| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2010 the V8 project authors. All rights reserved. |
| |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| #include "mips/assembler-mips-inl.h" |
| #include "serialize.h" |
| |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| |
| const Register no_reg = { -1 }; |
| |
| const Register zero_reg = { 0 }; |
| const Register at = { 1 }; |
| const Register v0 = { 2 }; |
| const Register v1 = { 3 }; |
| const Register a0 = { 4 }; |
| const Register a1 = { 5 }; |
| const Register a2 = { 6 }; |
| const Register a3 = { 7 }; |
| const Register t0 = { 8 }; |
| const Register t1 = { 9 }; |
| const Register t2 = { 10 }; |
| const Register t3 = { 11 }; |
| const Register t4 = { 12 }; |
| const Register t5 = { 13 }; |
| const Register t6 = { 14 }; |
| const Register t7 = { 15 }; |
| const Register s0 = { 16 }; |
| const Register s1 = { 17 }; |
| const Register s2 = { 18 }; |
| const Register s3 = { 19 }; |
| const Register s4 = { 20 }; |
| const Register s5 = { 21 }; |
| const Register s6 = { 22 }; |
| const Register s7 = { 23 }; |
| const Register t8 = { 24 }; |
| const Register t9 = { 25 }; |
| const Register k0 = { 26 }; |
| const Register k1 = { 27 }; |
| const Register gp = { 28 }; |
| const Register sp = { 29 }; |
| const Register s8_fp = { 30 }; |
| const Register ra = { 31 }; |
| |
| |
| const FPURegister no_creg = { -1 }; |
| |
| const FPURegister f0 = { 0 }; |
| const FPURegister f1 = { 1 }; |
| const FPURegister f2 = { 2 }; |
| const FPURegister f3 = { 3 }; |
| const FPURegister f4 = { 4 }; |
| const FPURegister f5 = { 5 }; |
| const FPURegister f6 = { 6 }; |
| const FPURegister f7 = { 7 }; |
| const FPURegister f8 = { 8 }; |
| const FPURegister f9 = { 9 }; |
| const FPURegister f10 = { 10 }; |
| const FPURegister f11 = { 11 }; |
| const FPURegister f12 = { 12 }; |
| const FPURegister f13 = { 13 }; |
| const FPURegister f14 = { 14 }; |
| const FPURegister f15 = { 15 }; |
| const FPURegister f16 = { 16 }; |
| const FPURegister f17 = { 17 }; |
| const FPURegister f18 = { 18 }; |
| const FPURegister f19 = { 19 }; |
| const FPURegister f20 = { 20 }; |
| const FPURegister f21 = { 21 }; |
| const FPURegister f22 = { 22 }; |
| const FPURegister f23 = { 23 }; |
| const FPURegister f24 = { 24 }; |
| const FPURegister f25 = { 25 }; |
| const FPURegister f26 = { 26 }; |
| const FPURegister f27 = { 27 }; |
| const FPURegister f28 = { 28 }; |
| const FPURegister f29 = { 29 }; |
| const FPURegister f30 = { 30 }; |
| const FPURegister f31 = { 31 }; |
| |
| int ToNumber(Register reg) { |
| ASSERT(reg.is_valid()); |
| const int kNumbers[] = { |
| 0, // zero_reg |
| 1, // at |
| 2, // v0 |
| 3, // v1 |
| 4, // a0 |
| 5, // a1 |
| 6, // a2 |
| 7, // a3 |
| 8, // t0 |
| 9, // t1 |
| 10, // t2 |
| 11, // t3 |
| 12, // t4 |
| 13, // t5 |
| 14, // t6 |
| 15, // t7 |
| 16, // s0 |
| 17, // s1 |
| 18, // s2 |
| 19, // s3 |
| 20, // s4 |
| 21, // s5 |
| 22, // s6 |
| 23, // s7 |
| 24, // t8 |
| 25, // t9 |
| 26, // k0 |
| 27, // k1 |
| 28, // gp |
| 29, // sp |
| 30, // s8_fp |
| 31, // ra |
| }; |
| return kNumbers[reg.code()]; |
| } |
| |
| Register ToRegister(int num) { |
| ASSERT(num >= 0 && num < kNumRegisters); |
| const Register kRegisters[] = { |
| zero_reg, |
| at, |
| v0, v1, |
| a0, a1, a2, a3, |
| t0, t1, t2, t3, t4, t5, t6, t7, |
| s0, s1, s2, s3, s4, s5, s6, s7, |
| t8, t9, |
| k0, k1, |
| gp, |
| sp, |
| s8_fp, |
| ra |
| }; |
| return kRegisters[num]; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo. |
| |
| const int RelocInfo::kApplyMask = 0; |
| |
| // Patch the code at the current address with the supplied instructions. |
| void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| Instr* pc = reinterpret_cast<Instr*>(pc_); |
| Instr* instr = reinterpret_cast<Instr*>(instructions); |
| for (int i = 0; i < instruction_count; i++) { |
| *(pc + i) = *(instr + i); |
| } |
| |
| // Indicate that code has changed. |
| CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); |
| } |
| |
| |
| // Patch the code at the current PC with a call to the target address. |
