blob: 7ba482c8656ea067224cbaa73b2540becf242ac9 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "ic-inl.h"
#include "code-stubs.h"
#include "codegen-inl.h"
#include "stub-cache.h"
#include "macro-assembler.h"
namespace v8 {
namespace internal {
//-----------------------------------------------------------------------------
// StubCompiler static helper functions
#define __ ACCESS_MASM(masm)
static void ProbeTable(MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register offset) {
ASSERT_EQ(8, kPointerSize);
ASSERT_EQ(16, sizeof(StubCache::Entry));
// The offset register holds the entry offset times four (due to masking
// and shifting optimizations).
ExternalReference key_offset(SCTableReference::keyReference(table));
Label miss;
__ movq(kScratchRegister, key_offset);
// Check that the key in the entry matches the name.
// Multiply entry offset by 16 to get the entry address. Since the
// offset register already holds the entry offset times four, multiply
// by a further four.
__ cmpl(name, Operand(kScratchRegister, offset, times_4, 0));
__ j(not_equal, &miss);
// Get the code entry from the cache.
// Use key_offset + kPointerSize, rather than loading value_offset.
__ movq(kScratchRegister,
Operand(kScratchRegister, offset, times_4, kPointerSize));
// Check that the flags match what we're looking for.
__ movl(offset, FieldOperand(kScratchRegister, Code::kFlagsOffset));
__ and_(offset, Immediate(~Code::kFlagsNotUsedInLookup));
__ cmpl(offset, Immediate(flags));
__ j(not_equal, &miss);
// Jump to the first instruction in the code stub.
__ addq(kScratchRegister, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(kScratchRegister);
__ bind(&miss);
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
static void GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
String* name,
Register r0,
Register r1) {
ASSERT(name->IsSymbol());
__ IncrementCounter(&Counters::negative_lookups, 1);
__ IncrementCounter(&Counters::negative_lookups_miss, 1);
Label done;
__ movq(r0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ testb(FieldOperand(r0, Map::kBitFieldOffset),
Immediate(kInterceptorOrAccessCheckNeededMask));
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(r0, FIRST_JS_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = r0;
__ movq(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, miss_label);
// Compute the capacity mask.
const int kCapacityOffset =
StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
// Generate an unrolled loop that performs a few probes before
// giving up.
static const int kProbes = 4;
const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the null value).
for (int i = 0; i < kProbes; i++) {
// r0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = r1;
// Capacity is smi 2^n.
__ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
__ decl(index);
__ and_(index,
Immediate(name->Hash() + StringDictionary::GetProbeOffset(i)));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
Register entity_name = r1;
// Having undefined at this place means the name is not contained.
ASSERT_EQ(kSmiTagSize, 1);
__ movq(entity_name, Operand(properties, index, times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ Cmp(entity_name, Factory::undefined_value());
// __ jmp(miss_label);
if (i != kProbes - 1) {
__ j(equal, &done);
// Stop if found the property.
__ Cmp(entity_name, Handle<String>(name));
__ j(equal, miss_label);
// Check if the entry name is not a symbol.
__ movq(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
__ testb(FieldOperand(entity_name, Map::kInstanceTypeOffset),
Immediate(kIsSymbolMask));
__ j(zero, miss_label);
} else {
// Give up probing if still not found the undefined value.
__ j(not_equal, miss_label);
}
}
__ bind(&done);
__ DecrementCounter(&Counters::negative_lookups_miss, 1);
}
void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
Code* code = NULL;
if (kind == Code::LOAD_IC) {
code = Builtins::builtin(Builtins::LoadIC_Miss);
} else {
code = Builtins::builtin(Builtins::KeyedLoadIC_Miss);
}
Handle<Code> ic(code);
__ Jump(ic, RelocInfo::CODE_TARGET);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
// Load the global or builtins object from the current context.
__ movq(prototype,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
__ movq(prototype,
FieldOperand(prototype, GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
__ movq(prototype, Operand(prototype, Context::SlotOffset(index)));
// Load the initial map. The global functions all have initial maps.
__ movq(prototype,
FieldOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ movq(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm, int index, Register prototype, Label* miss) {
// Check we're still in the same context.
__ Move(prototype, Top::global());
__ cmpq(Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)),
prototype);
__ j(not_equal, miss);
// Get the global function with the given index.
JSFunction* function = JSFunction::cast(Top::global_context()->get(index));
// Load its initial map. The global functions all have initial maps.
__ Move(prototype, Handle<Map>(function->initial_map()));
// Load the prototype from the initial map.
__ movq(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst, Register src,
JSObject* holder, int index) {
// Adjust for the number of properties stored in the holder.
index -= holder->map()->inobject_properties();
if (index < 0) {
// Get the property straight out of the holder.
int offset = holder->map()->instance_size() + (index * kPointerSize);
__ movq(dst, FieldOperand(src, offset));
} else {
// Calculate the offset into the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ movq(dst, FieldOperand(src, JSObject::kPropertiesOffset));
__ movq(dst, FieldOperand(dst, offset));
}
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
JSObject* holder_obj) {
__ push(name);
InterceptorInfo* interceptor = holder_obj->GetNamedInterceptor();
ASSERT(!Heap::InNewSpace(interceptor));
__ Move(kScratchRegister, Handle<Object>(interceptor));
__ push(kScratchRegister);
__ push(receiver);
__ push(holder);
__ push(FieldOperand(kScratchRegister, InterceptorInfo::kDataOffset));
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2) {
Label miss;
USE(extra); // The register extra is not used on the X64 platform.
USE(extra2); // The register extra2 is not used on the X64 platform.
// Make sure that code is valid. The shifting code relies on the
// entry size being 16.
ASSERT(sizeof(Entry) == 16);
// Make sure the flags do not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
// Check scratch register is valid, extra and extra2 are unused.
ASSERT(!scratch.is(no_reg));
ASSERT(extra2.is(no_reg));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ movl(scratch, FieldOperand(name, String::kHashFieldOffset));
// Use only the low 32 bits of the map pointer.
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, Immediate(flags));
__ and_(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize));
// Probe the primary table.
ProbeTable(masm, flags, kPrimary, name, scratch);
// Primary miss: Compute hash for secondary probe.
__ movl(scratch, FieldOperand(name, String::kHashFieldOffset));
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, Immediate(flags));
__ and_(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize));
__ subl(scratch, name);
__ addl(scratch, Immediate(flags));
__ and_(scratch, Immediate((kSecondaryTableSize - 1) << kHeapObjectTagSize));
// Probe the secondary table.
