) {
ASSERT(cc == eq || cc == ne);
And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
Branch(branch, cc, scratch,
Operand(ExternalReference::new_space_start(isolate())));
}
// Will clobber 4 registers: object, scratch0, scratch1, at. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object,
Operand offset,
Register scratch0,
Register scratch1) {
// The compiled code assumes that record write doesn't change the
// context register, so we check that none of the clobbered
// registers are cp.
ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp));
Label done;
// First, test that the object is not in the new space. We cannot set
// region marks for new space pages.
InNewSpace(object, scratch0, eq, &done);
// Add offset into the object.
Addu(scratch0, object, offset);
// Record the actual write.
RecordWriteHelper(object, scratch0, scratch1);
bind(&done);
// Clobber all input registers when running with the debug-code flag
// turned on to provoke errors.
if (FLAG_debug_code) {
li(object, Operand(BitCast<int32_t>(kZapValue)));
li(scratch0, Operand(BitCast<int32_t>(kZapValue)));
li(scratch1, Operand(BitCast<int32_t>(kZapValue)));
}
}
// Will clobber 4 registers: object, address, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object,
Register address,
Register scratch) {
// The compiled code assumes that record write doesn't change the
// context register, so we check that none of the clobbered
// registers are cp.
ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp));
Label done;
// First, test that the object is not in the new space. We cannot set
// region marks for new space pages.
InNewSpace(object, scratch, eq, &done);
// Record the actual write.
RecordWriteHelper(object, address, scratch);
bind(&done);
// Clobber all input registers when running with the debug-code flag
// turned on to provoke errors.
if (FLAG_debug_code) {
li(object, Operand(BitCast<int32_t>(kZapValue)));
li(address, Operand(BitCast<int32_t>(kZapValue)));
li(scratch, Operand(BitCast<int32_t>(kZapValue)));
}
}
// -----------------------------------------------------------------------------
// Allocation support
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
ASSERT(!holder_reg.is(scratch));
ASSERT(!holder_reg.is(at));
ASSERT(!scratch.is(at));
// Load current lexical context from the stack frame.
lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
// In debug mode, make sure the lexical context is set.
#ifdef DEBUG
Check(ne, "we should not have an empty lexical context",
scratch, Operand(zero_reg));
#endif
// Load the global context of the current context.
int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
lw(scratch, FieldMemOperand(scratch, offset));
lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
// Check the context is a global context.
if (FLAG_debug_code) {
// TODO(119): Avoid push(holder_reg)/pop(holder_reg).
Push(holder_reg); // Temporarily save holder on the stack.
// Read the first word and compare to the global_context_map.
lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
LoadRoot(at, Heap::kGlobalContextMapRootIndex);
Check(eq, "JSGlobalObject::global_context should be a global context.",
holder_reg, Operand(at));
Pop(holder_reg); // Restore holder.
}
// Check if both contexts are the same.
lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
Branch(&same_contexts, eq, scratch, Operand(at));
// Check the context is a global context.
if (FLAG_debug_code) {
// TODO(119): Avoid push(holder_reg)/pop(holder_reg).
Push(holder_reg); // Temporarily save holder on the stack.
mov(holder_reg, at); // Move at to its holding place.
LoadRoot(at, Heap::kNullValueRootIndex);
Check(ne, "JSGlobalProxy::context() should not be null.",
holder_reg, Operand(at));
lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
LoadRoot(at, Heap::kGlobalContextMapRootIndex);
Check(eq, "JSGlobalObject::global_context should be a global context.",
holder_reg, Operand(at));
// Restore at is not needed. at is reloaded below.
Pop(holder_reg); // Restore holder.
// Restore at to holder's context.
lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
}
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
lw(scratch, FieldMemOperand(scratch, token_offset));
lw(at, FieldMemOperand(at, token_offset));
Branch(miss, ne, scratch, Operand(at));
bind(&same_contexts);
}
// ---------------------------------------------------------------------------
// Instruction macros
void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
addu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
addiu(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
addu(rd, rs, at);
}
}
}
void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
subu(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm).
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
subu(rd, rs, at);
}
}
}
void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
mul(rd, rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
mul(rd, rs, at);
}
}
void MacroAssembler::Mult(Register rs, const Operand& rt) {
if (rt.is_reg()) {
mult(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
mult(rs, at);
}
}
void MacroAssembler::Multu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
multu(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
multu(rs, at);
}
}
void MacroAssembler::Div(Register rs, const Operand& rt) {
if (rt.is_reg()) {
div(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
div(rs, at);
}
}
void MacroAssembler::Divu(Register rs, const Operand& rt) {
if (rt.is_reg()) {
divu(rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
divu(rs, at);
}
}
void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
and_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
andi(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
and_(rd, rs, at);
}
}
}
void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
or_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
ori(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
or_(rd, rs, at);
}
}
}
void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
xor_(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
xori(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
xor_(rd, rs, at);
}
}
}
void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
nor(rd, rs, rt.rm());
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
nor(rd, rs, at);
}
}
void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
slt(rd, rs, rt.rm());
} else {
if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
slti(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
slt(rd, rs, at);
}
}
}
void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
if (rt.is_reg()) {
sltu(rd, rs, rt.rm());
} else {
if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
sltiu(rd, rs, rt.imm32_);
} else {
// li handles the relocation.
ASSERT(!rs.is(at));
li(at, rt);
sltu(rd, rs, at);
}
}
}
void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
if (mips32r2) {
if (rt.is_reg()) {
rotrv(rd, rs, rt.rm());
} else {
rotr(rd, rs, rt.imm32_);
}
} else {
if (rt.is_reg()) {
subu(at, zero_reg, rt.rm());
sllv(at, rs, at);
srlv(rd, rs, rt.rm());
or_(rd, rd, at);
} else {
if (rt.imm32_ == 0) {
srl(rd, rs, 0);
} else {
srl(at, rs, rt.imm32_);
sll(rd, rs, (0x20 - rt.imm32_) & 0x1f);
or_(rd, rd, at);
}
}
}
}
//------------Pseudo-instructions-------------
void MacroAssembler::li(Register rd, Operand j, bool gen2instr) {
ASSERT(!j.is_reg());
BlockTrampolinePoolScope block_trampoline_pool(this);
if (!MustUseReg(j.rmode_) && !gen2instr) {
// Normal load of an immediate value which does not need Relocation Info.
if (is_int16(j.imm32_)) {
addiu(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & kHiMask)) {
ori(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & kImm16Mask)) {
lui(rd, (j.imm32_ & kHiMask) >> kLuiShift);
} else {
lui(rd, (j.imm32_ & kHiMask) >> kLuiShift);
ori(rd, rd, (j.imm32_ & kImm16Mask));
}
} else if (MustUseReg(j.rmode_) || gen2instr) {
if (MustUseReg(j.rmode_)) {
RecordRelocInfo(j.rmode_, j.imm32_);
}
// We need always the same number of instructions as we may need to patch
// this code to load another value which may need 2 instructions to load.
if (is_int16(j.imm32_)) {
nop();
addiu(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & kHiMask)) {
nop();
ori(rd, zero_reg, j.imm32_);
} else if (!(j.imm32_ & kImm16Mask)) {
nop();
lui(rd, (j.imm32_ & kHiMask) >> kLuiShift);
} else {
lui(rd, (j.imm32_ & kHiMask) >> kLuiShift);
ori(rd, rd, (j.imm32_ & kImm16Mask));
}
}
}
// Exception-generating instructions and debugging support
void MacroAssembler::stop(const char* msg) {
// TO_UPGRADE: Just a break for now. Maybe we could upgrade it.
