blob: 60b97d229c555a9a64d0368623c2cb34f7b084b5 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Features shared by parsing and pre-parsing scanners.
#ifndef V8_SCANNER_BASE_H_
#define V8_SCANNER_BASE_H_
#include "globals.h"
#include "checks.h"
#include "allocation.h"
#include "token.h"
#include "unicode-inl.h"
#include "char-predicates.h"
#include "utils.h"
#include "list-inl.h"
namespace v8 {
namespace internal {
// Returns the value (0 .. 15) of a hexadecimal character c.
// If c is not a legal hexadecimal character, returns a value < 0.
inline int HexValue(uc32 c) {
c -= '0';
if (static_cast<unsigned>(c) <= 9) return c;
c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
if (static_cast<unsigned>(c) <= 5) return c + 10;
return -1;
}
// ---------------------------------------------------------------------
// Buffered stream of characters, using an internal UC16 buffer.
class UC16CharacterStream {
public:
UC16CharacterStream() : pos_(0) { }
virtual ~UC16CharacterStream() { }
// Returns and advances past the next UC16 character in the input
// stream. If there are no more characters, it returns a negative
// value.
inline uc32 Advance() {
if (buffer_cursor_ < buffer_end_ || ReadBlock()) {
pos_++;
return static_cast<uc32>(*(buffer_cursor_++));
}
// Note: currently the following increment is necessary to avoid a
// parser problem! The scanner treats the final kEndOfInput as
// a character with a position, and does math relative to that
// position.
pos_++;
return kEndOfInput;
}
// Return the current position in the character stream.
// Starts at zero.
inline unsigned pos() const { return pos_; }
// Skips forward past the next character_count UC16 characters
// in the input, or until the end of input if that comes sooner.
// Returns the number of characters actually skipped. If less
// than character_count,
inline unsigned SeekForward(unsigned character_count) {
unsigned buffered_chars =
static_cast<unsigned>(buffer_end_ - buffer_cursor_);
if (character_count <= buffered_chars) {
buffer_cursor_ += character_count;
pos_ += character_count;
return character_count;
}
return SlowSeekForward(character_count);
}
// Pushes back the most recently read UC16 character (or negative
// value if at end of input), i.e., the value returned by the most recent
// call to Advance.
// Must not be used right after calling SeekForward.
virtual void PushBack(int32_t character) = 0;
protected:
static const uc32 kEndOfInput = -1;
// Ensures that the buffer_cursor_ points to the character at
// position pos_ of the input, if possible. If the position
// is at or after the end of the input, return false. If there
// are more characters available, return true.
virtual bool ReadBlock() = 0;
virtual unsigned SlowSeekForward(unsigned character_count) = 0;
const uc16* buffer_cursor_;
const uc16* buffer_end_;
unsigned pos_;
};
class UnicodeCache {
// ---------------------------------------------------------------------
// Caching predicates used by scanners.
public:
UnicodeCache() {}
typedef unibrow::Utf8InputBuffer<1024> Utf8Decoder;
StaticResource<Utf8Decoder>* utf8_decoder() {
return &utf8_decoder_;
}
bool IsIdentifierStart(unibrow::uchar c) { return kIsIdentifierStart.get(c); }
bool IsIdentifierPart(unibrow::uchar c) { return kIsIdentifierPart.get(c); }
bool IsLineTerminator(unibrow::uchar c) { return kIsLineTerminator.get(c); }
bool IsWhiteSpace(unibrow::uchar c) { return kIsWhiteSpace.get(c); }
private:
unibrow::Predicate<IdentifierStart, 128> kIsIdentifierStart;
unibrow::Predicate<IdentifierPart, 128> kIsIdentifierPart;
unibrow::Predicate<unibrow::LineTerminator, 128> kIsLineTerminator;
unibrow::Predicate<unibrow::WhiteSpace, 128> kIsWhiteSpace;
StaticResource<Utf8Decoder> utf8_decoder_;
DISALLOW_COPY_AND_ASSIGN(UnicodeCache);
};
// ----------------------------------------------------------------------------
// LiteralBuffer - Collector of chars of literals.