| // Additional guard instructions can be added if required. |
| void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| // Patch the code at the current address with a call to the target. |
| UNIMPLEMENTED_MIPS(); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand and MemOperand. |
| // See assembler-mips-inl.h for inlined constructors. |
| |
| Operand::Operand(Handle<Object> handle) { |
| rm_ = no_reg; |
| // Verify all Objects referred by code are NOT in new space. |
| Object* obj = *handle; |
| ASSERT(!Heap::InNewSpace(obj)); |
| if (obj->IsHeapObject()) { |
| imm32_ = reinterpret_cast<intptr_t>(handle.location()); |
| rmode_ = RelocInfo::EMBEDDED_OBJECT; |
| } else { |
| // No relocation needed. |
| imm32_ = reinterpret_cast<intptr_t>(obj); |
| rmode_ = RelocInfo::NONE; |
| } |
| } |
| |
| MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) { |
| offset_ = offset; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Assembler. |
| |
| static const int kMinimalBufferSize = 4*KB; |
| static byte* spare_buffer_ = NULL; |
| |
| Assembler::Assembler(void* buffer, int buffer_size) { |
| if (buffer == NULL) { |
| // Do our own buffer management. |
| if (buffer_size <= kMinimalBufferSize) { |
| buffer_size = kMinimalBufferSize; |
| |
| if (spare_buffer_ != NULL) { |
| buffer = spare_buffer_; |
| spare_buffer_ = NULL; |
| } |
| } |
| if (buffer == NULL) { |
| buffer_ = NewArray<byte>(buffer_size); |
| } else { |
| buffer_ = static_cast<byte*>(buffer); |
| } |
| buffer_size_ = buffer_size; |
| own_buffer_ = true; |
| |
| } else { |
| // Use externally provided buffer instead. |
| ASSERT(buffer_size > 0); |
| buffer_ = static_cast<byte*>(buffer); |
| buffer_size_ = buffer_size; |
| own_buffer_ = false; |
| } |
| |
| // Setup buffer pointers. |
| ASSERT(buffer_ != NULL); |
| pc_ = buffer_; |
| reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| current_statement_position_ = RelocInfo::kNoPosition; |
| current_position_ = RelocInfo::kNoPosition; |
| written_statement_position_ = current_statement_position_; |
| written_position_ = current_position_; |
| } |
| |
| |
| Assembler::~Assembler() { |
| if (own_buffer_) { |
| if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
| spare_buffer_ = buffer_; |
| } else { |
| DeleteArray(buffer_); |
| } |
| } |
| } |
| |
| |
| void Assembler::GetCode(CodeDesc* desc) { |
| ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap |
| // Setup code descriptor. |
| desc->buffer = buffer_; |
| desc->buffer_size = buffer_size_; |
| desc->instr_size = pc_offset(); |
| desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| } |
| |
| |
| // Labels refer to positions in the (to be) generated code. |
| // There are bound, linked, and unused labels. |
| // |
| // Bound labels refer to known positions in the already |
| // generated code. pos() is the position the label refers to. |
| // |
| // Linked labels refer to unknown positions in the code |
| // to be generated; pos() is the position of the last |
| // instruction using the label. |
| |
| |
| // The link chain is terminated by a negative code position (must be aligned). |
| const int kEndOfChain = -4; |
| |
| bool Assembler::is_branch(Instr instr) { |
| uint32_t opcode = ((instr & kOpcodeMask)); |
| uint32_t rt_field = ((instr & kRtFieldMask)); |
| uint32_t rs_field = ((instr & kRsFieldMask)); |
| // Checks if the instruction is a branch. |
| return opcode == BEQ || |
| opcode == BNE || |
| opcode == BLEZ || |
| opcode == BGTZ || |
| opcode == BEQL || |
| opcode == BNEL || |
| opcode == BLEZL || |
| opcode == BGTZL|| |
| (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || |
| rt_field == BLTZAL || rt_field == BGEZAL)) || |
| (opcode == COP1 && rs_field == BC1); // Coprocessor branch. |
| } |
| |
| |
| int Assembler::target_at(int32_t pos) { |
| Instr instr = instr_at(pos); |
| if ((instr & ~kImm16Mask) == 0) { |
| // Emitted label constant, not part of a branch. |
| return instr - (Code::kHeaderSize - kHeapObjectTag); |
| } |
| // Check we have a branch instruction. |