ProbeTable(masm, flags, kSecondary, name, scratch);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
}
// Both name_reg and receiver_reg are preserved on jumps to miss_label,
// but may be destroyed if store is successful.
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
JSObject* object,
int index,
Map* transition,
Register receiver_reg,
Register name_reg,
Register scratch,
Label* miss_label) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver_reg, miss_label);
// Check that the map of the object hasn't changed.
__ Cmp(FieldOperand(receiver_reg, HeapObject::kMapOffset),
Handle<Map>(object->map()));
__ j(not_equal, miss_label);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if ((transition != NULL) && (object->map()->unused_property_fields() == 0)) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ pop(scratch); // Return address.
__ push(receiver_reg);
__ Push(Handle<Map>(transition));
__ push(rax);
__ push(scratch);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage)), 3, 1);
return;
}
if (transition != NULL) {
// Update the map of the object; no write barrier updating is
// needed because the map is never in new space.
__ Move(FieldOperand(receiver_reg, HeapObject::kMapOffset),
Handle<Map>(transition));
}
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ movq(FieldOperand(receiver_reg, offset), rax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ movq(name_reg, rax);
__ RecordWrite(receiver_reg, offset, name_reg, scratch);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ movq(scratch, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ movq(FieldOperand(scratch, offset), rax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ movq(name_reg, rax);
__ RecordWrite(scratch, offset, name_reg, receiver_reg);
}
// Return the value (register rax).
__ ret(0);
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, miss_label);
// Load length directly from the JS array.
__ movq(rax, FieldOperand(receiver, JSArray::kLengthOffset));
__ ret(0);
}
// Generate code to check if an object is a string. If the object is
// a string, the map's instance type is left in the scratch register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* smi,
Label* non_string_object) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, smi);
// Check that the object is a string.
__ movq(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzxbq(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
ASSERT(kNotStringTag != 0);
__ testl(scratch, Immediate(kNotStringTag));
__ j(not_zero, non_string_object);
}
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch register.
GenerateStringCheck(masm, receiver, scratch1, miss, &check_wrapper);
// Load length directly from the string.
__ movq(rax, FieldOperand(receiver, String::kLengthOffset));
__ ret(0);
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmpl(scratch1, Immediate(JS_VALUE_TYPE));
__ j(not_equal, miss);
// Check if the wrapped value is a string and load the length
// directly if it is.
__ movq(scratch2, FieldOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch2, scratch1, miss, miss);
__ movq(rax, FieldOperand(scratch2, String::kLengthOffset));
__ ret(0);
}
static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
JSObject* holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly));
__ movq(rax, Immediate(5));
__ movq(rbx, ref);
CEntryStub stub(1);
__ CallStub(&stub);
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register result,
Register scratch,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, result, miss_label);
if (!result.is(rax)) __ movq(rax, result);
__ ret(0);
}
// Number of pointers to be reserved on stack for fast API call.
static const int kFastApiCallArguments = 3;
// Reserves space for the extra arguments to API function in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : last argument in the internal frame of the caller
// -----------------------------------
__ movq(scratch, Operand(rsp, 0));
__ subq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
__ movq(Operand(rsp, 0), scratch);
__ Move(scratch, Smi::FromInt(0));
for (int i = 1; i <= kFastApiCallArguments; i++) {
__ movq(Operand(rsp, i * kPointerSize), scratch);
}
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- rsp[0] : return address.
// -- rsp[8] : last fast api call extra argument.
// -- ...
// -- rsp[kFastApiCallArguments * 8] : first fast api call extra argument.
// -- rsp[kFastApiCallArguments * 8 + 8] : last argument in the internal
// frame.
// -----------------------------------
__ movq(scratch, Operand(rsp, 0));
__ movq(Operand(rsp, kFastApiCallArguments * kPointerSize), scratch);
__ addq(rsp, Immediate(kPointerSize * kFastApiCallArguments));
}
// Generates call to API function.
static bool GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc,
Failure** failure) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : object passing the type check
// (last fast api call extra argument,
// set by CheckPrototypes)
// -- rsp[16] : api function
// (first fast api call extra argument)
// -- rsp[24] : api call data
// -- rsp[32] : last argument
// -- ...
// -- rsp[(argc + 3) * 8] : first argument
// -- rsp[(argc + 4) * 8] : receiver
// -----------------------------------
// Get the function and setup the context.
JSFunction* function = optimization.constant_function();
__ Move(rdi, Handle<JSFunction>(function));
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Pass the additional arguments.
__ movq(Operand(rsp, 2 * kPointerSize), rdi);
Object* call_data = optimization.api_call_info()->data();
Handle<CallHandlerInfo> api_call_info_handle(optimization.api_call_info());
if (Heap::InNewSpace(call_data)) {
__ Move(rcx, api_call_info_handle);
__ movq(rbx, FieldOperand(rcx, CallHandlerInfo::kDataOffset));
__ movq(Operand(rsp, 3 * kPointerSize), rbx);
} else {
__ Move(Operand(rsp, 3 * kPointerSize), Handle<Object>(call_data));
}
// Prepare arguments.
__ lea(rbx, Operand(rsp, 3 * kPointerSize));
Object* callback = optimization.api_call_info()->callback();
Address api_function_address = v8::ToCData<Address>(callback);
ApiFunction fun(api_function_address);
#ifdef _WIN64
// Win64 uses first register--rcx--for returned value.
Register arguments_arg = rdx;
#else
Register arguments_arg = rdi;
#endif
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 4;
__ PrepareCallApiFunction(kApiStackSpace);
__ movq(StackSpaceOperand(0), rbx); // v8::Arguments::implicit_args_.
__ addq(rbx, Immediate(argc * kPointerSize));
__ movq(StackSpaceOperand(1), rbx); // v8::Arguments::values_.
__ Set(StackSpaceOperand(2), argc); // v8::Arguments::length_.
// v8::Arguments::is_construct_call_.
__ Set(StackSpaceOperand(3), 0);
// v8::InvocationCallback's argument.