class LiteralBuffer {
public:
LiteralBuffer() : is_ascii_(true), position_(0), backing_store_() { }
~LiteralBuffer() {
if (backing_store_.length() > 0) {
backing_store_.Dispose();
}
}
inline void AddChar(uc16 character) {
if (position_ >= backing_store_.length()) ExpandBuffer();
if (is_ascii_) {
if (character < kMaxAsciiCharCodeU) {
backing_store_[position_] = static_cast<byte>(character);
position_ += kASCIISize;
return;
}
ConvertToUC16();
}
*reinterpret_cast<uc16*>(&backing_store_[position_]) = character;
position_ += kUC16Size;
}
bool is_ascii() { return is_ascii_; }
Vector<const uc16> uc16_literal() {
ASSERT(!is_ascii_);
ASSERT((position_ & 0x1) == 0);
return Vector<const uc16>(
reinterpret_cast<const uc16*>(backing_store_.start()),
position_ >> 1);
}
Vector<const char> ascii_literal() {
ASSERT(is_ascii_);
return Vector<const char>(
reinterpret_cast<const char*>(backing_store_.start()),
position_);
}
int length() {
return is_ascii_ ? position_ : (position_ >> 1);
}
void Reset() {
position_ = 0;
is_ascii_ = true;
}
private:
static const int kInitialCapacity = 16;
static const int kGrowthFactory = 4;
static const int kMinConversionSlack = 256;
static const int kMaxGrowth = 1 * MB;
inline int NewCapacity(int min_capacity) {
int capacity = Max(min_capacity, backing_store_.length());
int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth);
return new_capacity;
}
void ExpandBuffer() {
Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity));
memcpy(new_store.start(), backing_store_.start(), position_);
backing_store_.Dispose();
backing_store_ = new_store;
}
void ConvertToUC16() {
ASSERT(is_ascii_);
Vector<byte> new_store;
int new_content_size = position_ * kUC16Size;
if (new_content_size >= backing_store_.length()) {
// Ensure room for all currently read characters as UC16 as well
// as the character about to be stored.
new_store = Vector<byte>::New(NewCapacity(new_content_size));
} else {
new_store = backing_store_;
}
char* src = reinterpret_cast<char*>(backing_store_.start());
uc16* dst = reinterpret_cast<uc16*>(new_store.start());
for (int i = position_ - 1; i >= 0; i--) {
dst[i] = src[i];
}
if (new_store.start() != backing_store_.start()) {
backing_store_.Dispose();
backing_store_ = new_store;
}
position_ = new_content_size;
is_ascii_ = false;
}
bool is_ascii_;
int position_;
Vector<byte> backing_store_;
DISALLOW_COPY_AND_ASSIGN(LiteralBuffer);
};
// ----------------------------------------------------------------------------
// Scanner base-class.
// Generic functionality used by both JSON and JavaScript scanners.
class Scanner {
public:
// -1 is outside of the range of any real source code.
static const int kNoOctalLocation = -1;
typedef unibrow::Utf8InputBuffer<1024> Utf8Decoder;
class LiteralScope {
public:
explicit LiteralScope(Scanner* self);
~LiteralScope();
void Complete();
private:
Scanner* scanner_;
bool complete_;
};
explicit Scanner(UnicodeCache* scanner_contants);
// Returns the current token again.
Token::Value current_token() { return current_.token; }
// One token look-ahead (past the token returned by Next()).
Token::Value peek() const { return next_.token; }
struct Location {
Location(int b, int e) : beg_pos(b), end_pos(e) { }
Location() : beg_pos(0), end_pos(0) { }
bool IsValid() const {
return beg_pos >= 0 && end_pos >= beg_pos;
}
int beg_pos;
int end_pos;
};
static Location NoLocation() {
return Location(-1, -1);
}
// Returns the location information for the current token
// (the token returned by Next()).
Location location() const { return current_.location; }
Location peek_location() const { return next_.location; }
// Returns the location of the last seen octal literal
int octal_position() const { return octal_pos_; }
void clear_octal_position() { octal_pos_ = -1; }
// Returns the literal string, if any, for the current token (the
// token returned by Next()). The string is 0-terminated and in
// UTF-8 format; they may contain 0-characters. Literal strings are
// collected for identifiers, strings, and numbers.
