| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2010 the V8 project authors. All rights reserved. |
| |
| |
| #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ |
| #define V8_MIPS_ASSEMBLER_MIPS_H_ |
| |
| #include <stdio.h> |
| #include "assembler.h" |
| #include "constants-mips.h" |
| #include "serialize.h" |
| |
| using namespace assembler::mips; |
| |
| namespace v8 { |
| namespace internal { |
| |
| // CPU Registers. |
| // |
| // 1) We would prefer to use an enum, but enum values are assignment- |
| // compatible with int, which has caused code-generation bugs. |
| // |
| // 2) We would prefer to use a class instead of a struct but we don't like |
| // the register initialization to depend on the particular initialization |
| // order (which appears to be different on OS X, Linux, and Windows for the |
| // installed versions of C++ we tried). Using a struct permits C-style |
| // "initialization". Also, the Register objects cannot be const as this |
| // forces initialization stubs in MSVC, making us dependent on initialization |
| // order. |
| // |
| // 3) By not using an enum, we are possibly preventing the compiler from |
| // doing certain constant folds, which may significantly reduce the |
| // code generated for some assembly instructions (because they boil down |
| // to a few constants). If this is a problem, we could change the code |
| // such that we use an enum in optimized mode, and the struct in debug |
| // mode. This way we get the compile-time error checking in debug mode |
| // and best performance in optimized code. |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Register and FPURegister |
| |
| // Core register. |
| struct Register { |
| bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } |
| bool is(Register reg) const { return code_ == reg.code_; } |
| int code() const { |
| ASSERT(is_valid()); |
| return code_; |
| } |
| int bit() const { |
| ASSERT(is_valid()); |
| return 1 << code_; |
| } |
| |
| // Unfortunately we can't make this private in a struct. |
| int code_; |
| }; |
| |
| extern const Register no_reg; |
| |
| extern const Register zero_reg; |
| extern const Register at; |
| extern const Register v0; |
| extern const Register v1; |
| extern const Register a0; |
| extern const Register a1; |
| extern const Register a2; |
| extern const Register a3; |
| extern const Register t0; |
| extern const Register t1; |
| extern const Register t2; |
| extern const Register t3; |
| extern const Register t4; |
| extern const Register t5; |
| extern const Register t6; |
| extern const Register t7; |
| extern const Register s0; |
| extern const Register s1; |
| extern const Register s2; |
| extern const Register s3; |
| extern const Register s4; |
| extern const Register s5; |
| extern const Register s6; |
| extern const Register s7; |
| extern const Register t8; |
| extern const Register t9; |
| extern const Register k0; |
| extern const Register k1; |
| extern const Register gp; |
| extern const Register sp; |
| extern const Register s8_fp; |
| extern const Register ra; |
| |
| int ToNumber(Register reg); |
| |
| Register ToRegister(int num); |
| |
| // Coprocessor register. |
| struct FPURegister { |
| bool is_valid() const { return 0 <= code_ && code_ < kNumFPURegister ; } |
| bool is(FPURegister creg) const { return code_ == creg.code_; } |
| int code() const { |
| ASSERT(is_valid()); |
| return code_; |
| } |
| int bit() const { |
| ASSERT(is_valid()); |
| return 1 << code_; |
| } |
| |
| // Unfortunately we can't make this private in a struct. |
| int code_; |
| }; |
| |
| extern const FPURegister no_creg; |
| |
| extern const FPURegister f0; |
| extern const FPURegister f1; |
| extern const FPURegister f2; |
| extern const FPURegister f3; |
| extern const FPURegister f4; |
| extern const FPURegister f5; |
| extern const FPURegister f6; |
| extern const FPURegister f7; |
| extern const FPURegister f8; |
| extern const FPURegister f9; |
| extern const FPURegister f10; |
| extern const FPURegister f11; |
| extern const FPURegister f12; // arg |
| extern const FPURegister f13; |
| extern const FPURegister f14; // arg |
| extern const FPURegister f15; |
| extern const FPURegister f16; |
| extern const FPURegister f17; |
| extern const FPURegister f18; |
| extern const FPURegister f19; |
