blob: 0c6a7f7438de5136f0fd7e437b7a4fd665efc7cf [file] [log] [blame]
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "arguments.h"
#include "gdb-jit.h"
#include "ic-inl.h"
#include "stub-cache.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------
// StubCache implementation.
StubCache::StubCache(Isolate* isolate) : isolate_(isolate) {
ASSERT(isolate == Isolate::Current());
memset(primary_, 0, sizeof(primary_[0]) * StubCache::kPrimaryTableSize);
memset(secondary_, 0, sizeof(secondary_[0]) * StubCache::kSecondaryTableSize);
}
void StubCache::Initialize(bool create_heap_objects) {
ASSERT(IsPowerOf2(kPrimaryTableSize));
ASSERT(IsPowerOf2(kSecondaryTableSize));
if (create_heap_objects) {
HandleScope scope;
Clear();
}
}
Code* StubCache::Set(String* name, Map* map, Code* code) {
// Get the flags from the code.
Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
// Validate that the name does not move on scavenge, and that we
// can use identity checks instead of string equality checks.
ASSERT(!heap()->InNewSpace(name));
ASSERT(name->IsSymbol());
// The state bits are not important to the hash function because
// the stub cache only contains monomorphic stubs. Make sure that
// the bits are the least significant so they will be the ones
// masked out.
ASSERT(Code::ExtractICStateFromFlags(flags) == MONOMORPHIC);
ASSERT(Code::kFlagsICStateShift == 0);
// Make sure that the code type is not included in the hash.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Compute the primary entry.
int primary_offset = PrimaryOffset(name, flags, map);
Entry* primary = entry(primary_, primary_offset);
Code* hit = primary->value;
// If the primary entry has useful data in it, we retire it to the
// secondary cache before overwriting it.
if (hit != isolate_->builtins()->builtin(Builtins::kIllegal)) {
Code::Flags primary_flags = Code::RemoveTypeFromFlags(hit->flags());
int secondary_offset =
SecondaryOffset(primary->key, primary_flags, primary_offset);
Entry* secondary = entry(secondary_, secondary_offset);
*secondary = *primary;
}
// Update primary cache.
primary->key = name;
primary->value = code;
return code;
}
MaybeObject* StubCache::ComputeLoadNonexistent(String* name,
JSObject* receiver) {
ASSERT(receiver->IsGlobalObject() || receiver->HasFastProperties());
// If no global objects are present in the prototype chain, the load
// nonexistent IC stub can be shared for all names for a given map
// and we use the empty string for the map cache in that case. If
// there are global objects involved, we need to check global
// property cells in the stub and therefore the stub will be
// specific to the name.
String* cache_name = heap()->empty_string();
if (receiver->IsGlobalObject()) cache_name = name;
JSObject* last = receiver;
while (last->GetPrototype() != heap()->null_value()) {
last = JSObject::cast(last->GetPrototype());
if (last->IsGlobalObject()) cache_name = name;
}
// Compile the stub that is either shared for all names or
// name specific if there are global objects involved.
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::LOAD_IC, NONEXISTENT);
Object* code = receiver->map()->FindInCodeCache(cache_name, flags);
if (code->IsUndefined()) {
LoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadNonexistent(cache_name, receiver, last);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), cache_name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, cache_name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(cache_name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeLoadField(String* name,
JSObject* receiver,
JSObject* holder,
int field_index) {
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, FIELD);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
LoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadField(receiver, holder, field_index, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeLoadCallback(String* name,
JSObject* receiver,
JSObject* holder,
AccessorInfo* callback) {
ASSERT(v8::ToCData<Address>(callback->getter()) != 0);
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, CALLBACKS);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
LoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadCallback(name, receiver, holder, callback);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeLoadConstant(String* name,
JSObject* receiver,
JSObject* holder,
Object* value) {
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::LOAD_IC, CONSTANT_FUNCTION);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
LoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadConstant(receiver, holder, value, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeLoadInterceptor(String* name,
JSObject* receiver,
JSObject* holder) {
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, INTERCEPTOR);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
LoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadInterceptor(receiver, holder, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeLoadNormal() {
return isolate_->builtins()->builtin(Builtins::kLoadIC_Normal);
}
MaybeObject* StubCache::ComputeLoadGlobal(String* name,
JSObject* receiver,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
bool is_dont_delete) {
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, NORMAL);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
LoadStubCompiler compiler;
{ MaybeObject* maybe_code = compiler.CompileLoadGlobal(receiver,
holder,
cell,
name,
is_dont_delete);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedLoadField(String* name,
JSObject* receiver,
JSObject* holder,
int field_index) {
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, FIELD);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedLoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadField(name, receiver, holder, field_index);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedLoadConstant(String* name,
JSObject* receiver,
JSObject* holder,
Object* value) {
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CONSTANT_FUNCTION);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedLoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadConstant(name, receiver, holder, value);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedLoadInterceptor(String* name,
JSObject* receiver,
JSObject* holder) {
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, INTERCEPTOR);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedLoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadInterceptor(receiver, holder, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedLoadCallback(String* name,
JSObject* receiver,
JSObject* holder,
AccessorInfo* callback) {
ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedLoadStubCompiler compiler;
{ MaybeObject* maybe_code =
compiler.CompileLoadCallback(name, receiver, holder, callback);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedLoadArrayLength(String* name,
JSArray* receiver) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS);
ASSERT(receiver->IsJSObject());
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedLoadStubCompiler compiler;
{ MaybeObject* maybe_code = compiler.CompileLoadArrayLength(name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedLoadStringLength(String* name,
String* receiver) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS);
Map* map = receiver->map();
Object* code = map->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedLoadStubCompiler compiler;
{ MaybeObject* maybe_code = compiler.CompileLoadStringLength(name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result = map->UpdateCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedLoadFunctionPrototype(
String* name,
JSFunction* receiver) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedLoadStubCompiler compiler;
{ MaybeObject* maybe_code = compiler.CompileLoadFunctionPrototype(name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedLoadSpecialized(JSObject* receiver) {
// Using NORMAL as the PropertyType for array element loads is a misuse. The
// generated stub always accesses fast elements, not slow-mode fields, but
// some property type is required for the stub lookup. Note that overloading
// the NORMAL PropertyType is only safe as long as no stubs are generated for
// other keyed field loads. This is guaranteed to be the case since all field
// keyed loads that are not array elements go through a generic builtin stub.
