blob: 18213b93e6e5f2f9b4169e491dad383f0bac888e [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_X64_CODE_STUBS_X64_H_
#define V8_X64_CODE_STUBS_X64_H_
#include "ic-inl.h"
#include "type-info.h"
namespace v8 {
namespace internal {
// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
public:
explicit TranscendentalCacheStub(TranscendentalCache::Type type)
: type_(type) {}
void Generate(MacroAssembler* masm);
private:
TranscendentalCache::Type type_;
Major MajorKey() { return TranscendentalCache; }
int MinorKey() { return type_; }
Runtime::FunctionId RuntimeFunction();
void GenerateOperation(MacroAssembler* masm, Label* on_nan_result);
};
class ToBooleanStub: public CodeStub {
public:
ToBooleanStub() { }
void Generate(MacroAssembler* masm);
private:
Major MajorKey() { return ToBoolean; }
int MinorKey() { return 0; }
};
// Flag that indicates how to generate code for the stub GenericBinaryOpStub.
enum GenericBinaryFlags {
NO_GENERIC_BINARY_FLAGS = 0,
NO_SMI_CODE_IN_STUB = 1 << 0 // Omit smi code in stub.
};
class GenericBinaryOpStub: public CodeStub {
public:
GenericBinaryOpStub(Token::Value op,
OverwriteMode mode,
GenericBinaryFlags flags,
TypeInfo operands_type = TypeInfo::Unknown())
: op_(op),
mode_(mode),
flags_(flags),
args_in_registers_(false),
args_reversed_(false),
static_operands_type_(operands_type),
runtime_operands_type_(BinaryOpIC::DEFAULT),
name_(NULL) {
ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
}
GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info)
: op_(OpBits::decode(key)),
mode_(ModeBits::decode(key)),
flags_(FlagBits::decode(key)),
args_in_registers_(ArgsInRegistersBits::decode(key)),
args_reversed_(ArgsReversedBits::decode(key)),
static_operands_type_(TypeInfo::ExpandedRepresentation(
StaticTypeInfoBits::decode(key))),
runtime_operands_type_(type_info),
name_(NULL) {
}
// Generate code to call the stub with the supplied arguments. This will add
// code at the call site to prepare arguments either in registers or on the
// stack together with the actual call.
void GenerateCall(MacroAssembler* masm, Register left, Register right);
void GenerateCall(MacroAssembler* masm, Register left, Smi* right);
void GenerateCall(MacroAssembler* masm, Smi* left, Register right);
bool ArgsInRegistersSupported() {
return (op_ == Token::ADD) || (op_ == Token::SUB)
|| (op_ == Token::MUL) || (op_ == Token::DIV);
}
private:
Token::Value op_;
OverwriteMode mode_;
GenericBinaryFlags flags_;
bool args_in_registers_; // Arguments passed in registers not on the stack.
bool args_reversed_; // Left and right argument are swapped.
// Number type information of operands, determined by code generator.
TypeInfo static_operands_type_;
// Operand type information determined at runtime.
BinaryOpIC::TypeInfo runtime_operands_type_;
char* name_;
const char* GetName();
#ifdef DEBUG
void Print() {
PrintF("GenericBinaryOpStub %d (op %s), "
"(mode %d, flags %d, registers %d, reversed %d, only_numbers %s)\n",
MinorKey(),
Token::String(op_),
static_cast<int>(mode_),
static_cast<int>(flags_),
static_cast<int>(args_in_registers_),
static_cast<int>(args_reversed_),
static_operands_type_.ToString());
}
#endif
// Minor key encoding in 17 bits TTNNNFRAOOOOOOOMM.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 7> {};
class ArgsInRegistersBits: public BitField<bool, 9, 1> {};
class ArgsReversedBits: public BitField<bool, 10, 1> {};
class FlagBits: public BitField<GenericBinaryFlags, 11, 1> {};
class StaticTypeInfoBits: public BitField<int, 12, 3> {};
class RuntimeTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 15, 2> {};
Major MajorKey() { return GenericBinaryOp; }
int MinorKey() {
// Encode the parameters in a unique 18 bit value.
return OpBits::encode(op_)
| ModeBits::encode(mode_)
| FlagBits::encode(flags_)
| ArgsInRegistersBits::encode(args_in_registers_)
| ArgsReversedBits::encode(args_reversed_)
| StaticTypeInfoBits::encode(
static_operands_type_.ThreeBitRepresentation())
| RuntimeTypeInfoBits::encode(runtime_operands_type_);
}
void Generate(MacroAssembler* masm);
void GenerateSmiCode(MacroAssembler* masm, Label* slow);
void GenerateLoadArguments(MacroAssembler* masm);
void GenerateReturn(MacroAssembler* masm);
void GenerateRegisterArgsPush(MacroAssembler* masm);
void GenerateTypeTransition(MacroAssembler* masm);
bool IsOperationCommutative() {
return (op_ == Token::ADD) || (op_ == Token::MUL);
}
void SetArgsInRegisters() { args_in_registers_ = true; }
void SetArgsReversed() { args_reversed_ = true; }
bool HasSmiCodeInStub() { return (flags_ & NO_SMI_CODE_IN_STUB) == 0; }
bool HasArgsInRegisters() { return args_in_registers_; }
bool HasArgsReversed() { return args_reversed_; }
bool ShouldGenerateSmiCode() {
return HasSmiCodeInStub() &&
runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
runtime_operands_type_ != BinaryOpIC::STRINGS;
}
bool ShouldGenerateFPCode() {
return runtime_operands_type_ != BinaryOpIC::STRINGS;
}
virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
virtual InlineCacheState GetICState() {
return BinaryOpIC::ToState(runtime_operands_type_);
}
friend class CodeGenerator;
};
class StringHelper : public AllStatic {
public:
// Generate code for copying characters using a simple loop. This should only
// be used in places where the number of characters is small and the
// additional setup and checking in GenerateCopyCharactersREP adds too much
// overhead. Copying of overlapping regions is not supported.
static void GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii);
// Generate code for copying characters using the rep movs instruction.
// Copies rcx characters from rsi to rdi. Copying of overlapping regions is
// not supported.
static void GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest, // Must be rdi.
Register src, // Must be rsi.
Register count, // Must be rcx.
bool ascii);
// Probe the symbol table for a two character string. If the string is
// not found by probing a jump to the label not_found is performed. This jump
// does not guarantee that the string is not in the symbol table. If the
// string is found the code falls through with the string in register rax.
static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* not_found);
// Generate string hash.
static void GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character,
Register scratch);
static void GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character,
Register scratch);
static void GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
NO_STRING_ADD_FLAGS = 0,
NO_STRING_CHECK_IN_STUB = 1 << 0 // Omit string check in stub.
};
class StringAddStub: public CodeStub {
public:
explicit StringAddStub(StringAddFlags flags) {
string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0);
}
private:
Major MajorKey() { return StringAdd; }
int MinorKey() { return string_check_ ? 0 : 1; }
void Generate(MacroAssembler* masm);
// Should the stub check whether arguments are strings?
bool string_check_;
};
class SubStringStub: public CodeStub {
public:
SubStringStub() {}
private:
Major MajorKey() { return SubString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class StringCompareStub: public CodeStub {
public:
explicit StringCompareStub() {}
// Compare two flat ascii strings and returns result in rax after popping two
// arguments from the stack.
static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4);
private:
Major MajorKey() { return StringCompare; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class NumberToStringStub: public CodeStub {
public:
NumberToStringStub() { }
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
static void GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
bool object_is_smi,
Label* not_found);
private:
static void GenerateConvertHashCodeToIndex(MacroAssembler* masm,
Register hash,
Register mask);
Major MajorKey() { return NumberToString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
const char* GetName() { return "NumberToStringStub"; }
#ifdef DEBUG
void Print() {
PrintF("NumberToStringStub\n");
}
#endif
};
class RecordWriteStub : public CodeStub {
public:
RecordWriteStub(Register object, Register addr, Register scratch)
: object_(object), addr_(addr), scratch_(scratch) { }
void Generate(MacroAssembler* masm);
private:
Register object_;
Register addr_;
Register scratch_;
#ifdef DEBUG
void Print() {
PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n",
object_.code(), addr_.code(), scratch_.code());
}
#endif
// Minor key encoding in 12 bits. 4 bits for each of the three
// registers (object, address and scratch) OOOOAAAASSSS.
class ScratchBits : public BitField<uint32_t, 0, 4> {};
class AddressBits : public BitField<uint32_t, 4, 4> {};
class ObjectBits : public BitField<uint32_t, 8, 4> {};
Major MajorKey() { return RecordWrite; }
int MinorKey() {
// Encode the registers.
return ObjectBits::encode(object_.code()) |
AddressBits::encode(addr_.code()) |
ScratchBits::encode(scratch_.code());
}
};
} } // namespace v8::internal
#endif // V8_X64_CODE_STUBS_X64_H_