| extern const FPURegister f20; |
| extern const FPURegister f21; |
| extern const FPURegister f22; |
| extern const FPURegister f23; |
| extern const FPURegister f24; |
| extern const FPURegister f25; |
| extern const FPURegister f26; |
| extern const FPURegister f27; |
| extern const FPURegister f28; |
| extern const FPURegister f29; |
| extern const FPURegister f30; |
| extern const FPURegister f31; |
| |
| |
| // Returns the equivalent of !cc. |
| // Negation of the default no_condition (-1) results in a non-default |
| // no_condition value (-2). As long as tests for no_condition check |
| // for condition < 0, this will work as expected. |
| inline Condition NegateCondition(Condition cc); |
| |
| inline Condition ReverseCondition(Condition cc) { |
| switch (cc) { |
| case Uless: |
| return Ugreater; |
| case Ugreater: |
| return Uless; |
| case Ugreater_equal: |
| return Uless_equal; |
| case Uless_equal: |
| return Ugreater_equal; |
| case less: |
| return greater; |
| case greater: |
| return less; |
| case greater_equal: |
| return less_equal; |
| case less_equal: |
| return greater_equal; |
| default: |
| return cc; |
| }; |
| } |
| |
| |
| enum Hint { |
| no_hint = 0 |
| }; |
| |
| inline Hint NegateHint(Hint hint) { |
| return no_hint; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Machine instruction Operands. |
| |
| // Class Operand represents a shifter operand in data processing instructions. |
| class Operand BASE_EMBEDDED { |
| public: |
| // Immediate. |
| INLINE(explicit Operand(int32_t immediate, |
| RelocInfo::Mode rmode = RelocInfo::NONE)); |
| INLINE(explicit Operand(const ExternalReference& f)); |
| INLINE(explicit Operand(const char* s)); |
| INLINE(explicit Operand(Object** opp)); |
| INLINE(explicit Operand(Context** cpp)); |
| explicit Operand(Handle<Object> handle); |
| INLINE(explicit Operand(Smi* value)); |
| |
| // Register. |
| INLINE(explicit Operand(Register rm)); |
| |
| // Return true if this is a register operand. |
| INLINE(bool is_reg() const); |
| |
| Register rm() const { return rm_; } |
| |
| private: |
| Register rm_; |
| int32_t imm32_; // Valid if rm_ == no_reg |
| RelocInfo::Mode rmode_; |
| |
| friend class Assembler; |
| friend class MacroAssembler; |
| }; |
| |
| |
| // On MIPS we have only one adressing mode with base_reg + offset. |
| // Class MemOperand represents a memory operand in load and store instructions. |
| class MemOperand : public Operand { |
| public: |
| |
| explicit MemOperand(Register rn, int16_t offset = 0); |
| |
| private: |
| int16_t offset_; |
| |
| friend class Assembler; |
| }; |
| |
| |
| class Assembler : public Malloced { |
| public: |
| // Create an assembler. Instructions and relocation information are emitted |
| // into a buffer, with the instructions starting from the beginning and the |
| // relocation information starting from the end of the buffer. See CodeDesc |
| // for a detailed comment on the layout (globals.h). |
| // |
| // If the provided buffer is NULL, the assembler allocates and grows its own |
| // buffer, and buffer_size determines the initial buffer size. The buffer is |
| // owned by the assembler and deallocated upon destruction of the assembler. |
| // |
| // If the provided buffer is not NULL, the assembler uses the provided buffer |
| // for code generation and assumes its size to be buffer_size. If the buffer |
| // is too small, a fatal error occurs. No deallocation of the buffer is done |
| // upon destruction of the assembler. |
| Assembler(void* buffer, int buffer_size); |
| ~Assembler(); |
| |
| // GetCode emits any pending (non-emitted) code and fills the descriptor |
| // desc. GetCode() is idempotent; it returns the same result if no other |
| // Assembler functions are invoked in between GetCode() calls. |
| void GetCode(CodeDesc* desc); |
| |
| // Label operations & relative jumps (PPUM Appendix D). |
| // |
| // Takes a branch opcode (cc) and a label (L) and generates |
| // either a backward branch or a forward branch and links it |
| // to the label fixup chain. Usage: |
| // |
| // Label L; // unbound label |
| // j(cc, &L); // forward branch to unbound label |
| // bind(&L); // bind label to the current pc |
| // j(cc, &L); // backward branch to bound label |
| // bind(&L); // illegal: a label may be bound only once |
| // |
