| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_AST_H_ |
| #define V8_AST_H_ |
| |
| #include "execution.h" |
| #include "factory.h" |
| #include "jsregexp.h" |
| #include "jump-target.h" |
| #include "runtime.h" |
| #include "token.h" |
| #include "variables.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // The abstract syntax tree is an intermediate, light-weight |
| // representation of the parsed JavaScript code suitable for |
| // compilation to native code. |
| |
| // Nodes are allocated in a separate zone, which allows faster |
| // allocation and constant-time deallocation of the entire syntax |
| // tree. |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Nodes of the abstract syntax tree. Only concrete classes are |
| // enumerated here. |
| |
| #define STATEMENT_NODE_LIST(V) \ |
| V(Block) \ |
| V(ExpressionStatement) \ |
| V(EmptyStatement) \ |
| V(IfStatement) \ |
| V(ContinueStatement) \ |
| V(BreakStatement) \ |
| V(ReturnStatement) \ |
| V(WithEnterStatement) \ |
| V(WithExitStatement) \ |
| V(SwitchStatement) \ |
| V(DoWhileStatement) \ |
| V(WhileStatement) \ |
| V(ForStatement) \ |
| V(ForInStatement) \ |
| V(TryCatchStatement) \ |
| V(TryFinallyStatement) \ |
| V(DebuggerStatement) |
| |
| #define EXPRESSION_NODE_LIST(V) \ |
| V(FunctionLiteral) \ |
| V(SharedFunctionInfoLiteral) \ |
| V(Conditional) \ |
| V(Slot) \ |
| V(VariableProxy) \ |
| V(Literal) \ |
| V(RegExpLiteral) \ |
| V(ObjectLiteral) \ |
| V(ArrayLiteral) \ |
| V(CatchExtensionObject) \ |
| V(Assignment) \ |
| V(Throw) \ |
| V(Property) \ |
| V(Call) \ |
| V(CallNew) \ |
| V(CallRuntime) \ |
| V(UnaryOperation) \ |
| V(IncrementOperation) \ |
| V(CountOperation) \ |
| V(BinaryOperation) \ |
| V(CompareOperation) \ |
| V(CompareToNull) \ |
| V(ThisFunction) |
| |
| #define AST_NODE_LIST(V) \ |
| V(Declaration) \ |
| STATEMENT_NODE_LIST(V) \ |
| EXPRESSION_NODE_LIST(V) |
| |
| // Forward declarations |
| class TargetCollector; |
| class MaterializedLiteral; |
| class DefinitionInfo; |
| class BitVector; |
| |
| #define DEF_FORWARD_DECLARATION(type) class type; |
| AST_NODE_LIST(DEF_FORWARD_DECLARATION) |
| #undef DEF_FORWARD_DECLARATION |
| |
| |
| // Typedef only introduced to avoid unreadable code. |
| // Please do appreciate the required space in "> >". |
| typedef ZoneList<Handle<String> > ZoneStringList; |
| typedef ZoneList<Handle<Object> > ZoneObjectList; |
| |
| |
| #define DECLARE_NODE_TYPE(type) \ |
| virtual void Accept(AstVisitor* v); \ |
| virtual AstNode::Type node_type() const { return AstNode::k##type; } \ |
| virtual type* As##type() { return this; } |
| |
| |
| class AstNode: public ZoneObject { |
| public: |
| #define DECLARE_TYPE_ENUM(type) k##type, |
| enum Type { |
| AST_NODE_LIST(DECLARE_TYPE_ENUM) |
| kInvalid = -1 |
| }; |
| #undef DECLARE_TYPE_ENUM |
| |
| virtual ~AstNode() { } |
| |
| virtual void Accept(AstVisitor* v) = 0; |
| virtual Type node_type() const { return kInvalid; } |
| |
| // Type testing & conversion functions overridden by concrete subclasses. |
| #define DECLARE_NODE_FUNCTIONS(type) \ |
| virtual type* As##type() { return NULL; } |
| AST_NODE_LIST(DECLARE_NODE_FUNCTIONS) |
| #undef DECLARE_NODE_FUNCTIONS |
| |
| virtual Statement* AsStatement() { return NULL; } |
| virtual Expression* AsExpression() { return NULL; } |
| virtual TargetCollector* AsTargetCollector() { return NULL; } |
| virtual BreakableStatement* AsBreakableStatement() { return NULL; } |
| virtual IterationStatement* AsIterationStatement() { return NULL; } |
| virtual MaterializedLiteral* AsMaterializedLiteral() { return NULL; } |
| }; |
| |
| |
| class Statement: public AstNode { |
| public: |
| Statement() : statement_pos_(RelocInfo::kNoPosition) {} |
| |
| virtual Statement* AsStatement() { return this; } |
| |
| virtual Assignment* StatementAsSimpleAssignment() { return NULL; } |
| virtual CountOperation* StatementAsCountOperation() { return NULL; } |
| |
| bool IsEmpty() { return AsEmptyStatement() != NULL; } |
| |
| void set_statement_pos(int statement_pos) { statement_pos_ = statement_pos; } |
| int statement_pos() const { return statement_pos_; } |
| |
| private: |
| int statement_pos_; |
| }; |
| |
| |
| class Expression: public AstNode { |
| public: |
| Expression() : bitfields_(0) {} |
| |
| virtual Expression* AsExpression() { return this; } |
| |
| virtual bool IsTrivial() { return false; } |
| virtual bool IsValidLeftHandSide() { return false; } |
| |
| // Symbols that cannot be parsed as array indices are considered property |
| // names. We do not treat symbols that can be array indexes as property |
| // names because [] for string objects is handled only by keyed ICs. |
| virtual bool IsPropertyName() { return false; } |
| |
| // Mark the expression as being compiled as an expression |
| // statement. This is used to transform postfix increments to |
| // (faster) prefix increments. |
| virtual void MarkAsStatement() { /* do nothing */ } |
| |
| // True iff the result can be safely overwritten (to avoid allocation). |
| // False for operations that can return one of their operands. |
| virtual bool ResultOverwriteAllowed() { return false; } |
| |
| // True iff the expression is a literal represented as a smi. |
| virtual bool IsSmiLiteral() { return false; } |
| |
| // Static type information for this expression. |
| StaticType* type() { return &type_; } |
| |
| // True if the expression is a loop condition. |
| bool is_loop_condition() const { |
| return LoopConditionField::decode(bitfields_); |
| } |
| void set_is_loop_condition(bool flag) { |
| bitfields_ = (bitfields_ & ~LoopConditionField::mask()) | |
| LoopConditionField::encode(flag); |
| } |
| |
| // The value of the expression is guaranteed to be a smi, because the |
| // top operation is a bit operation with a mask, or a shift. |
| bool GuaranteedSmiResult(); |
| |
| // AST analysis results. |
| void CopyAnalysisResultsFrom(Expression* other); |
| |
| // True if the expression rooted at this node can be compiled by the |
| // side-effect free compiler. |
| bool side_effect_free() { return SideEffectFreeField::decode(bitfields_); } |
| void set_side_effect_free(bool is_side_effect_free) { |
| bitfields_ &= ~SideEffectFreeField::mask(); |
| bitfields_ |= SideEffectFreeField::encode(is_side_effect_free); |
| } |
| |
| // Will the use of this expression treat -0 the same as 0 in all cases? |
| // If so, we can return 0 instead of -0 if we want to, to optimize code. |
| bool no_negative_zero() { return NoNegativeZeroField::decode(bitfields_); } |
| void set_no_negative_zero(bool no_negative_zero) { |
| bitfields_ &= ~NoNegativeZeroField::mask(); |
| bitfields_ |= NoNegativeZeroField::encode(no_negative_zero); |
| } |
| |
| // Will ToInt32 (ECMA 262-3 9.5) or ToUint32 (ECMA 262-3 9.6) |
| // be applied to the value of this expression? |
| // If so, we may be able to optimize the calculation of the value. |
| bool to_int32() { return ToInt32Field::decode(bitfields_); } |
| void set_to_int32(bool to_int32) { |