// We use the 0x54321 value to be able to find it easily when reading memory.
break_(0x54321);
}
void MacroAssembler::MultiPush(RegList regs) {
int16_t NumSaved = 0;
int16_t NumToPush = NumberOfBitsSet(regs);
addiu(sp, sp, -4 * NumToPush);
for (int16_t i = kNumRegisters; i > 0; i--) {
if ((regs & (1 << i)) != 0) {
sw(ToRegister(i), MemOperand(sp, 4 * (NumToPush - ++NumSaved)));
}
}
}
void MacroAssembler::MultiPushReversed(RegList regs) {
int16_t NumSaved = 0;
int16_t NumToPush = NumberOfBitsSet(regs);
addiu(sp, sp, -4 * NumToPush);
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
sw(ToRegister(i), MemOperand(sp, 4 * (NumToPush - ++NumSaved)));
}
}
}
void MacroAssembler::MultiPop(RegList regs) {
int16_t NumSaved = 0;
for (int16_t i = 0; i < kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++)));
}
}
addiu(sp, sp, 4 * NumSaved);
}
void MacroAssembler::MultiPopReversed(RegList regs) {
int16_t NumSaved = 0;
for (int16_t i = kNumRegisters; i > 0; i--) {
if ((regs & (1 << i)) != 0) {
lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++)));
}
}
addiu(sp, sp, 4 * NumSaved);
}
void MacroAssembler::Ext(Register rt,
Register rs,
uint16_t pos,
uint16_t size) {
ASSERT(pos < 32);
ASSERT(pos + size < 32);
if (mips32r2) {
ext_(rt, rs, pos, size);
} else {
// Move rs to rt and shift it left then right to get the
// desired bitfield on the right side and zeroes on the left.
sll(rt, rs, 32 - (pos + size));
srl(rt, rt, 32 - size);
}
}
void MacroAssembler::Ins(Register rt,
Register rs,
uint16_t pos,
uint16_t size) {
ASSERT(pos < 32);
ASSERT(pos + size < 32);
if (mips32r2) {
ins_(rt, rs, pos, size);
} else {
ASSERT(!rt.is(t8) && !rs.is(t8));
srl(t8, rt, pos + size);
// The left chunk from rt that needs to
// be saved is on the right side of t8.
sll(at, t8, pos + size);
// The 'at' register now contains the left chunk on
// the left (proper position) and zeroes.
sll(t8, rt, 32 - pos);
// t8 now contains the right chunk on the left and zeroes.
srl(t8, t8, 32 - pos);
// t8 now contains the right chunk on
// the right (proper position) and zeroes.
or_(rt, at, t8);
// rt now contains the left and right chunks from the original rt
// in their proper position and zeroes in the middle.
sll(t8, rs, 32 - size);
// t8 now contains the chunk from rs on the left and zeroes.
srl(t8, t8, 32 - size - pos);
// t8 now contains the original chunk from rs in
// the middle (proper position).
or_(rt, rt, t8);
// rt now contains the result of the ins instruction in R2 mode.
}
}
void MacroAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs) {
// Move the data from fs to t4.
mfc1(t4, fs);
return Cvt_d_uw(fd, t4);
}
void MacroAssembler::Cvt_d_uw(FPURegister fd, Register rs) {
// Convert rs to a FP value in fd (and fd + 1).
// We do this by converting rs minus the MSB to avoid sign conversion,
// then adding 2^31-1 and 1 to the result.
ASSERT(!fd.is(f20));
ASSERT(!rs.is(t9));
ASSERT(!rs.is(t8));
// Save rs's MSB to t8
And(t8, rs, 0x80000000);
// Remove rs's MSB.
And(t9, rs, 0x7FFFFFFF);
// Move t9 to fd
mtc1(t9, fd);
// Convert fd to a real FP value.
cvt_d_w(fd, fd);
Label conversion_done;
// If rs's MSB was 0, it's done.
// Otherwise we need to add that to the FP register.
Branch(&conversion_done, eq, t8, Operand(zero_reg));
// First load 2^31 - 1 into f20.
Or(t9, zero_reg, 0x7FFFFFFF);
mtc1(t9, f20);
// Convert it to FP and add it to fd.
cvt_d_w(f20, f20);
add_d(fd, fd, f20);
// Now add 1.
Or(t9, zero_reg, 1);
mtc1(t9, f20);
cvt_d_w(f20, f20);
add_d(fd, fd, f20);
bind(&conversion_done);
}
void MacroAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs) {
Trunc_uw_d(fs, t4);
mtc1(t4, fd);
}
void MacroAssembler::Trunc_uw_d(FPURegister fd, Register rs) {
ASSERT(!fd.is(f22));
ASSERT(!rs.is(t6));
// Load 2^31 into f22.
Or(t6, zero_reg, 0x80000000);
Cvt_d_uw(f22, t6);
// Test if f22 > fd.
c(OLT, D, fd, f22);
Label simple_convert;
// If fd < 2^31 we can convert it normally.
bc1t(&simple_convert);
// First we subtract 2^31 from fd, then trunc it to rs
// and add 2^31 to rs.
sub_d(f22, fd, f22);
trunc_w_d(f22, f22);
mfc1(rs, f22);
or_(rs, rs, t6);
Label done;
Branch(&done);
// Simple conversion.
bind(&simple_convert);
trunc_w_d(f22, fd);
mfc1(rs, f22);
bind(&done);
}
// Tries to get a signed int32 out of a double precision floating point heap
// number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
// 32bits signed integer range.
// This method implementation differs from the ARM version for performance
// reasons.
void MacroAssembler::ConvertToInt32(Register source,
Register dest,
Register scratch,
Register scratch2,
FPURegister double_scratch,
Label *not_int32) {
Label right_exponent, done;
// Get exponent word (ENDIAN issues).
lw(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
// Get exponent alone in scratch2.
And(scratch2, scratch, Operand(HeapNumber::kExponentMask));
// Load dest with zero. We use this either for the final shift or
// for the answer.
mov(dest, zero_reg);
// Check whether the exponent matches a 32 bit signed int that is not a Smi.
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
// the exponent that we are fastest at and also the highest exponent we can
// handle here.
const uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
// If we have a match of the int32-but-not-Smi exponent then skip some logic.
Branch(&right_exponent, eq, scratch2, Operand(non_smi_exponent));
// If the exponent is higher than that then go to not_int32 case. This
// catches numbers that don't fit in a signed int32, infinities and NaNs.
Branch(not_int32, gt, scratch2, Operand(non_smi_exponent));
// We know the exponent is smaller than 30 (biased). If it is less than
// 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
// it rounds to zero.
const uint32_t zero_exponent =
(HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
Subu(scratch2, scratch2, Operand(zero_exponent));
// Dest already has a Smi zero.
Branch(&done, lt, scratch2, Operand(zero_reg));
if (!Isolate::Current()->cpu_features()->IsSupported(FPU)) {
// We have a shifted exponent between 0 and 30 in scratch2.
srl(dest, scratch2, HeapNumber::kExponentShift);
// We now have the exponent in dest. Subtract from 30 to get
// how much to shift down.
li(at, Operand(30));
subu(dest, at, dest);
}
bind(&right_exponent);
if (Isolate::Current()->cpu_features()->IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// MIPS FPU instructions implementing double precision to integer
// conversion using round to zero. Since the FP value was qualified
// above, the resulting integer should be a legal int32.
// The original 'Exponent' word is still in scratch.
lwc1(double_scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
mtc1(scratch, FPURegister::from_code(double_scratch.code() + 1));
trunc_w_d(double_scratch, double_scratch);
mfc1(dest, double_scratch);
} else {
// On entry, dest has final downshift, scratch has original sign/exp/mant.
// Save sign bit in top bit of dest.
And(scratch2, scratch, Operand(0x80000000));
Or(dest, dest, Operand(scratch2));
// Put back the implicit 1, just above mantissa field.
Or(scratch, scratch, Operand(1 << HeapNumber::kExponentShift));
// Shift up the mantissa bits to take up the space the exponent used to
// take. We just orred in the implicit bit so that took care of one and
// we want to leave the sign bit 0 so we subtract 2 bits from the shift
// distance. But we want to clear the sign-bit so shift one more bit
// left, then shift right one bit.
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
sll(scratch, scratch, shift_distance + 1);
srl(scratch, scratch, 1);
// Get the second half of the double. For some exponents we don't
// actually need this because the bits get shifted out again, but
// it's probably slower to test than just to do it.
lw(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset));
// Extract the top 10 bits, and insert those bottom 10 bits of scratch.
// The width of the field here is the same as the shift amount above.
const int field_width = shift_distance;
Ext(scratch2, scratch2, 32-shift_distance, field_width);
Ins(scratch, scratch2, 0, field_width);
// Move down according to the exponent.
srlv(scratch, scratch, dest);
// Prepare the negative version of our integer.
subu(scratch2, zero_reg, scratch);
// Trick to check sign bit (msb) held in dest, count leading zero.