__ lea(arguments_arg, StackSpaceOperand(0));
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
MaybeObject* result =
masm->TryCallApiFunctionAndReturn(&fun, argc + kFastApiCallArguments + 1);
if (result->IsFailure()) {
*failure = Failure::cast(result);
return false;
}
return true;
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(StubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name) {}
bool Compile(MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss,
Failure** failure) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
return CompileCacheable(masm,
object,
receiver,
scratch1,
scratch2,
scratch3,
holder,
lookup,
name,
optimization,
miss,
failure);
} else {
CompileRegular(masm,
object,
receiver,
scratch1,
scratch2,
scratch3,
name,
holder,
miss);
return true;
}
}
private:
bool CompileCacheable(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
JSObject* interceptor_holder,
LookupResult* lookup,
String* name,
const CallOptimization& optimization,
Label* miss_label,
Failure** failure) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 =
optimization.GetPrototypeDepthOfExpectedType(object,
interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 =
optimization.GetPrototypeDepthOfExpectedType(interceptor_holder,
lookup->holder());
}
can_do_fast_api_call = (depth1 != kInvalidProtoDepth) ||
(depth2 != kInvalidProtoDepth);
}
__ IncrementCounter(&Counters::call_const_interceptor, 1);
if (can_do_fast_api_call) {
__ IncrementCounter(&Counters::call_const_interceptor_fast_api, 1);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(object, receiver,
interceptor_holder, scratch1,
scratch2, scratch3, name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
lookup->holder(), scratch1,
scratch2, scratch3, name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
bool success = GenerateFastApiCall(masm,
optimization,
arguments_.immediate(),
failure);
if (!success) {
return false;
}
} else {
__ InvokeFunction(optimization.constant_function(), arguments_,
JUMP_FUNCTION);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm, scratch1);
__ jmp(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm, scratch1);
}
return true;
}
void CompileRegular(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
String* name,
JSObject* interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3, name,
miss_label);
__ EnterInternalFrame();
// Save the name_ register across the call.
__ push(name_);
PushInterceptorArguments(masm,
receiver,
holder,
name_,
interceptor_holder);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall)),
5);
// Restore the name_ register.
__ pop(name_);
__ LeaveInternalFrame();
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
JSObject* holder_obj,
Label* interceptor_succeeded) {
__ EnterInternalFrame();
__ push(holder); // Save the holder.
__ push(name_); // Save the name.
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
__ LeaveInternalFrame();
__ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
__ j(not_equal, interceptor_succeeded);
}
StubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
};
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCell(
MacroAssembler* masm,
GlobalObject* global,
String* name,
Register scratch,
Label* miss) {
Object* probe;
{ MaybeObject* maybe_probe = global->EnsurePropertyCell(name);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(probe);
ASSERT(cell->value()->IsTheHole());
__ Move(scratch, Handle<Object>(cell));
__ Cmp(FieldOperand(scratch, JSGlobalPropertyCell::kValueOffset),
Factory::the_hole_value());
__ j(not_equal, miss);
return cell;
}
#undef __
#define __ ACCESS_MASM((masm()))
void CallStubCompiler::GenerateNameCheck(String* name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ Cmp(rcx, Handle<String>(name));
__ j(not_equal, miss);
}
}
void CallStubCompiler::GenerateGlobalReceiverCheck(JSObject* object,
JSObject* holder,
String* name,
Label* miss) {
ASSERT(holder->IsGlobalObject());
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// If the object is the holder then we know that it's a global
// object which can only happen for contextual calls. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ JumpIfSmi(rdx, miss);
}
// Check that the maps haven't changed.
CheckPrototypes(object, rdx, holder, rbx, rax, rdi, name, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(JSGlobalPropertyCell* cell,
JSFunction* function,
Label* miss) {
// Get the value from the cell.
__ Move(rdi, Handle<JSGlobalPropertyCell>(cell));
__ movq(rdi, FieldOperand(rdi, JSGlobalPropertyCell::kValueOffset));
// Check that the cell contains the same function.
if (Heap::InNewSpace(function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
__ JumpIfSmi(rdi, miss);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rax);
__ j(not_equal, miss);
// Check the shared function info. Make sure it hasn't changed.
__ Move(rax, Handle<SharedFunctionInfo>(function->shared()));
__ cmpq(FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset), rax);
__ j(not_equal, miss);
} else {
__ Cmp(rdi, Handle<JSFunction>(function));
__ j(not_equal, miss);
}
}
MaybeObject* CallStubCompiler::GenerateMissBranch() {
Object* obj;
{ MaybeObject* maybe_obj =
StubCache::ComputeCallMiss(arguments().immediate(), kind_);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
__ Jump(Handle<Code>(Code::cast(obj)), RelocInfo::CODE_TARGET);
return obj;
}
MaybeObject* CallStubCompiler::CompileCallConstant(
Object* object,
JSObject* holder,
JSFunction* function,
String* name,
StubCompiler::CheckType check) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
SharedFunctionInfo* function_info = function->shared();
if (function_info->HasCustomCallGenerator()) {
const int id = function_info->custom_call_generator_id();
MaybeObject* maybe_result = CompileCustomCall(
id, object, holder, NULL, function, name);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// undefined means bail out to regular compiler.
if (!result->IsUndefined()) return result;
}
Label miss_in_smi_check;
GenerateNameCheck(name, &miss_in_smi_check);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ JumpIfSmi(rdx, &miss_in_smi_check);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
CallOptimization optimization(function);
int depth = kInvalidProtoDepth;
Label miss;
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(&Counters::call_const, 1);
if (optimization.is_simple_api_call() && !object->IsGlobalObject()) {
depth = optimization.GetPrototypeDepthOfExpectedType(
JSObject::cast(object), holder);
}
if (depth != kInvalidProtoDepth) {
__ IncrementCounter(&Counters::call_const_fast_api, 1);
// Allocate space for v8::Arguments implicit values. Must be initialized
// before to call any runtime function.
__ subq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
}
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object), rdx, holder,
rbx, rax, rdi, name, depth, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
ASSERT(depth == kInvalidProtoDepth);
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
break;
case STRING_CHECK:
if (!function->IsBuiltin()) {
// Calling non-builtins with a value as receiver requires boxing.
__ jmp(&miss);
} else {
// Check that the object is a two-byte string or a symbol.
__ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, rax);
__ j(above_equal, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, rax, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), rax, holder,
rbx, rdx, rdi, name, &miss);
}
break;
case NUMBER_CHECK: {
if (!function->IsBuiltin()) {
// Calling non-builtins with a value as receiver requires boxing.
__ jmp(&miss);
} else {
Label fast;
// Check that the object is a smi or a heap number.
__ JumpIfSmi(rdx, &fast);
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rax);
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, rax, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), rax, holder,
rbx, rdx, rdi, name, &miss);
}
break;
}
case BOOLEAN_CHECK: {
if (!function->IsBuiltin()) {
// Calling non-builtins with a value as receiver requires boxing.
__ jmp(&miss);
} else {
Label fast;
// Check that the object is a boolean.
__ CompareRoot(rdx, Heap::kTrueValueRootIndex);
__ j(equal, &fast);
__ CompareRoot(rdx, Heap::kFalseValueRootIndex);
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, rax, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), rax, holder,
rbx, rdx, rdi, name, &miss);
}
break;
}
default:
UNREACHABLE();
}
if (depth != kInvalidProtoDepth) {
Failure* failure;
// Move the return address on top of the stack.
__ movq(rax, Operand(rsp, 3 * kPointerSize));
__ movq(Operand(rsp, 0 * kPointerSize), rax);
// rsp[2 * kPointerSize] is uninitialized, rsp[3 * kPointerSize] contains
// duplicate of return address and will be overwritten.
bool success = GenerateFastApiCall(masm(), optimization, argc, &failure);
if (!success) {
return failure;
}
} else {
__ InvokeFunction(function, arguments(), JUMP_FUNCTION);
}
// Handle call cache miss.
__ bind(&miss);
if (depth != kInvalidProtoDepth) {
__ addq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
}
// Handle call cache miss.
__ bind(&miss_in_smi_check);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileCallField(JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss);
// Do the right check and compute the holder register.
Register reg = CheckPrototypes(object, rdx, holder, rbx, rax, rdi,
name, &miss);
GenerateFastPropertyLoad(masm(), rdi, reg, holder, index);
// Check that the function really is a function.
__ JumpIfSmi(rdi, &miss);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rbx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
// Invoke the function.
__ InvokeFunction(rdi, arguments(), JUMP_FUNCTION);
// Handle call cache miss.
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* CallStubCompiler::CompileArrayPushCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- rcx : name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || cell != NULL) return Heap::undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss);
CheckPrototypes(JSObject::cast(object),
rdx,
holder,
rbx,
rax,
rdi,
name,
&miss);
if (argc == 0) {
// Noop, return the length.
__ movq(rax, FieldOperand(rdx, JSArray::kLengthOffset));
__ ret((argc + 1) * kPointerSize);
} else {
Label call_builtin;
// Get the elements array of the object.
__ movq(rbx, FieldOperand(rdx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
Factory::fixed_array_map());
__ j(not_equal, &call_builtin);
if (argc == 1) { // Otherwise fall through to call builtin.
Label exit, with_write_barrier, attempt_to_grow_elements;
// Get the array's length into rax and calculate new length.
__ SmiToInteger32(rax, FieldOperand(rdx, JSArray::kLengthOffset));
STATIC_ASSERT(FixedArray::kMaxLength < Smi::kMaxValue);
__ addl(rax, Immediate(argc));
// Get the element's length into rcx.
__ SmiToInteger32(rcx, FieldOperand(rbx, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmpl(rax, rcx);
__ j(greater, &attempt_to_grow_elements);
// Save new length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax);
// Push the element.
__ movq(rcx, Operand(rsp, argc * kPointerSize));
__ lea(rdx, FieldOperand(rbx,
rax, times_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ movq(Operand(rdx, 0), rcx);
// Check if value is a smi.
__ Integer32ToSmi(rax, rax); // Return new length as smi.
__ JumpIfNotSmi(rcx, &with_write_barrier);
__ bind(&exit);
__ ret((argc + 1) * kPointerSize);
__ bind(&with_write_barrier);
__ InNewSpace(rbx, rcx, equal, &exit);
RecordWriteStub stub(rbx, rdx, rcx);
__ CallStub(&stub);
__ ret((argc + 1) * kPointerSize);
__ bind(&attempt_to_grow_elements);
if (!FLAG_inline_new) {
__ jmp(&call_builtin);
}
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address();
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address();
const int kAllocationDelta = 4;
// Load top.
__ movq(rcx, new_space_allocation_top);
__ movq(rcx, Operand(rcx, 0));
// Check if it's the end of elements.
__ lea(rdx, FieldOperand(rbx,
rax, times_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ cmpq(rdx, rcx);
__ j(not_equal, &call_builtin);
__ addq(rcx, Immediate(kAllocationDelta * kPointerSize));
__ movq(kScratchRegister, new_space_allocation_limit);
__ cmpq(rcx, Operand(kScratchRegister, 0));
__ j(above, &call_builtin);
// We fit and could grow elements.
__ movq(kScratchRegister, new_space_allocation_top);
__ movq(Operand(kScratchRegister, 0), rcx);
__ movq(rcx, Operand(rsp, argc * kPointerSize));
// Push the argument...
__ movq(Operand(rdx, 0), rcx);
// ... and fill the rest with holes.
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
for (int i = 1; i < kAllocationDelta; i++) {
__ movq(Operand(rdx, i * kPointerSize), kScratchRegister);
}
// Restore receiver to rdx as finish sequence assumes it's here.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Increment element's and array's sizes.
__ SmiAddConstant(FieldOperand(rbx, FixedArray::kLengthOffset),
Smi::FromInt(kAllocationDelta));
// Make new length a smi before returning it.
__ Integer32ToSmi(rax, rax);
__ movq(FieldOperand(rdx, JSArray::kLengthOffset), rax);
// Elements are in new space, so write barrier is not required.
__ ret((argc + 1) * kPointerSize);
}
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush),
argc + 1,
1);
}
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileArrayPopCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- rcx : name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || cell != NULL) return Heap::undefined_value();
Label miss, return_undefined, call_builtin;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss);
CheckPrototypes(JSObject::cast(object), rdx,
holder, rbx,
rax, rdi, name, &miss);
// Get the elements array of the object.
__ movq(rbx, FieldOperand(rdx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &call_builtin);
// Get the array's length into rcx and calculate new length.
__ SmiToInteger32(rcx, FieldOperand(rdx, JSArray::kLengthOffset));
__ subl(rcx, Immediate(1));
__ j(negative, &return_undefined);
// Get the last element.
__ LoadRoot(r9, Heap::kTheHoleValueRootIndex);
__ movq(rax, FieldOperand(rbx,
rcx, times_pointer_size,
FixedArray::kHeaderSize));
// Check if element is already the hole.
__ cmpq(rax, r9);
// If so, call slow-case to also check prototypes for value.
__ j(equal, &call_builtin);
// Set the array's length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rcx);
// Fill with the hole and return original value.
__ movq(FieldOperand(rbx,
rcx, times_pointer_size,
FixedArray::kHeaderSize),
r9);
__ ret((argc + 1) * kPointerSize);
__ bind(&return_undefined);
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ ret((argc + 1) * kPointerSize);
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop),
argc + 1,
1);
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringCharAtCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- rcx : function name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || cell != NULL) return Heap::undefined_value();
const int argc = arguments().immediate();
Label miss;
Label index_out_of_range;
GenerateNameCheck(name, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
rax,
&miss);
ASSERT(object != holder);
CheckPrototypes(JSObject::cast(object->GetPrototype()), rax, holder,
rbx, rdx, rdi, name, &miss);
Register receiver = rax;
Register index = rdi;
Register scratch1 = rbx;
Register scratch2 = rdx;
Register result = rax;
__ movq(receiver, Operand(rsp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ movq(index, Operand(rsp, (argc - 0) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharAtGenerator char_at_generator(receiver,
index,
scratch1,
scratch2,
result,
&miss, // When not a string.
&miss, // When not a number.
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
char_at_generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
ICRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm(), call_helper);
__ bind(&index_out_of_range);
__ LoadRoot(rax, Heap::kEmptyStringRootIndex);
__ ret((argc + 1) * kPointerSize);
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringCharCodeAtCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- rcx : function name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || cell != NULL) return Heap::undefined_value();
const int argc = arguments().immediate();
Label miss;
Label index_out_of_range;
GenerateNameCheck(name, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
rax,
&miss);
ASSERT(object != holder);
CheckPrototypes(JSObject::cast(object->GetPrototype()), rax, holder,
rbx, rdx, rdi, name, &miss);
Register receiver = rbx;
Register index = rdi;
Register scratch = rdx;
Register result = rax;
__ movq(receiver, Operand(rsp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ movq(index, Operand(rsp, (argc - 0) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharCodeAtGenerator char_code_at_generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
char_code_at_generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
ICRuntimeCallHelper call_helper;
char_code_at_generator.GenerateSlow(masm(), call_helper);
__ bind(&index_out_of_range);
__ LoadRoot(rax, Heap::kNanValueRootIndex);
__ ret((argc + 1) * kPointerSize);
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringFromCharCodeCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- rcx : function name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return Heap::undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
__ JumpIfSmi(rdx, &miss);
CheckPrototypes(JSObject::cast(object), rdx, holder, rbx, rax, rdi, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = rbx;
__ movq(code, Operand(rsp, 1 * kPointerSize));
// Check the code is a smi.
Label slow;
__ JumpIfNotSmi(code, &slow);
// Convert the smi code to uint16.
__ SmiAndConstant(code, code, Smi::FromInt(0xffff));
StringCharFromCodeGenerator char_from_code_generator(code, rax);
char_from_code_generator.GenerateFast(masm());
__ ret(2 * kPointerSize);
ICRuntimeCallHelper call_helper;
char_from_code_generator.GenerateSlow(masm(), call_helper);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION);
__ bind(&miss);
// rcx: function name.
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileMathFloorCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// TODO(872): implement this.
return Heap::undefined_value();
}
MaybeObject* CallStubCompiler::CompileMathAbsCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- rcx : function name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return Heap::undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
__ JumpIfSmi(rdx, &miss);
CheckPrototypes(JSObject::cast(object), rdx, holder, rbx, rax, rdi, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into rax.
__ movq(rax, Operand(rsp, 1 * kPointerSize));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(rax, &not_smi);
__ SmiToInteger32(rax, rax);
// Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0
// otherwise.
__ movl(rbx, rax);
__ sarl(rbx, Immediate(kBitsPerInt - 1));
// Do bitwise not or do nothing depending on ebx.
__ xorl(rax, rbx);
// Add 1 or do nothing depending on ebx.
__ subl(rax, rbx);
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ j(negative, &slow);
// Smi case done.
__ Integer32ToSmi(rax, rax);
__ ret(2 * kPointerSize);
// Check if the argument is a heap number and load its value.
__ bind(&not_smi);
__ CheckMap(rax, Factory::heap_number_map(), &slow, true);
__ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
const int sign_mask_shift =
(HeapNumber::kExponentOffset - HeapNumber::kValueOffset) * kBitsPerByte;
__ movq(rdi, static_cast<int64_t>(HeapNumber::kSignMask) << sign_mask_shift,
RelocInfo::NONE);
__ testq(rbx, rdi);
__ j(not_zero, &negative_sign);
__ ret(2 * kPointerSize);
// If the argument is negative, clear the sign, and return a new
// number. We still have the sign mask in rdi.
__ bind(&negative_sign);
__ xor_(rbx, rdi);
__ AllocateHeapNumber(rax, rdx, &slow);
__ movq(FieldOperand(rax, HeapNumber::kValueOffset), rbx);
__ ret(2 * kPointerSize);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION);
__ bind(&miss);
// rcx: function name.
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileCallInterceptor(JSObject* object,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), rcx);
Failure* failure;
bool success = compiler.Compile(masm(),
object,
holder,
name,
&lookup,
rdx,
rbx,
rdi,
rax,
&miss,
&failure);
if (!success) {
return failure;
}
// Restore receiver.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the function really is a function.
__ JumpIfSmi(rax, &miss);
__ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
// Invoke the function.
__ movq(rdi, rax);
__ InvokeFunction(rdi, arguments(), JUMP_FUNCTION);
// Handle load cache miss.
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* CallStubCompiler::CompileCallGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
SharedFunctionInfo* function_info = function->shared();
if (function_info->HasCustomCallGenerator()) {
const int id = function_info->custom_call_generator_id();
MaybeObject* maybe_result = CompileCustomCall(
id, object, holder, cell, function, name);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// undefined means bail out to regular compiler.
if (!result->IsUndefined()) return result;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
GenerateGlobalReceiverCheck(object, holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
// Patch the receiver on the stack with the global proxy.
if (object->IsGlobalObject()) {
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
// Setup the context (function already in edi).
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
__ IncrementCounter(&Counters::call_global_inline, 1);
ASSERT(function->is_compiled());
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
__ InvokeCode(code, expected, arguments(),
RelocInfo::CODE_TARGET, JUMP_FUNCTION);
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(&Counters::call_global_inline_miss, 1);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* LoadStubCompiler::CompileLoadCallback(String* name,
JSObject* object,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Failure* failure = Failure::InternalError();
bool success = GenerateLoadCallback(object, holder, rax, rcx, rdx, rbx, rdi,
callback, name, &miss, &failure);
if (!success) {
miss.Unuse();
return failure;
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* LoadStubCompiler::CompileLoadConstant(JSObject* object,
JSObject* holder,
Object* value,
String* name) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadConstant(object, holder, rax, rbx, rdx, rdi, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
MaybeObject* LoadStubCompiler::CompileLoadNonexistent(String* name,
JSObject* object,
JSObject* last) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Chech that receiver is not a smi.
__ JumpIfSmi(rax, &miss);
// Check the maps of the full prototype chain. Also check that
// global property cells up to (but not including) the last object
// in the prototype chain are empty.
CheckPrototypes(object, rax, last, rbx, rdx, rdi, name, &miss);
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last->IsGlobalObject()) {
MaybeObject* cell = GenerateCheckPropertyCell(masm(),
GlobalObject::cast(last),
name,
rdx,
&miss);
if (cell->IsFailure()) {
miss.Unuse();
return cell;
}
}
// Return undefined if maps of the full prototype chain are still the
// same and no global property with this name contains a value.
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ ret(0);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NONEXISTENT, Heap::empty_string());
}
MaybeObject* LoadStubCompiler::CompileLoadField(JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadField(object, holder, rax, rbx, rdx, rdi, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* LoadStubCompiler::CompileLoadInterceptor(JSObject* receiver,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
// TODO(368): Compile in the whole chain: all the interceptors in
// prototypes and ultimate answer.
GenerateLoadInterceptor(receiver,
holder,
&lookup,
rax,
rcx,
rdx,
rbx,
rdi,
name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* LoadStubCompiler::CompileLoadGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
String* name,
bool is_dont_delete) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// If the object is the holder then we know that it's a global
// object which can only happen for contextual loads. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ JumpIfSmi(rax, &miss);
}
// Check that the maps haven't changed.
CheckPrototypes(object, rax, holder, rbx, rdx, rdi, name, &miss);
// Get the value from the cell.
__ Move(rbx, Handle<JSGlobalPropertyCell>(cell));
__ movq(rbx, FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
__ j(equal, &miss);
} else if (FLAG_debug_code) {
__ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
__ Check(not_equal, "DontDelete cells can't contain the hole");
}
__ IncrementCounter(&Counters::named_load_global_stub, 1);
__ movq(rax, rbx);
__ ret(0);
__ bind(&miss);
__ IncrementCounter(&Counters::named_load_global_stub_miss, 1);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadCallback(
String* name,
JSObject* receiver,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_callback, 1);
// Check that the name has not changed.
__ Cmp(rax, Handle<String>(name));
__ j(not_equal, &miss);
Failure* failure = Failure::InternalError();
bool success = GenerateLoadCallback(receiver, holder, rdx, rax, rbx, rcx, rdi,
callback, name, &miss, &failure);
if (!success) {
miss.Unuse();
return failure;
}
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_callback, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadArrayLength(String* name) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_array_length, 1);
// Check that the name has not changed.
__ Cmp(rax, Handle<String>(name));
__ j(not_equal, &miss);
GenerateLoadArrayLength(masm(), rdx, rcx, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_array_length, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadConstant(String* name,
JSObject* receiver,
JSObject* holder,
Object* value) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_constant_function, 1);
// Check that the name has not changed.
__ Cmp(rax, Handle<String>(name));
__ j(not_equal, &miss);
GenerateLoadConstant(receiver, holder, rdx, rbx, rcx, rdi,
value, name, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_constant_function, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadFunctionPrototype(String* name) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_function_prototype, 1);
// Check that the name has not changed.
__ Cmp(rax, Handle<String>(name));
__ j(not_equal, &miss);
GenerateLoadFunctionPrototype(masm(), rdx, rcx, rbx, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_function_prototype, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadInterceptor(JSObject* receiver,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_interceptor, 1);
// Check that the name has not changed.
__ Cmp(rax, Handle<String>(name));
__ j(not_equal, &miss);
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(receiver,
holder,
&lookup,
rdx,
rax,
rcx,
rbx,
rdi,
name,
&miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_interceptor, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadStringLength(String* name) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_string_length, 1);
// Check that the name has not changed.
__ Cmp(rax, Handle<String>(name));
__ j(not_equal, &miss);
GenerateLoadStringLength(masm(), rdx, rcx, rbx, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_string_length, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* StoreStubCompiler::CompileStoreCallback(JSObject* object,
AccessorInfo* callback,
String* name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &miss);
// Check that the map of the object hasn't changed.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Handle<Map>(object->map()));
__ j(not_equal, &miss);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(rdx, rbx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
__ pop(rbx); // remove the return address
__ push(rdx); // receiver
__ Push(Handle<AccessorInfo>(callback)); // callback info
__ push(rcx); // name
__ push(rax); // value
__ push(rbx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty));
__ TailCallExternalReference(store_callback_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* StoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Generate store field code. Preserves receiver and name on jump to miss.
GenerateStoreField(masm(),
object,
index,
transition,
rdx, rcx, rbx,
&miss);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
MaybeObject* StoreStubCompiler::CompileStoreInterceptor(JSObject* receiver,
String* name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &miss);
// Check that the map of the object hasn't changed.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Handle<Map>(receiver->map()));
__ j(not_equal, &miss);
// Perform global security token check if needed.
if (receiver->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(rdx, rbx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());
__ pop(rbx); // remove the return address
__ push(rdx); // receiver
__ push(rcx); // name
__ push(rax); // value
__ push(rbx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty));
__ TailCallExternalReference(store_ic_property, 3, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* StoreStubCompiler::CompileStoreGlobal(GlobalObject* object,
JSGlobalPropertyCell* cell,
String* name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Handle<Map>(object->map()));
__ j(not_equal, &miss);
// Store the value in the cell.
__ Move(rcx, Handle<JSGlobalPropertyCell>(cell));
__ movq(FieldOperand(rcx, JSGlobalPropertyCell::kValueOffset), rax);
// Return the value (register rax).
__ IncrementCounter(&Counters::named_store_global_inline, 1);
__ ret(0);
// Handle store cache miss.
__ bind(&miss);
__ IncrementCounter(&Counters::named_store_global_inline_miss, 1);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadField(String* name,
JSObject* receiver,
JSObject* holder,
int index) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_field, 1);
// Check that the name has not changed.
__ Cmp(rax, Handle<String>(name));
__ j(not_equal, &miss);
GenerateLoadField(receiver, holder, rdx, rbx, rcx, rdi, index, name, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_field, 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_store_field, 1);
// Check that the name has not changed.
__ Cmp(rcx, Handle<String>(name));
__ j(not_equal, &miss);
// Generate store field code. Preserves receiver and name on jump to miss.
GenerateStoreField(masm(),
object,
index,
transition,
rdx, rcx, rbx,
&miss);
// Handle store cache miss.
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_store_field, 1);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
void StubCompiler::GenerateLoadInterceptor(JSObject* object,
JSObject* interceptor_holder,
LookupResult* lookup,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
String* name,
Label* miss) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsProperty() && lookup->IsCacheable()) {
if (lookup->type() == FIELD) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsAccessorInfo() &&
AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL) {
compile_followup_inline = true;
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1));
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
__ EnterInternalFrame();
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
// CALLBACKS case needs a receiver to be passed into C++ callback.
__ push(receiver);
}
__ push(holder_reg);
__ push(name_reg);
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(masm(),
receiver,
holder_reg,
name_reg,
interceptor_holder);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
__ j(equal, &interceptor_failed);
__ LeaveInternalFrame();
__ ret(0);
__ bind(&interceptor_failed);
__ pop(name_reg);
__ pop(holder_reg);
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
__ pop(receiver);
}
__ LeaveInternalFrame();
// Check that the maps from interceptor's holder to lookup's holder
// haven't changed. And load lookup's holder into |holder| register.
if (interceptor_holder != lookup->holder()) {
holder_reg = CheckPrototypes(interceptor_holder,
holder_reg,
lookup->holder(),
scratch1,
scratch2,
scratch3,
name,
miss);
}
if (lookup->type() == FIELD) {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
GenerateFastPropertyLoad(masm(), rax, holder_reg,
lookup->holder(), lookup->GetFieldIndex());
__ ret(0);
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
ASSERT(lookup->GetCallbackObject()->IsAccessorInfo());
AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject());
ASSERT(callback != NULL);
ASSERT(callback->getter() != NULL);
// Tail call to runtime.
// Important invariant in CALLBACKS case: the code above must be
// structured to never clobber |receiver| register.
__ pop(scratch2); // return address
__ push(receiver);
__ push(holder_reg);
__ Move(holder_reg, Handle<AccessorInfo>(callback));
__ push(FieldOperand(holder_reg, AccessorInfo::kDataOffset));
__ push(holder_reg);
__ push(name_reg);
__ push(scratch2); // restore return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty));
__ TailCallExternalReference(ref, 5, 1);
}
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
__ pop(scratch2); // save old return address
PushInterceptorArguments(masm(), receiver, holder_reg,
name_reg, interceptor_holder);
__ push(scratch2); // restore old return address
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForLoad));
__ TailCallExternalReference(ref, 5, 1);
}
}
bool StubCompiler::GenerateLoadCallback(JSObject* object,
JSObject* holder,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
AccessorInfo* callback,
String* name,
Label* miss,
Failure** failure) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder, scratch1,
scratch2, scratch3, name, miss);
Handle<AccessorInfo> callback_handle(callback);
// Insert additional parameters into the stack frame above return address.
ASSERT(!scratch2.is(reg));
__ pop(scratch2); // Get return address to place it below.
__ push(receiver); // receiver
__ push(reg); // holder
if (Heap::InNewSpace(callback_handle->data())) {
__ Move(scratch1, callback_handle);
__ push(FieldOperand(scratch1, AccessorInfo::kDataOffset)); // data
} else {
__ Push(Handle<Object>(callback_handle->data()));
}
__ push(name_reg); // name
// Save a pointer to where we pushed the arguments pointer.
// This will be passed as the const AccessorInfo& to the C++ callback.
#ifdef _WIN64
// Win64 uses first register--rcx--for returned value.
Register accessor_info_arg = r8;
Register name_arg = rdx;
#else
Register accessor_info_arg = rsi;
Register name_arg = rdi;
#endif
ASSERT(!name_arg.is(scratch2));
__ movq(name_arg, rsp);
__ push(scratch2); // Restore return address.
// Do call through the api.
Address getter_address = v8::ToCData<Address>(callback->getter());
ApiFunction fun(getter_address);
// 3 elements array for v8::Agruments::values_ and handler for name.
const int kStackSpace = 4;
// Allocate v8::AccessorInfo in non-GCed stack space.
const int kArgStackSpace = 1;
__ PrepareCallApiFunction(kArgStackSpace);
__ lea(rax, Operand(name_arg, 3 * kPointerSize));
// v8::AccessorInfo::args_.
__ movq(StackSpaceOperand(0), rax);
// The context register (rsi) has been saved in PrepareCallApiFunction and
// could be used to pass arguments.
__ lea(accessor_info_arg, StackSpaceOperand(0));
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
MaybeObject* result = masm()->TryCallApiFunctionAndReturn(&fun, kStackSpace);
if (result->IsFailure()) {
*failure = Failure::cast(result);
return false;
}
return true;
}
Register StubCompiler::CheckPrototypes(JSObject* object,
Register object_reg,
JSObject* holder,
Register holder_reg,
Register scratch1,
Register scratch2,
String* name,
int save_at_depth,
Label* miss) {
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg. On the first
// iteration, reg is an alias for object_reg, on later iterations,
// it is an alias for holder_reg.
Register reg = object_reg;
int depth = 0;
if (save_at_depth == depth) {
__ movq(Operand(rsp, kPointerSize), object_reg);
}
// Check the maps in the prototype chain.
// Traverse the prototype chain from the object and do map checks.
JSObject* current = object;
while (current != holder) {
depth++;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
JSObject* prototype = JSObject::cast(current->GetPrototype());
if (!current->HasFastProperties() &&
!current->IsJSGlobalObject() &&
!current->IsJSGlobalProxy()) {
if (!name->IsSymbol()) {
MaybeObject* lookup_result = Heap::LookupSymbol(name);
if (lookup_result->IsFailure()) {
set_failure(Failure::cast(lookup_result));
return reg;
} else {
name = String::cast(lookup_result->ToObjectUnchecked());
}
}
ASSERT(current->property_dictionary()->FindEntry(name) ==
StringDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(),
miss,
reg,
name,
scratch1,
scratch2);
__ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // from now the object is in holder_reg
__ movq(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else if (Heap::InNewSpace(prototype)) {
// Get the map of the current object.
__ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
__ Cmp(scratch1, Handle<Map>(current->map()));
// Branch on the result of the map check.
__ j(not_equal, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
// Restore scratch register to be the map of the object.
// We load the prototype from the map in the scratch register.
__ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
}
// The prototype is in new space; we cannot store a reference
// to it in the code. Load it from the map.
reg = holder_reg; // from now the object is in holder_reg
__ movq(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
// Check the map of the current object.
__ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
Handle<Map>(current->map()));
// Branch on the result of the map check.
__ j(not_equal, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// The prototype is in old space; load it directly.
reg = holder_reg; // from now the object is in holder_reg
__ Move(reg, Handle<JSObject>(prototype));
}
if (save_at_depth == depth) {
__ movq(Operand(rsp, kPointerSize), reg);
}
// Go to the next object in the prototype chain.
current = prototype;
}
// Check the holder map.
__ Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle<Map>(holder->map()));
__ j(not_equal, miss);
// Log the check depth.
LOG(IntEvent("check-maps-depth", depth + 1));
// Perform security check for access to the global object and return
// the holder register.
ASSERT(current == holder);
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// If we've skipped any global objects, it's not enough to verify
// that their maps haven't changed. We also need to check that the
// property cell for the property is still empty.
current = object;
while (current != holder) {
if (current->IsGlobalObject()) {
MaybeObject* cell = GenerateCheckPropertyCell(masm(),
GlobalObject::cast(current),
name,
scratch1,
miss);
if (cell->IsFailure()) {
set_failure(Failure::cast(cell));
return reg;
}
}
current = JSObject::cast(current->GetPrototype());
}
// Return the register containing the holder.
return reg;
}
void StubCompiler::GenerateLoadField(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
int index,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check the prototype chain.
Register reg =
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, scratch3, name, miss);
// Get the value from the properties.
GenerateFastPropertyLoad(masm(), rax, reg, holder, index);
__ ret(0);
}
void StubCompiler::GenerateLoadConstant(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Object* value,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, scratch3, name, miss);
// Return the constant value.
__ Move(rax, Handle<Object>(value));
__ ret(0);
}
// Specialized stub for constructing objects from functions which only have only
// simple assignments of the form this.x = ...; in their body.
MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rdi : constructor
// -- rsp[0] : return address
// -- rsp[4] : last argument
// -----------------------------------
Label generic_stub_call;
// Use r8 for holding undefined which is used in several places below.
__ Move(r8, Factory::undefined_value());
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check to see whether there are any break points in the function code. If
// there are jump to the generic constructor stub which calls the actual
// code for the function thereby hitting the break points.
__ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kDebugInfoOffset));
__ cmpq(rbx, r8);
__ j(not_equal, &generic_stub_call);
#endif
// Load the initial map and verify that it is in fact a map.
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
ASSERT(kSmiTag == 0);
__ JumpIfSmi(rbx, &generic_stub_call);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ j(not_equal, &generic_stub_call);
#ifdef DEBUG
// Cannot construct functions this way.
// rdi: constructor
// rbx: initial map
__ CmpInstanceType(rbx, JS_FUNCTION_TYPE);
__ Assert(not_equal, "Function constructed by construct stub.");
#endif
// Now allocate the JSObject in new space.
// rdi: constructor
// rbx: initial map
__ movzxbq(rcx, FieldOperand(rbx, Map::kInstanceSizeOffset));
__ shl(rcx, Immediate(kPointerSizeLog2));
__ AllocateInNewSpace(rcx,
rdx,
rcx,
no_reg,
&generic_stub_call,
NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields and add the heap tag.
// rbx: initial map
// rdx: JSObject (untagged)
__ movq(Operand(rdx, JSObject::kMapOffset), rbx);
__ Move(rbx, Factory::empty_fixed_array());
__ movq(Operand(rdx, JSObject::kPropertiesOffset), rbx);
__ movq(Operand(rdx, JSObject::kElementsOffset), rbx);
// rax: argc
// rdx: JSObject (untagged)
// Load the address of the first in-object property into r9.
__ lea(r9, Operand(rdx, JSObject::kHeaderSize));
// Calculate the location of the first argument. The stack contains only the
// return address on top of the argc arguments.
__ lea(rcx, Operand(rsp, rax, times_pointer_size, 0));
// rax: argc
// rcx: first argument
// rdx: JSObject (untagged)
// r8: undefined
// r9: first in-object property of the JSObject
// Fill the initialized properties with a constant value or a passed argument
// depending on the this.x = ...; assignment in the function.
SharedFunctionInfo* shared = function->shared();
for (int i = 0; i < shared->this_property_assignments_count(); i++) {
if (shared->IsThisPropertyAssignmentArgument(i)) {
// Check if the argument assigned to the property is actually passed.
// If argument is not passed the property is set to undefined,
// otherwise find it on the stack.
int arg_number = shared->GetThisPropertyAssignmentArgument(i);
__ movq(rbx, r8);
__ cmpq(rax, Immediate(arg_number));
__ cmovq(above, rbx, Operand(rcx, arg_number * -kPointerSize));
// Store value in the property.
__ movq(Operand(r9, i * kPointerSize), rbx);
} else {
// Set the property to the constant value.
Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
__ Move(Operand(r9, i * kPointerSize), constant);
}
}
// Fill the unused in-object property fields with undefined.
ASSERT(function->has_initial_map());
for (int i = shared->this_property_assignments_count();
i < function->initial_map()->inobject_properties();
i++) {
__ movq(Operand(r9, i * kPointerSize), r8);
}
// rax: argc
// rdx: JSObject (untagged)
// Move argc to rbx and the JSObject to return to rax and tag it.
__ movq(rbx, rax);
__ movq(rax, rdx);
__ or_(rax, Immediate(kHeapObjectTag));
// rax: JSObject
// rbx: argc
// Remove caller arguments and receiver from the stack and return.
__ pop(rcx);
__ lea(rsp, Operand(rsp, rbx, times_pointer_size, 1 * kPointerSize));
__ push(rcx);
__ IncrementCounter(&Counters::constructed_objects, 1);
__ IncrementCounter(&Counters::constructed_objects_stub, 1);
__ ret(0);
// Jump to the generic stub in case the specialized code cannot handle the
// construction.
__ bind(&generic_stub_call);
Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
Handle<Code> generic_construct_stub(code);
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode();
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64