| bitfields_ &= ~ToInt32Field::mask(); |
| bitfields_ |= ToInt32Field::encode(to_int32); |
| } |
| |
| // How many bitwise logical or shift operators are used in this expression? |
| int num_bit_ops() { return NumBitOpsField::decode(bitfields_); } |
| void set_num_bit_ops(int num_bit_ops) { |
| bitfields_ &= ~NumBitOpsField::mask(); |
| num_bit_ops = Min(num_bit_ops, kMaxNumBitOps); |
| bitfields_ |= NumBitOpsField::encode(num_bit_ops); |
| } |
| |
| private: |
| static const int kMaxNumBitOps = (1 << 5) - 1; |
| |
| uint32_t bitfields_; |
| StaticType type_; |
| |
| // Using template BitField<type, start, size>. |
| class SideEffectFreeField : public BitField<bool, 0, 1> {}; |
| class NoNegativeZeroField : public BitField<bool, 1, 1> {}; |
| class ToInt32Field : public BitField<bool, 2, 1> {}; |
| class NumBitOpsField : public BitField<int, 3, 5> {}; |
| class LoopConditionField: public BitField<bool, 8, 1> {}; |
| }; |
| |
| |
| /** |
| * A sentinel used during pre parsing that represents some expression |
| * that is a valid left hand side without having to actually build |
| * the expression. |
| */ |
| class ValidLeftHandSideSentinel: public Expression { |
| public: |
| virtual bool IsValidLeftHandSide() { return true; } |
| virtual void Accept(AstVisitor* v) { UNREACHABLE(); } |
| static ValidLeftHandSideSentinel* instance() { return &instance_; } |
| |
| private: |
| static ValidLeftHandSideSentinel instance_; |
| }; |
| |
| |
| class BreakableStatement: public Statement { |
| public: |
| enum Type { |
| TARGET_FOR_ANONYMOUS, |
| TARGET_FOR_NAMED_ONLY |
| }; |
| |
| // The labels associated with this statement. May be NULL; |
| // if it is != NULL, guaranteed to contain at least one entry. |
| ZoneStringList* labels() const { return labels_; } |
| |
| // Type testing & conversion. |
| virtual BreakableStatement* AsBreakableStatement() { return this; } |
| |
| // Code generation |
| BreakTarget* break_target() { return &break_target_; } |
| |
| // Testers. |
| bool is_target_for_anonymous() const { return type_ == TARGET_FOR_ANONYMOUS; } |
| |
| protected: |
| inline BreakableStatement(ZoneStringList* labels, Type type); |
| |
| private: |
| ZoneStringList* labels_; |
| Type type_; |
| BreakTarget break_target_; |
| }; |
| |
| |
| class Block: public BreakableStatement { |
| public: |
| inline Block(ZoneStringList* labels, int capacity, bool is_initializer_block); |
| |
| DECLARE_NODE_TYPE(Block) |
| |
| virtual Assignment* StatementAsSimpleAssignment() { |
| if (statements_.length() != 1) return NULL; |
| return statements_[0]->StatementAsSimpleAssignment(); |
| } |
| |
| virtual CountOperation* StatementAsCountOperation() { |
| if (statements_.length() != 1) return NULL; |
| return statements_[0]->StatementAsCountOperation(); |
| } |
| |
| void AddStatement(Statement* statement) { statements_.Add(statement); } |
| |
| ZoneList<Statement*>* statements() { return &statements_; } |
| bool is_initializer_block() const { return is_initializer_block_; } |
| |
| private: |
| ZoneList<Statement*> statements_; |
| bool is_initializer_block_; |
| }; |
| |
| |
| class Declaration: public AstNode { |
| public: |
| Declaration(VariableProxy* proxy, Variable::Mode mode, FunctionLiteral* fun) |
| : proxy_(proxy), |
| mode_(mode), |
| fun_(fun) { |
| ASSERT(mode == Variable::VAR || mode == Variable::CONST); |
| // At the moment there are no "const functions"'s in JavaScript... |
| ASSERT(fun == NULL || mode == Variable::VAR); |
| } |
| |
| DECLARE_NODE_TYPE(Declaration) |
| |
| VariableProxy* proxy() const { return proxy_; } |
| Variable::Mode mode() const { return mode_; } |
| FunctionLiteral* fun() const { return fun_; } // may be NULL |
| |
| private: |
| VariableProxy* proxy_; |
| Variable::Mode mode_; |
| FunctionLiteral* fun_; |
| }; |
| |
| |
| class IterationStatement: public BreakableStatement { |
| public: |
| // Type testing & conversion. |
| virtual IterationStatement* AsIterationStatement() { return this; } |
| |
| Statement* body() const { return body_; } |
| void set_body(Statement* stmt) { body_ = stmt; } |
| |
| // Code generation |
| BreakTarget* continue_target() { return &continue_target_; } |
| |
| protected: |
| explicit inline IterationStatement(ZoneStringList* labels); |
| |
| void Initialize(Statement* body) { |
| body_ = body; |
| } |
| |
| private: |
| Statement* body_; |
| BreakTarget continue_target_; |
| }; |
| |
| |
| class DoWhileStatement: public IterationStatement { |
| public: |
| explicit inline DoWhileStatement(ZoneStringList* labels); |
| |
| DECLARE_NODE_TYPE(DoWhileStatement) |
| |
| void Initialize(Expression* cond, Statement* body) { |
| IterationStatement::Initialize(body); |
| cond_ = cond; |
| } |
| |
| Expression* cond() const { return cond_; } |
| |
| // Position where condition expression starts. We need it to make |
| // the loop's condition a breakable location. |
| int condition_position() { return condition_position_; } |
| void set_condition_position(int pos) { condition_position_ = pos; } |
| |
| private: |
| Expression* cond_; |
| int condition_position_; |
| }; |
| |
| |
| class WhileStatement: public IterationStatement { |
| public: |
| explicit WhileStatement(ZoneStringList* labels); |
| |
| DECLARE_NODE_TYPE(WhileStatement) |
| |
| void Initialize(Expression* cond, Statement* body) { |
| IterationStatement::Initialize(body); |
| cond_ = cond; |
| } |
| |
| Expression* cond() const { return cond_; } |
| bool may_have_function_literal() const { |
| return may_have_function_literal_; |
| } |
| void set_may_have_function_literal(bool value) { |
| may_have_function_literal_ = value; |
| } |
| |
| private: |
| Expression* cond_; |
| // True if there is a function literal subexpression in the condition. |
| bool may_have_function_literal_; |
| }; |
| |
| |
| class ForStatement: public IterationStatement { |
| public: |
| explicit inline ForStatement(ZoneStringList* labels); |
| |
| DECLARE_NODE_TYPE(ForStatement) |
| |
| void Initialize(Statement* init, |
| Expression* cond, |
| Statement* next, |
| Statement* body) { |
| IterationStatement::Initialize(body); |
| init_ = init; |
| cond_ = cond; |
| next_ = next; |
| } |
| |
| Statement* init() const { return init_; } |
| void set_init(Statement* stmt) { init_ = stmt; } |
| Expression* cond() const { return cond_; } |
| void set_cond(Expression* expr) { cond_ = expr; } |
| Statement* next() const { return next_; } |
| void set_next(Statement* stmt) { next_ = stmt; } |
| |
| bool may_have_function_literal() const { |
| return may_have_function_literal_; |
| } |
| void set_may_have_function_literal(bool value) { |
| may_have_function_literal_ = value; |
| } |
| |
| bool is_fast_smi_loop() { return loop_variable_ != NULL; } |
| Variable* loop_variable() { return loop_variable_; } |
| void set_loop_variable(Variable* var) { loop_variable_ = var; } |
| |
| private: |
| Statement* init_; |
| Expression* cond_; |
| Statement* next_; |
| // True if there is a function literal subexpression in the condition. |