// 0 indicates negative, save negative version with conditional move.
clz(dest, dest);
movz(scratch, scratch2, dest);
mov(dest, scratch);
}
bind(&done);
}
// Emulated condtional branches do not emit a nop in the branch delay slot.
//
// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
#define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT( \
(cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \
(cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
b(offset);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
ASSERT(!rs.is(zero_reg));
Register r2 = no_reg;
Register scratch = at;
if (rt.is_reg()) {
// We don't want any other register but scratch clobbered.
ASSERT(!scratch.is(rs) && !scratch.is(rt.rm_));
r2 = rt.rm_;
switch (cond) {
case cc_always:
b(offset);
break;
case eq:
beq(rs, r2, offset);
break;
case ne:
bne(rs, r2, offset);
break;
// Signed comparison
case greater:
if (r2.is(zero_reg)) {
bgtz(rs, offset);
} else {
slt(scratch, r2, rs);
bne(scratch, zero_reg, offset);
}
break;
case greater_equal:
if (r2.is(zero_reg)) {
bgez(rs, offset);
} else {
slt(scratch, rs, r2);
beq(scratch, zero_reg, offset);
}
break;
case less:
if (r2.is(zero_reg)) {
bltz(rs, offset);
} else {
slt(scratch, rs, r2);
bne(scratch, zero_reg, offset);
}
break;
case less_equal:
if (r2.is(zero_reg)) {
blez(rs, offset);
} else {
slt(scratch, r2, rs);
beq(scratch, zero_reg, offset);
}
break;
// Unsigned comparison.
case Ugreater:
if (r2.is(zero_reg)) {
bgtz(rs, offset);
} else {
sltu(scratch, r2, rs);
bne(scratch, zero_reg, offset);
}
break;
case Ugreater_equal:
if (r2.is(zero_reg)) {
bgez(rs, offset);
} else {
sltu(scratch, rs, r2);
beq(scratch, zero_reg, offset);
}
break;
case Uless:
if (r2.is(zero_reg)) {
b(offset);
} else {
sltu(scratch, rs, r2);
bne(scratch, zero_reg, offset);
}
break;
case Uless_equal:
if (r2.is(zero_reg)) {
b(offset);
} else {
sltu(scratch, r2, rs);
beq(scratch, zero_reg, offset);
}
break;
default:
UNREACHABLE();
}
} else {
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
switch (cond) {
case cc_always:
b(offset);
break;
case eq:
// We don't want any other register but scratch clobbered.
ASSERT(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
beq(rs, r2, offset);
break;
case ne:
// We don't want any other register but scratch clobbered.
ASSERT(!scratch.is(rs));
r2 = scratch;
li(r2, rt);
bne(rs, r2, offset);
break;
// Signed comparison
case greater:
if (rt.imm32_ == 0) {
bgtz(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, r2, rs);
bne(scratch, zero_reg, offset);
}
break;
case greater_equal:
if (rt.imm32_ == 0) {
bgez(rs, offset);
} else if (is_int16(rt.imm32_)) {
slti(scratch, rs, rt.imm32_);
beq(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
beq(scratch, zero_reg, offset);
}
break;
case less:
if (rt.imm32_ == 0) {
bltz(rs, offset);
} else if (is_int16(rt.imm32_)) {
slti(scratch, rs, rt.imm32_);
bne(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, rs, r2);
bne(scratch, zero_reg, offset);
}
break;
case less_equal:
if (rt.imm32_ == 0) {
blez(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, r2, rs);
beq(scratch, zero_reg, offset);
}
break;
// Unsigned comparison.
case Ugreater:
if (rt.imm32_ == 0) {
bgtz(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, r2, rs);
bne(scratch, zero_reg, offset);
}
break;
case Ugreater_equal:
if (rt.imm32_ == 0) {
bgez(rs, offset);
} else if (is_int16(rt.imm32_)) {
sltiu(scratch, rs, rt.imm32_);
beq(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
beq(scratch, zero_reg, offset);
}
break;
case Uless:
if (rt.imm32_ == 0) {
b(offset);
} else if (is_int16(rt.imm32_)) {
sltiu(scratch, rs, rt.imm32_);
bne(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
bne(scratch, zero_reg, offset);
}
break;
case Uless_equal:
if (rt.imm32_ == 0) {
b(offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, r2, rs);
beq(scratch, zero_reg, offset);
}
break;
default:
UNREACHABLE();
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
// We use branch_offset as an argument for the branch instructions to be sure
// it is called just before generating the branch instruction, as needed.
b(shifted_branch_offset(L, false));
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
int32_t offset;
Register r2 = no_reg;
Register scratch = at;
if (rt.is_reg()) {
r2 = rt.rm_;
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
switch (cond) {
case cc_always:
offset = shifted_branch_offset(L, false);
b(offset);
break;
case eq:
offset = shifted_branch_offset(L, false);
beq(rs, r2, offset);
break;
case ne:
offset = shifted_branch_offset(L, false);
bne(rs, r2, offset);
break;
// Signed comparison
case greater:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bgtz(rs, offset);
} else {
slt(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case greater_equal:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bgez(rs, offset);
} else {
slt(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
case less:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bltz(rs, offset);
} else {
slt(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case less_equal:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
blez(rs, offset);
} else {
slt(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
// Unsigned comparison.
case Ugreater:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bgtz(rs, offset);
} else {
sltu(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case Ugreater_equal:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
bgez(rs, offset);
} else {
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
case Uless:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
b(offset);
} else {
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case Uless_equal:
if (r2.is(zero_reg)) {
offset = shifted_branch_offset(L, false);
b(offset);
} else {
sltu(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
default:
UNREACHABLE();
}
} else {
// Be careful to always use shifted_branch_offset only just before the
// branch instruction, as the location will be remember for patching the
// target.
switch (cond) {
case cc_always:
offset = shifted_branch_offset(L, false);
b(offset);
break;
case eq:
r2 = scratch;
li(r2, rt);
offset = shifted_branch_offset(L, false);
beq(rs, r2, offset);
break;
case ne:
r2 = scratch;
li(r2, rt);
offset = shifted_branch_offset(L, false);
bne(rs, r2, offset);
break;
// Signed comparison
case greater:
if (rt.imm32_ == 0) {
offset = shifted_branch_offset(L, false);
bgtz(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case greater_equal:
if (rt.imm32_ == 0) {
offset = shifted_branch_offset(L, false);
bgez(rs, offset);
} else if (is_int16(rt.imm32_)) {
slti(scratch, rs, rt.imm32_);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
case less:
if (rt.imm32_ == 0) {
offset = shifted_branch_offset(L, false);
bltz(rs, offset);
} else if (is_int16(rt.imm32_)) {
slti(scratch, rs, rt.imm32_);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case less_equal:
if (rt.imm32_ == 0) {
offset = shifted_branch_offset(L, false);
blez(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
slt(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
// Unsigned comparison.
case Ugreater:
if (rt.imm32_ == 0) {
offset = shifted_branch_offset(L, false);
bgtz(rs, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case Ugreater_equal:
if (rt.imm32_ == 0) {
offset = shifted_branch_offset(L, false);
bgez(rs, offset);
} else if (is_int16(rt.imm32_)) {
sltiu(scratch, rs, rt.imm32_);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
case Uless:
if (rt.imm32_ == 0) {
offset = shifted_branch_offset(L, false);
b(offset);
} else if (is_int16(rt.imm32_)) {
sltiu(scratch, rs, rt.imm32_);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, rs, r2);
offset = shifted_branch_offset(L, false);
bne(scratch, zero_reg, offset);
}
break;
case Uless_equal:
if (rt.imm32_ == 0) {
offset = shifted_branch_offset(L, false);
b(offset);
} else {
r2 = scratch;
li(r2, rt);
sltu(scratch, r2, rs);
offset = shifted_branch_offset(L, false);
beq(scratch, zero_reg, offset);
}
break;
default:
UNREACHABLE();
}
}
// Check that offset could actually hold on an int16_t.