| ASSERT(is_branch(instr)); |
| // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming |
| // the compiler uses arithmectic shifts for signed integers. |
| int32_t imm18 = ((instr & |
| static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
| |
| return pos + kBranchPCOffset + imm18; |
| } |
| |
| |
| void Assembler::target_at_put(int32_t pos, int32_t target_pos) { |
| Instr instr = instr_at(pos); |
| if ((instr & ~kImm16Mask) == 0) { |
| ASSERT(target_pos == kEndOfChain || target_pos >= 0); |
| // Emitted label constant, not part of a branch. |
| // Make label relative to Code* of generated Code object. |
| instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| return; |
| } |
| |
| ASSERT(is_branch(instr)); |
| int32_t imm18 = target_pos - (pos + kBranchPCOffset); |
| ASSERT((imm18 & 3) == 0); |
| |
| instr &= ~kImm16Mask; |
| int32_t imm16 = imm18 >> 2; |
| ASSERT(is_int16(imm16)); |
| |
| instr_at_put(pos, instr | (imm16 & kImm16Mask)); |
| } |
| |
| |
| void Assembler::print(Label* L) { |
| if (L->is_unused()) { |
| PrintF("unused label\n"); |
| } else if (L->is_bound()) { |
| PrintF("bound label to %d\n", L->pos()); |
| } else if (L->is_linked()) { |
| Label l = *L; |
| PrintF("unbound label"); |
| while (l.is_linked()) { |
| PrintF("@ %d ", l.pos()); |
| Instr instr = instr_at(l.pos()); |
| if ((instr & ~kImm16Mask) == 0) { |
| PrintF("value\n"); |
| } else { |
| PrintF("%d\n", instr); |
| } |
| next(&l); |
| } |
| } else { |
| PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| } |
| } |
| |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position |
| while (L->is_linked()) { |
| int32_t fixup_pos = L->pos(); |
| next(L); // call next before overwriting link with target at fixup_pos |
| target_at_put(fixup_pos, pos); |
| } |
| L->bind_to(pos); |
| |
| // Keep track of the last bound label so we don't eliminate any instructions |
| // before a bound label. |
| if (pos > last_bound_pos_) |
| last_bound_pos_ = pos; |
| } |
| |
| |
| void Assembler::link_to(Label* L, Label* appendix) { |
| if (appendix->is_linked()) { |
| if (L->is_linked()) { |
| // Append appendix to L's list. |
| int fixup_pos; |
| int link = L->pos(); |
| do { |
| fixup_pos = link; |
| link = target_at(fixup_pos); |
| } while (link > 0); |
| ASSERT(link == kEndOfChain); |
| target_at_put(fixup_pos, appendix->pos()); |
| } else { |
| // L is empty, simply use appendix |
| *L = *appendix; |
| } |
| } |
| appendix->Unuse(); // appendix should not be used anymore |
| } |
| |
| |
| void Assembler::bind(Label* L) { |
| ASSERT(!L->is_bound()); // label can only be bound once |
| bind_to(L, pc_offset()); |
| } |
| |
| |
| void Assembler::next(Label* L) { |
| ASSERT(L->is_linked()); |
| int link = target_at(L->pos()); |
| if (link > 0) { |
| L->link_to(link); |
| } else { |
| ASSERT(link == kEndOfChain); |
| L->Unuse(); |
| } |
| } |
| |
| |
| // We have to use a temporary register for things that can be relocated even |
| // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction |
| // space. There is no guarantee that the relocated location can be similarly |
| // encoded. |
| bool Assembler::MustUseAt(RelocInfo::Mode rmode) { |
| if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| return Serializer::enabled(); |
| } else if (rmode == RelocInfo::NONE) { |
| return false; |
| } |
| return true; |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| Register rd, |
| uint16_t sa, |
| SecondaryField func) { |
| ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (rd.code() << kRdShift) | (sa << kSaShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| FPURegister ft, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func) { |
| ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); |
| Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift) |
| | (fd.code() << 6) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| Register rt, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func) { |
| ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); |
| Instr instr = opcode | fmt | (rt.code() << kRtShift) |