| bool may_have_function_literal_; |
| Variable* loop_variable_; |
| }; |
| |
| |
| class ForInStatement: public IterationStatement { |
| public: |
| explicit inline ForInStatement(ZoneStringList* labels); |
| |
| DECLARE_NODE_TYPE(ForInStatement) |
| |
| void Initialize(Expression* each, Expression* enumerable, Statement* body) { |
| IterationStatement::Initialize(body); |
| each_ = each; |
| enumerable_ = enumerable; |
| } |
| |
| Expression* each() const { return each_; } |
| Expression* enumerable() const { return enumerable_; } |
| |
| private: |
| Expression* each_; |
| Expression* enumerable_; |
| }; |
| |
| |
| class ExpressionStatement: public Statement { |
| public: |
| explicit ExpressionStatement(Expression* expression) |
| : expression_(expression) { } |
| |
| DECLARE_NODE_TYPE(ExpressionStatement) |
| |
| virtual Assignment* StatementAsSimpleAssignment(); |
| virtual CountOperation* StatementAsCountOperation(); |
| |
| void set_expression(Expression* e) { expression_ = e; } |
| Expression* expression() { return expression_; } |
| |
| private: |
| Expression* expression_; |
| }; |
| |
| |
| class ContinueStatement: public Statement { |
| public: |
| explicit ContinueStatement(IterationStatement* target) |
| : target_(target) { } |
| |
| DECLARE_NODE_TYPE(ContinueStatement) |
| |
| IterationStatement* target() const { return target_; } |
| |
| private: |
| IterationStatement* target_; |
| }; |
| |
| |
| class BreakStatement: public Statement { |
| public: |
| explicit BreakStatement(BreakableStatement* target) |
| : target_(target) { } |
| |
| DECLARE_NODE_TYPE(BreakStatement) |
| |
| BreakableStatement* target() const { return target_; } |
| |
| private: |
| BreakableStatement* target_; |
| }; |
| |
| |
| class ReturnStatement: public Statement { |
| public: |
| explicit ReturnStatement(Expression* expression) |
| : expression_(expression) { } |
| |
| DECLARE_NODE_TYPE(ReturnStatement) |
| |
| Expression* expression() { return expression_; } |
| |
| private: |
| Expression* expression_; |
| }; |
| |
| |
| class WithEnterStatement: public Statement { |
| public: |
| explicit WithEnterStatement(Expression* expression, bool is_catch_block) |
| : expression_(expression), is_catch_block_(is_catch_block) { } |
| |
| DECLARE_NODE_TYPE(WithEnterStatement) |
| |
| Expression* expression() const { return expression_; } |
| |
| bool is_catch_block() const { return is_catch_block_; } |
| |
| private: |
| Expression* expression_; |
| bool is_catch_block_; |
| }; |
| |
| |
| class WithExitStatement: public Statement { |
| public: |
| WithExitStatement() { } |
| |
| DECLARE_NODE_TYPE(WithExitStatement) |
| }; |
| |
| |
| class CaseClause: public ZoneObject { |
| public: |
| CaseClause(Expression* label, ZoneList<Statement*>* statements); |
| |
| bool is_default() const { return label_ == NULL; } |
| Expression* label() const { |
| CHECK(!is_default()); |
| return label_; |
| } |
| JumpTarget* body_target() { return &body_target_; } |
| ZoneList<Statement*>* statements() const { return statements_; } |
| |
| private: |
| Expression* label_; |
| JumpTarget body_target_; |
| ZoneList<Statement*>* statements_; |
| }; |
| |
| |
| class SwitchStatement: public BreakableStatement { |
| public: |
| explicit inline SwitchStatement(ZoneStringList* labels); |
| |
| DECLARE_NODE_TYPE(SwitchStatement) |
| |
| void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) { |
| tag_ = tag; |
| cases_ = cases; |
| } |
| |
| Expression* tag() const { return tag_; } |
| ZoneList<CaseClause*>* cases() const { return cases_; } |
| |
| private: |
| Expression* tag_; |
| ZoneList<CaseClause*>* cases_; |
| }; |
| |
| |
| // If-statements always have non-null references to their then- and |
| // else-parts. When parsing if-statements with no explicit else-part, |
| // the parser implicitly creates an empty statement. Use the |
| // HasThenStatement() and HasElseStatement() functions to check if a |
| // given if-statement has a then- or an else-part containing code. |
| class IfStatement: public Statement { |
| public: |
| IfStatement(Expression* condition, |
| Statement* then_statement, |
| Statement* else_statement) |
| : condition_(condition), |
| then_statement_(then_statement), |
| else_statement_(else_statement) { } |
| |
| DECLARE_NODE_TYPE(IfStatement) |
| |
| bool HasThenStatement() const { return !then_statement()->IsEmpty(); } |
| bool HasElseStatement() const { return !else_statement()->IsEmpty(); } |
| |
| Expression* condition() const { return condition_; } |
| Statement* then_statement() const { return then_statement_; } |
| void set_then_statement(Statement* stmt) { then_statement_ = stmt; } |
| Statement* else_statement() const { return else_statement_; } |
| void set_else_statement(Statement* stmt) { else_statement_ = stmt; } |
| |
| private: |
| Expression* condition_; |
| Statement* then_statement_; |
| Statement* else_statement_; |
| }; |
| |
| |
| // NOTE: TargetCollectors are represented as nodes to fit in the target |
| // stack in the compiler; this should probably be reworked. |
| class TargetCollector: public AstNode { |
| public: |
| explicit TargetCollector(ZoneList<BreakTarget*>* targets) |
| : targets_(targets) { |
| } |
| |
| // Adds a jump target to the collector. The collector stores a pointer not |
| // a copy of the target to make binding work, so make sure not to pass in |
| // references to something on the stack. |
| void AddTarget(BreakTarget* target); |
| |
| // Virtual behaviour. TargetCollectors are never part of the AST. |
| virtual void Accept(AstVisitor* v) { UNREACHABLE(); } |
| virtual TargetCollector* AsTargetCollector() { return this; } |
| |
| ZoneList<BreakTarget*>* targets() { return targets_; } |
| |
| private: |
| ZoneList<BreakTarget*>* targets_; |
| }; |
| |
| |
| class TryStatement: public Statement { |
| public: |
| explicit TryStatement(Block* try_block) |
| : try_block_(try_block), escaping_targets_(NULL) { } |
| |
| void set_escaping_targets(ZoneList<BreakTarget*>* targets) { |
| escaping_targets_ = targets; |
| } |
| |
| Block* try_block() const { return try_block_; } |
| ZoneList<BreakTarget*>* escaping_targets() const { return escaping_targets_; } |
| |
| private: |
| Block* try_block_; |
| ZoneList<BreakTarget*>* escaping_targets_; |
| }; |
| |
| |
| class TryCatchStatement: public TryStatement { |
| public: |
| TryCatchStatement(Block* try_block, |
| VariableProxy* catch_var, |
| Block* catch_block) |
| : TryStatement(try_block), |
| catch_var_(catch_var), |
| catch_block_(catch_block) { |
| } |
| |
| DECLARE_NODE_TYPE(TryCatchStatement) |
| |
| VariableProxy* catch_var() const { return catch_var_; } |
| Block* catch_block() const { return catch_block_; } |
| |
| private: |
| VariableProxy* catch_var_; |
| Block* catch_block_; |
| }; |
| |
| |
| class TryFinallyStatement: public TryStatement { |
| public: |
| TryFinallyStatement(Block* try_block, Block* finally_block) |
| : TryStatement(try_block), |