ASSERT(is_int16(offset));
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
// We need to use a bgezal or bltzal, but they can't be used directly with the
// slt instructions. We could use sub or add instead but we would miss overflow
// cases, so we keep slt and add an intermediate third instruction.
void MacroAssembler::BranchAndLink(int16_t offset,
BranchDelaySlot bdslot) {
bal(offset);
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
Register r2 = no_reg;
Register scratch = at;
if (rt.is_reg()) {
r2 = rt.rm_;
} else if (cond != cc_always) {
r2 = scratch;
li(r2, rt);
}
switch (cond) {
case cc_always:
bal(offset);
break;
case eq:
bne(rs, r2, 2);
nop();
bal(offset);
break;
case ne:
beq(rs, r2, 2);
nop();
bal(offset);
break;
// Signed comparison
case greater:
slt(scratch, r2, rs);
addiu(scratch, scratch, -1);
bgezal(scratch, offset);
break;
case greater_equal:
slt(scratch, rs, r2);
addiu(scratch, scratch, -1);
bltzal(scratch, offset);
break;
case less:
slt(scratch, rs, r2);
addiu(scratch, scratch, -1);
bgezal(scratch, offset);
break;
case less_equal:
slt(scratch, r2, rs);
addiu(scratch, scratch, -1);
bltzal(scratch, offset);
break;
// Unsigned comparison.
case Ugreater:
sltu(scratch, r2, rs);
addiu(scratch, scratch, -1);
bgezal(scratch, offset);
break;
case Ugreater_equal:
sltu(scratch, rs, r2);
addiu(scratch, scratch, -1);
bltzal(scratch, offset);
break;
case Uless:
sltu(scratch, rs, r2);
addiu(scratch, scratch, -1);
bgezal(scratch, offset);
break;
case Uless_equal:
sltu(scratch, r2, rs);
addiu(scratch, scratch, -1);
bltzal(scratch, offset);
break;
default:
UNREACHABLE();
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
bal(shifted_branch_offset(L, false));
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
const Operand& rt,
BranchDelaySlot bdslot) {
BRANCH_ARGS_CHECK(cond, rs, rt);
int32_t offset;
Register r2 = no_reg;
Register scratch = at;
if (rt.is_reg()) {
r2 = rt.rm_;
} else if (cond != cc_always) {
r2 = scratch;
li(r2, rt);
}
switch (cond) {
case cc_always:
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case eq:
bne(rs, r2, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
case ne:
beq(rs, r2, 2);
nop();
offset = shifted_branch_offset(L, false);
bal(offset);
break;
// Signed comparison
case greater:
slt(scratch, r2, rs);
addiu(scratch, scratch, -1);
offset = shifted_branch_offset(L, false);
bgezal(scratch, offset);
break;
case greater_equal:
slt(scratch, rs, r2);
addiu(scratch, scratch, -1);
offset = shifted_branch_offset(L, false);
bltzal(scratch, offset);
break;
case less:
slt(scratch, rs, r2);
addiu(scratch, scratch, -1);
offset = shifted_branch_offset(L, false);
bgezal(scratch, offset);
break;
case less_equal:
slt(scratch, r2, rs);
addiu(scratch, scratch, -1);
offset = shifted_branch_offset(L, false);
bltzal(scratch, offset);
break;
// Unsigned comparison.
case Ugreater:
sltu(scratch, r2, rs);
addiu(scratch, scratch, -1);
offset = shifted_branch_offset(L, false);
bgezal(scratch, offset);
break;
case Ugreater_equal:
sltu(scratch, rs, r2);
addiu(scratch, scratch, -1);
offset = shifted_branch_offset(L, false);
bltzal(scratch, offset);
break;
case Uless:
sltu(scratch, rs, r2);
addiu(scratch, scratch, -1);
offset = shifted_branch_offset(L, false);
bgezal(scratch, offset);
break;
case Uless_equal:
sltu(scratch, r2, rs);
addiu(scratch, scratch, -1);
offset = shifted_branch_offset(L, false);
bltzal(scratch, offset);
break;
default:
UNREACHABLE();
}
// Check that offset could actually hold on an int16_t.
ASSERT(is_int16(offset));
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Jump(const Operand& target, BranchDelaySlot bdslot) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (target.is_reg()) {
jr(target.rm());
} else {
if (!MustUseReg(target.rmode_)) {
j(target.imm32_);
} else {
li(t9, target);
jr(t9);
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Jump(const Operand& target,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bdslot) {
BlockTrampolinePoolScope block_trampoline_pool(this);
BRANCH_ARGS_CHECK(cond, rs, rt);
if (target.is_reg()) {
if (cond == cc_always) {
jr(target.rm());
} else {
Branch(2, NegateCondition(cond), rs, rt);
jr(target.rm());
}
} else { // Not register target.
if (!MustUseReg(target.rmode_)) {
if (cond == cc_always) {
j(target.imm32_);
} else {
Branch(2, NegateCondition(cond), rs, rt);
j(target.imm32_); // Will generate only one instruction.
}
} else { // MustUseReg(target)
li(t9, target);
if (cond == cc_always) {
jr(t9);
} else {
Branch(2, NegateCondition(cond), rs, rt);
jr(t9); // Will generate only one instruction.
}
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
// Note: To call gcc-compiled C code on mips, you must call thru t9.
void MacroAssembler::Call(const Operand& target, BranchDelaySlot bdslot) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (target.is_reg()) {
jalr(target.rm());
} else { // !target.is_reg()
if (!MustUseReg(target.rmode_)) {
jal(target.imm32_);
} else { // MustUseReg(target)
li(t9, target);
jalr(t9);
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
// Note: To call gcc-compiled C code on mips, you must call thru t9.
void MacroAssembler::Call(const Operand& target,
Condition cond, Register rs, const Operand& rt,
BranchDelaySlot bdslot) {
BlockTrampolinePoolScope block_trampoline_pool(this);
BRANCH_ARGS_CHECK(cond, rs, rt);
if (target.is_reg()) {
if (cond == cc_always) {
jalr(target.rm());
} else {
Branch(2, NegateCondition(cond), rs, rt);
jalr(target.rm());
}
} else { // !target.is_reg()
if (!MustUseReg(target.rmode_)) {
if (cond == cc_always) {
jal(target.imm32_);
} else {
Branch(2, NegateCondition(cond), rs, rt);
jal(target.imm32_); // Will generate only one instruction.
}
} else { // MustUseReg(target)
li(t9, target);
if (cond == cc_always) {
jalr(t9);
} else {
Branch(2, NegateCondition(cond), rs, rt);
jalr(t9); // Will generate only one instruction.
}
}
}
// Emit a nop in the branch delay slot if required.
if (bdslot == PROTECT)
nop();
}
void MacroAssembler::Drop(int count,
Condition cond,
Register reg,
const Operand& op) {
if (count <= 0) {
return;
}
Label skip;
if (cond != al) {
Branch(&skip, NegateCondition(cond), reg, op);
}
if (count > 0) {
addiu(sp, sp, count * kPointerSize);
}
if (cond != al) {
bind(&skip);
}
}
void MacroAssembler::DropAndRet(int drop,
Condition cond,
Register r1,
const Operand& r2) {
// This is a workaround to make sure only one branch instruction is
// generated. It relies on Drop and Ret not creating branches if
// cond == cc_always.
Label skip;
if (cond != cc_always) {
Branch(&skip, NegateCondition(cond), r1, r2);
}
Drop(drop);
Ret();
if (cond != cc_always) {
bind(&skip);
}
}
void MacroAssembler::Swap(Register reg1,
Register reg2,
Register scratch) {
if (scratch.is(no_reg)) {
Xor(reg1, reg1, Operand(reg2));
Xor(reg2, reg2, Operand(reg1));
Xor(reg1, reg1, Operand(reg2));
} else {
mov(scratch, reg1);
mov(reg1, reg2);
mov(reg2, scratch);
}
}
void MacroAssembler::Call(Label* target) {
BranchAndLink(target);
}
void MacroAssembler::Move(Register dst, Register src) {
if (!dst.is(src)) {
mov(dst, src);
}
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void MacroAssembler::DebugBreak() {
ASSERT(allow_stub_calls());
mov(a0, zero_reg);
li(a1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
CEntryStub ces(1);
Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
#endif // ENABLE_DEBUGGER_SUPPORT
// ---------------------------------------------------------------------------
// Exception handling
void MacroAssembler::PushTryHandler(CodeLocation try_location,
HandlerType type) {
// Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// The return address is passed in register ra.
if (try_location == IN_JAVASCRIPT) {
if (type == TRY_CATCH_HANDLER) {
li(t0, Operand(StackHandler::TRY_CATCH));
} else {
li(t0, Operand(StackHandler::TRY_FINALLY));
}
ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
&& StackHandlerConstants::kFPOffset == 2 * kPointerSize
&& StackHandlerConstants::kPCOffset == 3 * kPointerSize
&& StackHandlerConstants::kNextOffset == 0 * kPointerSize);
// Save the current handler as the next handler.
li(t2, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
lw(t1, MemOperand(t2));
addiu(sp, sp, -StackHandlerConstants::kSize);
sw(ra, MemOperand(sp, 12));
sw(fp, MemOperand(sp, 8));
sw(t0, MemOperand(sp, 4));
sw(t1, MemOperand(sp, 0));
// Link this handler as the new current one.
sw(sp, MemOperand(t2));
} else {
// Must preserve a0-a3, and s0 (argv).