| // Note: The same Label can be used for forward and backward branches |
| // but it may be bound only once. |
| void bind(Label* L); // binds an unbound label L to the current code position |
| |
| // Returns the branch offset to the given label from the current code position |
| // Links the label to the current position if it is still unbound |
| // Manages the jump elimination optimization if the second parameter is true. |
| int32_t branch_offset(Label* L, bool jump_elimination_allowed); |
| int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) { |
| int32_t o = branch_offset(L, jump_elimination_allowed); |
| ASSERT((o & 3) == 0); // Assert the offset is aligned. |
| return o >> 2; |
| } |
| |
| // Puts a labels target address at the given position. |
| // The high 8 bits are set to zero. |
| void label_at_put(Label* L, int at_offset); |
| |
| // Size of an instruction. |
| static const int kInstrSize = sizeof(Instr); |
| |
| // Difference between address of current opcode and target address offset. |
| static const int kBranchPCOffset = 4; |
| |
| // Read/Modify the code target address in the branch/call instruction at pc. |
| static Address target_address_at(Address pc); |
| static void set_target_address_at(Address pc, Address target); |
| |
| // This sets the branch destination (which gets loaded at the call address). |
| // This is for calls and branches within generated code. |
| inline static void set_target_at(Address instruction_payload, |
| Address target) { |
| set_target_address_at(instruction_payload, target); |
| } |
| |
| // This sets the branch destination. |
| // This is for calls and branches to runtime code. |
| inline static void set_external_target_at(Address instruction_payload, |
| Address target) { |
| set_target_address_at(instruction_payload, target); |
| } |
| |
| static const int kCallTargetSize = 3 * kPointerSize; |
| static const int kExternalTargetSize = 3 * kPointerSize; |
| |
| // Distance between the instruction referring to the address of the call |
| // target and the return address. |
| static const int kCallTargetAddressOffset = 4 * kInstrSize; |
| |
| // Distance between start of patched return sequence and the emitted address |
| // to jump to. |
| static const int kPatchReturnSequenceAddressOffset = kInstrSize; |
| |
| // Distance between start of patched debug break slot and the emitted address |
| // to jump to. |
| static const int kPatchDebugBreakSlotAddressOffset = kInstrSize; |
| |
| // --------------------------------------------------------------------------- |
| // Code generation. |
| |
| void nop() { sll(zero_reg, zero_reg, 0); } |
| |
| |
| //------- Branch and jump instructions -------- |
| // We don't use likely variant of instructions. |
| void b(int16_t offset); |
| void b(Label* L) { b(branch_offset(L, false)>>2); } |
| void bal(int16_t offset); |
| void bal(Label* L) { bal(branch_offset(L, false)>>2); } |
| |
| void beq(Register rs, Register rt, int16_t offset); |
| void beq(Register rs, Register rt, Label* L) { |
| beq(rs, rt, branch_offset(L, false) >> 2); |
| } |
| void bgez(Register rs, int16_t offset); |
| void bgezal(Register rs, int16_t offset); |
| void bgtz(Register rs, int16_t offset); |
| void blez(Register rs, int16_t offset); |
| void bltz(Register rs, int16_t offset); |
| void bltzal(Register rs, int16_t offset); |
| void bne(Register rs, Register rt, int16_t offset); |
| void bne(Register rs, Register rt, Label* L) { |
| bne(rs, rt, branch_offset(L, false)>>2); |
| } |
| |
| // Never use the int16_t b(l)cond version with a branch offset |
| // instead of using the Label* version. See Twiki for infos. |
| |
| // Jump targets must be in the current 256 MB-aligned region. ie 28 bits. |
| void j(int32_t target); |
| void jal(int32_t target); |
| void jalr(Register rs, Register rd = ra); |
| void jr(Register target); |
| |
| |
| //-------Data-processing-instructions--------- |
| |
| // Arithmetic. |
| void add(Register rd, Register rs, Register rt); |
| void addu(Register rd, Register rs, Register rt); |
| void sub(Register rd, Register rs, Register rt); |
| void subu(Register rd, Register rs, Register rt); |
| void mult(Register rs, Register rt); |
| void multu(Register rs, Register rt); |
| void div(Register rs, Register rt); |
| void divu(Register rs, Register rt); |
| void mul(Register rd, Register rs, Register rt); |
| |
| void addi(Register rd, Register rs, int32_t j); |
| void addiu(Register rd, Register rs, int32_t j); |
| |
| // Logical. |
| void and_(Register rd, Register rs, Register rt); |
| void or_(Register rd, Register rs, Register rt); |
| void xor_(Register rd, Register rs, Register rt); |
| void nor(Register rd, Register rs, Register rt); |
| |
| void andi(Register rd, Register rs, int32_t j); |
| void ori(Register rd, Register rs, int32_t j); |
| void xori(Register rd, Register rs, int32_t j); |
| void lui(Register rd, int32_t j); |
| |
| // Shifts. |
| void sll(Register rd, Register rt, uint16_t sa); |
| void sllv(Register rd, Register rt, Register rs); |
| void srl(Register rd, Register rt, uint16_t sa); |
| void srlv(Register rd, Register rt, Register rs); |
| void sra(Register rt, Register rd, uint16_t sa); |
| void srav(Register rt, Register rd, Register rs); |
| |
| |
| //------------Memory-instructions------------- |
| |
| void lb(Register rd, const MemOperand& rs); |
| void lbu(Register rd, const MemOperand& rs); |
| void lw(Register rd, const MemOperand& rs); |
| void sb(Register rd, const MemOperand& rs); |
| void sw(Register rd, const MemOperand& rs); |
| |
| |
| //-------------Misc-instructions-------------- |
| |
| // Break / Trap instructions. |
| void break_(uint32_t code); |
| void tge(Register rs, Register rt, uint16_t code); |
| void tgeu(Register rs, Register rt, uint16_t code); |
| void tlt(Register rs, Register rt, uint16_t code); |
| void tltu(Register rs, Register rt, uint16_t code); |
| void teq(Register rs, Register rt, uint16_t code); |
| void tne(Register rs, Register rt, uint16_t code); |
| |
| // Move from HI/LO register. |
| void mfhi(Register rd); |
| void mflo(Register rd); |
| |
| // Set on less than. |
| void slt(Register rd, Register rs, Register rt); |
| void sltu(Register rd, Register rs, Register rt); |
| void slti(Register rd, Register rs, int32_t j); |
| void sltiu(Register rd, Register rs, int32_t j); |
| |
| |
| //--------Coprocessor-instructions---------------- |
| |
| // Load, store, and move. |
| void lwc1(FPURegister fd, const MemOperand& src); |
| void ldc1(FPURegister fd, const MemOperand& src); |
| |
| void swc1(FPURegister fs, const MemOperand& dst); |
| void sdc1(FPURegister fs, const MemOperand& dst); |
| |
| // When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be |
| // executed first, followed by the MTHC1. |
| void mtc1(FPURegister fs, Register rt); |
| void mthc1(FPURegister fs, Register rt); |
| void mfc1(FPURegister fs, Register rt); |
| void mfhc1(FPURegister fs, Register rt); |
| |
| // Conversion. |
| void cvt_w_s(FPURegister fd, FPURegister fs); |
| void cvt_w_d(FPURegister fd, FPURegister fs); |
| |
| void cvt_l_s(FPURegister fd, FPURegister fs); |
| void cvt_l_d(FPURegister fd, FPURegister fs); |
| |
| void cvt_s_w(FPURegister fd, FPURegister fs); |
| void cvt_s_l(FPURegister fd, FPURegister fs); |
| void cvt_s_d(FPURegister fd, FPURegister fs); |
| |
| void cvt_d_w(FPURegister fd, FPURegister fs); |
| void cvt_d_l(FPURegister fd, FPURegister fs); |
| void cvt_d_s(FPURegister fd, FPURegister fs); |
| |
| // Conditions and branches. |
| void c(FPUCondition cond, SecondaryField fmt, |
| FPURegister ft, FPURegister fs, uint16_t cc = 0); |
| |
| void bc1f(int16_t offset, uint16_t cc = 0); |
| void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); } |
| void bc1t(int16_t offset, uint16_t cc = 0); |
| void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); } |
| |
| |
| // Check the code size generated from label to here. |
| int InstructionsGeneratedSince(Label* l) { |
| return (pc_offset() - l->pos()) / kInstrSize; |
| } |
| |
| // Debugging. |
| |
| // Mark address of the ExitJSFrame code. |
| void RecordJSReturn(); |
| |
| // Record a comment relocation entry that can be used by a disassembler. |
| // Use --debug_code to enable. |
| void RecordComment(const char* msg); |
| |
| void RecordPosition(int pos); |
| void RecordStatementPosition(int pos); |
| bool WriteRecordedPositions(); |
| |
| int32_t pc_offset() const { return pc_ - buffer_; } |
| int32_t current_position() const { return current_position_; } |
| int32_t current_statement_position() const { |
| return current_statement_position_; |
| } |
| |
| // Check if there is less than kGap bytes available in the buffer. |
| // If this is the case, we need to grow the buffer before emitting |
| // an instruction or relocation information. |
| inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } |
| |
| // Get the number of bytes available in the buffer. |
| inline int available_space() const { return reloc_info_writer.pos() - pc_; } |
| |
| protected: |
| int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } |
| |
| // Read/patch instructions. |
| static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } |
| void instr_at_put(byte* pc, Instr instr) { |
| *reinterpret_cast<Instr*>(pc) = instr; |
| } |
| Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } |
| void instr_at_put(int pos, Instr instr) { |
| *reinterpret_cast<Instr*>(buffer_ + pos) = instr; |
| } |
| |
| // Check if an instruction is a branch of some kind. |
| bool is_branch(Instr instr); |
| |
| // Decode branch instruction at pos and return branch target pos. |
| int target_at(int32_t pos); |
| |
| // Patch branch instruction at pos to branch to given branch target pos. |
| void target_at_put(int32_t pos, int32_t target_pos); |
| |
| // Say if we need to relocate with this mode. |
| bool MustUseAt(RelocInfo::Mode rmode); |
| |
| // Record reloc info for current pc_. |
| void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); |
| |
| private: |
| // Code buffer: |
| // The buffer into which code and relocation info are generated. |
| byte* buffer_; |
| int buffer_size_; |
| // True if the assembler owns the buffer, false if buffer is external. |
| bool own_buffer_; |
| |
| // Buffer size and constant pool distance are checked together at regular |
| // intervals of kBufferCheckInterval emitted bytes. |
| static const int kBufferCheckInterval = 1*KB/2; |
| |
| // Code generation. |
| // The relocation writer's position is at least kGap bytes below the end of |
| // the generated instructions. This is so that multi-instruction sequences do |
| // not have to check for overflow. The same is true for writes of large |
| // relocation info entries. |
| static const int kGap = 32; |
| byte* pc_; // The program counter - moves forward. |
| |
| // Relocation information generation. |
| // Each relocation is encoded as a variable size value. |
| static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; |
| RelocInfoWriter reloc_info_writer; |
| |
| // The bound position, before this we cannot do instruction elimination. |
| int last_bound_pos_; |
| |
| // Source position information. |
| int current_position_; |
| int current_statement_position_; |
| int written_position_; |
| int written_statement_position_; |
| |
| // Code emission. |
| inline void CheckBuffer(); |
| void GrowBuffer(); |
| inline void emit(Instr x); |
| |
| // Instruction generation. |
| // We have 3 different kind of encoding layout on MIPS. |
| // However due to many different types of objects encoded in the same fields |
| // we have quite a few aliases for each mode. |
| // Using the same structure to refer to Register and FPURegister would spare a |
| // few aliases, but mixing both does not look clean to me. |
| // Anyway we could surely implement this differently. |
| |
| void GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| Register rd, |
| uint16_t sa = 0, |
| SecondaryField func = NULLSF); |
| |
| void GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| FPURegister ft, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func = NULLSF); |
| |
| void GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| Register rt, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func = NULLSF); |
| |
| |
| void GenInstrImmediate(Opcode opcode, |
| Register rs, |
| Register rt, |
| int32_t j); |
| void GenInstrImmediate(Opcode opcode, |
| Register rs, |
| SecondaryField SF, |
| int32_t j); |
| void GenInstrImmediate(Opcode opcode, |
| Register r1, |
| FPURegister r2, |
| int32_t j); |
| |
| |
| void GenInstrJump(Opcode opcode, |
| uint32_t address); |
| |
| |
| // Labels. |
| void print(Label* L); |
| void bind_to(Label* L, int pos); |
| void link_to(Label* L, Label* appendix); |
| void next(Label* L); |
| |
| friend class RegExpMacroAssemblerMIPS; |
| friend class RelocInfo; |
| }; |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_ARM_ASSEMBLER_MIPS_H_ |