| | (fs.code() << kFsShift) | (fd.code() << 6) | func; |
| emit(instr); |
| } |
| |
| |
| // Instructions with immediate value. |
| // Registers are in the order of the instruction encoding, from left to right. |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| Register rt, |
| int32_t j) { |
| ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| SecondaryField SF, |
| int32_t j) { |
| ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| FPURegister ft, |
| int32_t j) { |
| ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
| | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| // Registers are in the order of the instruction encoding, from left to right. |
| void Assembler::GenInstrJump(Opcode opcode, |
| uint32_t address) { |
| ASSERT(is_uint26(address)); |
| Instr instr = opcode | address; |
| emit(instr); |
| } |
| |
| |
| int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
| int32_t target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link |
| } else { |
| target_pos = kEndOfChain; |
| } |
| L->link_to(pc_offset()); |
| } |
| |
| int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); |
| return offset; |
| } |
| |
| |
| void Assembler::label_at_put(Label* L, int at_offset) { |
| int target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link |
| } else { |
| target_pos = kEndOfChain; |
| } |
| L->link_to(at_offset); |
| instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| } |
| } |
| |
| |
| //------- Branch and jump instructions -------- |
| |
| void Assembler::b(int16_t offset) { |
| beq(zero_reg, zero_reg, offset); |
| } |
| |
| |
| void Assembler::bal(int16_t offset) { |
| bgezal(zero_reg, offset); |
| } |
| |
| |
| void Assembler::beq(Register rs, Register rt, int16_t offset) { |
| GenInstrImmediate(BEQ, rs, rt, offset); |
| } |
| |
| |
| void Assembler::bgez(Register rs, int16_t offset) { |
| GenInstrImmediate(REGIMM, rs, BGEZ, offset); |
| } |
| |
| |
| void Assembler::bgezal(Register rs, int16_t offset) { |
| GenInstrImmediate(REGIMM, rs, BGEZAL, offset); |
| } |
| |
| |
| void Assembler::bgtz(Register rs, int16_t offset) { |
| GenInstrImmediate(BGTZ, rs, zero_reg, offset); |
| } |
| |
| |
| void Assembler::blez(Register rs, int16_t offset) { |
| GenInstrImmediate(BLEZ, rs, zero_reg, offset); |
| } |
| |
| |
| void Assembler::bltz(Register rs, int16_t offset) { |
| GenInstrImmediate(REGIMM, rs, BLTZ, offset); |
| } |
| |
| |
| void Assembler::bltzal(Register rs, int16_t offset) { |
| GenInstrImmediate(REGIMM, rs, BLTZAL, offset); |
| } |
| |
| |
| void Assembler::bne(Register rs, Register rt, int16_t offset) { |
| GenInstrImmediate(BNE, rs, rt, offset); |
| } |
| |
| |
| void Assembler::j(int32_t target) { |
| ASSERT(is_uint28(target) && ((target & 3) == 0)); |
| GenInstrJump(J, target >> 2); |
| } |
| |
| |
| void Assembler::jr(Register rs) { |
| GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); |
| } |
| |
| |
| void Assembler::jal(int32_t target) { |
| ASSERT(is_uint28(target) && ((target & 3) == 0)); |
| GenInstrJump(JAL, target >> 2); |
| } |
| |
| |
| void Assembler::jalr(Register rs, Register rd) { |
| GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); |
| } |
| |
| |
| //-------Data-processing-instructions--------- |
| |
| // Arithmetic. |
| |
| void Assembler::add(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD); |
| } |
| |
| |
| void Assembler::addu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); |
| } |
| |
| |
| void Assembler::addi(Register rd, Register rs, int32_t j) { |
| GenInstrImmediate(ADDI, rs, rd, j); |
| } |
| |
| |
| void Assembler::addiu(Register rd, Register rs, int32_t j) { |
| GenInstrImmediate(ADDIU, rs, rd, j); |
| } |
| |
| |
| void Assembler::sub(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB); |
| } |
| |
| |
| void Assembler::subu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); |
| } |
| |
| |
| void Assembler::mul(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); |
| } |
| |
| |
| void Assembler::mult(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); |