| finally_block_(finally_block) { } |
| |
| DECLARE_NODE_TYPE(TryFinallyStatement) |
| |
| Block* finally_block() const { return finally_block_; } |
| |
| private: |
| Block* finally_block_; |
| }; |
| |
| |
| class DebuggerStatement: public Statement { |
| public: |
| DECLARE_NODE_TYPE(DebuggerStatement) |
| }; |
| |
| |
| class EmptyStatement: public Statement { |
| public: |
| DECLARE_NODE_TYPE(EmptyStatement) |
| }; |
| |
| |
| class Literal: public Expression { |
| public: |
| explicit Literal(Handle<Object> handle) : handle_(handle) { } |
| |
| DECLARE_NODE_TYPE(Literal) |
| |
| virtual bool IsTrivial() { return true; } |
| virtual bool IsSmiLiteral() { return handle_->IsSmi(); } |
| |
| // Check if this literal is identical to the other literal. |
| bool IsIdenticalTo(const Literal* other) const { |
| return handle_.is_identical_to(other->handle_); |
| } |
| |
| virtual bool IsPropertyName() { |
| if (handle_->IsSymbol()) { |
| uint32_t ignored; |
| return !String::cast(*handle_)->AsArrayIndex(&ignored); |
| } |
| return false; |
| } |
| |
| // Identity testers. |
| bool IsNull() const { return handle_.is_identical_to(Factory::null_value()); } |
| bool IsTrue() const { return handle_.is_identical_to(Factory::true_value()); } |
| bool IsFalse() const { |
| return handle_.is_identical_to(Factory::false_value()); |
| } |
| |
| Handle<Object> handle() const { return handle_; } |
| |
| private: |
| Handle<Object> handle_; |
| }; |
| |
| |
| // Base class for literals that needs space in the corresponding JSFunction. |
| class MaterializedLiteral: public Expression { |
| public: |
| explicit MaterializedLiteral(int literal_index, bool is_simple, int depth) |
| : literal_index_(literal_index), is_simple_(is_simple), depth_(depth) {} |
| |
| virtual MaterializedLiteral* AsMaterializedLiteral() { return this; } |
| |
| int literal_index() { return literal_index_; } |
| |
| // A materialized literal is simple if the values consist of only |
| // constants and simple object and array literals. |
| bool is_simple() const { return is_simple_; } |
| |
| int depth() const { return depth_; } |
| |
| private: |
| int literal_index_; |
| bool is_simple_; |
| int depth_; |
| }; |
| |
| |
| // An object literal has a boilerplate object that is used |
| // for minimizing the work when constructing it at runtime. |
| class ObjectLiteral: public MaterializedLiteral { |
| public: |
| // Property is used for passing information |
| // about an object literal's properties from the parser |
| // to the code generator. |
| class Property: public ZoneObject { |
| public: |
| enum Kind { |
| CONSTANT, // Property with constant value (compile time). |
| COMPUTED, // Property with computed value (execution time). |
| MATERIALIZED_LITERAL, // Property value is a materialized literal. |
| GETTER, SETTER, // Property is an accessor function. |
| PROTOTYPE // Property is __proto__. |
| }; |
| |
| Property(Literal* key, Expression* value); |
| Property(bool is_getter, FunctionLiteral* value); |
| |
| Literal* key() { return key_; } |
| Expression* value() { return value_; } |
| Kind kind() { return kind_; } |
| |
| bool IsCompileTimeValue(); |
| |
| void set_emit_store(bool emit_store); |
| bool emit_store(); |
| |
| private: |
| Literal* key_; |
| Expression* value_; |
| Kind kind_; |
| bool emit_store_; |
| }; |
| |
| ObjectLiteral(Handle<FixedArray> constant_properties, |
| ZoneList<Property*>* properties, |
| int literal_index, |
| bool is_simple, |
| bool fast_elements, |
| int depth) |
| : MaterializedLiteral(literal_index, is_simple, depth), |
| constant_properties_(constant_properties), |
| properties_(properties), |
| fast_elements_(fast_elements) {} |
| |
| DECLARE_NODE_TYPE(ObjectLiteral) |
| |
| Handle<FixedArray> constant_properties() const { |
| return constant_properties_; |
| } |
| ZoneList<Property*>* properties() const { return properties_; } |
| |
| bool fast_elements() const { return fast_elements_; } |
| |
| |
| // Mark all computed expressions that are bound to a key that |
| // is shadowed by a later occurrence of the same key. For the |
| // marked expressions, no store code is emitted. |
| void CalculateEmitStore(); |
| |
| private: |
| Handle<FixedArray> constant_properties_; |
| ZoneList<Property*>* properties_; |
| bool fast_elements_; |
| }; |
| |
| |
| // Node for capturing a regexp literal. |
| class RegExpLiteral: public MaterializedLiteral { |
| public: |
| RegExpLiteral(Handle<String> pattern, |
| Handle<String> flags, |
| int literal_index) |
| : MaterializedLiteral(literal_index, false, 1), |
| pattern_(pattern), |
| flags_(flags) {} |
| |
| DECLARE_NODE_TYPE(RegExpLiteral) |
| |
| Handle<String> pattern() const { return pattern_; } |
| Handle<String> flags() const { return flags_; } |
| |
| private: |
| Handle<String> pattern_; |
| Handle<String> flags_; |
| }; |
| |
| // An array literal has a literals object that is used |
| // for minimizing the work when constructing it at runtime. |
| class ArrayLiteral: public MaterializedLiteral { |
| public: |
| ArrayLiteral(Handle<FixedArray> constant_elements, |
| ZoneList<Expression*>* values, |
| int literal_index, |
| bool is_simple, |
| int depth) |
| : MaterializedLiteral(literal_index, is_simple, depth), |
| constant_elements_(constant_elements), |
| values_(values) {} |
| |
| DECLARE_NODE_TYPE(ArrayLiteral) |
| |
| Handle<FixedArray> constant_elements() const { return constant_elements_; } |
| ZoneList<Expression*>* values() const { return values_; } |
| |
| private: |
| Handle<FixedArray> constant_elements_; |
| ZoneList<Expression*>* values_; |
| }; |
| |
| |
| // Node for constructing a context extension object for a catch block. |
| // The catch context extension object has one property, the catch |
| // variable, which should be DontDelete. |
| class CatchExtensionObject: public Expression { |
| public: |
| CatchExtensionObject(Literal* key, VariableProxy* value) |
| : key_(key), value_(value) { |
| } |
| |
| DECLARE_NODE_TYPE(CatchExtensionObject) |
| |
| Literal* key() const { return key_; } |
| VariableProxy* value() const { return value_; } |
| |
| private: |
| Literal* key_; |
| VariableProxy* value_; |
| }; |
| |
| |
| class VariableProxy: public Expression { |
| public: |
| explicit VariableProxy(Variable* var); |
| |
| DECLARE_NODE_TYPE(VariableProxy) |
| |
| // Type testing & conversion |
| virtual Property* AsProperty() { |
| return var_ == NULL ? NULL : var_->AsProperty(); |
| } |
| |
| Variable* AsVariable() { |
| if (this == NULL || var_ == NULL) return NULL; |
| Expression* rewrite = var_->rewrite(); |
| if (rewrite == NULL || rewrite->AsSlot() != NULL) return var_; |
| return NULL; |
| } |
| |
| virtual bool IsValidLeftHandSide() { |
| return var_ == NULL ? true : var_->IsValidLeftHandSide(); |
| } |
| |
| virtual bool IsTrivial() { |
| // Reading from a mutable variable is a side effect, but the |
| // variable for 'this' is immutable. |
| return is_this_ || is_trivial_; |
| } |
| |
| bool IsVariable(Handle<String> n) { |