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, NORMAL);
String* name = heap()->KeyedLoadSpecialized_symbol();
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedLoadStubCompiler compiler;
{ MaybeObject* maybe_code = compiler.CompileLoadSpecialized(receiver);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), 0));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeStoreField(String* name,
JSObject* receiver,
int field_index,
Map* transition,
StrictModeFlag strict_mode) {
PropertyType type = (transition == NULL) ? FIELD : MAP_TRANSITION;
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, type, strict_mode);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
StoreStubCompiler compiler(strict_mode);
{ MaybeObject* maybe_code =
compiler.CompileStoreField(receiver, field_index, transition, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedStoreSpecialized(
JSObject* receiver,
StrictModeFlag strict_mode) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_STORE_IC, NORMAL, strict_mode);
String* name = heap()->KeyedStoreSpecialized_symbol();
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedStoreStubCompiler compiler(strict_mode);
{ MaybeObject* maybe_code = compiler.CompileStoreSpecialized(receiver);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_STORE_IC_TAG, Code::cast(code), 0));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
namespace {
ExternalArrayType ElementsKindToExternalArrayType(JSObject::ElementsKind kind) {
switch (kind) {
case JSObject::EXTERNAL_BYTE_ELEMENTS:
return kExternalByteArray;
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
return kExternalUnsignedByteArray;
case JSObject::EXTERNAL_SHORT_ELEMENTS:
return kExternalShortArray;
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
return kExternalUnsignedShortArray;
case JSObject::EXTERNAL_INT_ELEMENTS:
return kExternalIntArray;
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS:
return kExternalUnsignedIntArray;
case JSObject::EXTERNAL_FLOAT_ELEMENTS:
return kExternalFloatArray;
case JSObject::EXTERNAL_PIXEL_ELEMENTS:
return kExternalPixelArray;
default:
UNREACHABLE();
return static_cast<ExternalArrayType>(0);
}
}
String* ExternalArrayTypeToStubName(Heap* heap,
ExternalArrayType array_type,
bool is_store) {
if (is_store) {
switch (array_type) {
case kExternalByteArray:
return heap->KeyedStoreExternalByteArray_symbol();
case kExternalUnsignedByteArray:
return heap->KeyedStoreExternalUnsignedByteArray_symbol();
case kExternalShortArray:
return heap->KeyedStoreExternalShortArray_symbol();
case kExternalUnsignedShortArray:
return heap->KeyedStoreExternalUnsignedShortArray_symbol();
case kExternalIntArray:
return heap->KeyedStoreExternalIntArray_symbol();
case kExternalUnsignedIntArray:
return heap->KeyedStoreExternalUnsignedIntArray_symbol();
case kExternalFloatArray:
return heap->KeyedStoreExternalFloatArray_symbol();
case kExternalPixelArray:
return heap->KeyedStoreExternalPixelArray_symbol();
default:
UNREACHABLE();
return NULL;
}
} else {
switch (array_type) {
case kExternalByteArray:
return heap->KeyedLoadExternalByteArray_symbol();
case kExternalUnsignedByteArray:
return heap->KeyedLoadExternalUnsignedByteArray_symbol();
case kExternalShortArray:
return heap->KeyedLoadExternalShortArray_symbol();
case kExternalUnsignedShortArray:
return heap->KeyedLoadExternalUnsignedShortArray_symbol();
case kExternalIntArray:
return heap->KeyedLoadExternalIntArray_symbol();
case kExternalUnsignedIntArray:
return heap->KeyedLoadExternalUnsignedIntArray_symbol();
case kExternalFloatArray:
return heap->KeyedLoadExternalFloatArray_symbol();
case kExternalPixelArray:
return heap->KeyedLoadExternalPixelArray_symbol();
default:
UNREACHABLE();
return NULL;
}
}
}
} // anonymous namespace
MaybeObject* StubCache::ComputeKeyedLoadOrStoreExternalArray(
JSObject* receiver,
bool is_store,
StrictModeFlag strict_mode) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(
is_store ? Code::KEYED_EXTERNAL_ARRAY_STORE_IC :
Code::KEYED_EXTERNAL_ARRAY_LOAD_IC,
NORMAL,
strict_mode);
ExternalArrayType array_type =
ElementsKindToExternalArrayType(receiver->GetElementsKind());
String* name = ExternalArrayTypeToStubName(heap(), array_type, is_store);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
ExternalArrayStubCompiler compiler;
{ MaybeObject* maybe_code =
is_store ?