ASSERT(try_location == IN_JS_ENTRY);
ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
&& StackHandlerConstants::kFPOffset == 2 * kPointerSize
&& StackHandlerConstants::kPCOffset == 3 * kPointerSize
&& StackHandlerConstants::kNextOffset == 0 * kPointerSize);
// The frame pointer does not point to a JS frame so we save NULL
// for fp. We expect the code throwing an exception to check fp
// before dereferencing it to restore the context.
li(t0, Operand(StackHandler::ENTRY));
// Save the current handler as the next handler.
li(t2, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
lw(t1, MemOperand(t2));
addiu(sp, sp, -StackHandlerConstants::kSize);
sw(ra, MemOperand(sp, 12));
sw(zero_reg, MemOperand(sp, 8));
sw(t0, MemOperand(sp, 4));
sw(t1, MemOperand(sp, 0));
// Link this handler as the new current one.
sw(sp, MemOperand(t2));
}
}
void MacroAssembler::PopTryHandler() {
ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
pop(a1);
Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
li(at, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
sw(a1, MemOperand(at));
}
void MacroAssembler::AllocateInNewSpace(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (FLAG_debug_code) {
// Trash the registers to simulate an allocation failure.
li(result, 0x7091);
li(scratch1, 0x7191);
li(scratch2, 0x7291);
}
jmp(gc_required);
return;
}
ASSERT(!result.is(scratch1));
ASSERT(!result.is(scratch2));
ASSERT(!scratch1.is(scratch2));
ASSERT(!scratch1.is(t9));
ASSERT(!scratch2.is(t9));
ASSERT(!result.is(t9));
// Make object size into bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
object_size *= kPointerSize;
}
ASSERT_EQ(0, object_size & kObjectAlignmentMask);
// Check relative positions of allocation top and limit addresses.
// ARM adds additional checks to make sure the ldm instruction can be
// used. On MIPS we don't have ldm so we don't need additional checks either.
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
intptr_t top =
reinterpret_cast<intptr_t>(new_space_allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
ASSERT((limit - top) == kPointerSize);
// Set up allocation top address and object size registers.
Register topaddr = scratch1;
Register obj_size_reg = scratch2;
li(topaddr, Operand(new_space_allocation_top));
li(obj_size_reg, Operand(object_size));
// This code stores a temporary value in t9.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into t9.
lw(result, MemOperand(topaddr));
lw(t9, MemOperand(topaddr, kPointerSize));
} else {
if (FLAG_debug_code) {
// Assert that result actually contains top on entry. t9 is used
// immediately below so this use of t9 does not cause difference with
// respect to register content between debug and release mode.
lw(t9, MemOperand(topaddr));
Check(eq, "Unexpected allocation top", result, Operand(t9));
}
// Load allocation limit into t9. Result already contains allocation top.
lw(t9, MemOperand(topaddr, limit - top));
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top.
Addu(scratch2, result, Operand(obj_size_reg));
Branch(gc_required, Ugreater, scratch2, Operand(t9));
sw(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
Addu(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::AllocateInNewSpace(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (FLAG_debug_code) {
// Trash the registers to simulate an allocation failure.
li(result, 0x7091);
li(scratch1, 0x7191);
li(scratch2, 0x7291);
}
jmp(gc_required);
return;
}
ASSERT(!result.is(scratch1));
ASSERT(!result.is(scratch2));
ASSERT(!scratch1.is(scratch2));
ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
// Check relative positions of allocation top and limit addresses.
// ARM adds additional checks to make sure the ldm instruction can be
// used. On MIPS we don't have ldm so we don't need additional checks either.
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
intptr_t top =
reinterpret_cast<intptr_t>(new_space_allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
ASSERT((limit - top) == kPointerSize);
// Set up allocation top address and object size registers.
Register topaddr = scratch1;
li(topaddr, Operand(new_space_allocation_top));
// This code stores a temporary value in t9.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into t9.
lw(result, MemOperand(topaddr));
lw(t9, MemOperand(topaddr, kPointerSize));
} else {
if (FLAG_debug_code) {
// Assert that result actually contains top on entry. t9 is used
// immediately below so this use of t9 does not cause difference with
// respect to register content between debug and release mode.
lw(t9, MemOperand(topaddr));
Check(eq, "Unexpected allocation top", result, Operand(t9));
}
// Load allocation limit into t9. Result already contains allocation top.
lw(t9, MemOperand(topaddr, limit - top));
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top. Object size may be in words so a shift is
// required to get the number of bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
sll(scratch2, object_size, kPointerSizeLog2);
Addu(scratch2, result, scratch2);
} else {
Addu(scratch2, result, Operand(object_size));
}
Branch(gc_required, Ugreater, scratch2, Operand(t9));
// Update allocation top. result temporarily holds the new top.
if (FLAG_debug_code) {
And(t9, scratch2, Operand(kObjectAlignmentMask));
Check(eq, "Unaligned allocation in new space", t9, Operand(zero_reg));
}
sw(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
Addu(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::UndoAllocationInNewSpace(Register object,
Register scratch) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Make sure the object has no tag before resetting top.
And(object, object, Operand(~kHeapObjectTagMask));
#ifdef DEBUG
// Check that the object un-allocated is below the current top.
li(scratch, Operand(new_space_allocation_top));
lw(scratch, MemOperand(scratch));
Check(less, "Undo allocation of non allocated memory",
object, Operand(scratch));
#endif
// Write the address of the object to un-allocate as the current top.
li(scratch, Operand(new_space_allocation_top));
sw(object, MemOperand(scratch));
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
sll(scratch1, length, 1); // Length in bytes, not chars.
addiu(scratch1, scratch1,
kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate two-byte string in new space.
AllocateInNewSpace(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result,
length,
Heap::kStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string
// while observing object alignment.
ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
ASSERT(kCharSize == 1);
addiu(scratch1, length, kObjectAlignmentMask + SeqAsciiString::kHeaderSize);
And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate ASCII string in new space.
AllocateInNewSpace(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result,
length,
Heap::kAsciiStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
AllocateInNewSpace(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kConsStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateAsciiConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
AllocateInNewSpace(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kConsAsciiStringMapRootIndex,
scratch1,
scratch2);
}
// Allocates a heap number or jumps to the label if the young space is full and
// a scavenge is needed.
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* need_gc) {
// Allocate an object in the heap for the heap number and tag it as a heap
// object.
AllocateInNewSpace(HeapNumber::kSize,
result,
scratch1,
scratch2,
need_gc,
TAG_OBJECT);
// Store heap number map in the allocated object.
AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
}
void MacroAssembler::AllocateHeapNumberWithValue(Register result,
FPURegister value,
Register scratch1,
Register scratch2,
Label* gc_required) {
LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
AllocateHeapNumber(result, scratch1, scratch2, t6, gc_required);
sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
}
// Copies a fixed number of fields of heap objects from src to dst.
void MacroAssembler::CopyFields(Register dst,
Register src,
RegList temps,
int field_count) {
ASSERT((temps & dst.bit()) == 0);
ASSERT((temps & src.bit()) == 0);
// Primitive implementation using only one temporary register.