// These functions only give the correct result if the literal
// was scanned between calls to StartLiteral() and TerminateLiteral().
bool is_literal_ascii() {
ASSERT_NOT_NULL(current_.literal_chars);
return current_.literal_chars->is_ascii();
}
Vector<const char> literal_ascii_string() {
ASSERT_NOT_NULL(current_.literal_chars);
return current_.literal_chars->ascii_literal();
}
Vector<const uc16> literal_uc16_string() {
ASSERT_NOT_NULL(current_.literal_chars);
return current_.literal_chars->uc16_literal();
}
int literal_length() const {
ASSERT_NOT_NULL(current_.literal_chars);
return current_.literal_chars->length();
}
// Returns the literal string for the next token (the token that
// would be returned if Next() were called).
bool is_next_literal_ascii() {
ASSERT_NOT_NULL(next_.literal_chars);
return next_.literal_chars->is_ascii();
}
Vector<const char> next_literal_ascii_string() {
ASSERT_NOT_NULL(next_.literal_chars);
return next_.literal_chars->ascii_literal();
}
Vector<const uc16> next_literal_uc16_string() {
ASSERT_NOT_NULL(next_.literal_chars);
return next_.literal_chars->uc16_literal();
}
int next_literal_length() const {
ASSERT_NOT_NULL(next_.literal_chars);
return next_.literal_chars->length();
}
static const int kCharacterLookaheadBufferSize = 1;
protected:
// The current and look-ahead token.
struct TokenDesc {
Token::Value token;
Location location;
LiteralBuffer* literal_chars;
};
// Call this after setting source_ to the input.
void Init() {
// Set c0_ (one character ahead)
ASSERT(kCharacterLookaheadBufferSize == 1);
Advance();
// Initialize current_ to not refer to a literal.
current_.literal_chars = NULL;
}
// Literal buffer support
inline void StartLiteral() {
LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer1_) ?
&literal_buffer2_ : &literal_buffer1_;
free_buffer->Reset();
next_.literal_chars = free_buffer;
}
inline void AddLiteralChar(uc32 c) {
ASSERT_NOT_NULL(next_.literal_chars);
next_.literal_chars->AddChar(c);
}
// Complete scanning of a literal.
inline void TerminateLiteral() {
// Does nothing in the current implementation.
}
// Stops scanning of a literal and drop the collected characters,
// e.g., due to an encountered error.
inline void DropLiteral() {
next_.literal_chars = NULL;
}
inline void AddLiteralCharAdvance() {
AddLiteralChar(c0_);
Advance();
}
// Low-level scanning support.
void Advance() { c0_ = source_->Advance(); }
void PushBack(uc32 ch) {
source_->PushBack(c0_);
c0_ = ch;
}
inline Token::Value Select(Token::Value tok) {
Advance();
return tok;
}
inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
Advance();
if (c0_ == next) {
Advance();
return then;
} else {
return else_;
}
}
uc32 ScanHexEscape(uc32 c, int length);
// Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
uc32 ScanOctalEscape(uc32 c, int length);
// Return the current source position.
int source_pos() {
return source_->pos() - kCharacterLookaheadBufferSize;
}
UnicodeCache* unicode_cache_;
// Buffers collecting literal strings, numbers, etc.
LiteralBuffer literal_buffer1_;
LiteralBuffer literal_buffer2_;
TokenDesc current_; // desc for current token (as returned by Next())
TokenDesc next_; // desc for next token (one token look-ahead)
// Input stream. Must be initialized to an UC16CharacterStream.
UC16CharacterStream* source_;
// Start position of the octal literal last scanned.
int octal_pos_;
// One Unicode character look-ahead; c0_ < 0 at the end of the input.
uc32 c0_;
};
// ----------------------------------------------------------------------------
// JavaScriptScanner - base logic for JavaScript scanning.
class JavaScriptScanner : public Scanner {
public:
// A LiteralScope that disables recording of some types of JavaScript
// literals. If the scanner is configured to not record the specific
// type of literal, the scope will not call StartLiteral.
class LiteralScope {
public:
explicit LiteralScope(JavaScriptScanner* self)
: scanner_(self), complete_(false) {
scanner_->StartLiteral();
}
~LiteralScope() {
if (!complete_) scanner_->DropLiteral();
}
void Complete() {
scanner_->TerminateLiteral();
complete_ = true;
}
private:
JavaScriptScanner* scanner_;
bool complete_;
};
explicit JavaScriptScanner(UnicodeCache* scanner_contants);
// Returns the next token.