| } |
| |
| |
| void Assembler::multu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); |
| } |
| |
| |
| void Assembler::div(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); |
| } |
| |
| |
| void Assembler::divu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); |
| } |
| |
| |
| // Logical. |
| |
| void Assembler::and_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); |
| } |
| |
| |
| void Assembler::andi(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(ANDI, rs, rt, j); |
| } |
| |
| |
| void Assembler::or_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); |
| } |
| |
| |
| void Assembler::ori(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(ORI, rs, rt, j); |
| } |
| |
| |
| void Assembler::xor_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); |
| } |
| |
| |
| void Assembler::xori(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(XORI, rs, rt, j); |
| } |
| |
| |
| void Assembler::nor(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); |
| } |
| |
| |
| // Shifts. |
| void Assembler::sll(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); |
| } |
| |
| |
| void Assembler::sllv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); |
| } |
| |
| |
| void Assembler::srl(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL); |
| } |
| |
| |
| void Assembler::srlv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); |
| } |
| |
| |
| void Assembler::sra(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA); |
| } |
| |
| |
| void Assembler::srav(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); |
| } |
| |
| |
| //------------Memory-instructions------------- |
| |
| void Assembler::lb(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::lbu(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::lw(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::sb(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::sw(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::lui(Register rd, int32_t j) { |
| GenInstrImmediate(LUI, zero_reg, rd, j); |
| } |
| |
| |
| //-------------Misc-instructions-------------- |
| |
| // Break / Trap instructions. |
| void Assembler::break_(uint32_t code) { |
| ASSERT((code & ~0xfffff) == 0); |
| Instr break_instr = SPECIAL | BREAK | (code << 6); |
| emit(break_instr); |
| } |
| |
| |
| void Assembler::tge(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = SPECIAL | TGE | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tgeu(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = SPECIAL | TGEU | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tlt(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tltu(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = SPECIAL | TLTU | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::teq(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tne(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| // Move from HI/LO register. |
| |
| void Assembler::mfhi(Register rd) { |
| GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); |
| } |
| |
| |
| void Assembler::mflo(Register rd) { |
| GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); |
| } |
| |
| |
| // Set on less than instructions. |
| void Assembler::slt(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); |
| } |
| |
| |
| void Assembler::sltu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); |
| } |
| |
| |
| void Assembler::slti(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(SLTI, rs, rt, j); |
| } |
| |
| |
| void Assembler::sltiu(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(SLTIU, rs, rt, j); |
| } |
| |
| |
| //--------Coprocessor-instructions---------------- |
| |
| // Load, store, move. |
| void Assembler::lwc1(FPURegister fd, const MemOperand& src) { |
| GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); |
| } |
| |
| |
| void Assembler::ldc1(FPURegister fd, const MemOperand& src) { |
| GenInstrImmediate(LDC1, src.rm(), fd, src.offset_); |
| } |
| |
| |
| void Assembler::swc1(FPURegister fd, const MemOperand& src) { |
| GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); |