| return !is_this() && name().is_identical_to(n); |
| } |
| |
| bool IsArguments() { |
| Variable* variable = AsVariable(); |
| return (variable == NULL) ? false : variable->is_arguments(); |
| } |
| |
| Handle<String> name() const { return name_; } |
| Variable* var() const { return var_; } |
| bool is_this() const { return is_this_; } |
| bool inside_with() const { return inside_with_; } |
| |
| void MarkAsTrivial() { is_trivial_ = true; } |
| |
| // Bind this proxy to the variable var. |
| void BindTo(Variable* var); |
| |
| protected: |
| Handle<String> name_; |
| Variable* var_; // resolved variable, or NULL |
| bool is_this_; |
| bool inside_with_; |
| bool is_trivial_; |
| |
| VariableProxy(Handle<String> name, bool is_this, bool inside_with); |
| explicit VariableProxy(bool is_this); |
| |
| friend class Scope; |
| }; |
| |
| |
| class VariableProxySentinel: public VariableProxy { |
| public: |
| virtual bool IsValidLeftHandSide() { return !is_this(); } |
| static VariableProxySentinel* this_proxy() { return &this_proxy_; } |
| static VariableProxySentinel* identifier_proxy() { |
| return &identifier_proxy_; |
| } |
| |
| private: |
| explicit VariableProxySentinel(bool is_this) : VariableProxy(is_this) { } |
| static VariableProxySentinel this_proxy_; |
| static VariableProxySentinel identifier_proxy_; |
| }; |
| |
| |
| class Slot: public Expression { |
| public: |
| enum Type { |
| // A slot in the parameter section on the stack. index() is |
| // the parameter index, counting left-to-right, starting at 0. |
| PARAMETER, |
| |
| // A slot in the local section on the stack. index() is |
| // the variable index in the stack frame, starting at 0. |
| LOCAL, |
| |
| // An indexed slot in a heap context. index() is the |
| // variable index in the context object on the heap, |
| // starting at 0. var()->scope() is the corresponding |
| // scope. |
| CONTEXT, |
| |
| // A named slot in a heap context. var()->name() is the |
| // variable name in the context object on the heap, |
| // with lookup starting at the current context. index() |
| // is invalid. |
| LOOKUP |
| }; |
| |
| Slot(Variable* var, Type type, int index) |
| : var_(var), type_(type), index_(index) { |
| ASSERT(var != NULL); |
| } |
| |
| DECLARE_NODE_TYPE(Slot) |
| |
| bool IsStackAllocated() { return type_ == PARAMETER || type_ == LOCAL; } |
| |
| // Accessors |
| Variable* var() const { return var_; } |
| Type type() const { return type_; } |
| int index() const { return index_; } |
| bool is_arguments() const { return var_->is_arguments(); } |
| |
| private: |
| Variable* var_; |
| Type type_; |
| int index_; |
| }; |
| |
| |
| class Property: public Expression { |
| public: |
| // Synthetic properties are property lookups introduced by the system, |
| // to objects that aren't visible to the user. Function calls to synthetic |
| // properties should use the global object as receiver, not the base object |
| // of the resolved Reference. |
| enum Type { NORMAL, SYNTHETIC }; |
| Property(Expression* obj, Expression* key, int pos, Type type = NORMAL) |
| : obj_(obj), key_(key), pos_(pos), type_(type) { } |
| |
| DECLARE_NODE_TYPE(Property) |
| |
| virtual bool IsValidLeftHandSide() { return true; } |
| |
| Expression* obj() const { return obj_; } |
| Expression* key() const { return key_; } |
| int position() const { return pos_; } |
| bool is_synthetic() const { return type_ == SYNTHETIC; } |
| |
| // Returns a property singleton property access on 'this'. Used |
| // during preparsing. |
| static Property* this_property() { return &this_property_; } |
| |
| private: |
| Expression* obj_; |
| Expression* key_; |
| int pos_; |
| Type type_; |
| |
| // Dummy property used during preparsing. |
| static Property this_property_; |
| }; |
| |
| |
| class Call: public Expression { |
| public: |
| Call(Expression* expression, ZoneList<Expression*>* arguments, int pos) |
| : expression_(expression), arguments_(arguments), pos_(pos) { } |
| |
| DECLARE_NODE_TYPE(Call) |
| |
| Expression* expression() const { return expression_; } |
| ZoneList<Expression*>* arguments() const { return arguments_; } |
| int position() { return pos_; } |
| |
| static Call* sentinel() { return &sentinel_; } |
| |
| private: |
| Expression* expression_; |
| ZoneList<Expression*>* arguments_; |
| int pos_; |
| |
| static Call sentinel_; |
| }; |
| |
| |
| class CallNew: public Expression { |
| public: |
| CallNew(Expression* expression, ZoneList<Expression*>* arguments, int pos) |
| : expression_(expression), arguments_(arguments), pos_(pos) { } |
| |
| DECLARE_NODE_TYPE(CallNew) |
| |
| Expression* expression() const { return expression_; } |
| ZoneList<Expression*>* arguments() const { return arguments_; } |
| int position() { return pos_; } |
| |
| private: |
| Expression* expression_; |
| ZoneList<Expression*>* arguments_; |
| int pos_; |
| }; |
| |
| |
| // The CallRuntime class does not represent any official JavaScript |
| // language construct. Instead it is used to call a C or JS function |
| // with a set of arguments. This is used from the builtins that are |
| // implemented in JavaScript (see "v8natives.js"). |
| class CallRuntime: public Expression { |
| public: |
| CallRuntime(Handle<String> name, |
| Runtime::Function* function, |
| ZoneList<Expression*>* arguments) |
| : name_(name), function_(function), arguments_(arguments) { } |
| |
| DECLARE_NODE_TYPE(CallRuntime) |
| |
| Handle<String> name() const { return name_; } |
| Runtime::Function* function() const { return function_; } |
| ZoneList<Expression*>* arguments() const { return arguments_; } |
| bool is_jsruntime() const { return function_ == NULL; } |
| |
| private: |
| Handle<String> name_; |
| Runtime::Function* function_; |
| ZoneList<Expression*>* arguments_; |
| }; |
| |
| |
| class UnaryOperation: public Expression { |
| public: |
| UnaryOperation(Token::Value op, Expression* expression) |
| : op_(op), expression_(expression) { |
| ASSERT(Token::IsUnaryOp(op)); |
| } |
| |
| DECLARE_NODE_TYPE(UnaryOperation) |
| |
| virtual bool ResultOverwriteAllowed(); |
| |
| Token::Value op() const { return op_; } |
| Expression* expression() const { return expression_; } |
| |
| private: |
| Token::Value op_; |
| Expression* expression_; |
| }; |
| |
| |
| class BinaryOperation: public Expression { |
| public: |
| BinaryOperation(Token::Value op, |
| Expression* left, |
| Expression* right, |
| int pos) |
| : op_(op), left_(left), right_(right), pos_(pos) { |
| ASSERT(Token::IsBinaryOp(op)); |
| } |
| |
| // Create the binary operation corresponding to a compound assignment. |
| explicit BinaryOperation(Assignment* assignment); |
| |
| DECLARE_NODE_TYPE(BinaryOperation) |
| |
| virtual bool ResultOverwriteAllowed(); |
| |
| Token::Value op() const { return op_; } |
| Expression* left() const { return left_; } |
| Expression* right() const { return right_; } |
| int position() const { return pos_; } |
| |
| private: |
| Token::Value op_; |
| Expression* left_; |