Token::Value Next();
// Returns true if there was a line terminator before the peek'ed token.
bool has_line_terminator_before_next() const {
return has_line_terminator_before_next_;
}
// Scans the input as a regular expression pattern, previous
// character(s) must be /(=). Returns true if a pattern is scanned.
bool ScanRegExpPattern(bool seen_equal);
// Returns true if regexp flags are scanned (always since flags can
// be empty).
bool ScanRegExpFlags();
// Tells whether the buffer contains an identifier (no escapes).
// Used for checking if a property name is an identifier.
static bool IsIdentifier(unibrow::CharacterStream* buffer);
// Seek forward to the given position. This operation does not
// work in general, for instance when there are pushed back
// characters, but works for seeking forward until simple delimiter
// tokens, which is what it is used for.
void SeekForward(int pos);
protected:
bool SkipWhiteSpace();
Token::Value SkipSingleLineComment();
Token::Value SkipMultiLineComment();
// Scans a single JavaScript token.
void Scan();
void ScanDecimalDigits();
Token::Value ScanNumber(bool seen_period);
Token::Value ScanIdentifierOrKeyword();
Token::Value ScanIdentifierSuffix(LiteralScope* literal);
void ScanEscape();
Token::Value ScanString();
// Scans a possible HTML comment -- begins with '<!'.
Token::Value ScanHtmlComment();
// Decodes a unicode escape-sequence which is part of an identifier.
// If the escape sequence cannot be decoded the result is kBadChar.
uc32 ScanIdentifierUnicodeEscape();
bool has_line_terminator_before_next_;
};
// ----------------------------------------------------------------------------
// Keyword matching state machine.
class KeywordMatcher {
// Incrementally recognize keywords.
//
// Recognized keywords:
// break case catch const* continue debugger* default delete do else
// finally false for function if in instanceof native* new null
// return switch this throw true try typeof var void while with
//
// *: Actually "future reserved keywords". These are the only ones we
// recognize, the remaining are allowed as identifiers.
// In ES5 strict mode, we should disallow all reserved keywords.
public:
KeywordMatcher()
: state_(INITIAL),
token_(Token::IDENTIFIER),
keyword_(NULL),
counter_(0),
keyword_token_(Token::ILLEGAL) {}
Token::Value token() { return token_; }
inline bool AddChar(unibrow::uchar input) {
if (state_ != UNMATCHABLE) {
Step(input);
}
return state_ != UNMATCHABLE;
}
void Fail() {
token_ = Token::IDENTIFIER;
state_ = UNMATCHABLE;
}
private:
enum State {
UNMATCHABLE,
INITIAL,
KEYWORD_PREFIX,
KEYWORD_MATCHED,
C,
CA,
CO,
CON,
D,
DE,
E,
EX,
F,
I,
IM,
IMP,
IN,
N,
P,
PR,
S,
T,
TH,
TR,
V,
W
};
struct FirstState {
const char* keyword;
State state;
Token::Value token;
};
// Range of possible first characters of a keyword.
static const unsigned int kFirstCharRangeMin = 'b';
static const unsigned int kFirstCharRangeMax = 'y';
static const unsigned int kFirstCharRangeLength =
kFirstCharRangeMax - kFirstCharRangeMin + 1;
// State map for first keyword character range.
static FirstState first_states_[kFirstCharRangeLength];
// If input equals keyword's character at position, continue matching keyword
// from that position.
inline bool MatchKeywordStart(unibrow::uchar input,
const char* keyword,
int position,
Token::Value token_if_match) {
if (input != static_cast<unibrow::uchar>(keyword[position])) {
return false;
}
state_ = KEYWORD_PREFIX;
this->keyword_ = keyword;
this->counter_ = position + 1;
this->keyword_token_ = token_if_match;
return true;
}
// If input equals match character, transition to new state and return true.
inline bool MatchState(unibrow::uchar input, char match, State new_state) {
if (input != static_cast<unibrow::uchar>(match)) {
return false;
}
state_ = new_state;
return true;
}
inline bool MatchKeyword(unibrow::uchar input,
char match,
State new_state,
Token::Value keyword_token) {
if (input != static_cast<unibrow::uchar>(match)) {
return false;
}
state_ = new_state;
token_ = keyword_token;
return true;
}
void Step(unibrow::uchar input);
// Current state.
State state_;
// Token for currently added characters.
Token::Value token_;
// Matching a specific keyword string (there is only one possible valid
// keyword with the current prefix).
const char* keyword_;
int counter_;
Token::Value keyword_token_;
};
} } // namespace v8::internal
#endif // V8_SCANNER_BASE_H_