compiler.CompileKeyedStoreStub(receiver, array_type, flags) :
compiler.CompileKeyedLoadStub(receiver, array_type, flags);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
Code::cast(code)->set_external_array_type(array_type);
if (is_store) {
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_EXTERNAL_ARRAY_STORE_IC_TAG,
Code::cast(code), 0));
} else {
PROFILE(isolate_,
CodeCreateEvent(Logger::KEYED_EXTERNAL_ARRAY_LOAD_IC_TAG,
Code::cast(code), 0));
}
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeStoreNormal(StrictModeFlag strict_mode) {
return isolate_->builtins()->builtin((strict_mode == kStrictMode)
? Builtins::kStoreIC_Normal_Strict
: Builtins::kStoreIC_Normal);
}
MaybeObject* StubCache::ComputeStoreGlobal(String* name,
GlobalObject* receiver,
JSGlobalPropertyCell* cell,
StrictModeFlag strict_mode) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, NORMAL, strict_mode);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
StoreStubCompiler compiler(strict_mode);
{ MaybeObject* maybe_code =
compiler.CompileStoreGlobal(receiver, cell, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeStoreCallback(
String* name,
JSObject* receiver,
AccessorInfo* callback,
StrictModeFlag strict_mode) {
ASSERT(v8::ToCData<Address>(callback->setter()) != 0);
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, CALLBACKS, strict_mode);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
StoreStubCompiler compiler(strict_mode);
{ MaybeObject* maybe_code =
compiler.CompileStoreCallback(receiver, callback, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeStoreInterceptor(
String* name,
JSObject* receiver,
StrictModeFlag strict_mode) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, INTERCEPTOR, strict_mode);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
StoreStubCompiler compiler(strict_mode);
{ MaybeObject* maybe_code =
compiler.CompileStoreInterceptor(receiver, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate_,
CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeKeyedStoreField(String* name,
JSObject* receiver,
int field_index,
Map* transition,
StrictModeFlag strict_mode) {
PropertyType type = (transition == NULL) ? FIELD : MAP_TRANSITION;
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::KEYED_STORE_IC, type, strict_mode);
Object* code = receiver->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
KeyedStoreStubCompiler compiler(strict_mode);
{ MaybeObject* maybe_code =
compiler.CompileStoreField(receiver, field_index, transition, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
PROFILE(isolate(),
CodeCreateEvent(Logger::KEYED_STORE_IC_TAG,
Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::KEYED_STORE_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
receiver->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
#define CALL_LOGGER_TAG(kind, type) \
(kind == Code::CALL_IC ? Logger::type : Logger::KEYED_##type)
MaybeObject* StubCache::ComputeCallConstant(int argc,
InLoopFlag in_loop,
Code::Kind kind,
Code::ExtraICState extra_ic_state,
String* name,
Object* object,
JSObject* holder,
JSFunction* function) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder =
IC::GetCodeCacheForObject(object, holder);
JSObject* map_holder = IC::GetCodeCacheHolder(object, cache_holder);
// Compute check type based on receiver/holder.
CheckType check = RECEIVER_MAP_CHECK;
if (object->IsString()) {
check = STRING_CHECK;
} else if (object->IsNumber()) {
check = NUMBER_CHECK;
} else if (object->IsBoolean()) {
check = BOOLEAN_CHECK;
}
Code::Flags flags = Code::ComputeMonomorphicFlags(kind,
CONSTANT_FUNCTION,
extra_ic_state,
cache_holder,
in_loop,
argc);
Object* code = map_holder->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
// If the function hasn't been compiled yet, we cannot do it now
// because it may cause GC. To avoid this issue, we return an
// internal error which will make sure we do not update any
// caches.
if (!function->is_compiled()) return Failure::InternalError();
// Compile the stub - only create stubs for fully compiled functions.
CallStubCompiler compiler(
argc, in_loop, kind, extra_ic_state, cache_holder);
{ MaybeObject* maybe_code =
compiler.CompileCallConstant(object, holder, function, name, check);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
Code::cast(code)->set_check_type(check);
ASSERT_EQ(flags, Code::cast(code)->flags());
PROFILE(isolate_,
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG),
Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
map_holder->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeCallField(int argc,
InLoopFlag in_loop,
Code::Kind kind,
String* name,
Object* object,
JSObject* holder,
int index) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder =
IC::GetCodeCacheForObject(object, holder);
JSObject* map_holder = IC::GetCodeCacheHolder(object, cache_holder);
// TODO(1233596): We cannot do receiver map check for non-JS objects
// because they may be represented as immediates without a
// map. Instead, we check against the map in the holder.
if (object->IsNumber() || object->IsBoolean() || object->IsString()) {
object = holder;
}
Code::Flags flags = Code::ComputeMonomorphicFlags(kind,
FIELD,
Code::kNoExtraICState,
cache_holder,
in_loop,
argc);
Object* code = map_holder->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
CallStubCompiler compiler(
argc, in_loop, kind, Code::kNoExtraICState, cache_holder);
{ MaybeObject* maybe_code =
compiler.CompileCallField(JSObject::cast(object),
holder,
index,
name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
ASSERT_EQ(flags, Code::cast(code)->flags());
PROFILE(isolate_,
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG),
Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
map_holder->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeCallInterceptor(int argc,
Code::Kind kind,
String* name,
Object* object,
JSObject* holder) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder =
IC::GetCodeCacheForObject(object, holder);
JSObject* map_holder = IC::GetCodeCacheHolder(object, cache_holder);
// TODO(1233596): We cannot do receiver map check for non-JS objects
// because they may be represented as immediates without a
// map. Instead, we check against the map in the holder.
if (object->IsNumber() || object->IsBoolean() || object->IsString()) {
object = holder;
}
Code::Flags flags = Code::ComputeMonomorphicFlags(kind,
INTERCEPTOR,
Code::kNoExtraICState,
cache_holder,
NOT_IN_LOOP,
argc);
Object* code = map_holder->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
CallStubCompiler compiler(
argc, NOT_IN_LOOP, kind, Code::kNoExtraICState, cache_holder);
{ MaybeObject* maybe_code =
compiler.CompileCallInterceptor(JSObject::cast(object), holder, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
ASSERT_EQ(flags, Code::cast(code)->flags());
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG),
Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
map_holder->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
MaybeObject* StubCache::ComputeCallNormal(int argc,
InLoopFlag in_loop,
Code::Kind kind,
String* name,
JSObject* receiver) {
Object* code;
{ MaybeObject* maybe_code = ComputeCallNormal(argc, in_loop, kind);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
return code;
}
MaybeObject* StubCache::ComputeCallGlobal(int argc,
InLoopFlag in_loop,
Code::Kind kind,
String* name,
JSObject* receiver,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function) {
InlineCacheHolderFlag cache_holder =
IC::GetCodeCacheForObject(receiver, holder);
JSObject* map_holder = IC::GetCodeCacheHolder(receiver, cache_holder);
Code::Flags flags = Code::ComputeMonomorphicFlags(kind,
NORMAL,
Code::kNoExtraICState,
cache_holder,
in_loop,
argc);
Object* code = map_holder->map()->FindInCodeCache(name, flags);
if (code->IsUndefined()) {
// If the function hasn't been compiled yet, we cannot do it now
// because it may cause GC. To avoid this issue, we return an
// internal error which will make sure we do not update any
// caches.