| Expression* right_; |
| int pos_; |
| }; |
| |
| |
| class IncrementOperation: public Expression { |
| public: |
| IncrementOperation(Token::Value op, Expression* expr) |
| : op_(op), expression_(expr) { |
| ASSERT(Token::IsCountOp(op)); |
| } |
| |
| DECLARE_NODE_TYPE(IncrementOperation) |
| |
| Token::Value op() const { return op_; } |
| bool is_increment() { return op_ == Token::INC; } |
| Expression* expression() const { return expression_; } |
| |
| private: |
| Token::Value op_; |
| Expression* expression_; |
| int pos_; |
| }; |
| |
| |
| class CountOperation: public Expression { |
| public: |
| CountOperation(bool is_prefix, IncrementOperation* increment, int pos) |
| : is_prefix_(is_prefix), increment_(increment), pos_(pos) { } |
| |
| DECLARE_NODE_TYPE(CountOperation) |
| |
| bool is_prefix() const { return is_prefix_; } |
| bool is_postfix() const { return !is_prefix_; } |
| |
| Token::Value op() const { return increment_->op(); } |
| Token::Value binary_op() { |
| return (op() == Token::INC) ? Token::ADD : Token::SUB; |
| } |
| |
| Expression* expression() const { return increment_->expression(); } |
| IncrementOperation* increment() const { return increment_; } |
| int position() const { return pos_; } |
| |
| virtual void MarkAsStatement() { is_prefix_ = true; } |
| |
| private: |
| bool is_prefix_; |
| IncrementOperation* increment_; |
| int pos_; |
| }; |
| |
| |
| class CompareOperation: public Expression { |
| public: |
| CompareOperation(Token::Value op, |
| Expression* left, |
| Expression* right, |
| int pos) |
| : op_(op), left_(left), right_(right), pos_(pos) { |
| ASSERT(Token::IsCompareOp(op)); |
| } |
| |
| DECLARE_NODE_TYPE(CompareOperation) |
| |
| Token::Value op() const { return op_; } |
| Expression* left() const { return left_; } |
| Expression* right() const { return right_; } |
| int position() const { return pos_; } |
| |
| private: |
| Token::Value op_; |
| Expression* left_; |
| Expression* right_; |
| int pos_; |
| }; |
| |
| |
| class CompareToNull: public Expression { |
| public: |
| CompareToNull(bool is_strict, Expression* expression) |
| : is_strict_(is_strict), expression_(expression) { } |
| |
| DECLARE_NODE_TYPE(CompareToNull) |
| |
| bool is_strict() const { return is_strict_; } |
| Token::Value op() const { return is_strict_ ? Token::EQ_STRICT : Token::EQ; } |
| Expression* expression() const { return expression_; } |
| |
| private: |
| bool is_strict_; |
| Expression* expression_; |
| }; |
| |
| |
| class Conditional: public Expression { |
| public: |
| Conditional(Expression* condition, |
| Expression* then_expression, |
| Expression* else_expression, |
| int then_expression_position, |
| int else_expression_position) |
| : condition_(condition), |
| then_expression_(then_expression), |
| else_expression_(else_expression), |
| then_expression_position_(then_expression_position), |
| else_expression_position_(else_expression_position) { } |
| |
| DECLARE_NODE_TYPE(Conditional) |
| |
| Expression* condition() const { return condition_; } |
| Expression* then_expression() const { return then_expression_; } |
| Expression* else_expression() const { return else_expression_; } |
| |
| int then_expression_position() { return then_expression_position_; } |
| int else_expression_position() { return else_expression_position_; } |
| |
| private: |
| Expression* condition_; |
| Expression* then_expression_; |
| Expression* else_expression_; |
| int then_expression_position_; |
| int else_expression_position_; |
| }; |
| |
| |
| class Assignment: public Expression { |
| public: |
| Assignment(Token::Value op, Expression* target, Expression* value, int pos) |
| : op_(op), target_(target), value_(value), pos_(pos), |
| block_start_(false), block_end_(false) { |
| ASSERT(Token::IsAssignmentOp(op)); |
| } |
| |
| DECLARE_NODE_TYPE(Assignment) |
| |
| Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; } |
| |
| Token::Value binary_op() const; |
| |
| Token::Value op() const { return op_; } |
| Expression* target() const { return target_; } |
| Expression* value() const { return value_; } |
| int position() { return pos_; } |
| // This check relies on the definition order of token in token.h. |
| bool is_compound() const { return op() > Token::ASSIGN; } |
| |
| // An initialization block is a series of statments of the form |
| // x.y.z.a = ...; x.y.z.b = ...; etc. The parser marks the beginning and |
| // ending of these blocks to allow for optimizations of initialization |
| // blocks. |
| bool starts_initialization_block() { return block_start_; } |
| bool ends_initialization_block() { return block_end_; } |
| void mark_block_start() { block_start_ = true; } |
| void mark_block_end() { block_end_ = true; } |
| |
| private: |
| Token::Value op_; |
| Expression* target_; |
| Expression* value_; |
| int pos_; |
| bool block_start_; |
| bool block_end_; |
| }; |
| |
| |
| class Throw: public Expression { |
| public: |
| Throw(Expression* exception, int pos) |
| : exception_(exception), pos_(pos) {} |
| |
| DECLARE_NODE_TYPE(Throw) |
| |
| Expression* exception() const { return exception_; } |
| int position() const { return pos_; } |
| |
| private: |
| Expression* exception_; |
| int pos_; |
| }; |
| |
| |
| class FunctionLiteral: public Expression { |
| public: |
| FunctionLiteral(Handle<String> name, |
| Scope* scope, |
| ZoneList<Statement*>* body, |
| int materialized_literal_count, |
| int expected_property_count, |
| bool has_only_simple_this_property_assignments, |
| Handle<FixedArray> this_property_assignments, |
| int num_parameters, |
| int start_position, |
| int end_position, |
| bool is_expression, |
| bool contains_loops) |
| : name_(name), |
| scope_(scope), |
| body_(body), |
| materialized_literal_count_(materialized_literal_count), |
| expected_property_count_(expected_property_count), |
| has_only_simple_this_property_assignments_( |
| has_only_simple_this_property_assignments), |
| this_property_assignments_(this_property_assignments), |
| num_parameters_(num_parameters), |
| start_position_(start_position), |
| end_position_(end_position), |
| is_expression_(is_expression), |
| contains_loops_(contains_loops), |
| function_token_position_(RelocInfo::kNoPosition), |
| inferred_name_(Heap::empty_string()), |
| try_full_codegen_(false) { |
| #ifdef DEBUG |
| already_compiled_ = false; |
| #endif |
| } |
| |
| DECLARE_NODE_TYPE(FunctionLiteral) |
| |
| Handle<String> name() const { return name_; } |
| Scope* scope() const { return scope_; } |
| ZoneList<Statement*>* body() const { return body_; } |
| void set_function_token_position(int pos) { function_token_position_ = pos; } |
| int function_token_position() const { return function_token_position_; } |
| int start_position() const { return start_position_; } |
| int end_position() const { return end_position_; } |
| bool is_expression() const { return is_expression_; } |
| bool contains_loops() const { return contains_loops_; } |
| |
| int materialized_literal_count() { return materialized_literal_count_; } |
| int expected_property_count() { return expected_property_count_; } |
| bool has_only_simple_this_property_assignments() { |
| return has_only_simple_this_property_assignments_; |
| } |
| Handle<FixedArray> this_property_assignments() { |
| return this_property_assignments_; |
| } |
| int num_parameters() { return num_parameters_; } |
| |
| bool AllowsLazyCompilation(); |
| |
| Handle<String> debug_name() const { |
| if (name_->length() > 0) return name_; |
| return inferred_name(); |
| } |
| |
| Handle<String> inferred_name() const { return inferred_name_; } |
| void set_inferred_name(Handle<String> inferred_name) { |
| inferred_name_ = inferred_name; |
| } |
| |
| bool try_full_codegen() { return try_full_codegen_; } |
| void set_try_full_codegen(bool flag) { try_full_codegen_ = flag; } |
| |
| #ifdef DEBUG |
| void mark_as_compiled() { |
| ASSERT(!already_compiled_); |
| already_compiled_ = true; |
| } |
| #endif |
| |
| private: |
| Handle<String> name_; |
| Scope* scope_; |
| ZoneList<Statement*>* body_; |
| int materialized_literal_count_; |
| int expected_property_count_; |
| bool has_only_simple_this_property_assignments_; |
| Handle<FixedArray> this_property_assignments_; |
| int num_parameters_; |
| int start_position_; |
| int end_position_; |
| bool is_expression_; |
| bool contains_loops_; |
| int function_token_position_; |
| Handle<String> inferred_name_; |
| bool try_full_codegen_; |
| #ifdef DEBUG |
| bool already_compiled_; |
| #endif |
| }; |
| |
| |
| class SharedFunctionInfoLiteral: public Expression { |
| public: |
| explicit SharedFunctionInfoLiteral( |
| Handle<SharedFunctionInfo> shared_function_info) |
| : shared_function_info_(shared_function_info) { } |
| |
| DECLARE_NODE_TYPE(SharedFunctionInfoLiteral) |
| |
| Handle<SharedFunctionInfo> shared_function_info() const { |
| return shared_function_info_; |
| } |
| |
| private: |
| Handle<SharedFunctionInfo> shared_function_info_; |
| }; |
| |
| |
| class ThisFunction: public Expression { |
| public: |
| DECLARE_NODE_TYPE(ThisFunction) |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Regular expressions |
| |
| |
| class RegExpVisitor BASE_EMBEDDED { |
| public: |
| virtual ~RegExpVisitor() { } |
| #define MAKE_CASE(Name) \ |
| virtual void* Visit##Name(RegExp##Name*, void* data) = 0; |
| FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE) |
| #undef MAKE_CASE |
| }; |
| |
| |
| class RegExpTree: public ZoneObject { |
| public: |
| static const int kInfinity = kMaxInt; |
| virtual ~RegExpTree() { } |
| virtual void* Accept(RegExpVisitor* visitor, void* data) = 0; |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) = 0; |
| virtual bool IsTextElement() { return false; } |
| virtual bool IsAnchoredAtStart() { return false; } |
| virtual bool IsAnchoredAtEnd() { return false; } |
| virtual int min_match() = 0; |
| virtual int max_match() = 0; |
| // Returns the interval of registers used for captures within this |
| // expression. |
| virtual Interval CaptureRegisters() { return Interval::Empty(); } |
| virtual void AppendToText(RegExpText* text); |
| SmartPointer<const char> ToString(); |
| #define MAKE_ASTYPE(Name) \ |
| virtual RegExp##Name* As##Name(); \ |
| virtual bool Is##Name(); |
| FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE) |
| #undef MAKE_ASTYPE |
| }; |
| |
| |
| class RegExpDisjunction: public RegExpTree { |
| public: |
| explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives); |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpDisjunction* AsDisjunction(); |
| virtual Interval CaptureRegisters(); |
| virtual bool IsDisjunction(); |
| virtual bool IsAnchoredAtStart(); |
| virtual bool IsAnchoredAtEnd(); |
| virtual int min_match() { return min_match_; } |
| virtual int max_match() { return max_match_; } |
| ZoneList<RegExpTree*>* alternatives() { return alternatives_; } |
| private: |
| ZoneList<RegExpTree*>* alternatives_; |
| int min_match_; |
| int max_match_; |
| }; |
| |
| |
| class RegExpAlternative: public RegExpTree { |
| public: |
| explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes); |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpAlternative* AsAlternative(); |
| virtual Interval CaptureRegisters(); |
| virtual bool IsAlternative(); |
| virtual bool IsAnchoredAtStart(); |
| virtual bool IsAnchoredAtEnd(); |
| virtual int min_match() { return min_match_; } |
| virtual int max_match() { return max_match_; } |
| ZoneList<RegExpTree*>* nodes() { return nodes_; } |
| private: |
| ZoneList<RegExpTree*>* nodes_; |
| int min_match_; |
| int max_match_; |
| }; |
| |
| |
| class RegExpAssertion: public RegExpTree { |
| public: |
| enum Type { |
| START_OF_LINE, |
| START_OF_INPUT, |
| END_OF_LINE, |
| END_OF_INPUT, |
| BOUNDARY, |
| NON_BOUNDARY |
| }; |
| explicit RegExpAssertion(Type type) : type_(type) { } |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpAssertion* AsAssertion(); |
| virtual bool IsAssertion(); |
| virtual bool IsAnchoredAtStart(); |
| virtual bool IsAnchoredAtEnd(); |
| virtual int min_match() { return 0; } |
| virtual int max_match() { return 0; } |
| Type type() { return type_; } |
| private: |
| Type type_; |
| }; |
| |
| |
| class CharacterSet BASE_EMBEDDED { |
| public: |
| explicit CharacterSet(uc16 standard_set_type) |
| : ranges_(NULL), |
| standard_set_type_(standard_set_type) {} |
| explicit CharacterSet(ZoneList<CharacterRange>* ranges) |
| : ranges_(ranges), |
| standard_set_type_(0) {} |
| ZoneList<CharacterRange>* ranges(); |
| uc16 standard_set_type() { return standard_set_type_; } |
| void set_standard_set_type(uc16 special_set_type) { |
| standard_set_type_ = special_set_type; |
| } |
| bool is_standard() { return standard_set_type_ != 0; } |
| void Canonicalize(); |
| private: |
| ZoneList<CharacterRange>* ranges_; |
| // If non-zero, the value represents a standard set (e.g., all whitespace |
| // characters) without having to expand the ranges. |
| uc16 standard_set_type_; |
| }; |
| |
| |
| class RegExpCharacterClass: public RegExpTree { |
| public: |
| RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated) |
| : set_(ranges), |
| is_negated_(is_negated) { } |
| explicit RegExpCharacterClass(uc16 type) |
| : set_(type), |
| is_negated_(false) { } |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpCharacterClass* AsCharacterClass(); |
| virtual bool IsCharacterClass(); |
| virtual bool IsTextElement() { return true; } |
| virtual int min_match() { return 1; } |
| virtual int max_match() { return 1; } |
| virtual void AppendToText(RegExpText* text); |
| CharacterSet character_set() { return set_; } |
| // TODO(lrn): Remove need for complex version if is_standard that |
| // recognizes a mangled standard set and just do { return set_.is_special(); } |
| bool is_standard(); |
| // Returns a value representing the standard character set if is_standard() |
| // returns true. |
| // Currently used values are: |
| // s : unicode whitespace |
| // S : unicode non-whitespace |
| // w : ASCII word character (digit, letter, underscore) |
| // W : non-ASCII word character |
| // d : ASCII digit |
| // D : non-ASCII digit |
| // . : non-unicode non-newline |
| // * : All characters |
| uc16 standard_type() { return set_.standard_set_type(); } |
| ZoneList<CharacterRange>* ranges() { return set_.ranges(); } |
| bool is_negated() { return is_negated_; } |
| private: |
| CharacterSet set_; |
| bool is_negated_; |
| }; |
| |
| |
| class RegExpAtom: public RegExpTree { |
| public: |
| explicit RegExpAtom(Vector<const uc16> data) : data_(data) { } |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpAtom* AsAtom(); |
| virtual bool IsAtom(); |
| virtual bool IsTextElement() { return true; } |
| virtual int min_match() { return data_.length(); } |
| virtual int max_match() { return data_.length(); } |
| virtual void AppendToText(RegExpText* text); |
| Vector<const uc16> data() { return data_; } |
| int length() { return data_.length(); } |
| private: |
| Vector<const uc16> data_; |
| }; |
| |
| |
| class RegExpText: public RegExpTree { |
| public: |
| RegExpText() : elements_(2), length_(0) {} |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpText* AsText(); |
| virtual bool IsText(); |
| virtual bool IsTextElement() { return true; } |
| virtual int min_match() { return length_; } |
| virtual int max_match() { return length_; } |
| virtual void AppendToText(RegExpText* text); |
| void AddElement(TextElement elm) { |
| elements_.Add(elm); |
| length_ += elm.length(); |
| } |
| ZoneList<TextElement>* elements() { return &elements_; } |
| private: |
| ZoneList<TextElement> elements_; |
| int length_; |
| }; |
| |
| |
| class RegExpQuantifier: public RegExpTree { |
| public: |
| enum Type { GREEDY, NON_GREEDY, POSSESSIVE }; |
| RegExpQuantifier(int min, int max, Type type, RegExpTree* body) |
| : body_(body), |
| min_(min), |
| max_(max), |
| min_match_(min * body->min_match()), |
| type_(type) { |
| if (max > 0 && body->max_match() > kInfinity / max) { |
| max_match_ = kInfinity; |
| } else { |
| max_match_ = max * body->max_match(); |
| } |
| } |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| static RegExpNode* ToNode(int min, |
| int max, |
| bool is_greedy, |
| RegExpTree* body, |
| RegExpCompiler* compiler, |
| RegExpNode* on_success, |
| bool not_at_start = false); |
| virtual RegExpQuantifier* AsQuantifier(); |
| virtual Interval CaptureRegisters(); |
| virtual bool IsQuantifier(); |
| virtual int min_match() { return min_match_; } |
| virtual int max_match() { return max_match_; } |
| int min() { return min_; } |
| int max() { return max_; } |
| bool is_possessive() { return type_ == POSSESSIVE; } |
| bool is_non_greedy() { return type_ == NON_GREEDY; } |
| bool is_greedy() { return type_ == GREEDY; } |
| RegExpTree* body() { return body_; } |
| private: |
| RegExpTree* body_; |
| int min_; |
| int max_; |
| int min_match_; |
| int max_match_; |
| Type type_; |
| }; |
| |
| |
| class RegExpCapture: public RegExpTree { |
| public: |
| explicit RegExpCapture(RegExpTree* body, int index) |
| : body_(body), index_(index) { } |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| static RegExpNode* ToNode(RegExpTree* body, |
| int index, |
| RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpCapture* AsCapture(); |
| virtual bool IsAnchoredAtStart(); |
| virtual bool IsAnchoredAtEnd(); |
| virtual Interval CaptureRegisters(); |
| virtual bool IsCapture(); |
| virtual int min_match() { return body_->min_match(); } |
| virtual int max_match() { return body_->max_match(); } |
| RegExpTree* body() { return body_; } |
| int index() { return index_; } |
| static int StartRegister(int index) { return index * 2; } |
| static int EndRegister(int index) { return index * 2 + 1; } |
| private: |
| RegExpTree* body_; |
| int index_; |
| }; |
| |
| |
| class RegExpLookahead: public RegExpTree { |
| public: |
| RegExpLookahead(RegExpTree* body, |
| bool is_positive, |
| int capture_count, |
| int capture_from) |
| : body_(body), |
| is_positive_(is_positive), |
| capture_count_(capture_count), |
| capture_from_(capture_from) { } |
| |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpLookahead* AsLookahead(); |
| virtual Interval CaptureRegisters(); |
| virtual bool IsLookahead(); |
| virtual bool IsAnchoredAtStart(); |
| virtual int min_match() { return 0; } |
| virtual int max_match() { return 0; } |
| RegExpTree* body() { return body_; } |
| bool is_positive() { return is_positive_; } |
| int capture_count() { return capture_count_; } |
| int capture_from() { return capture_from_; } |
| private: |
| RegExpTree* body_; |
| bool is_positive_; |
| int capture_count_; |
| int capture_from_; |
| }; |
| |
| |
| class RegExpBackReference: public RegExpTree { |
| public: |
| explicit RegExpBackReference(RegExpCapture* capture) |
| : capture_(capture) { } |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpBackReference* AsBackReference(); |
| virtual bool IsBackReference(); |
| virtual int min_match() { return 0; } |
| virtual int max_match() { return capture_->max_match(); } |
| int index() { return capture_->index(); } |
| RegExpCapture* capture() { return capture_; } |
| private: |
| RegExpCapture* capture_; |
| }; |
| |
| |
| class RegExpEmpty: public RegExpTree { |
| public: |
| RegExpEmpty() { } |
| virtual void* Accept(RegExpVisitor* visitor, void* data); |
| virtual RegExpNode* ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success); |
| virtual RegExpEmpty* AsEmpty(); |
| virtual bool IsEmpty(); |
| virtual int min_match() { return 0; } |
| virtual int max_match() { return 0; } |
| static RegExpEmpty* GetInstance() { return &kInstance; } |
| private: |
| static RegExpEmpty kInstance; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Basic visitor |
| // - leaf node visitors are abstract. |
| |
| class AstVisitor BASE_EMBEDDED { |
| public: |
| AstVisitor() : stack_overflow_(false) { } |
| virtual ~AstVisitor() { } |
| |
| // Stack overflow check and dynamic dispatch. |
| void Visit(AstNode* node) { if (!CheckStackOverflow()) node->Accept(this); } |
| |
| // Iteration left-to-right. |
| virtual void VisitDeclarations(ZoneList<Declaration*>* declarations); |
| virtual void VisitStatements(ZoneList<Statement*>* statements); |
| virtual void VisitExpressions(ZoneList<Expression*>* expressions); |
| |
| // Stack overflow tracking support. |
| bool HasStackOverflow() const { return stack_overflow_; } |
| bool CheckStackOverflow(); |
| |
| // If a stack-overflow exception is encountered when visiting a |
| // node, calling SetStackOverflow will make sure that the visitor |
| // bails out without visiting more nodes. |
| void SetStackOverflow() { stack_overflow_ = true; } |
| |
| // Individual nodes |
| #define DEF_VISIT(type) \ |
| virtual void Visit##type(type* node) = 0; |
| AST_NODE_LIST(DEF_VISIT) |
| #undef DEF_VISIT |
| |
| private: |
| bool stack_overflow_; |
| }; |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_AST_H_ |