Register tmp = no_reg;
// Find a temp register in temps list.
for (int i = 0; i < kNumRegisters; i++) {
if ((temps & (1 << i)) != 0) {
tmp.code_ = i;
break;
}
}
ASSERT(!tmp.is(no_reg));
for (int i = 0; i < field_count; i++) {
lw(tmp, FieldMemOperand(src, i * kPointerSize));
sw(tmp, FieldMemOperand(dst, i * kPointerSize));
}
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
bool is_heap_object) {
if (!is_heap_object) {
JumpIfSmi(obj, fail);
}
lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
li(at, Operand(map));
Branch(fail, ne, scratch, Operand(at));
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
bool is_heap_object) {
if (!is_heap_object) {
JumpIfSmi(obj, fail);
}
lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
LoadRoot(at, index);
Branch(fail, ne, scratch, Operand(at));
}
// -----------------------------------------------------------------------------
// JavaScript invokes
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
InvokeFlag flag,
PostCallGenerator* post_call_generator) {
bool definitely_matches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// a0: actual arguments count
// a1: function (passed through to callee)
// a2: expected arguments count
// a3: callee code entry
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
ASSERT(actual.is_immediate() || actual.reg().is(a0));
ASSERT(expected.is_immediate() || expected.reg().is(a2));
ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
li(a0, Operand(actual.immediate()));
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
li(a2, Operand(expected.immediate()));
}
}
} else {
if (actual.is_immediate()) {
Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
li(a0, Operand(actual.immediate()));
} else {
Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
}
}
if (!definitely_matches) {
if (!code_constant.is_null()) {
li(a3, Operand(code_constant));
addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
}
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
Call(adaptor, RelocInfo::CODE_TARGET);
if (post_call_generator != NULL) post_call_generator->Generate();
jmp(done);
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&regular_invoke);
}
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
PostCallGenerator* post_call_generator) {
Label done;
InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
post_call_generator);
if (flag == CALL_FUNCTION) {
Call(code);
} else {
ASSERT(flag == JUMP_FUNCTION);
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
void MacroAssembler::InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag) {
Label done;
InvokePrologue(expected, actual, code, no_reg, &done, flag);
if (flag == CALL_FUNCTION) {
Call(code, rmode);
} else {
Jump(code, rmode);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
PostCallGenerator* post_call_generator) {
// Contract with called JS functions requires that function is passed in a1.
ASSERT(function.is(a1));
Register expected_reg = a2;
Register code_reg = a3;
lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
lw(expected_reg,
FieldMemOperand(code_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
sra(expected_reg, expected_reg, kSmiTagSize);
lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
ParameterCount expected(expected_reg);
InvokeCode(code_reg, expected, actual, flag, post_call_generator);
}
void MacroAssembler::InvokeFunction(JSFunction* function,
const ParameterCount& actual,
InvokeFlag flag) {
ASSERT(function->is_compiled());
// Get the function and setup the context.
li(a1, Operand(Handle<JSFunction>(function)));
lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Invoke the cached code.
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
if (V8::UseCrankshaft()) {
UNIMPLEMENTED_MIPS();
} else {
InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag);
}
}
void MacroAssembler::IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail) {
lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
IsInstanceJSObjectType(map, scratch, fail);
}
void MacroAssembler::IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail) {
lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
Branch(fail, lt, scratch, Operand(FIRST_JS_OBJECT_TYPE));
Branch(fail, gt, scratch, Operand(LAST_JS_OBJECT_TYPE));
}
void MacroAssembler::IsObjectJSStringType(Register object,
Register scratch,
Label* fail) {
ASSERT(kNotStringTag != 0);
lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
And(scratch, scratch, Operand(kIsNotStringMask));
Branch(fail, ne, scratch, Operand(zero_reg));
}
// ---------------------------------------------------------------------------
// Support functions.
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss) {
// Check that the receiver isn't a smi.
JumpIfSmi(function, miss);
// Check that the function really is a function. Load map into result reg.
GetObjectType(function, result, scratch);
Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
// Make sure that the function has an instance prototype.
Label non_instance;
lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
Branch(&non_instance, ne, scratch, Operand(zero_reg));
// Get the prototype or initial map from the function.
lw(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
LoadRoot(t8, Heap::kTheHoleValueRootIndex);
Branch(miss, eq, result, Operand(t8));
// If the function does not have an initial map, we're done.
Label done;
GetObjectType(result, scratch, scratch);
Branch(&done, ne, scratch, Operand(MAP_TYPE));
// Get the prototype from the initial map.
lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
lw(result, FieldMemOperand(result, Map::kConstructorOffset));
// All done.
bind(&done);
}
void MacroAssembler::GetObjectType(Register object,
Register map,
Register type_reg) {
lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
}
// -----------------------------------------------------------------------------
// Runtime calls
void MacroAssembler::CallStub(CodeStub* stub, Condition cond,
Register r1, const Operand& r2) {
ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2);
}
void MacroAssembler::TailCallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs
Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::IllegalOperation(int num_arguments) {
if (num_arguments > 0) {
addiu(sp, sp, num_arguments * kPointerSize);
}
LoadRoot(v0, Heap::kUndefinedValueRootIndex);
}
void MacroAssembler::IndexFromHash(Register hash,
Register index) {
// If the hash field contains an array index pick it out. The assert checks
// that the constants for the maximum number of digits for an array index
// cached in the hash field and the number of bits reserved for it does not
// conflict.
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
// We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
// the low kHashShift bits.
STATIC_ASSERT(kSmiTag == 0);
Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
sll(index, hash, kSmiTagSize);
}
void MacroAssembler::ObjectToDoubleFPURegister(Register object,
FPURegister result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* not_number,
ObjectToDoubleFlags flags) {
Label done;
if ((flags & OBJECT_NOT_SMI) == 0) {
Label not_smi;
JumpIfNotSmi(object, &not_smi);
// Remove smi tag and convert to double.
sra(scratch1, object, kSmiTagSize);
mtc1(scratch1, result);
cvt_d_w(result, result);
Branch(&done);
bind(&not_smi);
}
// Check for heap number and load double value from it.
lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
Branch(not_number, ne, scratch1, Operand(heap_number_map));
if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
// If exponent is all ones the number is either a NaN or +/-Infinity.
Register exponent = scratch1;
Register mask_reg = scratch2;
lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
li(mask_reg, HeapNumber::kExponentMask);
And(exponent, exponent, mask_reg);
Branch(not_number, eq, exponent, Operand(mask_reg));
}
ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
bind(&done);
}
void MacroAssembler::SmiToDoubleFPURegister(Register smi,
FPURegister value,
Register scratch1) {
sra(scratch1, smi, kSmiTagSize);
mtc1(scratch1, value);
cvt_d_w(value, value);
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments) {
// All parameters are on the stack. v0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
return;
}
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
li(a0, num_arguments);
li(a1, Operand(ExternalReference(f, isolate())));
CEntryStub stub(1);
CallStub(&stub);
}
void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
const Runtime::Function* function = Runtime::FunctionForId(id);
li(a0, Operand(function->nargs));
li(a1, Operand(ExternalReference(function, isolate())));
CEntryStub stub(1);
stub.SaveDoubles();
CallStub(&stub);
}
void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
li(a0, Operand(num_arguments));
li(a1, Operand(ext));
CEntryStub stub(1);
CallStub(&stub);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
li(a0, Operand(num_arguments));
JumpToExternalReference(ext);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
li(a1, Operand(builtin));
CEntryStub stub(1);
Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeJSFlags flags,
PostCallGenerator* post_call_generator) {
GetBuiltinEntry(t9, id);
if (flags == CALL_JS) {
Call(t9);
if (post_call_generator != NULL) post_call_generator->Generate();
} else {
ASSERT(flags == JUMP_JS);
Jump(t9);
}
}
void MacroAssembler::GetBuiltinFunction(Register target,
Builtins::JavaScript id) {
// Load the builtins object into target register.
lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
// Load the JavaScript builtin function from the builtins object.
lw(target, FieldMemOperand(target,
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
ASSERT(!target.is(a1));
GetBuiltinFunction(a1, id);
// Load the code entry point from the builtins object.
lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch1, Operand(value));
li(scratch2, Operand(ExternalReference(counter)));
sw(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch2, Operand(ExternalReference(counter)));
lw(scratch1, MemOperand(scratch2));
Addu(scratch1, scratch1, Operand(value));
sw(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
li(scratch2, Operand(ExternalReference(counter)));
lw(scratch1, MemOperand(scratch2));
Subu(scratch1, scratch1, Operand(value));
sw(scratch1, MemOperand(scratch2));
}
}
// -----------------------------------------------------------------------------
// Debugging
void MacroAssembler::Assert(Condition cc, const char* msg,
Register rs, Operand rt) {
if (FLAG_debug_code)
Check(cc, msg, rs, rt);
}
void MacroAssembler::AssertRegisterIsRoot(Register reg,
Heap::RootListIndex index) {
if (FLAG_debug_code) {
LoadRoot(at, index);
Check(eq, "Register did not match expected root", reg, Operand(at));
}
}
void MacroAssembler::AssertFastElements(Register elements) {
if (FLAG_debug_code) {
ASSERT(!elements.is(at));
Label ok;
Push(elements);
lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
LoadRoot(at, Heap::kFixedArrayMapRootIndex);
Branch(&ok, eq, elements, Operand(at));
LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
Branch(&ok, eq, elements, Operand(at));
Abort("JSObject with fast elements map has slow elements");
bind(&ok);
Pop(elements);
}
}
void MacroAssembler::Check(Condition cc, const char* msg,
Register rs, Operand rt) {
Label L;
Branch(&L, cc, rs, rt);
Abort(msg);
// will not return here
bind(&L);
}
void MacroAssembler::Abort(const char* msg) {
Label abort_start;
bind(&abort_start);
// We want to pass the msg string like a smi to avoid GC
// problems, however msg is not guaranteed to be aligned
// properly. Instead, we pass an aligned pointer that is
// a proper v8 smi, but also pass the alignment difference
// from the real pointer as a smi.
intptr_t p1 = reinterpret_cast<intptr_t>(msg);
intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
#endif
// Disable stub call restrictions to always allow calls to abort.
AllowStubCallsScope allow_scope(this, true);
li(a0, Operand(p0));
Push(a0);
li(a0, Operand(Smi::FromInt(p1 - p0)));
Push(a0);
CallRuntime(Runtime::kAbort, 2);
// will not return here
if (is_trampoline_pool_blocked()) {
// If the calling code cares about the exact number of
// instructions generated, we insert padding here to keep the size
// of the Abort macro constant.
// Currently in debug mode with debug_code enabled the number of
// generated instructions is 14, so we use this as a maximum value.
static const int kExpectedAbortInstructions = 14;
int abort_instructions = InstructionsGeneratedSince(&abort_start);
ASSERT(abort_instructions <= kExpectedAbortInstructions);
while (abort_instructions++ < kExpectedAbortInstructions) {
nop();
}
}
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
lw(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX)));
// Load the function context (which is the incoming, outer context).
lw(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
for (int i = 1; i < context_chain_length; i++) {
lw(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
lw(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
}
// The context may be an intermediate context, not a function context.
lw(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
} else { // Slot is in the current function context.
// The context may be an intermediate context, not a function context.
lw(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX)));
}
}
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
lw(function, FieldMemOperand(function,
GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
lw(function, MemOperand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch) {
// Load the initial map. The global functions all have initial maps.
lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (FLAG_debug_code) {
Label ok, fail;
CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, false);
Branch(&ok);
bind(&fail);
Abort("Global functions must have initial map");
bind(&ok);
}
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
addiu(sp, sp, -5 * kPointerSize);
li(t8, Operand(Smi::FromInt(type)));
li(t9, Operand(CodeObject()));
sw(ra, MemOperand(sp, 4 * kPointerSize));
sw(fp, MemOperand(sp, 3 * kPointerSize));
sw(cp, MemOperand(sp, 2 * kPointerSize));
sw(t8, MemOperand(sp, 1 * kPointerSize));
sw(t9, MemOperand(sp, 0 * kPointerSize));
addiu(fp, sp, 3 * kPointerSize);
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
mov(sp, fp);
lw(fp, MemOperand(sp, 0 * kPointerSize));
lw(ra, MemOperand(sp, 1 * kPointerSize));
addiu(sp, sp, 2 * kPointerSize);
}
void MacroAssembler::EnterExitFrame(Register hold_argc,
Register hold_argv,
Register hold_function,
bool save_doubles) {
// a0 is argc.
sll(t8, a0, kPointerSizeLog2);
addu(hold_argv, sp, t8);
addiu(hold_argv, hold_argv, -kPointerSize);
// Compute callee's stack pointer before making changes and save it as
// t9 register so that it is restored as sp register on exit, thereby
// popping the args.
// t9 = sp + kPointerSize * #args
addu(t9, sp, t8);
// Compute the argv pointer and keep it in a callee-saved register.
// This only seems to be needed for crankshaft and may cause problems
// so it's disabled for now.
// Subu(s6, t9, Operand(kPointerSize));
// Align the stack at this point.
AlignStack(0);
// Save registers.
addiu(sp, sp, -12);
sw(t9, MemOperand(sp, 8));
sw(ra, MemOperand(sp, 4));
sw(fp, MemOperand(sp, 0));
mov(fp, sp); // Setup new frame pointer.
li(t8, Operand(CodeObject()));
Push(t8); // Accessed from ExitFrame::code_slot.
// Save the frame pointer and the context in top.
li(t8, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
sw(fp, MemOperand(t8));
li(t8, Operand(ExternalReference(Isolate::k_context_address, isolate())));
sw(cp, MemOperand(t8));
// Setup argc and the builtin function in callee-saved registers.
mov(hold_argc, a0);
mov(hold_function, a1);
// Optionally save all double registers.
if (save_doubles) {
#ifdef DEBUG
int frame_alignment = ActivationFrameAlignment();
#endif
// The stack alignment code above made sp unaligned, so add space for one
// more double register and use aligned addresses.
ASSERT(kDoubleSize == frame_alignment);
// Mark the frame as containing doubles by pushing a non-valid return
// address, i.e. 0.
ASSERT(ExitFrameConstants::kMarkerOffset == -2 * kPointerSize);
push(zero_reg); // Marker and alignment word.
int space = FPURegister::kNumRegisters * kDoubleSize + kPointerSize;
Subu(sp, sp, Operand(space));
// Remember: we only need to save every 2nd double FPU value.
for (int i = 0; i < FPURegister::kNumRegisters; i+=2) {
FPURegister reg = FPURegister::from_code(i);
sdc1(reg, MemOperand(sp, i * kDoubleSize + kPointerSize));
}
// Note that f0 will be accessible at fp - 2*kPointerSize -
// FPURegister::kNumRegisters * kDoubleSize, since the code slot and the
// alignment word were pushed after the fp.
}
}
void MacroAssembler::LeaveExitFrame(bool save_doubles) {
// Optionally restore all double registers.
if (save_doubles) {
// TODO(regis): Use vldrm instruction.
// Remember: we only need to restore every 2nd double FPU value.
for (int i = 0; i < FPURegister::kNumRegisters; i+=2) {
FPURegister reg = FPURegister::from_code(i);
// Register f30-f31 is just below the marker.
const int offset = ExitFrameConstants::kMarkerOffset;
ldc1(reg, MemOperand(fp,
(i - FPURegister::kNumRegisters) * kDoubleSize + offset));
}
}
// Clear top frame.
li(t8, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
sw(zero_reg, MemOperand(t8));
// Restore current context from top and clear it in debug mode.
li(t8, Operand(ExternalReference(Isolate::k_context_address, isolate())));
lw(cp, MemOperand(t8));
#ifdef DEBUG
sw(a3, MemOperand(t8));
#endif
// Pop the arguments, restore registers, and return.
mov(sp, fp); // Respect ABI stack constraint.
lw(fp, MemOperand(sp, 0));
lw(ra, MemOperand(sp, 4));
lw(sp, MemOperand(sp, 8));
jr(ra);
nop(); // Branch delay slot nop.