if (!function->is_compiled()) return Failure::InternalError();
CallStubCompiler compiler(
argc, in_loop, kind, Code::kNoExtraICState, cache_holder);
{ MaybeObject* maybe_code =
compiler.CompileCallGlobal(receiver, holder, cell, function, name);
if (!maybe_code->ToObject(&code)) return maybe_code;
}
ASSERT_EQ(flags, Code::cast(code)->flags());
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG),
Code::cast(code), name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, name, Code::cast(code)));
Object* result;
{ MaybeObject* maybe_result =
map_holder->UpdateMapCodeCache(name, Code::cast(code));
if (!maybe_result->ToObject(&result)) return maybe_result;
}
}
return code;
}
static Object* GetProbeValue(Isolate* isolate, Code::Flags flags) {
// Use raw_unchecked... so we don't get assert failures during GC.
NumberDictionary* dictionary =
isolate->heap()->raw_unchecked_non_monomorphic_cache();
int entry = dictionary->FindEntry(isolate, flags);
if (entry != -1) return dictionary->ValueAt(entry);
return isolate->heap()->raw_unchecked_undefined_value();
}
MUST_USE_RESULT static MaybeObject* ProbeCache(Isolate* isolate,
Code::Flags flags) {
Heap* heap = isolate->heap();
Object* probe = GetProbeValue(isolate, flags);
if (probe != heap->undefined_value()) return probe;
// Seed the cache with an undefined value to make sure that any
// generated code object can always be inserted into the cache
// without causing allocation failures.
Object* result;
{ MaybeObject* maybe_result =
heap->non_monomorphic_cache()->AtNumberPut(flags,
heap->undefined_value());
if (!maybe_result->ToObject(&result)) return maybe_result;
}
heap->public_set_non_monomorphic_cache(NumberDictionary::cast(result));
return probe;
}
static MaybeObject* FillCache(Isolate* isolate, MaybeObject* maybe_code) {
Object* code;
if (maybe_code->ToObject(&code)) {
if (code->IsCode()) {
Heap* heap = isolate->heap();
int entry = heap->non_monomorphic_cache()->FindEntry(
Code::cast(code)->flags());
// The entry must be present see comment in ProbeCache.
ASSERT(entry != -1);
ASSERT(heap->non_monomorphic_cache()->ValueAt(entry) ==
heap->undefined_value());
heap->non_monomorphic_cache()->ValueAtPut(entry, code);
CHECK(GetProbeValue(isolate, Code::cast(code)->flags()) == code);
}
}
return maybe_code;
}
Code* StubCache::FindCallInitialize(int argc,
InLoopFlag in_loop,
Code::Kind kind) {
Code::Flags flags = Code::ComputeFlags(kind,
in_loop,
UNINITIALIZED,
Code::kNoExtraICState,
NORMAL,
argc);
Object* result = ProbeCache(isolate(), flags)->ToObjectUnchecked();
ASSERT(result != heap()->undefined_value());
// This might be called during the marking phase of the collector
// hence the unchecked cast.
return reinterpret_cast<Code*>(result);
}
MaybeObject* StubCache::ComputeCallInitialize(int argc,
InLoopFlag in_loop,
Code::Kind kind) {
Code::Flags flags = Code::ComputeFlags(kind,
in_loop,
UNINITIALIZED,
Code::kNoExtraICState,
NORMAL,
argc);
Object* probe;
{ MaybeObject* maybe_probe = ProbeCache(isolate_, flags);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
if (!probe->IsUndefined()) return probe;
StubCompiler compiler;
return FillCache(isolate_, compiler.CompileCallInitialize(flags));
}
Handle<Code> StubCache::ComputeCallInitialize(int argc, InLoopFlag in_loop) {
if (in_loop == IN_LOOP) {
// Force the creation of the corresponding stub outside loops,
// because it may be used when clearing the ICs later - it is
// possible for a series of IC transitions to lose the in-loop
// information, and the IC clearing code can't generate a stub
// that it needs so we need to ensure it is generated already.
ComputeCallInitialize(argc, NOT_IN_LOOP);
}
CALL_HEAP_FUNCTION(isolate_,
ComputeCallInitialize(argc, in_loop, Code::CALL_IC), Code);
}
Handle<Code> StubCache::ComputeKeyedCallInitialize(int argc,
InLoopFlag in_loop) {
if (in_loop == IN_LOOP) {
// Force the creation of the corresponding stub outside loops,
// because it may be used when clearing the ICs later - it is
// possible for a series of IC transitions to lose the in-loop
// information, and the IC clearing code can't generate a stub
// that it needs so we need to ensure it is generated already.
ComputeKeyedCallInitialize(argc, NOT_IN_LOOP);
}
CALL_HEAP_FUNCTION(
isolate_,
ComputeCallInitialize(argc, in_loop, Code::KEYED_CALL_IC), Code);
}
MaybeObject* StubCache::ComputeCallPreMonomorphic(int argc,
InLoopFlag in_loop,
Code::Kind kind) {
Code::Flags flags = Code::ComputeFlags(kind,
in_loop,
PREMONOMORPHIC,
Code::kNoExtraICState,
NORMAL,
argc);
Object* probe;
{ MaybeObject* maybe_probe = ProbeCache(isolate_, flags);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
if (!probe->IsUndefined()) return probe;
StubCompiler compiler;
return FillCache(isolate_, compiler.CompileCallPreMonomorphic(flags));
}
MaybeObject* StubCache::ComputeCallNormal(int argc,
InLoopFlag in_loop,
Code::Kind kind) {
Code::Flags flags = Code::ComputeFlags(kind,
in_loop,
MONOMORPHIC,
Code::kNoExtraICState,
NORMAL,
argc);
Object* probe;
{ MaybeObject* maybe_probe = ProbeCache(isolate_, flags);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
if (!probe->IsUndefined()) return probe;
StubCompiler compiler;
return FillCache(isolate_, compiler.CompileCallNormal(flags));
}
MaybeObject* StubCache::ComputeCallMegamorphic(int argc,
InLoopFlag in_loop,
Code::Kind kind) {
Code::Flags flags = Code::ComputeFlags(kind,
in_loop,
MEGAMORPHIC,
Code::kNoExtraICState,
NORMAL,
argc);
Object* probe;
{ MaybeObject* maybe_probe = ProbeCache(isolate_, flags);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
if (!probe->IsUndefined()) return probe;
StubCompiler compiler;
return FillCache(isolate_, compiler.CompileCallMegamorphic(flags));
}
MaybeObject* StubCache::ComputeCallMiss(int argc, Code::Kind kind) {
// MONOMORPHIC_PROTOTYPE_FAILURE state is used to make sure that miss stubs
// and monomorphic stubs are not mixed up together in the stub cache.
Code::Flags flags = Code::ComputeFlags(kind,
NOT_IN_LOOP,
MONOMORPHIC_PROTOTYPE_FAILURE,
Code::kNoExtraICState,
NORMAL,
argc,
OWN_MAP);
Object* probe;
{ MaybeObject* maybe_probe = ProbeCache(isolate_, flags);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
if (!probe->IsUndefined()) return probe;
StubCompiler compiler;
return FillCache(isolate_, compiler.CompileCallMiss(flags));
}
#ifdef ENABLE_DEBUGGER_SUPPORT
MaybeObject* StubCache::ComputeCallDebugBreak(int argc, Code::Kind kind) {
Code::Flags flags = Code::ComputeFlags(kind,
NOT_IN_LOOP,
DEBUG_BREAK,
Code::kNoExtraICState,
NORMAL,
argc);
Object* probe;
{ MaybeObject* maybe_probe = ProbeCache(isolate_, flags);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
if (!probe->IsUndefined()) return probe;
StubCompiler compiler;
return FillCache(isolate_, compiler.CompileCallDebugBreak(flags));
}
MaybeObject* StubCache::ComputeCallDebugPrepareStepIn(int argc,
Code::Kind kind) {
Code::Flags flags = Code::ComputeFlags(kind,
NOT_IN_LOOP,
DEBUG_PREPARE_STEP_IN,
Code::kNoExtraICState,
NORMAL,
argc);
Object* probe;
{ MaybeObject* maybe_probe = ProbeCache(isolate_, flags);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
if (!probe->IsUndefined()) return probe;
StubCompiler compiler;
return FillCache(isolate_, compiler.CompileCallDebugPrepareStepIn(flags));
}
#endif
void StubCache::Clear() {
for (int i = 0; i < kPrimaryTableSize; i++) {
primary_[i].key = heap()->empty_string();
primary_[i].value = isolate_->builtins()->builtin(
Builtins::kIllegal);
}
for (int j = 0; j < kSecondaryTableSize; j++) {
secondary_[j].key = heap()->empty_string();
secondary_[j].value = isolate_->builtins()->builtin(
Builtins::kIllegal);
}
}
void StubCache::CollectMatchingMaps(ZoneMapList* types,
String* name,
Code::Flags flags) {
for (int i = 0; i < kPrimaryTableSize; i++) {
if (primary_[i].key == name) {
Map* map = primary_[i].value->FindFirstMap();
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
int offset = PrimaryOffset(name, flags, map);
if (entry(primary_, offset) == &primary_[i]) {
types->Add(Handle<Map>(map));
}
}
}
for (int i = 0; i < kSecondaryTableSize; i++) {
if (secondary_[i].key == name) {
Map* map = secondary_[i].value->FindFirstMap();
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
// Lookup in primary table and skip duplicates.
int primary_offset = PrimaryOffset(name, flags, map);
Entry* primary_entry = entry(primary_, primary_offset);
if (primary_entry->key == name) {
Map* primary_map = primary_entry->value->FindFirstMap();
if (map == primary_map) continue;
}
// Lookup in secondary table and add matches.
int offset = SecondaryOffset(name, flags, primary_offset);
if (entry(secondary_, offset) == &secondary_[i]) {
types->Add(Handle<Map>(map));
}
}
}
}
// ------------------------------------------------------------------------
// StubCompiler implementation.
RUNTIME_FUNCTION(MaybeObject*, LoadCallbackProperty) {
ASSERT(args[0]->IsJSObject());
ASSERT(args[1]->IsJSObject());
AccessorInfo* callback = AccessorInfo::cast(args[3]);
Address getter_address = v8::ToCData<Address>(callback->getter());
v8::AccessorGetter fun = FUNCTION_CAST<v8::AccessorGetter>(getter_address);
ASSERT(fun != NULL);
v8::AccessorInfo info(&args[0]);
HandleScope scope(isolate);
v8::Handle<v8::Value> result;
{
// Leaving JavaScript.
VMState state(isolate, EXTERNAL);
ExternalCallbackScope call_scope(isolate, getter_address);
result = fun(v8::Utils::ToLocal(args.at<String>(4)), info);
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (result.IsEmpty()) return HEAP->undefined_value();
return *v8::Utils::OpenHandle(*result);
}
RUNTIME_FUNCTION(MaybeObject*, StoreCallbackProperty) {
JSObject* recv = JSObject::cast(args[0]);
AccessorInfo* callback = AccessorInfo::cast(args[1]);
Address setter_address = v8::ToCData<Address>(callback->setter());
v8::AccessorSetter fun = FUNCTION_CAST<v8::AccessorSetter>(setter_address);
ASSERT(fun != NULL);
Handle<String> name = args.at<String>(2);
Handle<Object> value = args.at<Object>(3);
HandleScope scope(isolate);
LOG(isolate, ApiNamedPropertyAccess("store", recv, *name));
CustomArguments custom_args(isolate, callback->data(), recv, recv);
v8::AccessorInfo info(custom_args.end());
{
// Leaving JavaScript.
VMState state(isolate, EXTERNAL);
ExternalCallbackScope call_scope(isolate, setter_address);
fun(v8::Utils::ToLocal(name), v8::Utils::ToLocal(value), info);
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return *value;
}
static const int kAccessorInfoOffsetInInterceptorArgs = 2;
/**
* Attempts to load a property with an interceptor (which must be present),
* but doesn't search the prototype chain.
*
* Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't
* provide any value for the given name.
*/
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorOnly) {
Handle<String> name_handle = args.at<String>(0);
Handle<InterceptorInfo> interceptor_info = args.at<InterceptorInfo>(1);
ASSERT(kAccessorInfoOffsetInInterceptorArgs == 2);
ASSERT(args[2]->IsJSObject()); // Receiver.
ASSERT(args[3]->IsJSObject()); // Holder.
ASSERT(args.length() == 5); // Last arg is data object.
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetter getter =
FUNCTION_CAST<v8::NamedPropertyGetter>(getter_address);
ASSERT(getter != NULL);
{
// Use the interceptor getter.
v8::AccessorInfo info(args.arguments() -
kAccessorInfoOffsetInInterceptorArgs);
HandleScope scope(isolate);
v8::Handle<v8::Value> r;
{
// Leaving JavaScript.
VMState state(isolate, EXTERNAL);
r = getter(v8::Utils::ToLocal(name_handle), info);
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!r.IsEmpty()) {
return *v8::Utils::OpenHandle(*r);
}
}
return isolate->heap()->no_interceptor_result_sentinel();
}
static MaybeObject* ThrowReferenceError(String* name) {
// If the load is non-contextual, just return the undefined result.
// Note that both keyed and non-keyed loads may end up here, so we
// can't use either LoadIC or KeyedLoadIC constructors.
IC ic(IC::NO_EXTRA_FRAME, Isolate::Current());
ASSERT(ic.target()->is_load_stub() || ic.target()->is_keyed_load_stub());
if (!ic.SlowIsContextual()) return HEAP->undefined_value();
// Throw a reference error.
HandleScope scope;
Handle<String> name_handle(name);
Handle<Object> error =
FACTORY->NewReferenceError("not_defined",
HandleVector(&name_handle, 1));
return Isolate::Current()->Throw(*error);
}
static MaybeObject* LoadWithInterceptor(Arguments* args,
PropertyAttributes* attrs) {
Handle<String> name_handle = args->at<String>(0);
Handle<InterceptorInfo> interceptor_info = args->at<InterceptorInfo>(1);
ASSERT(kAccessorInfoOffsetInInterceptorArgs == 2);
Handle<JSObject> receiver_handle = args->at<JSObject>(2);
Handle<JSObject> holder_handle = args->at<JSObject>(3);
ASSERT(args->length() == 5); // Last arg is data object.
Isolate* isolate = receiver_handle->GetIsolate();
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetter getter =
FUNCTION_CAST<v8::NamedPropertyGetter>(getter_address);
ASSERT(getter != NULL);
{
// Use the interceptor getter.
v8::AccessorInfo info(args->arguments() -
kAccessorInfoOffsetInInterceptorArgs);
HandleScope scope(isolate);
v8::Handle<v8::Value> r;
{
// Leaving JavaScript.
VMState state(isolate, EXTERNAL);
r = getter(v8::Utils::ToLocal(name_handle), info);
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!r.IsEmpty()) {
*attrs = NONE;
return *v8::Utils::OpenHandle(*r);
}
}
MaybeObject* result = holder_handle->GetPropertyPostInterceptor(
*receiver_handle,
*name_handle,
attrs);
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return result;
}
/**
* Loads a property with an interceptor performing post interceptor
* lookup if interceptor failed.
*/
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForLoad) {
PropertyAttributes attr = NONE;
Object* result;
{ MaybeObject* maybe_result = LoadWithInterceptor(&args, &attr);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// If the property is present, return it.
if (attr != ABSENT) return result;
return ThrowReferenceError(String::cast(args[0]));
}
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForCall) {
PropertyAttributes attr;
MaybeObject* result = LoadWithInterceptor(&args, &attr);
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
// This is call IC. In this case, we simply return the undefined result which
// will lead to an exception when trying to invoke the result as a
// function.
return result;
}
RUNTIME_FUNCTION(MaybeObject*, StoreInterceptorProperty) {
ASSERT(args.length() == 4);
JSObject* recv = JSObject::cast(args[0]);
String* name = String::cast(args[1]);
Object* value = args[2];
StrictModeFlag strict_mode =
static_cast<StrictModeFlag>(Smi::cast(args[3])->value());
ASSERT(strict_mode == kStrictMode || strict_mode == kNonStrictMode);
ASSERT(recv->HasNamedInterceptor());
PropertyAttributes attr = NONE;
MaybeObject* result = recv->SetPropertyWithInterceptor(
name, value, attr, strict_mode);
return result;
}
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadPropertyWithInterceptor) {
JSObject* receiver = JSObject::cast(args[0]);
ASSERT(Smi::cast(args[1])->value() >= 0);
uint32_t index = Smi::cast(args[1])->value();
return receiver->GetElementWithInterceptor(receiver, index);
}
MaybeObject* StubCompiler::CompileCallInitialize(Code::Flags flags) {
HandleScope scope(isolate());
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateInitialize(masm(), argc);
} else {
KeyedCallIC::GenerateInitialize(masm(), argc);
}
Object* result;
{ MaybeObject* maybe_result =
GetCodeWithFlags(flags, "CompileCallInitialize");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
isolate()->counters()->call_initialize_stubs()->Increment();
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_INITIALIZE_TAG),
code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_INITIALIZE, Code::cast(code)));
return result;
}
MaybeObject* StubCompiler::CompileCallPreMonomorphic(Code::Flags flags) {
HandleScope scope(isolate());
int argc = Code::ExtractArgumentsCountFromFlags(flags);
// The code of the PreMonomorphic stub is the same as the code
// of the Initialized stub. They just differ on the code object flags.
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateInitialize(masm(), argc);
} else {
KeyedCallIC::GenerateInitialize(masm(), argc);
}
Object* result;
{ MaybeObject* maybe_result =
GetCodeWithFlags(flags, "CompileCallPreMonomorphic");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
isolate()->counters()->call_premonomorphic_stubs()->Increment();
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_PRE_MONOMORPHIC_TAG),
code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_PRE_MONOMORPHIC, Code::cast(code)));
return result;
}
MaybeObject* StubCompiler::CompileCallNormal(Code::Flags flags) {
HandleScope scope(isolate());
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateNormal(masm(), argc);
} else {
KeyedCallIC::GenerateNormal(masm(), argc);
}
Object* result;
{ MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallNormal");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
isolate()->counters()->call_normal_stubs()->Increment();
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_NORMAL_TAG),
code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_NORMAL, Code::cast(code)));
return result;
}
MaybeObject* StubCompiler::CompileCallMegamorphic(Code::Flags flags) {
HandleScope scope(isolate());
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateMegamorphic(masm(), argc);
} else {
KeyedCallIC::GenerateMegamorphic(masm(), argc);
}
Object* result;
{ MaybeObject* maybe_result =
GetCodeWithFlags(flags, "CompileCallMegamorphic");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
isolate()->counters()->call_megamorphic_stubs()->Increment();
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MEGAMORPHIC_TAG),
code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, Code::cast(code)));
return result;
}
MaybeObject* StubCompiler::CompileCallMiss(Code::Flags flags) {
HandleScope scope(isolate());
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateMiss(masm(), argc);
} else {
KeyedCallIC::GenerateMiss(masm(), argc);
}
Object* result;
{ MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallMiss");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
isolate()->counters()->call_megamorphic_stubs()->Increment();
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MISS_TAG),
code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MISS, Code::cast(code)));
return result;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
MaybeObject* StubCompiler::CompileCallDebugBreak(Code::Flags flags) {
HandleScope scope(isolate());
Debug::GenerateCallICDebugBreak(masm());
Object* result;
{ MaybeObject* maybe_result =
GetCodeWithFlags(flags, "CompileCallDebugBreak");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Code* code = Code::cast(result);
USE(code);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
USE(kind);
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_DEBUG_BREAK_TAG),
code, code->arguments_count()));
return result;
}
MaybeObject* StubCompiler::CompileCallDebugPrepareStepIn(Code::Flags flags) {
HandleScope scope(isolate());
// Use the same code for the the step in preparations as we do for
// the miss case.
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateMiss(masm(), argc);
} else {
KeyedCallIC::GenerateMiss(masm(), argc);
}
Object* result;
{ MaybeObject* maybe_result =
GetCodeWithFlags(flags, "CompileCallDebugPrepareStepIn");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(),
CodeCreateEvent(
CALL_LOGGER_TAG(kind, CALL_DEBUG_PREPARE_STEP_IN_TAG),
code,
code->arguments_count()));
return result;
}
#endif
#undef CALL_LOGGER_TAG
MaybeObject* StubCompiler::GetCodeWithFlags(Code::Flags flags,
const char* name) {
// Check for allocation failures during stub compilation.
if (failure_->IsFailure()) return failure_;
// Create code object in the heap.
CodeDesc desc;
masm_.GetCode(&desc);
MaybeObject* result = heap()->CreateCode(desc, flags, masm_.CodeObject());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code_stubs && !result->IsFailure()) {
Code::cast(result->ToObjectUnchecked())->Disassemble(name);
}
#endif
return result;
}
MaybeObject* StubCompiler::GetCodeWithFlags(Code::Flags flags, String* name) {
if (FLAG_print_code_stubs && (name != NULL)) {
return GetCodeWithFlags(flags, *name->ToCString());
}
return GetCodeWithFlags(flags, reinterpret_cast<char*>(NULL));
}
void StubCompiler::LookupPostInterceptor(JSObject* holder,
String* name,
LookupResult* lookup) {
holder->LocalLookupRealNamedProperty(name, lookup);
if (!lookup->IsProperty()) {
lookup->NotFound();
Object* proto = holder->GetPrototype();
if (!proto->IsNull()) {
proto->Lookup(name, lookup);
}
}
}
MaybeObject* LoadStubCompiler::GetCode(PropertyType type, String* name) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, type);
MaybeObject* result = GetCodeWithFlags(flags, name);
if (!result->IsFailure()) {
PROFILE(isolate(),
CodeCreateEvent(Logger::LOAD_IC_TAG,
Code::cast(result->ToObjectUnchecked()),
name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC,
name,
Code::cast(result->ToObjectUnchecked())));
}
return result;
}
MaybeObject* KeyedLoadStubCompiler::GetCode(PropertyType type, String* name) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, type);
MaybeObject* result = GetCodeWithFlags(flags, name);
if (!result->IsFailure()) {
PROFILE(isolate(),
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG,
Code::cast(result->ToObjectUnchecked()),
name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC,
name,
Code::cast(result->ToObjectUnchecked())));
}
return result;
}
MaybeObject* StoreStubCompiler::GetCode(PropertyType type, String* name) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, type, strict_mode_);
MaybeObject* result = GetCodeWithFlags(flags, name);
if (!result->IsFailure()) {
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_IC_TAG,
Code::cast(result->ToObjectUnchecked()),
name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC,
name,
Code::cast(result->ToObjectUnchecked())));
}
return result;
}
MaybeObject* KeyedStoreStubCompiler::GetCode(PropertyType type, String* name) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::KEYED_STORE_IC, type, strict_mode_);
MaybeObject* result = GetCodeWithFlags(flags, name);
if (!result->IsFailure()) {
PROFILE(isolate(),
CodeCreateEvent(Logger::KEYED_STORE_IC_TAG,
Code::cast(result->ToObjectUnchecked()),
name));
GDBJIT(AddCode(GDBJITInterface::KEYED_STORE_IC,
name,
Code::cast(result->ToObjectUnchecked())));
}
return result;
}
CallStubCompiler::CallStubCompiler(int argc,
InLoopFlag in_loop,
Code::Kind kind,
Code::ExtraICState extra_ic_state,
InlineCacheHolderFlag cache_holder)
: arguments_(argc),
in_loop_(in_loop),
kind_(kind),
extra_ic_state_(extra_ic_state),
cache_holder_(cache_holder) {
}
bool CallStubCompiler::HasCustomCallGenerator(JSFunction* function) {
SharedFunctionInfo* info = function->shared();
if (info->HasBuiltinFunctionId()) {
BuiltinFunctionId id = info->builtin_function_id();
#define CALL_GENERATOR_CASE(name) if (id == k##name) return true;
CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE)
#undef CALL_GENERATOR_CASE
}
CallOptimization optimization(function);
if (optimization.is_simple_api_call()) {
return true;
}
return false;
}
MaybeObject* CallStubCompiler::CompileCustomCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* fname) {
ASSERT(HasCustomCallGenerator(function));
SharedFunctionInfo* info = function->shared();
if (info->HasBuiltinFunctionId()) {
BuiltinFunctionId id = info->builtin_function_id();
#define CALL_GENERATOR_CASE(name) \
if (id == k##name) { \
return CallStubCompiler::Compile##name##Call(object, \
holder, \
cell, \
function, \
fname); \
}
CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE)
#undef CALL_GENERATOR_CASE
}
CallOptimization optimization(function);
ASSERT(optimization.is_simple_api_call());
return CompileFastApiCall(optimization,
object,
holder,
cell,
function,
fname);
}
MaybeObject* CallStubCompiler::GetCode(PropertyType type, String* name) {
int argc = arguments_.immediate();
Code::Flags flags = Code::ComputeMonomorphicFlags(kind_,
type,
extra_ic_state_,
cache_holder_,
in_loop_,
argc);
return GetCodeWithFlags(flags, name);
}
MaybeObject* CallStubCompiler::GetCode(JSFunction* function) {
String* function_name = NULL;
if (function->shared()->name()->IsString()) {
function_name = String::cast(function->shared()->name());
}
return GetCode(CONSTANT_FUNCTION, function_name);
}
MaybeObject* ConstructStubCompiler::GetCode() {
Code::Flags flags = Code::ComputeFlags(Code::STUB);
Object* result;
{ MaybeObject* maybe_result = GetCodeWithFlags(flags, "ConstructStub");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(), CodeCreateEvent(Logger::STUB_TAG, code, "ConstructStub"));
GDBJIT(AddCode(GDBJITInterface::STUB, "ConstructStub", Code::cast(code)));
return result;
}
CallOptimization::CallOptimization(LookupResult* lookup) {
if (!lookup->IsProperty() || !lookup->IsCacheable() ||
lookup->type() != CONSTANT_FUNCTION) {
Initialize(NULL);
} else {
// We only optimize constant function calls.
Initialize(lookup->GetConstantFunction());
}
}
CallOptimization::CallOptimization(JSFunction* function) {
Initialize(function);
}
int CallOptimization::GetPrototypeDepthOfExpectedType(JSObject* object,
JSObject* holder) const {
ASSERT(is_simple_api_call_);
if (expected_receiver_type_ == NULL) return 0;
int depth = 0;
while (object != holder) {
if (object->IsInstanceOf(expected_receiver_type_)) return depth;
object = JSObject::cast(object->GetPrototype());
++depth;
}
if (holder->IsInstanceOf(expected_receiver_type_)) return depth;
return kInvalidProtoDepth;
}
void CallOptimization::Initialize(JSFunction* function) {
constant_function_ = NULL;
is_simple_api_call_ = false;
expected_receiver_type_ = NULL;
api_call_info_ = NULL;
if (function == NULL || !function->is_compiled()) return;
constant_function_ = function;
AnalyzePossibleApiFunction(function);
}
void CallOptimization::AnalyzePossibleApiFunction(JSFunction* function) {
SharedFunctionInfo* sfi = function->shared();
if (!sfi->IsApiFunction()) return;
FunctionTemplateInfo* info = sfi->get_api_func_data();
// Require a C++ callback.
if (info->call_code()->IsUndefined()) return;
api_call_info_ = CallHandlerInfo::cast(info->call_code());
// Accept signatures that either have no restrictions at all or
// only have restrictions on the receiver.
if (!info->signature()->IsUndefined()) {
SignatureInfo* signature = SignatureInfo::cast(info->signature());
if (!signature->args()->IsUndefined()) return;
if (!signature->receiver()->IsUndefined()) {
expected_receiver_type_ =
FunctionTemplateInfo::cast(signature->receiver());
}
}
is_simple_api_call_ = true;
}
MaybeObject* ExternalArrayStubCompiler::GetCode(Code::Flags flags) {
Object* result;
{ MaybeObject* maybe_result = GetCodeWithFlags(flags, "ExternalArrayStub");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(),
CodeCreateEvent(Logger::STUB_TAG, code, "ExternalArrayStub"));
return result;
}
} } // namespace v8::internal