| } |
| |
| |
| void Assembler::sdc1(FPURegister fd, const MemOperand& src) { |
| GenInstrImmediate(SDC1, src.rm(), fd, src.offset_); |
| } |
| |
| |
| void Assembler::mtc1(FPURegister fs, Register rt) { |
| GenInstrRegister(COP1, MTC1, rt, fs, f0); |
| } |
| |
| |
| void Assembler::mthc1(FPURegister fs, Register rt) { |
| GenInstrRegister(COP1, MTHC1, rt, fs, f0); |
| } |
| |
| |
| void Assembler::mfc1(FPURegister fs, Register rt) { |
| GenInstrRegister(COP1, MFC1, rt, fs, f0); |
| } |
| |
| |
| void Assembler::mfhc1(FPURegister fs, Register rt) { |
| GenInstrRegister(COP1, MFHC1, rt, fs, f0); |
| } |
| |
| |
| // Conversions. |
| |
| void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); |
| } |
| |
| |
| void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); |
| } |
| |
| |
| void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); |
| } |
| |
| |
| void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); |
| } |
| |
| |
| void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); |
| } |
| |
| |
| void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); |
| } |
| |
| |
| void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); |
| } |
| |
| |
| void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); |
| } |
| |
| |
| void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); |
| } |
| |
| |
| void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); |
| } |
| |
| |
| // Conditions. |
| void Assembler::c(FPUCondition cond, SecondaryField fmt, |
| FPURegister ft, FPURegister fs, uint16_t cc) { |
| ASSERT(is_uint3(cc)); |
| ASSERT((fmt & ~(31 << kRsShift)) == 0); |
| Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift |
| | cc << 8 | 3 << 4 | cond; |
| emit(instr); |
| } |
| |
| |
| void Assembler::bc1f(int16_t offset, uint16_t cc) { |
| ASSERT(is_uint3(cc)); |
| Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::bc1t(int16_t offset, uint16_t cc) { |
| ASSERT(is_uint3(cc)); |
| Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| // Debugging. |
| void Assembler::RecordJSReturn() { |
| WriteRecordedPositions(); |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::JS_RETURN); |
| } |
| |
| |
| void Assembler::RecordComment(const char* msg) { |
| if (FLAG_debug_code) { |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| } |
| } |
| |
| |
| void Assembler::RecordPosition(int pos) { |
| if (pos == RelocInfo::kNoPosition) return; |
| ASSERT(pos >= 0); |
| current_position_ = pos; |
| } |
| |
| |
| void Assembler::RecordStatementPosition(int pos) { |
| if (pos == RelocInfo::kNoPosition) return; |
| ASSERT(pos >= 0); |
| current_statement_position_ = pos; |
| } |
| |
| |
| bool Assembler::WriteRecordedPositions() { |
| bool written = false; |
| |
| // Write the statement position if it is different from what was written last |
| // time. |
| if (current_statement_position_ != written_statement_position_) { |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); |
| written_statement_position_ = current_statement_position_; |
| written = true; |
| } |
| |
| // Write the position if it is different from what was written last time and |
| // also different from the written statement position. |
| if (current_position_ != written_position_ && |
| current_position_ != written_statement_position_) { |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::POSITION, current_position_); |
| written_position_ = current_position_; |
| written = true; |
| } |
| |
| // Return whether something was written. |
| return written; |
| } |
| |
| |
| void Assembler::GrowBuffer() { |
| if (!own_buffer_) FATAL("external code buffer is too small"); |
| |
| // Compute new buffer size. |
| CodeDesc desc; // the new buffer |
| if (buffer_size_ < 4*KB) { |
| desc.buffer_size = 4*KB; |
| } else if (buffer_size_ < 1*MB) { |
| desc.buffer_size = 2*buffer_size_; |
| } else { |
| desc.buffer_size = buffer_size_ + 1*MB; |
| } |
| CHECK_GT(desc.buffer_size, 0); // no overflow |
| |
| // Setup new buffer. |
| desc.buffer = NewArray<byte>(desc.buffer_size); |
| |