}
void MacroAssembler::InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2) {
sll(scratch1, length, kSmiTagSize);
LoadRoot(scratch2, map_index);
sw(scratch1, FieldMemOperand(string, String::kLengthOffset));
li(scratch1, Operand(String::kEmptyHashField));
sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
}
int MacroAssembler::ActivationFrameAlignment() {
#if defined(V8_HOST_ARCH_MIPS)
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one Mips
// platform for another Mips platform with a different alignment.
return OS::ActivationFrameAlignment();
#else // defined(V8_HOST_ARCH_MIPS)
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return FLAG_sim_stack_alignment;
#endif // defined(V8_HOST_ARCH_MIPS)
}
void MacroAssembler::AlignStack(int offset) {
// On MIPS an offset of 0 aligns to 0 modulo 8 bytes,
// and an offset of 1 aligns to 4 modulo 8 bytes.
#if defined(V8_HOST_ARCH_MIPS)
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one MIPS
// platform for another MIPS platform with a different alignment.
int activation_frame_alignment = OS::ActivationFrameAlignment();
#else // defined(V8_HOST_ARCH_MIPS)
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so we will always align at
// this point here.
int activation_frame_alignment = 2 * kPointerSize;
#endif // defined(V8_HOST_ARCH_MIPS)
if (activation_frame_alignment != kPointerSize) {
// This code needs to be made more general if this assert doesn't hold.
ASSERT(activation_frame_alignment == 2 * kPointerSize);
if (offset == 0) {
andi(t8, sp, activation_frame_alignment - 1);
Push(zero_reg, eq, t8, zero_reg);
} else {
andi(t8, sp, activation_frame_alignment - 1);
addiu(t8, t8, -4);
Push(zero_reg, eq, t8, zero_reg);
}
}
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
Register reg,
Register scratch,
Label* not_power_of_two_or_zero) {
Subu(scratch, reg, Operand(1));
Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
scratch, Operand(zero_reg));
and_(at, scratch, reg); // In the delay slot.
Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
}
void MacroAssembler::JumpIfNotBothSmi(Register reg1,
Register reg2,
Label* on_not_both_smi) {
STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagMask);
or_(at, reg1, reg2);
andi(at, at, kSmiTagMask);
Branch(on_not_both_smi, ne, at, Operand(zero_reg));
}
void MacroAssembler::JumpIfEitherSmi(Register reg1,
Register reg2,
Label* on_either_smi) {
STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagMask);
// Both Smi tags must be 1 (not Smi).
and_(at, reg1, reg2);
andi(at, at, kSmiTagMask);
Branch(on_either_smi, eq, at, Operand(zero_reg));
}
void MacroAssembler::AbortIfSmi(Register object) {
STATIC_ASSERT(kSmiTag == 0);
andi(at, object, kSmiTagMask);
Assert(ne, "Operand is a smi", at, Operand(zero_reg));
}
void MacroAssembler::AbortIfNotSmi(Register object) {
STATIC_ASSERT(kSmiTag == 0);
andi(at, object, kSmiTagMask);
Assert(eq, "Operand is a smi", at, Operand(zero_reg));
}
void MacroAssembler::AbortIfNotRootValue(Register src,
Heap::RootListIndex root_value_index,
const char* message) {
ASSERT(!src.is(at));
LoadRoot(at, root_value_index);
Assert(eq, message, src, Operand(at));
}
void MacroAssembler::JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number) {
lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
}
void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Test that both first and second are sequential ASCII strings.
// Assume that they are non-smis.
lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
scratch2,
scratch1,
scratch2,
failure);
}
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that neither is a smi.
STATIC_ASSERT(kSmiTag == 0);
And(scratch1, first, Operand(second));
And(scratch1, scratch1, Operand(kSmiTagMask));
Branch(failure, eq, scratch1, Operand(zero_reg));
JumpIfNonSmisNotBothSequentialAsciiStrings(first,
second,
scratch1,
scratch2,
failure);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
int kFlatAsciiStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
int kFlatAsciiStringTag = ASCII_STRING_TYPE;
ASSERT(kFlatAsciiStringTag <= 0xffff); // Ensure this fits 16-bit immed.
andi(scratch1, first, kFlatAsciiStringMask);
Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag));
andi(scratch2, second, kFlatAsciiStringMask);
Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag));
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
Register scratch,
Label* failure) {
int kFlatAsciiStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
int kFlatAsciiStringTag = ASCII_STRING_TYPE;
And(scratch, type, Operand(kFlatAsciiStringMask));
Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag));
}
static const int kRegisterPassedArguments = 4;
void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
int frame_alignment = ActivationFrameAlignment();
// Reserve space for Isolate address which is always passed as last parameter
num_arguments += 1;
// Up to four simple arguments are passed in registers a0..a3.
// Those four arguments must have reserved argument slots on the stack for
// mips, even though those argument slots are not normally used.
// Remaining arguments are pushed on the stack, above (higher address than)
// the argument slots.
ASSERT(StandardFrameConstants::kCArgsSlotsSize % kPointerSize == 0);
int stack_passed_arguments = ((num_arguments <= kRegisterPassedArguments) ?
0 : num_arguments - kRegisterPassedArguments) +
(StandardFrameConstants::kCArgsSlotsSize /
kPointerSize);
if (frame_alignment > kPointerSize) {
// Make stack end at alignment and make room for num_arguments - 4 words
// and the original value of sp.
mov(scratch, sp);
Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
ASSERT(IsPowerOf2(frame_alignment));
And(sp, sp, Operand(-frame_alignment));
sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
CallCFunctionHelper(no_reg, function, at, num_arguments);
}
void MacroAssembler::CallCFunction(Register function,
Register scratch,
int num_arguments) {
CallCFunctionHelper(function,
ExternalReference::the_hole_value_location(isolate()),
scratch,
num_arguments);
}
void MacroAssembler::CallCFunctionHelper(Register function,
ExternalReference function_reference,
Register scratch,
int num_arguments) {
// Push Isolate address as the last argument.
if (num_arguments < kRegisterPassedArguments) {
Register arg_to_reg[] = {a0, a1, a2, a3};
Register r = arg_to_reg[num_arguments];
li(r, Operand(ExternalReference::isolate_address()));
} else {
int stack_passed_arguments = num_arguments - kRegisterPassedArguments +
(StandardFrameConstants::kCArgsSlotsSize /
kPointerSize);
// Push Isolate address on the stack after the arguments.
li(scratch, Operand(ExternalReference::isolate_address()));
sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
}
num_arguments += 1;
// Make sure that the stack is aligned before calling a C function unless
// running in the simulator. The simulator has its own alignment check which
// provides more information.
// The argument stots are presumed to have been set up by
// PrepareCallCFunction. The C function must be called via t9, for mips ABI.
#if defined(V8_HOST_ARCH_MIPS)
if (emit_debug_code()) {
int frame_alignment = OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
ASSERT(IsPowerOf2(frame_alignment));
Label alignment_as_expected;
And(at, sp, Operand(frame_alignment_mask));
Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
// Don't use Check here, as it will call Runtime_Abort possibly
// re-entering here.
stop("Unexpected alignment in CallCFunction");
bind(&alignment_as_expected);
}
}
#endif // V8_HOST_ARCH_MIPS
// Just call directly. The function called cannot cause a GC, or
// allow preemption, so the return address in the link register
// stays correct.
if (!function.is(t9)) {
mov(t9, function);
function = t9;
}
if (function.is(no_reg)) {
li(t9, Operand(function_reference));
function = t9;
}
Call(function);
ASSERT(StandardFrameConstants::kCArgsSlotsSize % kPointerSize == 0);
int stack_passed_arguments = ((num_arguments <= kRegisterPassedArguments) ?
0 : num_arguments - kRegisterPassedArguments) +
(StandardFrameConstants::kCArgsSlotsSize /
kPointerSize);
if (OS::ActivationFrameAlignment() > kPointerSize) {
lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
}
}
#undef BRANCH_ARGS_CHECK
#ifdef ENABLE_DEBUGGER_SUPPORT
CodePatcher::CodePatcher(byte* address, int instructions)
: address_(address),
instructions_(instructions),
size_(instructions * Assembler::kInstrSize),
masm_(address, size_ + Assembler::kGap) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
CPU::FlushICache(address_, size_);
// Check that the code was patched as expected.
ASSERT(masm_.pc_ == address_ + size_);
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void CodePatcher::Emit(Instr x) {
masm()->emit(x);
}
void CodePatcher::Emit(Address addr) {
masm()->emit(reinterpret_cast<Instr>(addr));
}
#endif // ENABLE_DEBUGGER_SUPPORT
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS