blob: c37b3f7156d157a8b3a734e6b0cf2163109bbd4a [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Declares a Simulator for ARM instructions if we are not generating a native
// ARM binary. This Simulator allows us to run and debug ARM code generation on
// regular desktop machines.
// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
// which will start execution in the Simulator or forwards to the real entry
// on a ARM HW platform.
#ifndef V8_ARM_SIMULATOR_ARM_H_
#define V8_ARM_SIMULATOR_ARM_H_
#include "allocation.h"
#if !defined(USE_SIMULATOR)
// Running without a simulator on a native arm platform.
namespace v8 {
namespace internal {
// When running without a simulator we call the entry directly.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
(entry(p0, p1, p2, p3, p4))
// Call the generated regexp code directly. The entry function pointer should
// expect seven int/pointer sized arguments and return an int.
#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
(entry(p0, p1, p2, p3, p4, p5, p6))
#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
(reinterpret_cast<TryCatch*>(try_catch_address))
// The stack limit beyond which we will throw stack overflow errors in
// generated code. Because generated code on arm uses the C stack, we
// just use the C stack limit.
class SimulatorStack : public v8::internal::AllStatic {
public:
static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
return c_limit;
}
static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
return try_catch_address;
}
static inline void UnregisterCTryCatch() { }
};
} } // namespace v8::internal
#else // !defined(USE_SIMULATOR)
// Running with a simulator.
#include "constants-arm.h"
#include "hashmap.h"
namespace assembler {
namespace arm {
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() {
memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
}
char* ValidityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* CachedData(int offset) {
return &data_[offset];
}
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
class Simulator {
public:
friend class Debugger;
enum Register {
no_reg = -1,
r0 = 0, r1, r2, r3, r4, r5, r6, r7,
r8, r9, r10, r11, r12, r13, r14, r15,
num_registers,
sp = 13,
lr = 14,
pc = 15,
s0 = 0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11, s12, s13, s14, s15,
s16, s17, s18, s19, s20, s21, s22, s23,
s24, s25, s26, s27, s28, s29, s30, s31,
num_s_registers = 32,
d0 = 0, d1, d2, d3, d4, d5, d6, d7,
d8, d9, d10, d11, d12, d13, d14, d15,
num_d_registers = 16
};
Simulator();
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
static Simulator* current();
// Accessors for register state. Reading the pc value adheres to the ARM
// architecture specification and is off by a 8 from the currently executing
// instruction.
void set_register(int reg, int32_t value);
int32_t get_register(int reg) const;
void set_dw_register(int dreg, const int* dbl);
// Support for VFP.
void set_s_register(int reg, unsigned int value);
unsigned int get_s_register(int reg) const;
void set_d_register_from_double(int dreg, const double& dbl);
double get_double_from_d_register(int dreg);
void set_s_register_from_float(int sreg, const float dbl);
float get_float_from_s_register(int sreg);
void set_s_register_from_sinteger(int reg, const int value);
int get_sinteger_from_s_register(int reg);
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int32_t value);
int32_t get_pc() const;
// Accessor to the internal simulator stack area.
uintptr_t StackLimit() const;
// Executes ARM instructions until the PC reaches end_sim_pc.
void Execute();
// Call on program start.
static void Initialize();
// V8 generally calls into generated JS code with 5 parameters and into
// generated RegExp code with 7 parameters. This is a convenience function,
// which sets up the simulator state and grabs the result on return.
int32_t Call(byte* entry, int argument_count, ...);
// Push an address onto the JS stack.
uintptr_t PushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t PopAddress();
// ICache checking.
static void FlushICache(void* start, size_t size);
private:
enum special_values {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_lr = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the lr is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2
};
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instr* instr, const char* format);
// Checks if the current instruction should be executed based on its
// condition bits.
bool ConditionallyExecute(Instr* instr);
// Helper functions to set the conditional flags in the architecture state.
void SetNZFlags(int32_t val);
void SetCFlag(bool val);
void SetVFlag(bool val);
bool CarryFrom(int32_t left, int32_t right);
bool BorrowFrom(int32_t left, int32_t right);
bool OverflowFrom(int32_t alu_out,
int32_t left,
int32_t right,
bool addition);
// Support for VFP.
void Compute_FPSCR_Flags(double val1, double val2);
void Copy_FPSCR_to_APSR();
// Helper functions to decode common "addressing" modes
int32_t GetShiftRm(Instr* instr, bool* carry_out);
int32_t GetImm(Instr* instr, bool* carry_out);
void HandleRList(Instr* instr, bool load);
void SoftwareInterrupt(Instr* instr);
// Stop helper functions.
inline bool isStopInstruction(Instr* instr);
inline bool isWatchedStop(uint32_t bkpt_code);
inline bool isEnabledStop(uint32_t bkpt_code);
inline void EnableStop(uint32_t bkpt_code);
inline void DisableStop(uint32_t bkpt_code);
inline void IncreaseStopCounter(uint32_t bkpt_code);
void PrintStopInfo(uint32_t code);
// Read and write memory.
inline uint8_t ReadBU(int32_t addr);
inline int8_t ReadB(int32_t addr);
inline void WriteB(int32_t addr, uint8_t value);
inline void WriteB(int32_t addr, int8_t value);
inline uint16_t ReadHU(int32_t addr, Instr* instr);
inline int16_t ReadH(int32_t addr, Instr* instr);
// Note: Overloaded on the sign of the value.
inline void WriteH(int32_t addr, uint16_t value, Instr* instr);
inline void WriteH(int32_t addr, int16_t value, Instr* instr);
inline int ReadW(int32_t addr, Instr* instr);
inline void WriteW(int32_t addr, int value, Instr* instr);
int32_t* ReadDW(int32_t addr);
void WriteDW(int32_t addr, int32_t value1, int32_t value2);
// Executing is handled based on the instruction type.
void DecodeType01(Instr* instr); // both type 0 and type 1 rolled into one
void DecodeType2(Instr* instr);
void DecodeType3(Instr* instr);
void DecodeType4(Instr* instr);
void DecodeType5(Instr* instr);
void DecodeType6(Instr* instr);
void DecodeType7(Instr* instr);
// Support for VFP.
void DecodeTypeVFP(Instr* instr);
void DecodeType6CoprocessorIns(Instr* instr);
void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instr* instr);
void DecodeVCMP(Instr* instr);
void DecodeVCVTBetweenDoubleAndSingle(Instr* instr);
void DecodeVCVTBetweenFloatingPointAndInteger(Instr* instr);
// Executes one instruction.
void InstructionDecode(Instr* instr);
// ICache.
static void CheckICache(Instr* instr);
static void FlushOnePage(intptr_t start, int size);
static CachePage* GetCachePage(void* page);
// Runtime call support.
static void* RedirectExternalReference(void* external_function,
bool fp_return);
// For use in calls that take two double values, constructed from r0, r1, r2
// and r3.
void GetFpArgs(double* x, double* y);
void SetFpResult(const double& result);
void TrashCallerSaveRegisters();
// Architecture state.
// Saturating instructions require a Q flag to indicate saturation.
// There is currently no way to read the CPSR directly, and thus read the Q
// flag, so this is left unimplemented.
int32_t registers_[16];
bool n_flag_;
bool z_flag_;
bool c_flag_;
bool v_flag_;
// VFP architecture state.
unsigned int vfp_register[num_s_registers];
bool n_flag_FPSCR_;
bool z_flag_FPSCR_;
bool c_flag_FPSCR_;
bool v_flag_FPSCR_;
// VFP rounding mode. See ARM DDI 0406B Page A2-29.
FPSCRRoundingModes FPSCR_rounding_mode_;
// VFP FP exception flags architecture state.
bool inv_op_vfp_flag_;
bool div_zero_vfp_flag_;
bool overflow_vfp_flag_;
bool underflow_vfp_flag_;
bool inexact_vfp_flag_;
// Simulator support.
char* stack_;
bool pc_modified_;
int icount_;
static bool initialized_;
// Icache simulation
static v8::internal::HashMap* i_cache_;
// Registered breakpoints.
Instr* break_pc_;
instr_t break_instr_;
// A stop is watched if its code is less than kNumOfWatchedStops.
// Only watched stops support enabling/disabling and the counter feature.
static const uint32_t kNumOfWatchedStops = 256;
// Breakpoint is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1 << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watched_stops[code].count is unset.
// The value watched_stops[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCoundAndDesc {
uint32_t count;
char* desc;
};
StopCoundAndDesc watched_stops[kNumOfWatchedStops];
};
} } // namespace assembler::arm
namespace v8 {
namespace internal {
// When running with the simulator transition into simulated execution at this
// point.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
reinterpret_cast<Object*>(assembler::arm::Simulator::current()->Call( \
FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
assembler::arm::Simulator::current()->Call( \
FUNCTION_ADDR(entry), 7, p0, p1, p2, p3, p4, p5, p6)
#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
try_catch_address == \
NULL ? NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
// The simulator has its own stack. Thus it has a different stack limit from
// the C-based native code. Setting the c_limit to indicate a very small
// stack cause stack overflow errors, since the simulator ignores the input.
// This is unlikely to be an issue in practice, though it might cause testing
// trouble down the line.
class SimulatorStack : public v8::internal::AllStatic {
public:
static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
return assembler::arm::Simulator::current()->StackLimit();
}
static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
assembler::arm::Simulator* sim = assembler::arm::Simulator::current();
return sim->PushAddress(try_catch_address);
}
static inline void UnregisterCTryCatch() {
assembler::arm::Simulator::current()->PopAddress();
}
};
} } // namespace v8::internal
#endif // !defined(USE_SIMULATOR)
#endif // V8_ARM_SIMULATOR_ARM_H_