| desc.instr_size = pc_offset(); |
| desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| |
| // Copy the data. |
| int pc_delta = desc.buffer - buffer_; |
| int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
| memmove(desc.buffer, buffer_, desc.instr_size); |
| memmove(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.pos(), desc.reloc_size); |
| |
| // Switch buffers. |
| DeleteArray(buffer_); |
| buffer_ = desc.buffer; |
| buffer_size_ = desc.buffer_size; |
| pc_ += pc_delta; |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| |
| // On ia32 and ARM pc relative addressing is used, and we thus need to apply a |
| // shift by pc_delta. But on MIPS the target address it directly loaded, so |
| // we do not need to relocate here. |
| |
| ASSERT(!overflow()); |
| } |
| |
| |
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants |
| if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { |
| // Adjust code for new modes. |
| ASSERT(RelocInfo::IsJSReturn(rmode) |
| || RelocInfo::IsComment(rmode) |
| || RelocInfo::IsPosition(rmode)); |
| // These modes do not need an entry in the constant pool. |
| } |
| if (rinfo.rmode() != RelocInfo::NONE) { |
| // Don't record external references unless the heap will be serialized. |
| if (rmode == RelocInfo::EXTERNAL_REFERENCE && |
| !Serializer::enabled() && |
| !FLAG_debug_code) { |
| return; |
| } |
| ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here |
| reloc_info_writer.Write(&rinfo); |
| } |
| } |
| |
| |
| Address Assembler::target_address_at(Address pc) { |
| Instr instr1 = instr_at(pc); |
| Instr instr2 = instr_at(pc + kInstrSize); |
| // Check we have 2 instructions generated by li. |
| ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || |
| ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI || |
| (instr2 & kOpcodeMask) == ORI || |
| (instr2 & kOpcodeMask) == LUI))); |
| // Interpret these 2 instructions. |
| if (instr1 == nopInstr) { |
| if ((instr2 & kOpcodeMask) == ADDI) { |
| return reinterpret_cast<Address>(((instr2 & kImm16Mask) << 16) >> 16); |
| } else if ((instr2 & kOpcodeMask) == ORI) { |
| return reinterpret_cast<Address>(instr2 & kImm16Mask); |
| } else if ((instr2 & kOpcodeMask) == LUI) { |
| return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16); |
| } |
| } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) { |
| // 32 bits value. |
| return reinterpret_cast<Address>( |
| (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask)); |
| } |
| |
| // We should never get here. |
| UNREACHABLE(); |
| return (Address)0x0; |
| } |
| |
| |
| void Assembler::set_target_address_at(Address pc, Address target) { |
| // On MIPS we need to patch the code to generate. |
| |
| // First check we have a li. |
| Instr instr2 = instr_at(pc + kInstrSize); |
| #ifdef DEBUG |
| Instr instr1 = instr_at(pc); |
| |
| // Check we have indeed the result from a li with MustUseAt true. |
| CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || |
| ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU || |
| (instr2 & kOpcodeMask)== ORI || |
| (instr2 & kOpcodeMask)== LUI))); |
| #endif |
| |
| |
| uint32_t rt_code = (instr2 & kRtFieldMask); |
| uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| uint32_t itarget = reinterpret_cast<uint32_t>(target); |
| |
| if (is_int16(itarget)) { |
| // nop |
| // addiu rt zero_reg j |
| *p = nopInstr; |
| *(p+1) = ADDIU | rt_code | (itarget & LOMask); |
| } else if (!(itarget & HIMask)) { |
| // nop |
| // ori rt zero_reg j |
| *p = nopInstr; |
| *(p+1) = ORI | rt_code | (itarget & LOMask); |
| } else if (!(itarget & LOMask)) { |
| // nop |
| // lui rt (HIMask & itarget)>>16 |
| *p = nopInstr; |
| *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16); |
| } else { |
| // lui rt (HIMask & itarget)>>16 |
| // ori rt rt, (LOMask & itarget) |
| *p = LUI | rt_code | ((itarget & HIMask)>>16); |
| *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask); |
| } |
| |
| CPU::FlushICache(pc, 2 * sizeof(int32_t)); |
| } |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS |